GLOBAL WEAK SOLUTIONS FOR A NONLOCAL
MULTISPECIES FOKKER-PLANCK-LANDAU SYSTEM

JINGWEI HU, ANSGAR JUNGEL, AND NICOLA ZAMPONI

ABSTRACT. The global-in-time existence of weak solutions to a spatially homogeneous
multispecies Fokker—Planck—Landau system for plasmas in the three-dimensional whole
space is shown. The Fokker—Planck—Landau system is a simplification of the Landau
equations assuming a linearized, velocity-independent, and isotropic kernel. The resulting
equations depend nonlocally and nonlinearly on the moments of the distribution functions
via the multispecies local Maxwellians. The existence proof is based on a three-level
approximation scheme, energy and entropy estimates, as well as compactness results, and
it holds for both soft and hard potentials.

1. INTRODUCTION

The Fokker—Planck-Landau equations describe the local collisional relaxation process
of the particle distribution functions in plasmas under binary collisions [1]. In this paper,
we investigate a multispecies, linearized, spatially homogeneous version of these equations.
More preciely, the distribution functions f;(v,t) of the ith species of the multicomponent
plasma, depending on the velocity v € R?® and time ¢ > 0, are assumed to satisfy the
initial-value problem

v —

TJ“J fi) inR3, t>0,

j=1

(2) fi(0)=f2 inR% i=1,...,s,

where s € N is the number of species and m; > 0 the molar mass of the ith species. Before
defining the quantities c;;, uj;, and Tj;, we introduce the first moments of f;, namely the
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number density n;, partial velocity u;, and partial temperature T; by

1 m;
(3) n, = fidv, wi=— [ foodv, Ty=-—" [ filv—u*dv,
R3 n; Jgrs 3712' R3
as well as the partial mass density p; = m;n,. Then the diffusion coefficients c; and
“multispecies” velocities uj; and temperatures T}; are given by

(4) Ci = %”i (E)W,
8megm; m;
(5) wj; = CjiM; Pl + CijMj P U;
CjiMiP; + CijMjP;
(6) Crﬂ _ CjipiT% + CijpjT‘j Cjimipicijmjpﬂui _ uj|2

cjipi + ciipy  3cpi + cipi)(cjimips + ciymyp;)’

where log A > 0 is the Coulomb logarithm, A > 0 being related to the Debye length,
€0 is the vacuum permittivity, ¢; is the charge of the ith species, and v € R models the
interaction strength between particles (see Section 2 for details).

Note that c;;, uj;, and Tj; are functions of time only, and they depend in a nonlocal
and nonlinear way on the distribution functions. We write c;;[f] = c¢ji, wilf] = wji,
and Tj;[f] = Ty with f = (f1,..., fs) to make this dependence clear. Observe that the
symmetries T;; = T}; and w;; = u;; for j # i hold as well as T}; = T; and u; = ;.

Single-species kinetic Fokker—Planck equations have been mathematically studied in the
literature since the 1980s; see, e.g., [4]. One main interest was the proof of hypocoercivity
[6, 14]. There are only a few works concerned with multispecies models. The diffusion
limit of a kinetic Fokker—Planck system for charged particles towards the Nernst—Planck
equations was proved in [15]. Furthermore, in [7, 11], the limit of vanishing electron—ion
mass ratios for nonhomogeneous kinetic Fokker—Planck systems was investigated. The
multispecies modeling in [7] is very close to ours, but the model of [7] also includes spatial
and electric effects. However, an existence analysis of multispecies Fokker—Planck systems
is missing in the literature. In this paper, up to our knowledge, we provide such an analysis
for the first time.

Equations (1)-(6) are a simplification of the Fokker-Planck-Landau system (see Section
2). In this context, the right-hand side of (1) can be interpreted as the collision operator

Qji(fi) = Z cji div (sz + miv ;uﬂ fz>
j=1 7

Our model satisfies some physical properties, like mass, momentum, and energy conserva-
tion (see Lemma 2 in Section 2),

d
G L mefi+ my ey =0 for p() = Lv, o],
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and it fulfills an H-theorem or the entropy decay (see Lemma 3 in Section 2),

d S S

- ilog fidv = — ji fi

dt;/ﬂ{gfogfv Z:/cf
which follows from the gradient-flow-type formulation of (1),

(7) Oifi = chi div (fz‘ng ]\]/}

)

2
Vlog dv <0,

fi
Mij

S

) inR3 t>0,i=1,...,s,

=1

where M;; are the “multispecies” Maxwellians

m; \** miv — w;j]?
M. = n, ! S A
(5) (v) ”(zmj) exp( — )

Based on these properties, we are able to prove the global existence of weak solutions to
(1)-(6). To simplify the notation, we set (v) := (1 + |v|?)/2.

Theorem 1. Let [ € L'(R?; (v)*dv) be nonnegative with [, [ log fPdv < oo, let v € R,
and let the constants m;, q;, N,eq > 0 fori=1,...,s. Then, for any T > 0, there exists a
nonnegative weak solution f; to (1)—(6) satisfying for alli =1,...,s,

f; € L>(0,T; LY(R?; (v)2dv)) N L*(0, T; H'(R?)),
filog fi € L=(0,T; LY(R?)), 0.f; € L'(0,T; W~ H(R?)).

Moreover, there exists a constant ¢ > 0 such that Tj;(t) > ¢ > 0 fort € (0,7) and
cji € L>=(0,T), u;; € LY0,T) for any g < oo.

For the proof, we show first the existence of solutions to an approximate problem, de-
rive estimates uniform in the approximation parameters, and then pass to the limit of
vanishing parameters using compactness arguments. The construction of the approximate
scheme is surprisingly delicate, and we need three approximation levels. First, we solve a
regularized version of (1) in the ball By, around the origin with radius M > 0 to avoid
compactness issues due to the whole space R3. Second, we truncate the nonlocal terms
with the parameter ¢ > 0 in such a way that c;;[f] and Tj;[f] are positive and bounded
from above and |uj;[f]| is bounded from above. Third, we need an elliptic regularization
yielding WP (R3) solutions with p > 3 and a moment regularization yielding estimates for
higher-order moments, both with the same parameter 6 > 0. More precisely, we add to
the right-hand side of the truncated system the expressions

Ey =0div([VAPP2YS), Ey=—06)"fi+dg(v) / (0)* fidv,

By

where g(v) = 73271 satisfies Jps 9(v)dv = 1, and p > 3 and K > 2 are sufficiently
large. Expression F; yields an estimate for V f; in LP(R?), while expression Ey provides an
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estimate for f; in L*(R?; (v)Xdv). The latter term is constructed in such a way that the
mass is controlled (and conserved when By is replaced by R? in the limit M — oc), since

/B By = <1 _ /B ) g(U)dU) /B ) o <

However, this regularization provides additional terms when using the test functions f;,
log f;, and |v|? to derive bounds for the L*(R*) norm, the entropy, and the energy. For
instance, using the test function f; in the approximated system (see (17) below), we infer
from c¢j;[f] > € after some computations, detailed in Section 3, that

li/ ffdv+(5/ <U>Kfi2dv+(5/ \Vfi]”vare/ IV £ 2do
2dt Jgs R3 R3 R3

< C(e) /RS fAdv —|—5/RB<U>Kfidv.

In order to bound the last term on the right-hand side, we use (a cutoff version of) the test
function (v)? for 0 < § < 1—3/p, which gives bounds for higher-order moments depending
on ¢. This is sufficient to pass to the limit M — oo and then ¢ — 0. For the limit 6 — 0,
we derive uniform estimates for the entropy and energy as well as the higher-order moment
bound § [o,(v)* 2 f;dv < C, where the constant C' > 0 only depends on the initial entropy
and energy. This is sufficient to show that £y — 0 as § — 0.

Another issue is the limit 6 — 0 in the collision operator since it requires uniform
bounds for the nonlocal terms c¢j;[f], Tji[f], and w;;[f]. The most delicate point is the
proof of a uniform positive lower bound for the temperature Tj;[f]. The idea is to estimate
T;lf) > min{T, T3} and

T, > C’/ filv — w;|dv > C/\z/ fidv > C N2 (n, — / fidv),
{|lv—u;i|>A} {lv—ui|>A} {|lv—ui|<A}

where A > 0 is arbitrary. By the Fenchel-Young inequality, we can estimate the integral on
the right-hand side in terms of the initial entropy plus a number, and a suitable choice of
the parameters allows us to conclude a lower bound only depending on the initial entropy;
see Lemma 10.

Because of the truncations, we need to perform the limits M — oo, ¢ — 0, and § — 0
separately. Indeed, the energy conservation property of the collision operator holds only
on the level of the nontruncated quantities cj;, T};, and uj;. Therefore, we pass to the limit
€ — 0 before deriving the energy and entropy bounds that eventually allow us to perform
the limit 6 — 0.

Let us discuss some extensions of Theorem 1. Our existence result also holds in the
d-dimensional space. In this case, we choose p > d and adjust the parameters # > 0 and
K > 2 in a suitable way. We may also assume more general functions c;;[f], u;;[f], and
Tj:[f]. It is possible to generalize the dependency of ¢;;[f] on T}, but a suitable growth
condition is needed. The choice of u;;[f] and Tj;[f] guarantees momentum and energy
conservation (see Section 2.2), and their definitions need to be compatible with these
conservation properties.
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The paper is organized as follows. Some details on the physical assumptions leading
to model (1)—(6) are given in Section 2. Section 3 is devoted to the proof of Theorem
1. A compactness result in R? is shown in Appendix A, and the rigorous treatment of
nonintegrable test functions is sketched in Appendix B.

2. MOTIVATION OF THE MODEL AND SOME PROPERTIES

In this section, we motivate the Fokker—Planck-Landau system (1) and detail the un-
derlying physical assumptions leading to this model. Moreover, we discuss its conservation
properties and the H-theorem (entropy decay).

2.1. The homogeneous Fokker—Planck—Landau system. Model (1)-(6) is a simplifi-
cation of the spatially homogeneous multispecies Landau system by linearizing the Landau
collision operator and assuming that the operator kernel is independent of the velocity.
More precisely, let

(9) 8tf’L:Z@\j’L(fj7fl) in Rga t>07 i:1...78,
j=1

be the spatially homogeneous Landau equation [3] for a plasma consisting of s species. The
Landau collision operator Q;;(f;, fi) models binary collisions between species j and i:

10 Qu(f5.£) =i { [ A=) (H0ITubl0) = 20V, S0 oo

where ¢;; = |log Algq;/(8megm7) is a constant and A(z) = [z[°**(I — z ® z/|z|?) is the
(positive semidefinite) kernel matrix with I being the 3 x 3 identity matrix. The parameter
B refers to the case of hard potentials if § > 0, Maxwellian molecules if § = 0, and soft
potentials if 5 < 0. The latter case includes Coulomb interactions with 5 = —3. The
Landau equation is obtained as the grazing collisions limit of the Boltzmann equation
[1, 5, 13]. A spectral-gap analysis for the multispecies Landau system was performed in
[9]. We also refer to this reference for results on the well-posedness of the single-species
equation. R

The collision operator ();; conserves mass, momentum, and energy. Indeed, it can be
written in the weak form

1) [ Quthsode == [ [ o) aw=v)

3 JR3

X (VU log fi(v) — %VU* log fj(v*)>fi(v)fj (v, )dvdo,

J

for suitable test functions ¢. We obtain mass conservation by choosing ¢ = 1:

/ @ji(fj,fi)d’l):o, iajzlw"as-
R3
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Using ¢j;m;/m; = ¢;;m;/m; and exchanging v and v,, a computation shows that
P~ ~ MMy

a2 [ Qe pwdo=a2 [ ] Vi) TAE- )

R3 m R3 JR3

J

. (vv o8 fi(v) ~ "7, log fj(v*)) £.(0) £ (v)dudo,

j
for another test function ¢, and an addition of (11) and (12) gives

/ (jS(fj>fz’)¢+Qij(fi,fjW)dU = —Egz/ / (Vvqb(v) - —Z.VUJP(U*))
R R3 JR3 m;

s
< Al = 0.)(ulog (0) = 29, o (0 ) A0}

Then conservation of momentum follows by choosing ¢(v) = m;v and ¥ (v) = m,v,

/}R3 Qji(f5, fiymivdv + /]R3 Qis(fis fy)myvdv = 0;
conservation of energy follows after the choice ¢(v) = m;[v|? and ¢ (v) = m;|v[?,
/R3 Qji( f3, fi)ymilv[*dv + /R3 Qis(fir £i)mjlv*dv = 0;

and we obtain entropy decay after choosing ¢(v) = log f;(v) and ¢ (v) = log f;(v):

| Qs ptos fitv+ [ Qutficf)tog fdo <0, i =1

2.2. The homogeneous linearized Fokker—Planck—Landau system. In this section,
we derive model (1)—(6) from the full multi-species Landau system presented in the previous
section. Our derivation is motivated by [10], where a multi-species BGK model is obtained
from the multi-species Boltzmann equation. We make two simplifications in model (9)-

(10). First, we replace f; in @\ji(fj, fi) by the Maxwellian

m; \*? mylv — uyl?
Mii=nj\ g7~ ) &P\ =55 )
Jt J

where n;, u;;, and Tj; are given by (3), (5), and (6), respectively. Then the collision
operator becomes

Ji

where Eﬂ(v) = / A(v — v.) My (vy)dw,.
R3

In this step, we used the fact A(z)z = 0 for z € R? and from now on, all derivatives are

with respect to v. Second, we suppose that the matrix A;; is independent of the velocity v

(otherwise, the computation of the moments becomes awkward) and that A;; is diagonal
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(i.e., we neglect anisotropic diffusion). This leads to the Dougherty operator (see [8] for a
similar model)

(13) Qji(fi) = cjidiv (Vfi + miv ;uﬁ fz),

Je

where the coefficients cj; should be a reasonable approximation of the exact expression
n |log Algiq;
CiAdsi(v) = ———=2 A(v — v) M (v,)dwy.
3 Au) = il [ A= u) M0,
Assuming that the kinetic energy m;|v — v,|? is of the order of the thermal energy 7} (we
neglected the Boltzmann constant), we may approximate A(v—uv,) by (T;/m;)#+?/2 such
that we can replace ¢;;Aj; by
|log Alg?q ( T >(B+2)/2

cji =
ji 2 2 U ,
8mwegm; m;

and the definition for ¢j; is exactly (4) after setting v := 3 + 2.

To determine u;; and T};, we assume that the operator (13) conserves the momentum
und energy (mass is automatically preserved):

(14) Qji(fi)mivdo +/ Qi (f;)mjvdv = 0,
R3 R3
(15) / le(fl)m1’1)|2d1) + / Q@-j(fj)mj|”ul2dv = O, Z,j = 1, e S
R3 R3

Then a straightforward computation leads to the expressions (5) and (6). We summarize:

Lemma 2 (Conservation properties). Let u;; and Tj; be given by (5) and (6), respectively.
Then Qj; conserves the mass, momentum, and energy in the sense of (14) and (15).

The collision operator @)j; also fulfills an H-theorem.

Lemma 3 (Entropy decay). It holds formally that
/3 Qji(fi)log fidv + /3 Qij(fi)log fidv <0, i,5=1,...,s.
R R

Proof. We use definition (8) of the Maxwellian and the conservation properties of Q;;:

3 m; m;
/R3 Qji(fi) log M;;dv = /R3 Qji(fi) (10g ni + 3 log 27Ty 2sz,|v - sz’|2> dv

my;
= o7 - Qji(fi) v — uyi)*do
ji
=7 [ Qutrmate— e [ Qutpymplar
T]Z ]RJ Jt 7 1 2T7Z Rd 7t i i
_ _fj’ g Qi (fj)mjvdv + T /R3 Ou(F ol
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= 2T Qz](f])’ — | *dv = —/R3 Qi;(f;)log Mj;dv,

where we also used the symmetry of u;; and Tj;. Therefore, (7) yields

/R3 Qji(fi) log fidv + /R3 Qz’j(fj)log fidv

i
= [ Qutponfas [ Q5108 52
o fz f]
= — Cjz'fz’ VIOg dU — Cijfj VIOg dU < 0
R3 i R3 i
ending the proof. O
Remark 4. For later use, we note that it holds formally that
(16) = Z / (Qji(f:) log Mijdv + Qy(f;) log Mj;)dv
1] 1
=— Z / Qji(fi)log My;dv = Z / ciif; -V log Mj;dv.
t,j=1 i,j=1 ]

3. PROOF OF THEOREM 1

We prove the existence of weak solutions by introducing an approximate scheme, de-
riving suitable estimates uniform in the approximation parameters, and then passing to
the limit of vanishing approximation parameters. Recall that (v) := (1 + |v|?)'/? and
g(v) = 773271V’ for v € R3. We set 27 = max{0, z} for z € R, and we choose the param-
eters p > 3 and K > 0 sufficiently large (to be specified later). Our approximated system
is based on three approximation levels: the truncated domain size M > 0, the truncation
parameter 0 < & < 1, and the regularization parameter 0 < § < 1:

(1) oufe o0 fi- ) [

chl | div (sz TEZ[J;Z] (v— uﬂ[f])) in By, t >0,

(v)Kf;“dv) — §div (|Vfi[P>V i)

M

Jj=1

with the initial conditions (2) and the no-flux boundary conditions

(18) {5’Vfl‘p_2sz + Z le[f] (Vfl ml['];] ('U — U]Z[f])) } V= 0 on 8BM, t > O,
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where f = (f1,..., fs), By C R? is the ball around the origin with radius M, and v is the
exterior unit normal vector to dB);. The nonlinear coefficients are approximated by

|logA|qz'2qy2'n.(TjE’T[f] 7/2_1_5 >0
clf = Bregmy A my T
) Nlog Algiq? (TN
SrcZm? j( " ) +e 7<0
e Gl Imapaui[f] 4 ¢ flmypjus( f]
(19) Gl = S e g &, o,
72 1] = GBI + AT

Ciz[f]ﬂz + C?j[f]ﬂj
il flmupici; | flmyplui[f] — u5[f]]?
3(C§z[ﬂpz + ij[ﬂﬂj)@?i[ﬂmipi + ij[f]mjpj)’

and the (truncated) moments are defined according to

_ 0 _
n; = / fidv,  pi =min;,
]RZS

il = [ win {7 2 b

150 = 2 [ {2 b et

3’/12'

my;

€, _
T =5

[ max{ea(o)} o = wil .

Note that n; is given by the initial datum f? because of mass conservation. The truncations
guarantee that for all fi,..., fs € L'(R3; (v)2dv), the integrals us[f], T;’T[f], and T;i[f]
are well defined and

(20) e <Gl <Cle), [ulfll <Cle), e <Tj[f] < o0
for some constants ¢ > 0 and C(¢) > 0 which are independent of M.

3.1. Existence of solutions to the approximated system. We show that there exists

a weak solution f; to (2), (17), and (18) by reformulating the equations as a fixed-point

problem for a suitable mapping. For this, we introduce the space X = LP(0,T; LP(By))

recalling that p > 3. Let o € [0,1] and ﬁ € X,i=1,...,s, be given. We consider first

the partially linearized equations

(21) O fi + 5<<U>Kfz‘ - UQ(U)/ (v)Kﬁ*dv) +O|fiP2 fi = 6 div (|Vfi]P°V 1)
B

M

-0 Z cjz[]?] div (sz + mifi (v — u;l[ﬂ)) = 05]]/”;]”*2]/“;,
i T3 f)
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where ¢ = 1,...,s, with initial and no-flux boundary conditions. This system can be
formulated as the evolution equation 0, f; + A[f]f; = b; for t > 0, where

A[f] = 6(u)™ f; + 8| fiP 2 fi — 6 div (|vfi|p_2vfi)

—O’Z 1S d1v(sz T;[%(v—u;i[ﬂ)>,

b; = og(v) / (YK Frdv + o8| fi]P 2.
B
The operator A[f] : V — V' with V. = W'P(By) and its dual space V' is monotone,
hemicontinuous, and coercive. We conclude from [16, Theorem 30.A] that (21) possesses

a unique solution f; € LP(0,T;V) with d,f; € LPV/®=9(0,T; V"), i=1,...,s
Next, we use the test function f; in the weak formulation of (21):

(22) % - fi(t)zdv—%/BM(f?)deM/Ot/BM\fi\pdvdsw/;/BM IV filPdvds
= —5/t/g (v)Kfideds—i-J/t( ; fig(v)dv> (/B (U)K]?fdv)ds
—UZ (1w T )0, Jaes

+a5// |ﬁ|pdvds.
0 JBym

Taking into account that we integrate over a bounded domain, and in particular that (v)*
is bounded, we estimate the second term on the right-hand side as follows, using Holder’s
inequality as well as the embeddings LP(By;) «— L'(By) and LP(Byy) — LP/®*=D(By,):

t t
| ( fig<v>dv)( / <U>Kfi+f¢dv)ds§ LN Ellis il
0 B]\/[ B]\/I
/ VA DAY, ds+C / I

<con [ HﬁHii/(%)M”d +0 [ 1oy

Since 2p/(p—1) < p (because of p > 3), the elementary inequality 22"/~ < C(6)+(5/2)2"

for z > 0 yields
t g(v)d Kt fde)d
"/o( [ pow v)(/BM<v> i v) s

< [ (CO1+ 31t + UM ),
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and the second term on the right-hand side can be absorbed by the left-hand side of (22).
We write f;Vf; = %V f2, use Young’s inequality, and integrate by parts in the third term
on the right—hand side of (22) (we denote the measure on 0By, with d%,):

S VAP + Zfl( —u5[f]) - Vfi ) duds
By T5[f]

<__Z// LRIV L Pdvds + 2 Z//B ”A[”fdvds

1]1 z]l ]z]

o 9 A
- — 5 v|f7d¥,ds + 3 / S dvds
2” 1/ /dBM 7 | | Z

]z 1,7=1 BM
sm>/ fduds,
0 JBym

using v - v = |v| and bounds (20) in the last step. Then (22) gives

fz dU+5/ ”lewlp BM)dS S 0(5)_‘_0(6)\/0

and it follows from Gronwall’s inequality that, for any 7" > 0,

(23) sup [1fillZ2(z,) / 1fillyr.o (At < C (0,6, T, ”fOHL2(R3))( / ||fZHLP(BM )
o<t<T
This estimate allows us to derive a bound for the time derivative,
HatszLp/(p D(0,T;WP(Byy)) < 0(5 g, T, fo)

Estimate (23) shows that the mapping F' : X x [0,1] — X, (f o) — f, is well defined.
Moreover, the function F'(-,0) : X — X is constant. Standard arguments show the conti-
nuity of ', and the compactness of F follows from the compact embedding W1?(B,;) <
LP(Byy), the bounds for f; in LP(0, T; WP (By,)) and W'»/®=1(0, T; W'P(By,)"), and the
Aubin—Lions lemma [12].

To apply the Leray—Schauder fixed-point theorem, we need to show that the set {f €
X : F(f,0) = f} of fixed points of F(-,0) is bounded in X uniformly in ¢ € [0, 1]. To this
end, we set ]?: fin (21), use the test function f; in its weak formulation, and estimate
similarly as above:

t t
L ff(zs)du_l/ (fg)2dv+5(1—o—)// |fi|pdvds+5// IV £ [Pduds
2 Bar 2 Bar 0 JBum 0 JByp

_ /0 t /B (o) frduds 4 /0 t( 5 fig(v)dv) ( /B " f;dv)ds

t t t
- 5/ / |V fi|2dvds + O(e, M)/ fidvds < COfe, M)/ fAduds,
0 By 0 By 0 By

t
frdods +C [y,

By By
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where we used the inequality ([ By fidv)? < C(M) [, By f?dv. We deduce from Gronwall’s
inequality and the Poincaré-Wirtinger inequality that f; is bounded in LP(0,T; W'P(By,))
uniformly in o € [0, 1]. Therefore, we can apply the Leray—Schauder fixed-point theorem to
infer the existence of a fixed point to (21) with o = 1, i.e. a solution f; € LP(0,T; L*(Byy)),
i=1,...,s to (17).

3.2. Limit M — oo. Let fM := f; be a weak solution to (17). We first derive some
estimates uniform in M and then pass to the limit M — oo.

Lemma 5. The solution fM to (17), constructed in the previous subsection, is nonnegative
in By % (0,T), and the mass is controlled, || fM ()| 1sy) < 1 f2 N L1 By for t > 0.

Proof. We use the test function (fM)~ = min{0, fM} in the weak formulation of (17), use
(f2)~ =0, and integrate by parts in the collision operator:

e e
=Zj [/ Mcji[fM](—alv(fiM)‘IQJrg Tl duas

s

1]1

5 [ Gl el Pas.as

1,7=1 B

4 / / M<v>K|<fiM>-|2dvds
+o / i BM(fiM)g(v)dv) ([ wsar)as
/ /B I v,

since the last term in the last but one step is nonpositive. We conclude from Gronwall’s
lemma that (f)~(¢t) = 0 and hence fM(t) > 0 in By for t > 0. Next, we use the test
function ¢ = 1 in the weak formulation of (17):

¢
fM(t)dv = fidv — 5/ / ()® M duds
By B 0 JBym

+5</0t /BMg(v)dv) </BM<U>KfZMdU)dS < - fdv,

since | B, 9(v)dv < Jgs 9(v)dv = 1. This proves the mass control. O

We show now some estimates uniform in M.
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Lemma 6. Let 0 < 6 < 1—3/p. Then there exists a constant C(d,e) > 0 independent of

M such that
T
M 2 0 M K+6 pM
s [t [ o,

T
—i—/ / (VP + VY P)duds < C(6,¢).
0 By

Proof. We use the test function fM in the weak formulation of (17), use e < ¢;;[fM] < C(e),
and integrate by parts in the drift part of the collision operator:

! iM(t)de—l (f dv+5// KM dvds+5// IV fM|Pduds
2 By 2 B By By
t
< 5/ ( fl-Mg(v)dv> (/ <U>KfiMdv)ds—€/ / IV fM2dvds
By B 0 JBu
+C(e / / )2dwds.
By

Because of the mass control from Lemma 5, fB fMg(v)dv < fB fMdv < C(f?). Hence,

(24) 1 M 2dv+5// dvds+5// |V M Pdvds
2 By By By

M2
+€/O/BM]Vfi|dvds
C+C(f° t KM gpds + C t M)2qpds.
<C+ <f;>/0/BM<v> s+ cie) [ | (f)dvds

To control the second term on the right-hand side, we derive a bound for (v)%* fM for
some 6 > 0. This is done by using the test function (v)? in (17):

25) /B s [ wisass [ e
/ /B P dds +6C / /B VAPV vldeds

‘02 [l (Vs 2 -l s

ji
= Il + 12 + -[3a

where C'(g) > 0 depends on the integral [ Bas (v)?g(v)dv which is bounded uniformly in M.
The first term is estimated according to

VKo M
I < / /BM ( +C(d, g, ))fZ dvds
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t
< Zél / / <U>K+9fiMdUdS + C(é, 9, K, fio)’
0 JBuy

and the integral on the right-hand side can be absorbed by the left-hand side of (25). We
use Young’s inequality with exponents p and p/(p — 1) to find that

t
I < 50/ / ()~ fE P duds
By

< // \VfM\pdvds+C(5// YO dyds.
2 By By

The integral over (v)?~V is bounded uniformly in M if p(§ — 1) < —3, which is equivalent
to 8 < 1 — 3/p. We integrate by parts in the first part of I3:

/ /B Gilf - VfMd”dS—Z / /B M div((v)’?v) f[Mdods
_Z//aB LMY 2 (v - v) fMduds,

where v is the exterior unit normal vector to 0B),. Since B); is a ball around the origin,
v =v/|v| and hence v-v = |v|, and we infer that the surface integral is nonpositive. Then,
using (v)?~2 < 1 and the mass control,

—QZ//B 20V fMduds < C(e) Z//B v)' 2 fMdvds < Cle, f7).

The second part of I3 is estimated according to

92/ . S
< (o) /Ot/B (0 + ()71 fMdvds < C(5, ) / /B YK M

Summarizing, we infer from (25) that

/BM<>f t)dv + = //BM (W) PNy < (5, 6) + //BM|VfM|pd"UdS

We add this inequality to (24) and use the inequality (v)% < C(6) + (§/8)(v)E*? as well
as the mass control:

4
/BM (%fZM(tP ( )dv—i—/ /BM< K+0f +€|vfM|2 §|VfZM|p>dvds

< C(5.2) + Cle) /0 t /B (s,

()2 (0o = v - g, [fM]) £ dvds
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We apply Gronwall’s lemma and then take the supremum over ¢ € (0,7") to finish the
proof. O

Lemma 6 gives uniform bounds for f* in L>(0,T;L?(Bys)) and LP(0,T; W'P(By)).
Then, together with the bounds (20), we infer that 9;f is bounded in LP/®*=Y(0,T;
W=12(By;)") uniformly in M. The condition p > 3 implies that the embedding W?(By,)
— L>(Byy) is compact. Then the Aubin-Lions lemma, together with a Cantor diagonal
argument, yields the existence of a subsequence, which is not relabeled, such that, as
M — oo,

fM — fi strongly in LP(0,T; L°(B)) for every ball B C R®.
We claim that
M — f; strongly in L*(0,T; L*(R?)).

Indeed, we know from Lemma 6 that [,(v)? fM(t)dv < C for all balls B C R* uniformly

(2

in M and for ¢t € (0,7). Then Fatou’s lemma implies that

/ W) f;(t)dv = / liminf (v)? fM(t)1p,,dv < lim inf / W) fM ()1 p,,dv < O,
R3 R3 R3

M —oc0 M—oo

and this bound holds uniformly for ¢t € (0,7). Set fM(t) := 0 outside of By and let
R < M. We write

/ - I —fz|dvd5—/ /BR f1|dvds—i—/ /R<U<M} M _ f.|dvds

/ / — fildvds =: JM + J 4 JM.
{\U\>M}

Because of the strong convergence of (fM) in B, we have JM — 0 as M — co. We deduce
from the uniform bound for (v)? fM in L'(R?) that

M<i/T/ )| = fldeds < =
R Jy Jir<piaan T TR

In a similar way, since fM =0 in {|v| > M}, we have

J < — / / v)! fidv < —
R |v|>M} R”
We conclude that

T
lim sup/ M — fi|dvds < % for all R > 0.
M—o0 0 R3 R

Since the left-hand side is independent of R, it follows that limsup,,_,. fOT Jes | S —
fildvds = 0, proving the claim.
We also obtain, for a subsequence, the weak convergences

VM ~Vf; weakly in LP(0,T; LP(B)),
atsz — O f; weakly in LP(0, T} Wl’p(B)’)
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as M — oo for any ball B C R3®. These convergences are sufficient to pass to the limit
M — oo in (17), and the limit f7 := f; is a weak solution to

(26)  Afi+o (<v>Kff ~ao) [ ¥ g )~ ad (P2 E)

= Zcﬂ | div (fo + quz[jz] (v— ujl[fe])> in R ¢ >0,

with the initial conditions (2).

3.3. Limit ¢ — 0. Let ff be a weak solution to (2) and (26). An integration yields the
conservation of mass:

(27) fit)dv =n; = / fdv > 0.

Strictly speaking, we cannot use the test function ¢ = 1 in (26) and we need to work with
a cutoff function ¥ g; we refer to Appendix B for details.

Lemma 7. There exists a constant C(5,T) > 0 independent of € such that

S

sup Z/'(fe() WY fe(t) dv+2//wc”f€|w€2dvds

i,7=1

+Z/ / |Vf€|pdvds+2/ /R + (0)Hf7 ) dvds < C(6,T).

Proof. We split the proof in several steps.

Step 1: Test function (v)?. Let 0 < <1 —3/p. We use (v)? as a test function in (26).
Again, (v)? cannot be used as a test function but we may use (v)’¢r(v) for some cutoff
function ¢ g; see Appendix B. Then, summing over : = 1,...,s,

(28) g /R 3@)9 ff(t)dv—Z:: /R 3<v>6 fldv+6 /0 t /R 3<U>K+9 fidvds

:5/; (43@)%@)@) (;;43<U>Kffdv>ds

—52/;/]@ IV fEP2V [ -V 9dv+2/ /R =LV ()Y -V ffduds

i,7=1

/ /]RS 7 fa o <U —u5,[f°]) - V{(v)? ffdvds

Z

1,7=1
:Z[4—|— —|—I7
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We estimate the right-hand side term by term. First, the integral over (v)?g(v) is bounded.
Using (v)% < (§/8)(v)E*+? + C(§) and mass conservation (27), we can estimate

t
nee@+g [ [ s
8 0 RB

and the last integral can be absorbed by the left-hand side of (28). Because of |V (v)?| <
6(v)?~! and Young’s inequality, the term I5 becomes

t
I < 6C / / (o)1 |V £ P Ldo

<= / / p0-1) s 4+ 2= L gpio-) / |V f£[Pduds
R3 0 JR3
t
§C+5P/<p1>/ |V fe|Pduds < C' 4 / / |V fe[Pduds,
0

taking into account that the integral over (v)?®~1 is bounded since p(f — 1) < —3 and
choosing & > 0 sufficiently small such that 6?1 < §/2. Integrating by parts in I leads
to

(29) Z / /R SilFIA)’ fidvds

i,j=1

”1// AT 92f1dvds<CZ/ &[] ds

2,7=1

where we used (v)?~2 < 1 (note that @ < 1) and mass conservation. It follows from Jensen’s
inequality, applied to the probability measure (f;/n;)dv, that for ¢ > 0 and r > 1,

(30) ( /R 3(v>qn—idv)r < /R 3<v>qrn—idv.

The final term I; becomes

=2 (of? — v [f]) frdvds

1,7=1 RS

«z//m

1,j=1

<CZ/ ﬂfe ‘

7,7=1
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where we used (v)?~! < 1 and mass conservation. In view of definition (19) and Jensen’s
inequality (30), we have

(31) |uﬂ[f€]|K<max{|u eI s ) |} < (an/ ) min{ f7, g(v )/5}dv)

=1

gc(}%@@wmﬁ sog;@wwﬁw.

Thus, by Young’s inequality and (v)% < C(6) + (5/8)(’0>K+9

TR
(32) I, < Z/ |us; [f] |de+CZ/ ﬂ ds
2,7=1
K/(K-1)
K+0 5
+§;/0/R$< fdvds+CZ/ ‘— ds.

Let us distinguish two cases, according to the value of ~.

Case 1: v > 0. We distinguish the subcases v > 2 and 0 < v < 2. First, let v > 2.
Jensen’s inequality (30) leads to

v/2
ilfF] < e+ C’|T;-5’T|7/2 <1+ C(/ <v)2ffdv) <1+ C’/ (V)7 ffdw.
R3 R3

If 0 <~ < 2, we apply Young’s inequality:
sir1zevamre<ive( o) sie [ o

Summarizing, we obtain for all v > 0:

(33) G140 [ (0m0d pra

Consequently, if we choose K sufficiently large, (29) yields

Is < C + C / / max{’yQ}f&dv < C / / K+9f5dv
R3 R3

To estimate the last term in (32), we bound T75[f¢] from below. For this, we choose an
arbitrary A > 0 and set u; = uf[f°]:

(34) ﬁﬂﬂzC/owwWMZC/ flo — uPdv
R3

{lo—uf[>A}

> ON? / fedv = CN2 <n - / ffdv).
{lo—ug =2} {lo-us|<A)



MULTISPECIES FOKKER-PLANCK-LANDAU SYSTEM 19

Applying the Cauchy—Schwarz inequality to the last integral, we have

1/2
Tz O = Wl ([ )} 2 = O ).

since the integral over any ball in R? with radius A is of the order A\*>. We obtain with the

2/3||f€||L22/§3) for some Cjy > 0:

T > CC3(1 — COY P f21 a0,

o—ug| <A}

choice A = Cyn

and therefore, choosing Cy > 0 sufficiently small,
s —2/3
(35) T3l 2 win (T T 2 O Wil )
k=1

We continue with the estimate of the last term in (32). We infer from Young’s inequality
with exponents 3(K —1)/(2K) and 3(K —1)/(K — 3) as well as estimate (33) and Jensen’s
inequality (30) that

GlF [

TilF

s

2

4,j=1

Z f& 3/2+CZ JZfE3K/K3

i,7=1 7,7=1

<SCH+CY |fillie@s +CY /Rs ()3 (.2} /(K =3) pe g,
k=1 i=1

For sufficiently large K > 0, we have 3K max{v,2}/(K — 3) < K + 6. Hence,

Z/ sza K/(K- 1)d <O +CZ/ £ 12 syl + < Z// () K f2do.

7,j=1

We infer from (32) that

I7§C(5)+§Zs:/0t/RS< K+9f€dv+02// (f£)*dvds.
im1

Case 2: v < 0. It follows from (35) that

8 —v/3
(36)  LfT] < e+ CITTH2 <1+ C £l a0, < 1+C<Z\|f§|li2ms>) :
k=1

Therefore, estimates (29), (32) lead to

s t
I6+I7<CZ/ [ f1ds 4+ C( )+§Z//(U>K+9f§dvds
i=1 70 R3

2,7=1

+CZ/

2,7=1

K/ (K—1)
ds

]Z
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< C(6) + g ; /0 t /R 3<’U>K+6 feduvds

s t s , K(2—)/(3(K—-1))
oy / (Z Hfznp(m)
k=1

ij=1

ds.

The Gagliardo-Nirenberg inequality

3p

el 2@s) < Ol fill o IV fillS o sy, where € = 2p —3)°

and mass conservation imply that

5 S t ) t
Is+1; < C(9) + = g / / <U>K+9ffdvds+—/ |V f7[Pdvds,
84=Jo Jrs 2 Jo Jrs
=1
as long as 2£(2 — ) /3p or equivalently p > (5 — v)/4.
In both cases, summarizing the estimates for Iy, ..., I7, we conclude from (28) that

(37) ; /R 3<v>9 ff(t)dv+g /0 t /R 3<U>K+9 fiduds

t n t
< 0(5)+§/ / |fo|pdvds+02/ / (f£)2dvds.
2Jo Jrs i—1 J0 JR3

We still need to control the integrals on the right-hand side of (37), which is done in the
next step.
Step 2: Test function ff. We use the test function ff in (26) and sum over i =1,...,s:

: S “(1)2do — s 0y2 ~ [ K (fe)2

(38) 2;/Rji<t) dv 2;/]1%3(]2)(11}—1-5;/0 /R3<v> (f5)*dvds
s t cip K] t ) ) »

+5;/0 /RB!Vfi’dvds—l—Z/o/]R3cji[f]]Vfi’dvds

ij=1

:5;/0t< y ffg(v)dv) (/ﬂ@g(@ﬂ;m)m

1 - ' £ € m; c ey | o9
2 Z/o /R3 ilf ]T.e.[fs} (v —ug[f7]) - V(f7) duds

i,j=1 Ju
= Ig + 19.

We use mass conservation to infer that [, ffg(v)dv < [, ffdv < C and hence,
R3 J12 R3 J1

S t . ) S t .
[8§56’Z/0 /Rs<U>KfidUSC+§Z/O /RS(U)waidvds,
i=1 =1
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and the last integral can be absorbed by the left-hand side of (38). By integration by parts
and the lower bound (35), we have

39) I= //R g

lj 1
10/3
3% [ Gl s < 3 [ GlrE s
i,7=1 i,7,k=1

Let v > 0. Then the Gagliardo—Nirenberg inequality with ¢ = 3p/(8p — 6) € (0,1) and
mass conservation lead to

nee S [ GIrIvAISE IR s <o Y [ v e

1,5,k=1 1,5,k=1

d1v(v — uﬂ[fe])(ff)2dvds

Then, using Young’s inequality, estimate (33) for ¢5;[f°], and Jensen’s inequality (30),

=g Z// |V fe[Pdvds + C(§ Z|cﬂf€|(4p3 (4p—8)

2,7=1

<oy / / Y fduds + €)Y / / () ) 0=3)/ (405 e
8 i—1 J0 R3 i=1 Y0 R3
+§i/t/ \st\pdvds+éi/t/ (o)< fedv
§Jo Jrs 85 Jo Jus Y

if we choose K +6 > (2+v)(4p —3)/(4p — 8).
If v < 0, estimates (36) and (39) imply that

10 2 3
19<CZ/ 2120 s

and Gagliardo—Nirenberg and Young’s inequalities allow us to bound Iy similarly as above
as

s t
I, < C(5) +52/ / IV [P duds,
i=1 /0 JK

as long as p > 2 — /4.
In both cases, we insert the estimates for Ig and Iy into (38) to obtain

‘Z/ fi@)dv + 5 Z/ /]R K(f9)2dvds + Z/ IV f2Pduds
+Z// SV ffPdeds < C(6) //R (V) K+ feduds.

i,7=1
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Step 3: End of the proof. We add the previous inequality to (37),

Z 5 (fE(0)? + ()0 £ (1) dv+—z 1//]@ K1) duds
+ - Z// |Vf5]pdvds+2/o/ LIV £ Pdudss

i,j=1

é / / (YT feduds < C(0 / / (ff)2dvds.
4 R3 R3

Then Gronwall’s lemma concludes the proof. O

Lemma 8. There exists a constant C(6,T) > 0 independent of € and a number r > 1 such
that

105 | er o rsw—r0@s)) < C(6,T).
Proof. The estimate for (v)**?f¢ in Lemma 7 and bounds (33), (36) show that ¢5;[f¢] is
uniformly bounded in LE+9/0(0, T) (or better), while T5[f<] " is uniformly bounded in
L>(0,T) because of the lower bound (35) and the estimate for ff in L°°(0,T; L*(R?)). Fur-
thermore, we conclude from (31) that [us,[f<]|*+¢ < C' 377 | (v)**° ffdv (using the Jensen
inequality (30)) is uniformly bounded in L'(0, 7). This shows that c;;[f*]Ty:[f¢] ™ u;:[f€] is
uniformly bounded in LE+9/G+7)(0, T). Furthermore, by Young’s inequality and Lemma

/ /R3 fa (K+20)/(K+86) dUdS _/ /Rs K—i—@fa)K/ (K+0) (< > (fs> )9/ K+6)d2}d8

T
<C [ 1) s +C / 1) ()2 syds < C.
0 0
Together with the uniform bounds for f; from Lemma 7, this yields a uniform bound for
Ouff in L7(0,T; W~1P(R3)) for some r > 1, finishing the proof. O

The bounds of Lemmas 7 and 8 and the compact embedding W?(R?) N L2(R?; (v)Xdv)
— L?(R3) (see Lemma 13 in Appendix A) allow us to apply the Aubin-Lions lemma to
conclude the existence of a subsequence (not relabeled) such that, as ¢ — 0,

ff — fi strongly in L*(0,T; L*(R?)).

Furthermore, we obtain weak convergences for V f7 and 0, f in suitable spaces. At this
point, it is straightforward to pass to the limit ¢ — 0 in (26) to infer that f? := f; is a
weak solution to

w o 6(<v>Kff ~ o) [ pan) - adiv (VAP R)

5
Zcﬂ [£°] div (Vf tr Z[i ](v _Uji[fé])) in R* ¢>0.
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We observe that the collision operator on the right-hand side is identical to that one in (1)
and in particular, it conserves mass, momentum, and energy; see Lemma 2.

3.4. Limit § — 0. Let f? be the solution to (2) and (40), constructed in the previous
subsection. To perform the limit 6 — 0, we derive some estimates uniform in . First, we
note that mass conservation still holds, i.e. ||f?||z1gs) =n; fori=1,....s.

Lemma 9. There ezists a constant C' > 0 independent of § (but depending on the initial
data) such that

s

s, 3 [ (RO 20 + @) <,

0<t<T :

S [ s

2
P My 7

S t s .
52/0 /R3 |V(ff)(p—1)/p|l’dvds + 52/0 /R3<U>K+2ffdﬂd3 <c
=1 —

Proof. We split the proof in several parts.

Step 1: Test function log f?. We use the test function log f? in (40). Again, strictly
speaking, this test function cannot be used since we cannot exclude that fJ = 0. We show
in Appendix B how this argument can be made rigorous. We obtain from formulation (7)
and property (16)

(41) Z / Fo(t)log fo(t dv—z / f2log fodv+5cpz / V() P~V/PPduds

Z / [ ealrst f[f]

t
<5y [ ¥ gir0g fiavas
=1

S t 6 . 5 B
+5;/0 (/RS logfzﬂ(i})dv) </RS<U> fi dv)ds — o+ 1.

By mass conservation,

2

Vlog ———| dvds < C,

dvds

Vlog

[osrigavs [ dosggeavse [ @ g <e,

{fi>1} {fo>1}

and consequently,

s t 5 S t
IH < O(SZ/O /R3 <U>Kfi6d1)d8 < Co+ 3—2 Z/O /]R3 <U>K+2fi5d1}d8-
=1 =1
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The term I;9 can be written as

st +
fo<o Y [ [ s (o) duas

recalling that 2™ = max{0,2}. We choose 0 < a < 1/(K + 2) and use the inequality
logz < 2%/a for z = 1/ > 1 as well as Young’s inequality to estimate

) ()
_1/a<v>—1/a + <U>(K+1)/(1_a)f2‘6~

K s I ® 1 _1
()™ fi 10gF = (v) 1{f5<1}f log — 7S a
= o) ()R () <
It follows from K > 1 that —1/a < —(K + 2) < —3 and hence, the integral over (v)~!/«
is finite. This yields, since (K +1)/(1 —a) < K + 2,
s t
Iy < 05—1—52/ / (p)EHD/0=) £3qyds < C’(5+ — / / (YK fduds.
; 0 JR3 R3

We insert the estimate for I1g and [1; into (41) to find that

(42) Z / F2(t) log f(t) dv+5cpz / IV (f0)P=D/PPdyds
EY 2
" Z/ / Sl Mf

dvds
2 S

<C’+— / / ()2 fduds.
R3

We need to estimate the rlght—hand side.

Step 2: Test function |v|*. We use the test function |v|? (more precisely a suitable cutoff
function, see Appendix B) in (40). Since the collision operator conserves the energy (see
Lemma 2), the corresponding integral vanishes, and we end up with

s s S t
(1) v)2dv — / v)*dv + 0 // )X |v|? foduds
BY RACIIRTED B R TIER) oY A RUATE

:;/Ot( : \U]Qg(v)dv) (Ag<v>Kfi5dv>ds

S t
- Z/o /R VRV - vdeds
=1
5~ [* st
+§Z//<v)l{+2f{5dvds+252// |fo|p_1|v|dvds.
i=1 /0 JR =1 Jo JRs

V log
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Since (v)f[v]? = (V)E+? — (V)X > (V)2 — C, the last term on the left-hand side is
bounded from below by

s t S t S t
) Z/ / (WYX o2 fdvds > 0 Z/ / (YE+2 fduds — C§ Z/ flduds
i=1 /0 JR 25 Jo Jre i=1 /0 JR

s t
> gz / / (W) +2 foduds — C,
i=1 /0 JR?

Where we used again mass conservation in the last step. Therefore,

/f5 )| dv—i——Z/ /R K+2f5dvds<c+252// IV £21P~ jv|duds.

We estimate the term on the right-hand side of (43). Let ¢ > 1. We apply Young’s
inequality twice with exponents (p,p/(p — 1)) and (q,q/(q — 1)):

2 [ VAP eldv €5 [ (el 210 ) Vg2 Drp-as
R3 R3

@y <o [ WPl o [ 9GP
<o / (Lo (Clpey e 4 Sposeiin gy
q
+4 |V(f6)p D/ppdyy

o 4]
<cs | e a1 [ Se, [ i pds
R3 q JRr3 4 R3
where ¢, > 0 is as in (42). We deduce from the Gagliardo-Nirenberg inequality that

1llr ey < CINVEN Lo 191 1) @s)  where

p 3g(p —1)(p — 2)

= pTl(l +qlp—2), 0= 22p —3)(1+4q(p—2))’

applied to ¢ = (f0)P~V/P that
)

543(f1§)1+q(p‘2)dv 2 (gpye-vrel, @) < OOV ()™ PN g LS~

< COlIV ()2 sy < CpIIV(f‘s)p V2|12 sy + €O,

where we used mass conservation in the last but one step and the fact r6 < p as well as
Young’s inequality in the last step. Choosing ¢ = 4/3, the first term on the right-hand
side of (44) is estimated according to

b
Co [ | Y fody = C6 / | fodv < - / (0)ET2 fodv + O,
R3 RS 4 R3



26 J. HU, A. JUNGEL, AND N. ZAMPONI

if we choose K > 4p — 2 so that 4p < K + 2. We conclude from (44) that

2 [ VI eldv < €O+ § [ )2 0du+ Sl VU
R3 R3

and then from (43) that

s S t
2/ f,§|v|2dv+§2/ / (V)E*+2 £ dpds
i=1 /R 85 o Jw
5 — [
<C+ 5%2/0 /RS IV (f0)P=D/PPdyds.
=1

Step 3: End of the proof. We add the previous inequality to (42):

Z/ (f2(t)log f1(t) + £ (£)|v]*)dv + cpZ/ IV (f2)P=D/PPdpds
Z//RS K+2f6dvd8+2//mcﬁf5f‘s I

dvds < C.
2 M,

This concludes the proof. O

\Y% log

The energy bound in Lemma 9 shows that the temperature T;[f°], defined in (3), is
bounded from above uniformly in ¢ and (0,7). This implies that c;;[f°], defined in (4), is
bounded from above uniformly in ¢ and (0, 7") when v > 0. We claim that the temperature
Ty f°] is also uniformly bounded from below, which implies that cjil f°] is bounded from
above uniformly in § and (0,7") also when v < 0.

Lemma 10. There exists a constant ¢ > 0, only depending on the initial entropy (and in
particular independent of §), such that

inf Tu[f°(t)] > ¢ > 0.

0<t<T

Proof. Define ®(x) = pu(1+x)log(1+z)—px for x > 0, where > 0. Then ®*(y) = pue?/* —

—u for y > 0 is its convex conjugate, and the Fenchel-Young inequality zy < ®(x)+P*(y)
holds. We infer from the lower bound (34) and the Fenchel-Young inequality with z = f?
and y = 1 that

T;[f°] > CX° (n - /{ e ffdv)

4
2 C>\2 <nl - M/ (1 + fz(s) log(l + fz(s)dv - §7TN€1/M>\3)
R3

> O\ (nl — nuCy — gwuel/“)\?’),
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since the volume of the ball in R? with radius A equals 47\3/3, and Cj depends on the initial
data via the first estimate in Lemma 9. Then, choosing p = 1/log(CoA™), a computation
reveals that

Ch 4
T[f°] > CN*(ny — ————r here C)} = Cy( 1+ =7 ).
112 0 (= gy ) b €= o1+ )
It follows from the choice A = [Cyexp(—2C,/n;)]/? that T;[f°] > ¢ > 0 for ¢ = C\?n;/2,
and this inequality is uniform in (0,77). It can be seen from (34) that C' is proportional

to 1/n; such that the constant ¢ only depends on the initial entropy and energy via Cp.
Consequently, Tj;[f°] > min{T;[f°], T;[f°]} > ¢ > 0. O

Remark 11. Observe that the uniform positive bound on Tj;[f°] yields a uniform bound
for c;;[f°] in L>=(0,T) even in the case v < 0 so that c;[f°] is uniformly bounded in
L>(0,T) for any v € R. We can also conclude a uniform positive bound for c;;[f?] for
every 7 € R.

Lemma 12. There exists a constant C' > 0 independent of & such that

inf cji[fa] >C7Y sup cji[f(s] <C, ||fo||L2(O7T;L1(R3)) < C.
[0,7] [0,7]

Proof. The bounds for c;j;[f?] follow from definitions (3) and (4) as well as Lemmas 9 and
10. By the second estimate in Lemma 9 and the fact that f2|Vlog M;[f°]|* (which is
bounded by the energy) is uniformly bounded in L*>°(0,T; L'(R?)),

T 1 T
rgb 5\1/2)2 _ 1 1010 512
| [ estrivn epavas = 5 [ [ el 1g19 108 £ Pauas
T 5
<5 [ [Letr(s]vios i

Consequently, by the Cauchy—Schwarz inequality,

/OT (436ji[f6]yvf’§‘dv>2ds B 4/0T lf 6]2(/]1@(f5)1/ 2!V<ff>”2|dv)2ds

T
<4 [ eal U g IV s

2
+ f{;|V10g Mij[f5]|2> dvds < C.

Vlog

T
<4 sup [[f7(0)] 0 es) / / il PRIV () Y2 duds < C.
0<t<T 0 JR3
The lemma follows from the uniform lower bound for c;;[f°]. U

We claim that 9, f? is uniformly bounded in L7 (0, T; W~1Y(R3)) for some 7 > 1. Indeed,
by Lemma 9 and Jensen’s inequality (30), §(v)% f? is uniformly bounded in L*+2/K(0, T
LY(R?)) and f?(v—uj[f?]) is uniformly bounded in L>°(0,7; L'(R?)). Lemma 9 also shows
that 0|V f0|P~2V f? is uniformly bounded in LP/®=1(0,T; LP/"=1)(R?)) and by Lemma
12, ¢;i[f°]V f? is uniformly bounded in L?*(0,T; L*(R?)). This shows the claim with r =
min{(K +2)/K,p/(p —1),2}.
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Since the embedding W (R?) N LY (R?; (1 4 |v]?)dv) < L'(R?) is compact (the proof is
similar to that one of Lemma 13), we can apply the Aubin—Lions lemma to conclude the
existence of a subsequence (not relabeled) such that

f— fi strongly in L*(0,T; L'(R?)).
Furthermore, for a subsequence,
Oif) — Oufi weakly in L"(0,T; W~ "(R?)),
and §div(|[Vf2|P~2V f?) — 0 strongly in LP(0,T; W~1P(R3)).
Next, we claim that
S(Y 0 — 0 strongly in L'(0,T; L' (R?)).

Indeed, the strong convergence of f? and the uniform bound for (v)%+2f? show that, for
any R > 0,

T
lim sup/ / ()X fodvds = lim Sup/ (5/ ()X fodv + 5/ <U>Kffdv) ds
6—0 R3 6—=0 Jo {lv|<R} {lv|>R}

= lim sup/ / (K fdvds < —5 lim sup/ / ()2 foduds < < —
0—0 0 {jv|>R} 6—0 R3

This yields lim supy_,, fOT Jgs (V) fidvds = 0, proving the claim.

The convergence wu;;[f°] — uji[f] strongly in L?(0,T) for any ¢ < oo follows from the
uniform L>(0,7") bound of the energy >-7_ [os f|v|*dv. To show the convergence of the
temperature Tj;[f°], we need a uniform bound for a higher-order moment Y7 | [os f7|v[™dv
for some m > 2. This is done in a similar way as in Step 2 of Lemma 9, where we used
the test function |v|? in (40), but here we choose the test function |v|™ with m > 2. In
this case, the collision operator gives a nonzero contribution, but our previous estimates
show that it is bounded, since u;[f°] is uniformly bounded and c;;[f°] and Tj;[f°]~! are
uniformly bounded from above. This yields the existence of a constant C' > 0 such that

sup Z/ (W)™ fo(t)dv < C for some m > 2.
0<t<T R3

It follows from this bound that Tj;[f°] — T;[f] strongly in L9(0, T) for every ¢ < oo. Now,
we can pass to the limit § — 0 in (40), showing that the limit function f; is a weak solution

to (1)-(6).

APPENDIX A. A COMPACTNESS RESULT
Lemma 13. The space WHP(R3) N L*(R?; (1 + |v|*)dv) with p > 3 is compactly embedded
into L*(R3) and in L>=(R3).

Proof. The proof is inspired from [2, Lemma 1]. Let (f,) be bounded in V := W1(R3) N
L3(R3; (1 + |v]*)dv). Tt follows from the continuous embedding W1P(R3) — L>(R?) that
there exists a subsequence, which is not relabeled, such that f, — f weakly in L>°(R?) as
n — oo. Let By C R3? be the ball around the origin with radius M > 0. Then, in view
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of the compact embedding W'?(By) < L*(Byy), up to a subsequence, f, — f strongly
in L>(B)s). Thanks to a Cantor diagonal argument, the subsequence (f,,) can be chosen
independent of M. By the uniform bound in V' and Fatou’s lemma, we have f € V. Next,
for sufficiently large n € N,

|m—mmm=/|n—ﬁw+/ = fP2dv
BA[ R?’\BJW

1 2 2
Sy — <
<S+ap LA+PIf P <<

if we choose also M > 0 sufficiently large. Hence, f, — f strongly in L?*(R?). We use the
Gagliardo—Nirenberg inequality with 5 = 3p/(5p — 6) € (0,1):

”fn - fHLOO(Rff) S CHV(fn - )“ Rs)an fHL2(]R3 < Can - leL;(ﬁRs) — 0

as n — o0o. This concludes the proof. O

APPENDIX B. RIGOROUS TEST FUNCTIONS

We have used (v)? for § > 0 and log f? as test functions in the corresponding weak
formulations, which is not rigorous. To make the computations rigorous, we need to ap-
proximate. First, we introduce the cutoff functions

1 if |2] < 1,
Yr(r) =1 <%>, () = 3(1+ cos(m(|z| — 1)) if1 <[z <2,
0 if |z| > 2,

and use (v)%)p as a test function in (26) (we take § = 0 to verify the mass control).
This leads to additional terms depending on g and Vi g. We focus our attention to the
most delicate one and use Holder’s inequality with exponents p/(p — 1) and p as well as
|IVig(v)] < C/R in {R < |v| < 2R} and |V¢g| = 0 else:

o
e|p—1 6 e €|p P (,,\P0
/RJVf@’ |Vipg|(v)'dv < 4/]1{3 |V f£|Pdv + C(9) /]R3 Vg |P(v)Pdo

6 c(o J
/ IV fiPdv + —= cw) / (V)Pdv < = / IV fi[Pdv + C(8) R™PHP0+3,
=1 B2 J{joj<2ry 4 Jrs
and the last term vanishes as R — oo since we have chosen 0 < § <1 —3/p.
Second, we use the test function log(f? + n) —logn for 0 < 1 < 1 in (40). For this, we
observe that, by (16),

6 f 1
Z/Rg% [ £V log 7 - Vlog(f? +n)dv

M;;
fz(s 1
_Z/Ncl] ( f6+7l)V10ng[f] Vlog fPdv

1,j=1

2,7=1
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2

5
U dov

M f°]

- e £} s
—Z/Rsclj[f]fernVlogM 7] -V fidv

]

71V log

ij=1
s f5 2

- ciil 2 f(l—L)‘Vlog—z dv
i;/w i) fi+mn Mi;[f°]

oS S 17
nZ/RSc,][f]ff_i_nVlog T -V log M;[f0]dw.

Then we obtain from (40), putting all terms of order 1 to the right-hand side,
> [ (680 + tostsfte) + ) ~ niog )
a3 [ @ a0+ macas
i=1
(45) +dc, Z / t / IV(f] +n) PP Pduds
3

o0 [ Lt (- ) [P
Sodo e TN St M%)

= 2/3 ((fio +1) IOg(in +n) — nlogn)dv

+5Z / ( / f5dv> ( /]R gl log( ff+n)dv)dv

5

+nZ/ /]R3CZ] (Sfé VIOg f[f]VIOgMU[f(S}

2,7=1

dvds

The second term on the right-hand side can be bounded because of mass conservation.
The last integral can be controlled by

£ f?
"Z// el fa e V log U[f&]mong[f Jdv

i,j=1

—22//Rf“ 182

7,7=1

2

\Y% log dv

£
Mi;[f°)
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PR

The first term on the right-hand side is absorbed by the left-hand side of (45). The function

ij [f5]|2dv.

zgl i

2

S/ | IV 1og Myl 7](0)/"

Fow) +n

is uniformly bounded by 0 < G, < f?|Vlog M;;[f°]] € L*(0,T; L*(R?)), and converges
to zero a.e. in R® x (0,7). Therefore, by dominated convergence, G, — 0 strongly in
LY(0,T; L'(R?)). Fatou’s lemma allows us to perform the limit  — 0 in (45). Then,
proceeding as in Step 1 of the proof of Lemma 9, we derive the entropy inequality.

Gy(v) = £ (v)
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