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Abstract. Nonlocal cross-diffusion systems on the torus, arising in population dynamics
and neural networks, are analyzed. The global existence of weak solutions, the weak-strong
uniqueness, and the localization limit are proved. The kernels are assumed to be posi-
tive definite and in detailed balance. The proofs are based on entropy estimates coming
from Shannon-type and Rao-type entropies, while the weak-strong uniqueness result fol-
lows from the relative entropy method. The existence and uniqueness theorems hold for
nondifferentiable kernels. The associated local cross-diffusion system is also discussed.

1. Introduction

The segregation and migration in populations [31] and the dynamics of multilayer neural
networks [29] can be modeled by stochastic interacting particle systems. Since the numer-
ical approximation of such systems is very time-consuming, it is reasonable to investigate
simpler macroscopic models. They can be derived from the many-particle systems in the
mean-field limit, typically leading to nonlocal diffusion equations [25]. When the model
involves several species, the mean-field system includes nonlocal cross-diffusion terms [12].
In this paper, we analyze nonlocal cross-diffusion systems that are motivated from [12].
We prove the global existence of weak solutions, show a weak-strong uniqueness result,
and perform the localization limit.
The nonlocal cross-diffusion equations are given by

(1) ∂tui − σ∆ui = div(ui∇pi[u]), t > 0, ui(0) = u0i in T
d, i = 1, . . . , n,

where σ > 0 is the diffusion coefficient, Td is the d-dimensional torus (d ≥ 1), pi[u] describes
the multi-species connectivity of the network, given by the nonlocal operator

(2) pi[u](x) =
n

∑

j=1

∫

Td

Kij(x− y)uj(y)dy, i = 1, . . . , n,
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Kij : T
d → R are the kernel functions (extended periodically to R

d), and u = (u1, . . . , un)
is the solution vector. In neural network theory, the kernels describe the weight of a
connection between the node x associated to species i and node y associated to species j.
In population dynamics, Kij = ∇Vij is the force field associated to the interaction potential
Vij between species i and species j [12]. The torus is chosen to simplify the problem; we
may consider (1) also on the whole space. In population dynamics, Td is the “physical”
space, while it is the space of predictor variables in network theory.
Model (1)–(2) was derived in [12] from an interacting particle system. If the kernels

converge, up to the factor aij, to the delta distribution, the nonlocal system converges to
a local system, consisting of (1) with the local operator

(3) pi[u] =
n

∑

j=1

aijuj, i = 1, . . . , n.

The localization limit was proved in [12] but for smooth solutions and in the whole space;
we show it for weak solutions.
Most nonlocal models studied in the literature describe a single species. A simple exam-

ple is ∂tu = div(uv) with v = ∇(K ∗ u). This corresponds to the mass continuity equation
for the density u with a nonlocal velocity v. An Lp theory for this equation was provided
in [6], while the Wasserstein gradient-flow structure was explored in [11]. In the neural
network context, the equation can be seen as the mean-field limit of infinitely many hidden
network units [29, 34].
In the multiple-species case, the mean-field limit performed in [3, 23] leads to the

McKean–Vlasov–Focker–Planck equations for the probability distributions ui,

∂tui = σ∆ui + div
n

∑

j=1

∫

Td

Mij(x, y)ui(x)uj(y)dxdy, i = 1, . . . , n,

which correspond to (1)–(2) if Mij(x, y) = ∇Kij(x − y). For two species and symmetriz-
able cross-interaction potentials (i.e. K12 = αK21 for some α > 0), a complete existence
and uniqueness theory for measure solutions to (1)–(2) in the whole space with smooth
convolution kernels was established in [18] using the Wasserstein gradient-flow theory. A
nonlocal system with size exclusion was analyzed in [4], using entropy methods. In [22],
a nonlocal version of the Shigesada–Kawasaki–Teramoto cross-diffusion system was ana-
lyzed, using finite differences instead of a gradient. All these works are concerned with
two-species models. Compared to previous results, we allow for an arbitrary number of
species and nondifferentiable kernel functions.
The existence of a unique global smooth solution to (1)–(2) in R

d was proved in [12], but
only for small initial data. Existence and localization results for global bounded solutions
to a related model, but with the same kernel for all species, were recently shown in [17].
In this paper, we study system (1)–(2) for weak solutions, allowing for large initial data
and revealing a (new) double entropy structure, and prove a new weak-strong uniqueness
result.
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The mathematical difficulties are the cross-diffusion terms and the nonlocality, which
exclude the application of standard techniques like maximum principles and regularity
theory. For instance, it is well known that nonlocal diffusion operators generally do not
possess regularizing effects on the solution [2]. The key of our analysis is the observation
that the nonlocal system possesses, like the associated local one, two entropies, namely the
Shannon-type entropy H1 [33] and the Rao-type entropy H2 [32],

H1(u) =
n

∑

i=1

∫

Td

πiui(log ui − 1)dx, H2(u) =
1

2

n
∑

i,j=1

∫

Td

∫

Td

πiKij(x− y)ui(x)uj(y)dxdy,

if the kernels are in detailed balance and positive definite in the sense specified below and
for some numbers πi > 0. A formal computation that is made rigorous below shows that
the following entropy inequalities hold:

dH1

dt
+ 4σ

n
∑

i=1

∫

Td

πi|∇
√
ui|2dx = −

n
∑

i,j=1

∫

Td

∫

Td

πiKij(x− y)∇ui(x) · ∇uj(y)dxdy,(4)

dH2

dt
+

n
∑

i=1

∫

Td

πiui|∇pi[u]|2dx = −σ
n

∑

i,j=1

∫

Td

∫

Td

πiKij(x− y)∇ui(x) · ∇uj(y)dxdy.(5)

These computations are valid if Kij is in detailed balance, which means that there exist
π1, . . . , πn > 0 such that

(6) πiKij(x− y) = πjKji(y − x) for all i, j = 1, . . . , n, x, y ∈ T
d.

We recognize these identities as a generalized detailed-balance condition for the Markov
chain associated to (Kij(x − y)) (for fixed x − y), and in this case, (π1, . . . , πn) is the
corresponding reversible measure. The functionals H1 and H2 are Lyapunov functionals if
(πiKij) is positive definite in the sense

(7)
n

∑

i,j=1

∫

Td

∫

Td

πiKij(x− y)vi(x)vj(y)dxdy ≥ 0 for all vi, vj ∈ L2(Td).

This condition generalizes the usual definition of positive definite kernels to the multi-
species case [10]. Examples of kernels that satisfy (6) and (7) are given in Remark 1.
Because of the nonlocality, we cannot conclude L2(Td) estimates for ui and ∇ui like in
the local case; see [28] and Appendix B. We deduce from (4) only bounds for ui log ui in
L1(Td) and

√
ui in H

1(Td).
These bounds are not sufficient to pass to the limit in the approximate problem. In

particular, we cannot identify the limit of the product ui∇pi[u], since ui and ∇pi[u] are
elements in larger spaces than L2(Td). We solve this issue by exploiting the uniform L2(Td)
bound for

√
ui∇pi[u] from (5) and prove a “compensated compactness” lemma (see Lemma

9 in Appendix A): If uε → u strongly in Lp(Td), vε ⇀ v weakly in Lp(Td), and uεvε ⇀ w
weakly in Lp(Td) for some 1 < p < 2 then uv = w. The estimates from (4)–(5) are the key
for the proof of the global existence of weak solutions to (1)–(2).
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As a second result, we prove the weak-strong uniqueness of solutions, i.e., if u is a weak
solution to (1)–(2) satisfying ui ∈ L2(0, T ;H1(Td)) and if v is a “strong” solution to this
problem with the same initial data, then u(t) = v(t) for a.e. t ≥ 0. The proof uses the
relative entropy

H(u|v) =
n

∑

i=1

∫

Td

πi
(

ui(log ui − 1)− ui log vi + vi
)

dx,

a variant of which was used in [21] for reaction-diffusion systems in the context of renor-
malized solutions and later extended to Shigesada–Kawasaki–Teramoto systems [14]. The
recent work [24] generalizes this approach to more general Shigesada–Kawasaki–Teramoto
as well as energy-reaction-diffusion systems. Originally, the relative entropy method was
devised for conservation laws to estimate the L2 distance between two solutions [16, 19].
Up to our knowledge, we apply this techniques for the first time to nonlocal cross-diffusion
systems. The idea is to differentiate H(u|v) and to derive the inequality

H(u(t)|v(t)) ≤ C
n

∑

i=1

∫ t

0

‖ui − vi‖2L1(Td)ds for t > 0.

The Csiszár–Kullback–Pinsker inequality [27, Theorem A.2] allows us to estimate the rela-
tive entropy from below by ‖ui(t)−vi(t)‖2L1(Td)

, up to some factor. Then Gronwall’s lemma

implies that ui(t) = vi(t) for a.e. t > 0. The application of this inequality is different from
the proof in [14, 21, 24], where the relative entropy is estimated from below by |ui − vi|2
on the set {ui ≤ K}. The difference originates from the nonlocal terms. Indeed, if Kij is
bounded,

n
∑

i,j=1

∫

Td

∫

Td

πiKij(x− y)(ui − vi)(x)(uj − vj)(y)dxdy ≤ C
n

∑

i=1

(
∫

Td

|ui − vi|dx
)2

,

leading to an estimate in L1(Td). In the local case, the associated estimate yields an L2(Td)
estimate:

n
∑

i,j=1

∫

Td

πiaij(ui − vi)(x)(uj − vj)(x)dx ≤ C

n
∑

i=1

∫

Td

|ui − vi|2dx.

As the densities ui may be only nonnegative, we cannot use πi log ui as a test function
in (1) to compute dH(u|v)/dt. This issue is overcome by regularizing the entropy by using
log(ui + ε) for some ε > 0 as a test funtion and then to pass to the limit ε→ 0.
We observe that the uniqueness of weak solutions to cross-diffusion systems is a delicate

task, and there are only few results in the literature. Most of the results are based on
the fact that the total density

∑n
i=1 ui satisfies a simpler equation for which uniqueness

can be shown; see [4, 13]. A duality method for a nonlocal version of the Shigesada–
Kawasaki–Teramoto system was used in [22]. In [5], a weak-strong uniqueness result on a
cross-diffusion system, based on L2 estimates, was shown.
The bounds obtained in the proof of our existence result are independent of the kernels,

such that we can perform the localization limit, our third main result. For this, we assume
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that Kij = Bε
ij → aijδ0 as ε → 0 in the sense of distributions, where δ0 is the Dirac delta

distribution. Then, if uε is a weak solution to (1)–(2), we prove that uεi → ui strongly
in L1(Td × (0, T )), and the limit u solves the local system (1) and (3). As a by-product,
we obtain the global existence of weak solutions to this problem; see Appendix B for the
precise statement.
We summarize our main results:

• global existence of weak solutions to the nonlocal system (1)–(2) for nondifferen-
tiable positive definite kernels in detailed balance;

• weak-strong uniqueness of solutions u ∈ L2(0, T ; H1(Td;Rn)) to the nonlocal sys-
tem;

• localization limit to the local system (1) and (3).

The paper is organized as follows. Our hypotheses and main results are made precise
in Section 2. The global existence of weak solutions to the nonlocal system and some
regularity results are proved in Section 3. The weak-strong uniqueness result is shown in
Section 4. In Section 5, the localization limit, based on the a priori estimates of Section 3,
is performed. Finally, we collect some auxiliary lemmas in Appendix A and state a global
existence result for the local system (1) and (3) in Appendix B.

2. Main results

We collect the main theorems which are proved in the subsequent sections. We impose
the following hypotheses:

(H1) Data: Let d ≥ 1, T > 0, σ > 0, and u0 ∈ L2(Td) satisfies u0i ≥ 0 in T
d, i = 1, . . . , n.

(H2) Regularity: Kij ∈ Ls(Td) for i, j = 1, . . . , n, where s = d/2 if d > 2, s > 1 if d = 2,
and s = 1 if d = 1.

(H3) Detailed balance: There exist π1, . . . , πn > 0 such that πiKij(x− y) = πjKji(y − x)
for all i, j = 1, . . . , n, x, y ∈ T

d.
(H4) Positive definiteness: For all v1, . . . , vn ∈ L2(Td), it holds that

n
∑

i,j=1

∫

Td

∫

Td

πiKij(x− y)vi(x)vj(y)dxdy ≥ 0.

We need the same diffusivity σ for all species, since otherwise we cannot prove that the
Rao-type functional H2 is a Lyapunov functional. The reason is the mixing of the species
in the definition of H2.

Remark 1 (Kernels satisfying Hypotheses (H2)–(H4)). Kernels satisfying Hypothesis (H4)
with n = 1 can be characterized by Mercer’s theorem [10, 30].
An example that satisfies Hypotheses (H2)–(H4) is given by the Gaussian kernel B(|x−

y|) = (2π)−d/2 exp(−|x− y|2/2). We define for i, j = 1, . . . , n and x, y ∈ R
d,

Kij(x− y) = Bε
ij(x− y) :=

aij
(2πε2)d/2

exp

(

− |x− y|2
2ε2

)

,
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where ε > 0 and aij ≥ 0 are such that the matrix (πiaij) is symmetric and positive definite
for some πi > 0. Thus, Hypothesis (H3) holds. Hypothesis (H4) can be verified as follows.
The identity

e−|x−y|2/(2ε2)

(2πε2)d/2
=

∫

Rd

e−|x−z|2/ε2

(πε2)d/2
e−|y−z|2/ε2

(πε2)d/2
dz,

shows that
n

∑

i,j=1

∫

Td

∫

Td

πiKij(x− y)vi(x)vj(y)dxdy =
n

∑

i,j=1

∫

Td

∫

Td

πiaij
e−|x−y|2/(2ε2)

(2πε2)d/2
vi(x)vj(y)dxdy

=
n

∑

i,j=1

πiaij

∫

Rd

∫

Td

(

e−|x−z|2/ε2

(πε2)d/2
vi(x)

)

dx

∫

Td

(

e−|y−z|2/ε2

(πε2)d/2
vj(y)

)

dydz

≥ α

(πε2)d

n
∑

i=1

∫

Rd

(
∫

Td

e−|x−z|2/ε2vi(x)dx

)2

dz ≥ 0,

where α > 0 is the smallest eigenvalue of (πiaij). This proves the positive definiteness of
Kij. Note that Bε

ij → aijδ0 as ε→ 0 in the sense of distributions.
We can construct further examples from the Gaussian kernel. For instance,

Kij(x− y) =
aij

1 + |x− y|2 , i, j = 1, . . . , n, x, y ∈ R
d,

satisfies Hypothesis (H4), since

1

1 + |x− y|2 =

∫ ∞

0

e−s(1+|x−y|2)ds,

and B(x− y) = exp(−s(1 + |x− y|2)) is positive definite. �

First, we show the global existence of weak solutions. Let QT = T
d × (0, T ).

Theorem 2 (Global existence). Let Hypotheses (H1)–(H4) hold. Then there exists a global
weak solution u = (u1, . . . , un) to (1)–(2) satisfying ui ≥ 0 in QT and

(8)
u
1/2
i ∈ L2(0, T ;H1(Td)), ui ∈ L1+2/d(QT ) ∩ Lq(0, T ;W 1,q(Td)),

∂tui ∈ Lq(0, T ;W−1,q(Td)), ui∇pi[u] ∈ Lq(QT ),

where q = (d + 2)/(d + 1) and i = 1, . . . , n. The initial datum in (1) is satisfied in the
sense of W−1,q(Td) := W 1,d+2(Td)′. Moreover, the following entropy inequalities hold:

H1(u(t)) + 4σ
n

∑

i=1

∫ t

0

∫

Td

πi|∇u1/2i |2dxds ≤ H1(u
0),(9)

H2(u(t)) +
n

∑

i=1

∫ t

0

∫

Td

πiui|∇pi[u]|2dxds ≤ H2(u
0).(10)

Imposing more regularity on the kernel functions, we can derive H1(Td) regularity for
ui, which is needed for the weak-strong uniqueness result.
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Proposition 3 (Regularity). Let Hypotheses (H1)–(H4) hold and let ∇Kij ∈ Ld+2(Td)
for i, j = 1, . . . , n. Then there exists a weak solution u = (u1, . . . , un) to (1)–(2) satisfying
ui ≥ 0 in T

d and

ui ∈ L2(0, T ;H1(Td)), ∂tui ∈ L2(0, T ;H−1(Td)), ∇pi[u] ∈ L∞(0, T ;L∞(Td)).

Moreover, if additionally ∇Kij, ∆Kij ∈ L∞(Td) and m0 ≤ u0i ≤ M0 in T
d then 0 <

m0e
−λt ≤ ui(t) ≤M0e

λt in T
d for t > 0, where λ > 0 depends on ∆Kij and u0.

The proof of the H1(Td) regularity is based on standard L2 estimates if ∇Kij ∈ L∞(Td).
The difficulty is the reduced regularity ∇Kij ∈ Ld+2(Td) which requires some care. Indeed,
the test function ui in the weak formulation of (1) leads to a cubic term, which is reduced
to a subquadratic term for ∇ui by combining the Gagliardo–Nirenberg inequality and the
uniform L1(Td) bound for ui.
Similar lower and upper bounds as in Proposition 3 were obtained in [17] with a different

proof. Since the L∞ bounds depend on the derivatives of Kij, they do not carry over in
the localization limit to the local system. In fact, it is an open problem whether the local
system (1) and (3) possesses bounded weak solutions. The proposition also holds for kernel
functions Kij(x, y) that are used in neural network theory; see Remark 6.

Theorem 4 (Weak-strong uniqueness). Let Kij ∈ L∞(Rd) for i, j = 1, . . . , n. Let u be
a nonnegative weak solution to (1)–(2) satisfying (8) as well as ui ∈ L2(0, T ;H1(Td)) ∩
H1(0, T ;H−1(Td)), and let v be a “strong” solution to (1)–(2) satisfying

c ≤ vi ≤ C in QT , ∂tvi ∈ L2(0, T ;H−1(Td)), vi ∈ L∞(0, T ;W 1,∞(Td)),

for some C ≥ c > 0 and having the same initial data as u. Then u(t) = v(t) in T
d for a.e.

t ∈ (0, T ).

For the localization limit, we choose the radial kernel

(11) Kε
ij(x− y) =

aij
εd
B

( |x− y|
ε

)

, i, j = 1, . . . , n, x, y ∈ T
d,

where B ∈ C0(R), supp(B) ⊂ (−1, 1),
∫

R
B(z)dz = 1, and aij ≥ 0 is such that (πiaij) is

symmetric and positive definite for some πi > 0, i = 1, . . . , n.

Theorem 5 (Localization limit). Let Kε
ij be given by (11) and satisfying Hypothesis (H4).

Let uε be the weak solution to (1)–(2), constructed in Theorem 2. Then there exists a
subsequence of (uε) that is not relabeled such that, as ε→ 0,

uε → u strongly in L2(0, T ;Ld/(d−1)(Td)),

if d ≥ 2 and strongly in L2(0, T ;Lr(Td)) for any r < ∞ if d = 1. Moreover, u is a
nonnegative weak solution to (1) and (3).

The existence of global weak solutions to (1) and (3) can also be proved for any bounded
domain; see Appendix B.
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3. Global existence for the nonlocal system

We prove the global existence of a nonnegative weak solution u to (1)–(2) and show the
regularity properties of Proposition 3. Since the proof is based on the entropy method
similar to [27, Chapter 4], we sketch the standard arguments and focus on the derivation
of uniform estimates.
Step 1: Solution of an approximated system. Let T > 0, N ∈ N, τ = T/N , δ > 0,

and m ∈ N with m > d/2. We proceed by induction over k. Let uk−1 ∈ L2(Td;Rn) be
given. Set ui(w) = exp(wi/πi) > 0. We wish to find wk ∈ Hm(Td;Rn) to the approximated
system

1

τ

∫

Td

(u(wk)− uk−1) · φdx+ σ
n

∑

i=1

∫

Td

∇ui(wk) · ∇φidx+ δb(wk, φ)

= −
n

∑

i=1

∫

Td

ui(w
k)∇pi[u(wk)] · ∇φidx,(12)

for φ = (φ1, . . . , φn) ∈ Hm(Td;Rn). The bilinear form

b(wk, φ) =

∫

Td

(

∑

|α|=m

Dαwk ·Dαφ+ w · φ
)

dx,

is coercive on Hm(Td;Rn), i.e. b(wk, wk) ≥ C‖wk‖2
Hm(Td)

for some C > 0, as a consequence

of the generalized Poincaré–Wirtinger inequality. By the fixed-point argument on the space
L∞(Td;Rn) used in [27, Section 4.4], it is sufficient to derive a uniform bound for wk

i in
Hm(Td), which embeddes compactly into L∞(Td). To this end, we use the test function
φi = wk

i = πi log u
k
i (with uki := ui(w

k)) in (12):

n
∑

i=1

πi
τ

∫

Td

(uki − uk−1
i ) · log uki dx+ 4σ

n
∑

i=1

πi

∫

Td

|∇(uki )
1/2|2dx+ δb(wk, wk)

= −
n

∑

i=1

∫

Td

uki∇pi[uk] · ∇wk
i dx = −

n
∑

i=1

∫

Td

πi∇pi[uk] · ∇uki dx,

where we used the identity uki∇wk
i = πi∇uki . An integration by parts gives

∫

Td

∇Kij(x− y)ukj (y)dy =

∫

Td

∇Kij(z)u
k
j (x− z)dz =

∫

Td

Kij(x− y)∇ukj (y)dy.

Thus, in view of definition (2) of pi[u
k] and Hypothesis (H4),

n
∑

i=1

πi
τ

∫

Td

(uki − uk−1
i ) · log uki dx+ 4σ

n
∑

i=1

πi

∫

Td

|∇(uki )
1/2|2dx+ δb(wk, wk)

= −
n

∑

i,j=1

∫

Td

∫

Td

πiKij(x− y)∇ukj (y) · ∇uki (x)dxdy ≤ 0.
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Taking into account the convexity of s 7→ s log s to estimate the first integral and the
coercivity of b(wk, wk) to estimate the third term, we find that

1

τ

n
∑

i=1

∫

Td

πi
(

uki (log u
k
i − 1)− uk−1

i (log uk−1
i − 1)

)

dx

+ 4σ
n

∑

i=1

πi‖∇(uki )
1/2‖2L2(Td) + δC

n
∑

i=1

‖wk
i ‖2Hm(Td) ≤ 0.(13)

This provides a uniform estimate for wk in Hm(Td) →֒ L∞(Td) (not uniform in δ),
necessary to conclude the fixed-point argument and giving the existence of a solution
wk ∈ Hm(Td;Rn) to (12). This defines uk := u(wk), finishing the induction step.
To derive further uniform estimates, we wish to use ψi = πipi[u

k] as a test function
in (12). However, we cannot estimate the term δb(wk, ψ) appropriately. Therefore, we
perform the limits δ → 0 and τ → 0 separately.
Step 2: Limit δ → 0. Let uδ = (uδ1, . . . , u

δ
n) with u

δ
i = ui(w

k) be a solution to (12) and let
wδ

i = πi log u
δ
i for i = 1, . . . , n. Estimate (13) and the Poincaré–Wirtinger inequality show

that (uδi )
1/2 is uniformly bounded in H1(Td) and, by Sobolev’s embedding, in Lr1(Td),

where r1 = 2d/(d − 2) if d > 2, r1 < ∞ if d = 2, and r1 = ∞ if d = 1. Therefore,
∇uδi = 2(uδi )

1/2∇(uδi )
1/2 is uniformly bounded in Lr2(Td), where r2 = d/(d − 1) if d > 2,

r2 < 2 if d = 2, and r2 = 2 if d = 1. By Sobolev’s embedding, (uδi ) is relatively compact
in Lr(Td) for r < r1/2, and there exists a subsequence that is not relabeled such that, as
δ → 0,

uδi → ui strongly in Lr(Td), r < r1/2,

∇uδi ⇀ ∇ui weakly in Lr2(Td),

δwδ
i → 0 strongly in Hm(Td).

In particular, we have, up to a subsequence, uδi → ui a.e. and |uδi (y)| ≤ g(y) ∈ L1(Td). By
dominated convergence, pi[u

δ] → pi[u] a.e. Young’s convolution inequality (see Lemma 7
in Appendix A) shows that, for d > 2,

‖pi[uδ]‖L∞(Td) ≤
n

∑

j=1

∥

∥

∥

∥

∫

Td

Kij(· − y)uδj(y)dy

∥

∥

∥

∥

L∞(Td)

≤
n

∑

j=1

‖Kij‖Ld/2(Td)‖uδj‖Ld/(d−2)(Td) ≤ C,

In a similar way, we can prove that (pi[u
δ]) is bounded in Lr(Td) for any r < ∞ if d = 2

and in L∞(Td) if d = 1, assuming that Kij ∈ L1(Td). Lemma 8 in Appendix A implies
that pi[u

δ] → pi[u] strongly in Lr(Td) for any r <∞. Furthermore, if d > 2,

‖∇pi[uδ]‖Lr3 (Td) ≤
n

∑

j=1

‖Kij‖Ld/2(Td)‖∇uδj‖Ld/(d−1)(Td) ≤ C,
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where r3 = d, and (∇pi[uδ]) is bounded in Lr3(Td) for some r3 > 2 if d = 2 and for r3 = 2
if d = 1. Hence, for a subsequence,

∇pi[uδ]⇀ ∇pi[u] weakly in Lr3(Td).

It follows that (uδi∇pi[uδ]) is bounded in Lmin{2,d/(d−1)}(Td) and

uδi∇pi[uδ]⇀ ui∇pi[u] weakly in Lmin{2,d/(d−1)}(Td).

Thus, we can pass to the limit δ → 0 in (12) to conclude that uki := ui ≥ 0 for i = 1, . . . , n
solves

(14)
1

τ

∫

Td

(uk − uk−1) · φdx+ σ

n
∑

i=1

∫

Td

∇uki · ∇φidx = −
n

∑

i=1

∫

Td

uki∇pi[uk] · ∇φidx,

for all test functions φi ∈ W 1,r3(Td). Observe that pi[u
k] is an element of the space

W 1,r3(Td) and is an admissible test function; this will be used in the next step.
Step 3: Uniform estimates. We introduce the piecewise constant in time functions

u(τ)(x, t) = uk(x) for x ∈ T
d and t ∈ ((k − 1)τ, kτ ], k = 1, . . . , N . At time t = 0, we set

u
(τ)
i (·, 0) = u0i . Furthermore, we use the time-shift operator (στu

(τ))(x, t) = uk−1(x) for
x ∈ T

d, t ∈ ((k − 1)τ, kτ ]. Then, summing (14) over k, we obtain

1

τ

∫ T

0

∫

Td

(u(τ) − στu
(τ)) · φdxdt+ σ

n
∑

i=1

∫ T

0

∫

Td

∇u(τ)i · ∇φidxdt

= −
n

∑

i=1

∫ T

0

∫

Td

u
(τ)
i ∇pi[u(τ)] · ∇φidxdt,

for piecewise constant functions φ : (0, T ) → W 1,r3(Td;Rn) and, by density, for all functions
φ ∈ L2(0, T ;W 1,r3(Td;Rn)). Summing the entropy inequality (13) from k = 1, . . . , N , it
follows that

(15) H1(u
(τ)(T )) + 4σ

n
∑

i=1

∫ T

0

πi‖∇(u
(τ)
i )1/2‖2L2(Td)dt ≤ H1(u

0).

These bounds allow us to derive further estimates. Since the L1 logL1 bound dominates
the L1(Td) norm, we deduce from the Poincaré–Wirtinger inequality that

‖u(τ)i log u
(τ)
i ‖L∞(0,T ;L1(Td)) + ‖(u(τ)i )1/2‖L2(0,T ;H1(Td)) ≤ C(u0), i = 1, . . . , n.

This implies, by the Gagliardo–Nirenberg inequality with θ = d/(d+ 2), that

‖u(τ)i ‖1+2/d

L1+2/d(QT )
=

∫ T

0

‖(u(τ)i )1/2‖2+4/d

L2+4/d(Td)
dt

≤ C

∫ T

0

‖(u(τ)i )1/2‖θ(2d+4)/d

H1(Td)
‖(u(τ)i )1/2‖(1−θ)(2d+4)/d

L2(Td)
dt

≤ C‖u(τ)i ‖2/d
L∞(0,T ;L1(Td))

∫ T

0

‖(u(τ)i )1/2‖2H1(Td)dt ≤ C(u0),(16)
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and by Hölder’s inequality with q = (d+ 2)/(d+ 1),

‖∇u(τ)i ‖Lq(QT ) = 2‖(u(τ)i )1/2∇(u
(τ)
i )1/2‖Lq(QT )

≤ 2‖(u(τ)i )1/2‖L2+4/d(QT )‖∇(u
(τ)
i )1/2‖L2(QT ) ≤ C.(17)

These bounds are not sufficient to pass to the limit τ → 0. To derive further estimates,
we use the test function φi = πipi[u

k] ∈ W 1,r3(Td) in (14):

1

τ

n
∑

i,j=1

∫

Td

∫

Td

πi(u
k
i (x)− uk−1

i (x))Kij(x− y)ukj (y)dxdy

+ σ

n
∑

i,j=1

∫

Td

∫

Td

πiKij(x− y)∇uki (x) · ∇ukj (y)dxdy = −
n

∑

i=1

∫

Td

πiu
k
i |∇pi[uk]|2dx.(18)

Because of the positive definiteness of πiKij, the second term on the left-hand side is
nonnegative. Exploiting the symmetry and positive definiteness of πiKij (Hypotheses
(H3)–(H4)), the first integral can be estimated from below as

1

2τ

n
∑

i,j=1

∫

Td

∫

Td

πiKij(x− y)
(

uki (x)u
k
j (y)− uk−1

i (x)uk−1
j (y)

+ (uki (x)− uk−1
i (x))(ukj (y)− uk−1

j (y))
)

dxdy

≥ 1

2τ

n
∑

i,j=1

∫

Td

∫

Td

πiKij(x− y)
(

uki (x)u
k
j (y)− uk−1

i (x)uk−1
j (y)

)

dxdy

=
1

τ
(H2(u

k)−H2(u
k−1)).

Therefore, we infer from (18) that

H2(u
k) + τ

n
∑

i=1

∫

Td

πiu
k
i |∇pi[uk]|2dx ≤ H2(u

k−1),

and summing this inequality from k = 1, . . . , N , we have

(19) H2(u
(τ)(T )) +

n
∑

i=1

πi

∫ T

0

∥

∥(u
(τ)
i )1/2∇pi[u(τ)]

∥

∥

2

L2(Td)
dt ≤ H2(u

0).

The previous bound allows us to derive an estimate for the discrete time derivative.
Indeed, estimates (16) and (19) imply that

u
(τ)
i ∇pi[u(τ)] = (u

(τ)
i )1/2 · (u(τ)i )1/2∇pi[u(τ)],

is uniformly bounded in Lq(QT ), where q = (d+2)/(d+1). Let φ ∈ Lq′(0, T ;W 2,(d+2)/2(Td)),
where q′ = d+ 2. Then 1/q + 1/q′ = 1 and

1

τ

∣

∣

∣

∣

∫ T

0

∫

Td

(u(τ) − στu
(τ)) · φdxdt

∣

∣

∣

∣
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≤ σ

n
∑

i=1

‖u(τ)i ‖L1+2/d(QT )‖∆φi‖L(d+2)/2(QT ) +
n

∑

i=1

‖u(τ)i ∇pi[u(τ)]‖Lq(QT )‖∇φi‖Lq′ (QT )

≤ C‖φ‖Lq′ (0,T ;W 2,(d+2)/2(Td)).

We conclude that

(20) τ−1‖u(τ) − στu
(τ)‖Lq(0,T ;W 2,(d+2)/2(Td)′) ≤ C.

Step 4: Limit τ → 0. Estimates (15) and (20) allow us to apply the Aubin–Lions
compactness lemma in the version of [7] to conclude the existence of a subsequence that is
not relabeled such that, as τ → 0,

u
(τ)
i → ui strongly in L2(0, T ;Ld/(d−1)(Td)), i = 1, . . . , n,

if d ≥ 2 and strongly in L2(0, T ;Lr(Td)) for any r < ∞ if d = 1. Strictly speaking, the
version of [7] holds for the continuous time derivative, but the technique of [20] shows that
the conclusion of [7] also holds for the discrete time derivative. Then, maybe for another

subsequence, u
(τ)
i → ui a.e. in QT , and we deduce from (16) that u

(τ)
i → ui strongly in

Lr(QT ) for all r < 1 + 2/d (see Lemma 8 in Appendix A). Furthermore, we obtain from
(15), (17), (19), and (20) the convergences

∇u(τ)i ⇀ ∇ui weakly in Lq(QT ), i = 1, . . . , n,

τ−1(u(τ) − στu
(τ))⇀ ∂tui weakly in Lq(0, T ;W 2,(d+2)/2(Td)′),

(u
(τ)
i )1/2∇pi[u(τ)]⇀ zi weakly in L2(QT ),

where zi ∈ L2(QT ) and q = (d+ 2)/(d+ 1). Since u
(τ)
i ≥ 0, we infer that ui ≥ 0 in QT .

Step 5: Identification of the limit. We need to identify zi with u
1/2
i ∇pi[u]. We show first

that
∇pi[u(τ)]⇀ ∇pi[u] weakly in Lq(QT ).

Indeed, it follows from the strong convergence of (u
(τ)
i ) that (up to a subsequence)Kij(x−y)

×u(τ)j (y, t) → Kij(x − y)uj(y, t) for a.e. (y, t) ∈ QT and for a.e. x ∈ T
d. Hence, because

of the uniform bounds, pi[u
(τ)] → pi[u] a.e. in QT . We deduce from Young’s convolution

inequality and the uniform bound for ∇u(τ)i in Lq(QT ) that ∇pi[u(τ)] is uniformly bounded
in Lq(QT ). (Here, we only need Kij ∈ L1(Td). The estimate for ∇pi[u(τ)] is better under
Hypothesis (H2), but the time regularity cannot be improved.) Therefore,

∇pi[u(τ)]⇀ ∇pi[u] weakly in Lq(QT ).

When d = 2, we have the convergences ∇pi[u(τ)] ⇀ ∇pi[u] weakly in L4/3(QT ) and

(u
(τ)
i )1/2 → u

1/2
i strongly in L4(QT ), which is sufficient to pass to the limit in the product

and to identify it with zi. However, this argument fails when d > 2, and we need a
more sophisticated proof. The div-curl lemma does not apply, since the exponents of the

Lebesgue spaces, in which the convergences of (u
(τ)
i )1/2 and ∇pi[u(τ)] take place, are not

conjugate for d > 2. Also the generalization [9, Theorem 2.1] to nonconjugate exponents
cannot be used for general d.
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Our idea is to exploit the fact that the product converges in a space better than L1.
Then Lemma 9 in Appendix A immediately implies that

(u
(τ)
i )1/2∇pi[u(τ)]⇀ u

1/2
i ∇pi[u] weakly in Lq(QT ).

In fact, estimate (19) implies that this convergence holds in L2(QT ). Then the strong

convergence of (u
(τ)
i )1/2 in L2(QT ) gives

u
(τ)
i ∇pi[u(τ)]⇀ ui∇pi[u] weakly in L1(QT ).

In view of the uniform bounds for (u
(τ)
i )1/2 in L2+4/d(QT ) and of (u

(τ)
i )1/2∇pi[u(τ)] in L2(QT ),

the product u
(τ)
i ∇pi[u(τ)] is uniformly bounded in Lq(QT ). Thus, the previous weak con-

vergence also holds in Lq(QT ).
Step 6: End of the proof. The convergences of the previous step allow us to pass to the

limit τ → 0 in (14), yielding
∫ T

0

〈∂tui, φi〉dt+ σ

∫ T

0

∫

Td

∇ui · ∇φidxdt = −
∫ T

0

∫

Td

ui∇pi[u] · ∇φidxdt,

for all smooth test functions. Because of∇ui, ui∇pi[u] ∈ Lq(QT ), a density argument shows
that the weak formulation holds for all φ ∈ Lq′(0, T ;W 1,q′(Td)), recalling that q′ = d + 2.
Then ∂tui lies in the space Lq(0, T ;W−1,q(Td)), where W−1,q(Td) := W 1,q′(Td)′. The proof
that u(·, 0) satisfies the initial datum can be done exactly as in [26, p. 1980]. Finally,
using the convexity of H1 and the lower semi-continuity of convex functions, the entropy
inequalities (15) and (19) become (9) and (10), respectively, in the limit τ → 0. This ends
the proof of Theorem 2.

Proof of Proposition 3. The proof of the H1(Td) regularity requires an approximate
scheme different from that one used in the proof of Theorem 2. Given uk−1 ∈ L2(Td;Rn)
with uk−1

i ≥ 0, we wish to find uk ∈ H1(Td;Rn) such that

1

τ

∫

Td

(uki − uk−1
i )φidx+ σ

∫

Td

∇uki · ∇φidx+

∫

Td

(uki )
+

1 + δ(uki )
+
∇pi[uk] · ∇φidx = 0,(21)

for φi ∈ H1(Td), where δ > 0 and z+ = max{0, z}. Since ∇Kij ∈ Ld+2(Td), ∇pi[uk] can
be bounded in Ld+2(Td) in terms of the L1(Td) norm of uk. Thus, the last term on the
left-hand side is well defined. The existence of a solution to this discrete scheme is proved
by a fixed-point argument, and the main step is the derivation of uniform estimates. First,
we observe that the test function (uki )

− = min{0, uki } yields

1

τ

∫

Td

(uki − uk−1
i )(uki )

−dx+ σ

∫

Td

|∇(uki )
−|2dx = −

∫

Td

(uki )
+

1 + δ(uki )
+
∇pi[uk] · ∇(uki )

−dx = 0,

and consequently, (uki )
− = 0 in T

d. Thus, uki ≥ 0 and we can remove the plus sign in (21).
Second, we use the test function uki in (21) and sum over i = 1, . . . , n:

(22)
1

τ

n
∑

i=1

∫

Td

(uki − uk−1
i )uki dx+ σ

n
∑

i=1

∫

Td

|∇uki |2dx = −
n

∑

i=1

∫

Td

uki
1 + δuki

∇pi[uk] · ∇uki dx.
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The first integral becomes
n

∑

i=1

∫

Td

(uki − uk−1
i )uki dx ≥ 1

2

n
∑

i=1

∫

Td

(

(uki )
2 − (uk−1

i )2
)

dx.

The right-hand side in (22) is estimated by Hölder’s inequality and Young’s convolution
inequality:

−
n

∑

i=1

∫

Td

uki
1 + δuki

∇pi[uk] · ∇uki dx ≤
n

∑

i=1

‖uki ‖L2+4/d(Td)‖∇pi[uk]‖Ld+2(Td)‖∇uki ‖L2(Td)

≤ CK

n
∑

i,j=1

‖uki ‖L2+4/d(Td)‖ukj‖L1(Td)‖∇uki ‖L2(Td),

where CK > 0 depends on the Ld+2(Td) norm of ∇Kij. Taking the test function φi = 1
in (21) shows that ‖uki ‖L1(Td) = ‖u0i ‖L1(Td) is uniformly bounded. This allows us to reduce
the cubic expression on the right-hand side of the previous inequality to a quadratic one.
This is the key idea of the proof. Combining the previous arguments, (21) becomes

1

2

n
∑

i=1

∫

Td

(uki )
2dx− 1

2

n
∑

i=1

∫

Td

(uk−1
i )2dx+ τσ

n
∑

i=1

∫

Td

|∇uki |2dx

≤ τC

n
∑

i=1

‖uki ‖L2+4/d(Td)‖∇uki ‖L2(Td)

≤ 1

2
τσ

n
∑

i=1

‖∇uki ‖2L2(Td) + τC

n
∑

i=1

‖uki ‖2L2+4/d(Td).

The Gagliardo–Nirenberg and Poincaré–Wirtinger inequalities show that

‖uki ‖2L2+4/d(Td) ≤ C‖uki ‖2θH1(Td)‖uki ‖
2(1−θ)

L1(Td)

≤ C
(

‖∇uki ‖L2(Td) + ‖uki ‖L1(Td)

)2θ‖uki ‖
2(1−θ)

L1(Td)

≤ C(u0)‖∇uki ‖2θL2(Td) + C(u0),

where θ = d(d+ 4)/(d+ 2)2 < 1. We deduce from Young’s inequality that for any ε > 0,

‖uki ‖2L2+4/d(Td) ≤ ε‖∇uki ‖2L2(Td) + C(ε).

Therefore, choosing ε > 0 sufficiently small, we infer that

(23)
1

2

n
∑

i=1

∫

Td

(uki )
2dx− 1

2

n
∑

i=1

∫

Td

(uk−1
i )2dx+

1

4
τσ

n
∑

i=1

∫

Td

|∇uki |2dx ≤ C.

This provides a uniform H1(Td) estimate for uk. Defining the fixed-point operator as
a mapping from L2(Td) to L2(Td), the compact embedding H1(Td) →֒ L2(Td) implies
the compactness of this operator (see [27, Chapter 4] for details). This shows that (21)
possesses a weak solution uk ∈ H1(Td).
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In order to pass to the limit (δ, τ) → 0, we need uniform estimates for the piecewise con-

stant in time functions u
(τ)
i , using the same notation as in the proof of Theorem 2. Estimate

(23) provides uniform bounds for u
(τ)
i in L∞(0, T ;L2(Td)) and L2(0, T ;H1(Td)). By the

Gagliardo–Nirenberg inequality, (u
(τ)
i ) is bounded in L2+4/d(QT ). By Young’s convolution

inequality,

sup
t∈(0,T )

‖∇pi[u(τ)(t)]‖L∞(Td) ≤
n

∑

j=1

‖∇Kij‖Ld+2(Td) sup
t∈(0,T )

‖u(τ)j ‖Lq(Td) ≤ C,

where q = (d+ 2)/(d+ 1). Thus, (∇pi[u(τ)]) is bounded in L∞(0, T ;L∞(Td)). From these
estimates, we can derive a uniform bound for the discrete time derivative. Therefore, by
the Aubin–Lions lemma [20], up to a subsequence, as (δ, τ) → 0,

u
(τ)
i → ui strongly in L2(QT ),

and this convergence even holds in Lr(QT ) for any r < 2 + 4/d. We can show as in
the proof of Theorem 2 that pi[u

(τ)] → pi[u] a.e. and consequently, for a subsequence,
∇pi[u(τ)]⇀ ∇pi[u] weakly in L2(QT ). We infer that

u
(τ)
i ∇pi[u(τ)]⇀ ui∇pi[u] weakly in L1(QT ).

Omitting the details, it follows that u = (u1, . . . , un) is a weak solution to (1)–(2) satisfying
ui ∈ L2(0, T ;H1(Td)) for i = 1, . . . , n.
Next, we show the lower and upper bounds for ui. Define M(t) = M0e

λt, where λ > 0
will be specified later. Since ∇Kij ∈ L∞, we can apply the Young convolution inequality
and estimate ∇pi[u] in L∞(Td) in terms of the L1(Td) bounds for uj. Then, with the test
function e−λt(ui −M)+(t) = e−λt max{0, (ui −M)(t)} in the weak formulation of (21), we
deduce from

∂tuie
−λt(ui −M)+ =

1

2
∂t
{

e−λt[(ui −M)+]2
}

+
λ

2
e−λt[(ui −M)+]2 + λe−λtM(ui −M)+,

that

1

2

∫

Td

e−λt(ui −M)+(t)2dx+ σ

∫ t

0

∫

Td

e−λs|∇(ui −M)+|2dxds

= −
∫ t

0

∫

Td

e−λs(ui −M)∇pi[u] · ∇(ui −M)+dxds− λ

2

∫ t

0

∫

Td

e−λs[(ui −M)+]2dxds

−
∫ t

0

∫

Td

e−λsM∇pi[u] · ∇(ui −M)+dxds− λ

∫ t

0

∫

Td

e−λsM(ui −M)+dxds.

We write (ui −M)∇(ui −M)+ = 1
2
∇[(ui −M)+]2 and integrate by parts in the first and

third terms of the right-hand side:

1

2

∫

Td

e−λs(ui −M)+(t)2dx+ σ

∫ t

0

∫

Td

e−λs|∇(ui −M)+|2dxds

≤ 1

2

(

‖∆pi[u]‖L∞(0,T ;L∞(Td)) − λ
)

∫ t

0

∫

Td

e−λs[(ui −M)+]2dxds
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+
(

‖∆pi[u]‖L∞(0,T ;L∞(Td)) − λ
)

∫ t

0

∫

Td

e−λsM(ui −M)+dxds.

By Young’s convolution inequality and the regularity assumptions on Kij,

‖∆pi[u]‖L∞(0,T ;L∞(Td)) ≤ C
n

∑

j=1

‖uj‖L∞(0,T ;L1(Td)) ≤ C0.

Therefore, choosing λ ≥ C0, it follows that
∫

Td

e−λt(ui −M)+(t)2dx ≤ 0,

and we infer that e−λt(ui − M)+(t) = 0 and ui(t) ≤ M(t) = M0e
λt for t > 0. The

inequality ui(t) ≥ m(t) := m0e
−λt is proved in the same way, using the test function

e−λt(ui −m)− = e−λt min{0, ui −m}.

Remark 6. Proposition 3 holds true for functions Kij(x, y) that are not convolution ker-
nels. We need the regularity ∇xKij ∈ L∞

y L
d+2
x ∩ L∞

x L
d+2
y to apply the Young inequality

for kernels; see [35, Theorem 0.3.1]. For the lower and upper bounds of the solution, we
additionally need the regularity ∇xKij, ∆xKij ∈ L∞

x L
∞
y . �

4. Weak-strong uniqueness for the nonlocal system

In this section, we prove Theorem 4. Let u be a nonnegative weak solution to (1)–(2)
and v be a positive “strong” solution to (1)–(2) with the regularity properties specified in
the theorem. Then, for 0 < ε < 1, we define the regularized relative entropy density

hε(u|v) =
n

∑

i=1

πi
(

(ui + ε)(log(ui + ε)− 1)− (ui + ε) log vi + vi
)

,

and the associated relative entropy

Hε(u|v) =
∫

Td

hε(u|v)dx.

Step 1: Preparations. We compute

∂hε
∂ui

(u|v) = πi log(ui + ε)− πi log vi,
∂hε
∂vi

(u|v) = −πi
ui + ε

vi
+ πi.

The second function is an admissible test function for the weak formulation of (1), satisfied
by vi, since ∇ui ∈ L2(QT ) and ∇vi ∈ L∞(QT ). Strictly speaking, the first function is not
an admissible test function for the weak formulation of (1), satisfied by ui, since it needs
test functions in W 1,d+2(Td). However, the nonlocal term becomes with this test function

∫

Td

∫

Td

Kij(x− y)∇uj(y) ·
∇ui(x)
ui(x) + ε

dxdy,
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which is finite since Kij is essentially bounded and ∇ui ·∇uj ∈ L1(QT ). Thus, by a suitable
approximation argument, the following computation can be made rigorous. We find that

d

dt
Hε(u|v) =

n
∑

i=1

(〈

∂tui,
∂hε
∂ui

(u|v)
〉

+

〈

∂tvi,
∂hε
∂vi

(u|v)
〉)

= −σ
n

∑

i=1

∫

Td

(

∇ui · ∇
∂hε
∂ui

(u|v) +∇vi · ∇
∂hε
∂vi

(u|v)
)

dx

−
n

∑

i=1

∫

Td

(

ui∇pi[u] · ∇
∂hε
∂ui

(u|v) + vi∇pi[v] · ∇
∂hε
∂vi

(u|v)
)

dx

= −σ
n

∑

i=1

∫

Td

πi

∣

∣

∣

∣

∇ui√
ui + ε

−
√
ui + ε

∇vi
vi

∣

∣

∣

∣

2

dx

−
n

∑

i=1

∫

Td

πi

(

ui
ui + ε

∇pi[u] · ∇ui −
ui
vi
∇pi[u] · ∇vi −∇pi[v] · ∇ui

+
ui + ε

vi
∇pi[v] · ∇vi

)

dx.

The first integral is nonpositive. Thus, an integration over (0, t) gives

Hε(u(t)|v(t))−Hε(u(0)|v(0))

≤ −
n

∑

i=1

∫ t

0

∫

Td

πi(ui + ε)∇(pi[u]− pi[v]) · ∇ log
ui + ε

vi
dxds

+ ε

n
∑

i=1

∫ t

0

∫

Td

πi∇pi[u] · ∇ log
ui + ε

vi
dxds =: I1 + I2.(24)

Step 2: Estimation of I1 and I2. Inserting the definition of pi,

∇(pi[u]− pi[v])(x) =
n

∑

j=1

∫

Td

Kij(x− y)∇(uj − vj)(y)dy

=
n

∑

j=1

∫

Td

Kij(x− y)

(

(uj + ε)(y)∇ log
uj + ε

vj
(y)

+ (uj − vj)(y)∇ log vj(y) + ε∇ log vj(y)

)

dy,

leads to

I1 = −
n

∑

i,j=1

∫ t

0

∫

Td

∫

Td

πiKij(x− y)

(

(ui + ε)(x)(uj + ε)(y)∇ log
uj + ε

vj
(y)

×∇ log
ui + ε

vi
(x) + (ui + ε)(x)(uj − vj)(y)∇ log vj(y) · ∇ log

ui + ε

vi
(x)

)

dxdyds
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− ε

n
∑

i,j=1

∫ t

0

∫

Td

∫

Td

πiKij(x− y)(ui + ε)(x)∇ log vj(y) · ∇ log
ui + ε

vi
(x)dxdyds

=: I11 + I12.

Setting

Ui = (ui + ε)∇ log
ui + ε

vi
, Vi =

1

2
(ui − vi)∇ log vi,

we can formulate the first integral as

I11 = −
n

∑

i,j=1

∫ t

0

∫

Td

∫

Td

πiKij(x− y)
(

Ui(x) · Uj(y) + 2Ui(x) · Vj(y)
)

dxdyds

= −
n

∑

i,j=1

∫ t

0

∫

Td

∫

Td

πiKij(x− y)(Ui + Vi)(x) · (Uj + Vj)(y)dxdyds

+
n

∑

i,j=1

∫ t

0

∫

Td

∫

Td

πiKij(x− y)Vi(x) · Vj(y)dxdyds

≤ 1

4

n
∑

i,j=1

∫ t

0

∫

Td

∫

Td

πiKij(x− y)(ui − vi)(x)(uj − vj)(y)∇ log vi(x) · ∇ log vj(y)dxdyds

≤ 1

4
max

i,j=1,...,n
‖πiKij‖L∞(Td) max

k=1,...,n
‖∇ log vk‖2L∞(QT )

×
n

∑

i,j=1

∫ t

0

∫

Td

|(ui − vi)(x)|dx
∫

Td

|(uj − vj)(y)|dyds

≤ C

n
∑

i=1

∫ t

0

(
∫

Td

|ui − vi|dx
)2

ds,

using the symmetry and positive definiteness of πiKij as well as the regularity assumptions
on Kij and ∇ log vi. The second integral I12 is estimated as

I12 = −ε
n

∑

i,j=1

∫ t

0

∫

Td

∫

Td

πiKij(x− y)∇ log vj(y) ·
(

∇ui − (ui + ε)∇ log vi
)

(x)dxdyds

≤ εC

n
∑

i,j=1

‖∇ log vj‖L∞(QT )

∫ t

0

∫

Td

(

|∇ui|+ (ui + 1)|∇ log vi|
)

dxds

≤ εC

n
∑

i=1

(

‖∇ui‖L1(QT ) + ‖ui‖L1(QT ) + 1
)

≤ εC.

We conclude that

I1 ≤ C
n

∑

i=1

∫ t

0

(
∫

Td

|ui − vi|dx
)2

ds+ εC.
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It remains to estimate I2. Here we need the improved regularity∇ui ∈ L2(QT ). Inserting
the definition of pi[u], we have

I2 = ε
n

∑

i,j=1

∫ t

0

∫

Td

∫

Td

πiKij(x− y)∇uj(y) · ∇ log
ui + ε

vi
(x)dxdyds.

Since

ε|∇uj(y) · ∇ log(ui + ε)(x)| = 2ε

∣

∣

∣

∣

∇uj(y) ·
∇√

ui + ε√
ui + ε

(x)

∣

∣

∣

∣

≤ 2
√
ε|∇uj(y)||∇

√

ui(x)|,

we find that

I2 ≤ C
n

∑

i,j=1

(

ε‖∇uj‖L1(QT ) +
√
ε‖∇uj‖L2(QT )‖∇

√
ui‖L2(QT )

)

≤
√
εC.

We summarize the estimates for I1 and I2 and conclude from (24) that

(25) Hε(u(t)|v(t))−Hε(u(0)|v(0)) ≤ C

n
∑

i=1

∫ t

0

(
∫

Td

|ui − vi|dx
)2

ds+
√
εC.

Step 3: Limit ε → 0. We perform first the limit in Hε(u(t)|v(t)). Since ui ∈ L2(0, T ;
H1(Td)) ∩H1(0, T ;H−1(Td)) →֒ C0([0, T ];L2(Td)), we have

∣

∣(ui + ε)(log(ui + ε)− 1)
∣

∣ ≤ ui(log ui + 1) + C ∈ L∞(0, T ;L1(Td)).

Therefore, by dominated convergence, as ε→ 0,
n

∑

i=1

∫

Td

πi(ui(t) + ε)(log(ui(t) + ε)− 1)dx→
n

∑

i=1

∫

Td

πiui(t)(log ui(t)− 1)dx,

and this convergence holds for a.e. t ∈ (0, T ). Furthermore, in view of the bound for log vi,
n

∑

i=1

πi(−(ui + ε) log vi + vi) ≤ C(v)

( n
∑

i=1

ui + 1

)

∈ L∞(0, T ;L1(Td)),

and we can again use dominated convergence:
n

∑

i=1

∫

Td

πi
(

− (ui(t) + ε) log vi(t) + vi(t)
)

dx→
n

∑

i=1

∫

Td

πi
(

− ui(t) log vi(t) + vi(t)
)

dx.

This shows that for a.e. t ∈ (0, T ),

Hε(u(t)|v(t)) → H(u(t)|v(t)) as ε→ 0, where

H(u|v) =
n

∑

i=1

∫

Td

πi
(

ui(log ui − 1)− ui log vi + vi
)

dx,

and Hε(u(0)|v(0)) = Hε(u
0|u0) → 0. Then we deduce from (25) in the limit ε→ 0 that

(26) H(u(t)|v(t)) ≤ C
n

∑

i=1

∫ t

0

‖ui − vi‖2L1(Td)ds.
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Taking the test function φi = 1 in the weak formulation of (1), we find that
∫

Td u
0
i dx =

∫

Td ui(t)dx for all t > 0. Since u and v have the same initial data, it follows that
∫

Td ui(t)dx =
∫

Td vi(t)dx for all t > 0. Thus, by the classical Csiszár–Kullback–Pinsker
inequality [27, Theorem A.2], we have

H(u|v) =
n

∑

i=1

∫

Td

πiui log
ui
vi
dx+

n
∑

i=1

∫

Td

πi(vi − ui)dx

=
n

∑

i=1

∫

Td

πiui log
ui
vi
dx ≥ C(u0)

n
∑

i=1

‖ui − vi‖2L1(Td).

We infer from (26) that
n

∑

i=1

‖(ui − vi)(t)‖2L1(Td) ≤ C

∫ t

0

n
∑

i=1

‖ui − vi‖2L1(Td)ds.

Gronwall’s inequality implies that ‖(ui − vi)(t)‖L1(Td) = 0 and hence ui(t) = vi(t) in T
d for

a.e. t > 0 and i = 1, . . . , n.

5. Localization limit

We prove Theorem 5. Let uε be the nonnegative weak solution to (1)–(2) with kernel
(11), constructed in Theorem 2. The entropy inequalities (9) and (10) as well as the proof
of Theorem 2 show that all estimates are independent of ε. (More precisely, the right-hand
side of (10) depends on Kε

ij, but in view of [8, Theorem 4.22], the right-hand side can be
bounded uniformly in ε.) Therefore, for i = 1, . . . , n (see (15)–(17), (19)–(20)),

‖uεi log uεi‖L∞(0,T ;L1(Td)) + ‖uεi‖L1+2/d(QT ) + ‖uεi‖Lq(0,T ;W 1,q(Td)) ≤ C,

‖(uεi )1/2‖L2(0,T ;H1(Td)) + ‖∂tuεi‖Lq(0,T ;W 1,d+2(Td)′) + ‖(uεi )1/2∇pεi [uε]‖L2(QT ) ≤ C,

where C > 0 is independent of ε, q = (d + 2)/(d + 1), and pεi [u
ε
i ] =

∑n
j=1

∫

Td K
ε
ij(x −

y)uεj(y)dy. We infer from the Aubin–Lions lemma in the version of [7, 20] that there exists
a subsequence (not relabeled) such that, as ε→ 0,

(27) uεi → ui strongly in L2(0, T ;Ld/(d−1)(Td)), i = 1, . . . , n,

if d ≥ 2 and strongly in L2(0, T ;Lr(Td)) for any r <∞ if d = 1. Moreover,

∇uεi ⇀ ∇ui weakly in Lq(QT ), i = 1, . . . , n,(28)

∂tu
ε
i ⇀ ∂tui weakly in Lq(0, T ;W 1,d+2(Td)′),(29)

(uεi )
1/2∇pεi [uε]⇀ zi weakly in L2(QT ),(30)

where zi ∈ L2(QT ) for i = 1, . . . , n.

As in Section 3, the main difficulty is the identification of zi with u
1/2
i ∇pi[u], where

pi[u] :=
∑n

j=1 aij∇uj . Since the kernel functions also depend on ε, the proof is different
from that one in Section 3. We claim that

(31) ∇pεi [uε]⇀ ∇pi[u] weakly in Lq(QT ).



NONLOCAL CROSS-DIFFUSION SYSTEMS 21

Indeed, let φ ∈ Lq′(QT ;R
n), where q′ = d+ 2 satisfies 1/q + 1/q′ = 1. We compute

∣

∣

∣

∣

∫ T

0

∫

Td

(∇pεi [uε]−∇pi[u]) · φdxdt
∣

∣

∣

∣

=

∣

∣

∣

∣

n
∑

j=1

∫ T

0

∫

Td

(
∫

Td

Kε
ij(x− y)∇uεj(y, t)dy

)

· φ(x, t)dxdt

−
n

∑

j=1

∫ T

0

∫

Td

aij∇uj(y, t) · φ(y, t)dydt
∣

∣

∣

∣

≤
n

∑

j=1

∣

∣

∣

∣

∫ T

0

∫

Td

(
∫

Td

Kε
ij(x− y)φ(x, t)dx− aijφ(y, t)

)

· ∇uεj(y, t)dydt
∣

∣

∣

∣

+
n

∑

j=1

aij

∣

∣

∣

∣

∫ T

0

∫

Td

∇(uεj − uj)(y, t) · φ(y, t)dydt
∣

∣

∣

∣

≤
n

∑

j=1

∥

∥

∥

∥

∫

Td

Kε
ij(· − y)φ(y)dy − aijφ

∥

∥

∥

∥

Lq′ (QT )

‖∇uεj‖Lq(QT )

+
n

∑

j=1

aij

∣

∣

∣

∣

∫ T

0

∫

Td

∇(uεj − uj)(y, t) · φ(y, t)dydt
∣

∣

∣

∣

.

Since B has compact support in R, we can apply the proof of [8, Theorem 4.22] to infer
that the first term on the right-hand side, formulated as the convolution Kε

ij ∗ φ − aijφ

(slightly abusing the notation), converges to zero strongly in Lq′(Rd) as ε → 0. Thus,
taking into account the weak convergence (28), convergence (31) follows.
Because of the convergences (27), (30), and (31), we can apply Lemma 9 in Appendix

A to infer that zi = u
1/2
i ∇pi[u]. Therefore,
uεi∇pεi [uε]⇀ ui∇pi[u] weakly in L1(QT ).

Estimate (30) shows that the convergence holds in Lq(QT ). This convergence as well as
(28) and (29) allow us to perform the limit ε→ 0 in the weak formulation of (1), proving
that u solves (1) and (3).

Appendix A. Auxiliary results

We recall the Young convolution inequality (the proof in [8, Theorem 4.33] also applies
to the torus).

Lemma 7 (Young’s convolution inequality). Let 1 ≤ p ≤ q ≤ ∞ be such that 1 + 1/q =
1/p+ 1/r and let K ∈ Lr(Td) (extended periodically to R

d). Then for any v ∈ Lp(Td),
∥

∥

∥

∥

∫

Td

K(· − y)v(y)dy

∥

∥

∥

∥

Lq(Td)

≤ ‖K‖Lr(Td)‖v‖Lp(Td).
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The next result is a consequence of Vitali’s lemma and is well known. We recall it for
the convenience of the reader.

Lemma 8. Let Ω ⊂ R
d (d ≥ 1) be a bounded domain, 1 < p < ∞, and uε, u ∈ L1(Td) be

such that (uε) is bounded in Lp(Ω) and uε → u a.e. in Ω. Then uε → u strongly in Lr(Ω)
for all 1 ≤ r < p.

Proof. We have for any M > 0,
∫

{uε≥M}

|uε|rdx =

∫

{uε≥M}

|uε|p|uε|−(p−r)dx ≤M−(p−r)

∫

Ω

|uε|pdx ≤ CM−(p−r) → 0,

asM → ∞. Thus, (uε) is uniformly integrable. Since convergence a.e. implies convergence
in measure, we conclude with Vitali’s convergence theorem. �

The following lemma specifies conditions under which the limit of the product of two
converging sequences can be identified.

Lemma 9. Let p > 1 and let uε ≥ 0, uε → u strongly in Lp(Td), vε ⇀ v weakly in Lp(Td),
and uεvε ⇀ w weakly in Lp(Td) as ε→ 0. Then w = uv.

The lemma is trivial if p ≥ 2. We apply it in Section 3 with 1 < p < 2. Note that the
strong convergence of (uε) cannot be replaced by weak convergence. A simple counter-
example is given by uε(x) = exp(2πix/ε) ⇀ 0, vε(x) = exp(−2πix/ε) ⇀ 0 weakly in
L2(−1, 1), but uεvε ≡ 1 6= 0 · 0.

Proof. We define the truncation function T1 ∈ C2([0,∞)) satisfying T1(s) = s for 0 ≤
s ≤ 1, T1(s) = 2 for s > 3, and T1 is nondecreasing and concave in the interval [1, 3].
Furthermore, we set Tk(s) = kT1(s/k) for s ≥ 0 and k ∈ N. The strong convergence of (uε)
implies the existence of a subsequence that is not relabeled such that uε → u a.e. Hence,
Tk(uε) → Tk(u) a.e. Since Tk is bounded for fixed k ∈ N, we conclude by dominated
convergence that Tk(uε) → Tk(u) strongly in Lr(Td) for any r < ∞. Because of the
uniqueness of the limit, the convergence holds for the whole sequence. Thus, Tk(uε)vε ⇀
Tk(u)v weakly in L1(Td). Writing zε for the weak limit of a sequence (zε) (if it exists),

this result means that Tk(uε)vε = Tk(u)v and the assumption translates to uεvε = w.

Consequently, w − Tk(u)v = (uε − Tk(uε))vε. Then we can estimate

‖w − Tk(u)v‖L1(Td) ≤ sup
0<ε<1

∫

Td

|uε − Tk(uε)||vε|dx ≤ C sup
0<ε<1

∫

{|uε|>k}

|uε||vε|dx

≤ C

kp−1

∫

{|uε|>k}

|uε|p|vε|dx ≤ C

kp−1

∫

Td

(1 + |uεvε|p)dx ≤ C

kp−1
.

This shows that Tk(u)v → w strongly in L1(Td) and (for a subsequence) a.e. as k → ∞.
Since Tk(u)v = uv in {|u| ≤ k} for any k ∈ N and meas{|u| > k} ≤ ‖u‖L1(Td)/k → 0, we

infer in the limit k → ∞ that w = uv in T
d. �
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Appendix B. Local cross-diffusion system

The existence of global weak solutions to the local system (1) and (3) in any bounded
polygonal domain was shown in [28] by analyzing a finite-volume scheme. For completeness,
we state the assumptions and the theorem and indicate how the result can be proved using
the techniques of Section 3. We assume that Ω ⊂ R

d (d ≥ 1) is a bounded domain, T > 0,
and u0 ∈ L2(Ω) satisfies u0i ≥ 0 in Ω for i = 1, . . . , n. We set QT = Ω× (0, T ).

Theorem 10 (Existence for the local system). Let σ > 0, aij ≥ 0, and let the matrix (uiaij)
be positively stable for all ui > 0, i = 1, . . . , n. Assume that there exist π1, . . . , πn > 0 such
that πiaij = πjaji for all i, j = 1, . . . , n. Then there exists a global weak solution to (1) and
(3), satisfying ui ≥ 0 in QT and

ui ∈ L2(0, T ;H1(Ω)) ∩ L2+4/d(QT ), ∂tui ∈ Lq(0, T ;W−1,q(Ω)),

for i = 1, . . . , n, where q = (d + 2)/(d + 1). The initial datum in (1) is satisfied in the
sense of W−1,q(Ω). Moreover, the following entropy inequalities are satisfied:

(32)

dH1

dt
+ 4σ

n
∑

i=1

∫

Ω

πi|∇
√
ui|2dx+ α

n
∑

i=1

∫

Ω

|∇ui|2dx ≤ 0,

dH0
2

dt
+

n
∑

i=1

∫

Ω

πiui|∇pi[u]|2dx+ ασ

n
∑

i=1

∫

Ω

|∇ui|2dx ≤ 0,

where α > 0 is the smallest eigenvalue of (πiaij) and H
0
2 (u) :=

1
2

∑n
i,j=1

∫

Ω
πiaijuiujdx ≥ 0.

We call a matrix positively stable if all eigenvalues have a positive real part. This con-
dition means that (1) is parabolic in the sense of Petrovskii, which is a minimal condition
to ensure the local solvability [1]. Inequalities (4)–(5) and (32) reveal a link between the
entropy structures of the nonlocal and local systems. This link was explored recently in
detail for related systems in [17].

Proof. If Ω is the torus, the theorem is a consequence of the localization limit (Theorem
5). If Ω is a bounded domain, the result can be proved by using the techniques of the
proof of Theorem 2. In fact, the proof is simpler since the problem is local. The entropy
identities are (formally)

(33)

dH1

dt
+ 4σ

n
∑

i=1

∫

Ω

πi|∇
√
ui|2dx = −

n
∑

i,j=1

∫

Ω

πiaij∇ui · ∇ujdx,

dH0
2

dt
+

n
∑

i=1

∫

Ω

πiui|∇pi[u]|2dx = −σ
n

∑

i,j=1

∫

Ω

πiaij∇ui · ∇ujdx.

We claim that the matrix (πiaij) is positive definite. Let A1 := diag(ui/πi) and A2 :=
(πiaij). Then A1 is symmetric and positive definite; by our assumptions, A2 is symmetric
and A1A2 = (uiaij) is positively stable. Therefore, by [15, Prop. 3], A2 is positive definite.
We infer that the right-hand sides in (33) are nonpositive, and we derive estimates for
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an approximate family of ui in L∞(0, T ;L2(Ω)) and L2(0, T ;H1(Ω)). By the Gagliardo–
Nirenberg inequality, this yields bounds for ui in L2+4/d(QT ). Consequently, ui∇pi[u] is
bounded in Lq(QT ), where q = (d+2)/(d+1) (we can even choose q = 4(d+2)/(3d+4)), and
∂tui is bounded in Lq(0, T ;W−1,q(Ω)). These estimates are sufficient to deduce from the
Aubin–Lions lemma the relative compactness for the approximate family of ui in L

2(QT ).
The limit in the approximate problem, similar to (12), shows that the limit satisfies (1)
and (3). Finally, using the lower semicontinuity of convex functions and the norm, the
weak limit in the entropy inequalities leads to (32). �
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[8] H. Brézis. Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York,
2011.

[9] M. Briane and J. Casado-Dı́az. A new div-curl result. Applications to the homogenization of elliptic
systems and to the weak continuity of the Jacobian. J. Diff. Eqs. 260 (2016), 5678–5725.

[10] J. Buescu, A. C. Paixao, F. Garcia, and I. Lourtie. Positive-definiteness, integral equations and Fourier
transforms. J. Integral Eqs. Appl. 16 (2004), 33–52.

[11] J. A. Carrillo, M. Di Francesco, A. Figalli, T. Laurent, and D. Slepčev. Global-in-time weak measure
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[20] M. Dreher and A. Jüngel. Compact families of piecewise constant functions in Lp(0, T ;B). Nonlin.
Anal. 75 (2012), 3072–3077.

[21] J. Fischer. Weak-strong uniqueness of solutions to entropy-dissipating reaction-diffusion equations.
Nonlin. Anal. 159 (2017), 181–207.

[22] G. Galiano and J. Velasco. Well-posedness of a cross-diffusion population model with nonlocal diffu-
sion. SIAM J. Math. Anal. 51 (2019), 2884–2902.

[23] D. Gandolfo, R. Rodriguez, and H. C. Tuckwell. Mean field analysis of large-scale interacting popula-
tions of stochastic conductance-based spiking neurons using the Klimontovich method. J. Stat. Phys.
166 (2017), 1310–1333.

[24] K. Hopf. Weak-strong uniqueness for energy-reaction-diffusion systems. Submitted for publication,
2021. arXiv:2102.02491.

[25] P.-E. Jabin and Z. Wang. Mean field limit for stochastic particle systems. In: N. Bellomo, P. Degond,
and E. Tadmor (eds.). Active Particles, Vol. 1, pp. 379–402. Birkhäuser, Cham, 2017.
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