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Abstract. A type-I model of non-isothermal multicomponent systems of gases describing
mass diffusive and heat conductive phenomena is presented. The derivation of the model and
a convergence result among thermomechanical theories in the smooth regime are discussed.
Furthermore, the global-in-time existence of weak solutions and the weak-strong uniqueness
property are established for the corresponding system with zero barycentric velocity.

0.1. Introduction. Multicomponent systems of gases are systems composed of several con-
stituents. Due to their ubiquity in nature, their dynamics has raised interest in the mathemat-
ical literature. The framework of continuum mechanics and differential equations is employed,
according to which each component is modeled as a continuous medium, whose behavior is
described by balance laws and constitutive relations. The equations of the model read as:

(0.1)

(0.2)

(0.3)

∂tρi + div(ρiv) = −div(ρiui)

∂t(ρv) + div(ρv ⊗ v) = ρb−∇p

∂t

(
ρe+

1

2
ρv2
)
+ div

((
ρe+

1

2
ρv2
)
v

)
= div

(
κ∇θ −

n∑
i=1

(ρiei + pi)ui

)

− div(pv) + ρr + ρb · v +
n∑
i=1

ρibi · ui,

where (0.1) corresponds to the mass balance of the i-th component, (0.2) to the momentum,
(0.3) to the energy balance of the mixture and i = 1, . . . , n.

The unknowns are the partial mass densities ρi, the barycentric velocity of the fluid v and
the absolute temperature θ. The system is subject to external fields: a field of body forces
ρibi, with total body force ρb :=

∑n
i=1 ρibi, and another of radiative heat supplies ρiri, with

total heat supply ρr =
∑n

i=1 ρiri. Moreover, κ = κ(ρ1, . . . , ρn, θ) is the thermal conductivity.
The other quantities are determined as functions of the mass densities and the temperature
and are the diffusional velocities ui, the total mass density ρ :=

∑n
i=1 ρi, the partial pressures

pi, summing to total pressure p :=
∑n

i=1 pi, and the partial internal energy densities ρiei,
which sum up to the internal energy density ρe :=

∑n
i=1 ρiei.
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The diffusional velocities ui satisfy the Maxwell-Stefan system [1]:

(0.4)

−θ
∑
j ̸=i

bijρiρj(ui − uj) = ϵdi under the constraint

n∑
i=1

ρiui = 0,

where di =
ρi
ρ
(ρb−∇p) + ρiθ∇

µi
θ

− θ(ρiei + pi)∇
1

θ
− ρibi

are the generalized forces, µi are the chemical potentials and bij are positive and symmetric
coefficients that depend on ρi, ρj and θ and model the binary interactions between the i-th
and the j-th components with a strength that is measured by ϵ > 0. For an explanation of
the origin of the parameter ϵ, we refer to section 0.2.

The remaining thermodynamic quantities are computed from a set of constitutive relations
that describe the material response. Throughout this article, a simple mixture of ideal gases
is employed, i.e., the thermodynamics of the i-th component is described by a Helmholtz free
energy density of the form:

(IG) ρiψi = θ
ρi
mi

(
ln
ρi
mi

− 1

)
− cwρiθ(ln θ − 1),

where mi are the molar masses and cw the heat capacity, which for simplicity is assumed to
be the same for all components. Given ρiψi, one computes the chemical potentials as µi =
∂(ρiψi)
∂ρi

, the partial entropy densities as ρiηi = −∂(ρiψi)
∂θ , the partial internal energy densities by

ρiei = ρiψi+ ρiηiθ and the partial pressures by the Gibbs-Duhem relation pi = −ρiψi+ ρiµi.
Summing up the partial entropies, the partial internal energies and the partial pressures, we
obtain the total entropy density, total internal energy density and total pressure, respectively.
Under these relations, system (0.1)-(0.3) is closed.

Given equations (0.1)-(0.3), an entropy identity can be derived [6]:

∂t(ρη) + div(ρηv) = div

(
κ

θ
∇θ − 1

θ

n∑
i=1

(ρiei + pi − ρiµi)ui

)
+
κ

θ2
|∇θ|2 − 1

θ

n∑
i=1

ui · di

The last two terms capture entropy production, which according to the second law of ther-
modynamics must be non-negative. The Clausius-Duhem inequality

∂t(ρη) + div(ρηv) ≥ div

(
κ

θ
∇θ − 1

θ

n∑
i=1

(ρiei + pi − ρiµi)ui

)
is a manifestation of the previous statement and has a dual role: For smooth solutions it is
used to restrict the form of the constitutive relations, while for weak solutions it is regarded
as a criterion of thermodynamic admissibility.

0.2. Derivation of the model. In a multicomponent system of n species, one may assume
that each of the components is described by its own triplet (ρi, vi, θi), i.e., each species has its
own mass density, velocity and temperature. Such a model would contain ample information
but the number and complexity of the equations makes it difficult to solve and analyze, and
it is (at least) challenging to design experiments able to measure all these quantities. For this
reason, simplified models are usually investigated, for example those in which each component
is characterized by the triplet (ρi, vi, θ), i.e., each component has its own mass density and
velocity, but the model does not distinguish among different temperatures, and the only
temperature involved is that one of the mixture, common for all species. An even further
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simplified model that does not distinguish among the different velocities and temperatures,
with each constituent described by the triplet (ρi, v, θ), where v is the barycentric velocity of
the fluid common for all species. The above models are known as type-III, type-II and type-I,
respectively.

The advantage of type-I models is their simplicity; yet the description of diffusive phenom-
ena would be impossible as different velocities are required for the transportation of mass.
Thus, one would like to compensate between the simplicity of a type-I model and the informa-
tion that a type-II model carries. This counterbalance can be reached if one derives a type-I
model via a type-II one, which was originally achieved in [3] in a more general framework
including viscous effects and chemical reactions. The starting point is the type-II model

(0.5)

(0.6)

(0.7)

∂tρi + div(ρiv) = −div(ρiui), i = 1, . . . , n,

∂t(ρivi) + div(ρivi ⊗ vi)

= ρibi − ρi∇µi −
1

θ
(ρiei + pi − ρiµi)∇θ − θ

∑
j ̸=i

bijρiρj(vi − vj),

∂t

(
ρe+

n∑
i=1

1

2
ρiv

2
i

)
+ div

((
ρe+

n∑
i=1

1

2
ρiv

2
i

)
v

)

= div

(
κ∇θ −

n∑
i=1

(ρiei + pi +
1

2
ρiv

2
i )ui

)
− div(pv) + ρb · v + ρr +

n∑
i=1

ρibi · ui.

In the context of a type-II model, the barycentric velocity v is defined as v = 1
ρ

∑n
i=1 ρivi

and the diffusional velocities as ui = vi − v. The essential difference between (0.1)-(0.3)
and (0.5)-(0.7) concerns the momentum balances; namely, in the type-I model, only a single
momentum balance is available. It serves as an approximation of the n partial momentum
balances of the type-II model, in the sense that terms of order |ui|2 are ignored (cf. [3]).

The same derivation was obtained in the isothermal case, excluding viscous effects and
chemical reactions in [9], using a Chapman-Enskog expansion, where the type-I model was
seen as the high-friction limit of the corresponding type-II. To this extent, the last term in
(0.6), which corresponds to the friction term due to the interaction between the components,
was rescaled by a factor 1/ϵ, where ϵ > 0 is a relaxation parameter. By letting ϵ → 0, the
partial velocities vi degenerate to a single velocity, which is the barycentric velocity v. The
emerging type-I model serves as an ϵ2 approximation of the corresponding type-II model.
The additional information takes the form of a constrained linear system for determining the
diffusional velocities ui and is the isothermal analogue of system (0.4). The resulting type-I
system contains a single velocity v, yet the diffusional velocities ui carry all the information of
the mass-diffusive effects. The derivation of (0.1)-(0.4) as a high-friction limit of (0.5)-(0.7)
was done for the non-isothermal case in [6].

0.3. Dissipative structure. As was mentioned above, the energy dissipation needs to be
non-negative, as it is essential for the model to be compatible with the second law of thermo-
dynamics. The dissipation

D =
1

θ2
κ|∇θ|2 − 1

θ

n∑
i=1

ui · di
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contains two terms: the first term is the dissipation due to heat conduction, while the second
one describes dissipation caused by friction among the components. Keeping in mind that
this model should encapsulate three different theories (one which describes only mass-diffusive
phenomena when the temperature is kept constant; one that describes only thermal effects
when the diffusional velocities vanish; and one which combines both phenomena), it is ex-
pected that each dissipation term should be non-negative independent of the other. Indeed,
due to the non-negativity of the thermal conductivity κ, as indicated by Fourier’s law of heat
conduction, the dissipation due to heat conduction is non-negative and one needs to focus
only on the second term.

There are two ways to show the non-negativity of the frictional dissipation: the first one
consists of substituting di by (0.4) and using the symmetry of the coefficients bij to deduce

(0.8) −1

θ

n∑
i=1

ui · di =
1

2

n∑
i=1

n∑
j ̸=i

bijρiρj |ui − uj |2.

The second one consists of the inversion of the constrained linear system (0.4) and the sub-
sequent substitution of ui in the diffusional dissipation. The latter is a delicate process since
system (0.4) is singular and thus the existence of a unique solution is not guaranteed. As the
generalized forces di satisfy

∑n
i=1 di = 0, the right-hand side of (0.4) belongs to the range

of the matrix on the left-hand side, and thus the system has infinitely many solutions, from
which the one satisfying the linear constraint in (0.4) is selected. This procedure was sys-
tematically carried out in [10] using the Bott-Duffin generalized inverse (also see [2]), and
provides an explicit way of solving for the diffusional velocities ui, which in turn allows for
estimates for the unknowns to be obtained.

After the computation of ui, the diffusional dissipation reads:

(0.9) −1

θ

n∑
i=1

ui · di =
n∑
i=1

n∑
j=1

Aij
di

θ
√
ρi

· dj
θ
√
ρj

where Aij is the Bott-Duffin inverse of the matrix on the left-hand side of the linear system.
The last expression is a quadratic form generated by the matrix Aij , which turns out to be
positive semi-definite in a particular subspace related to the constraint (0.4), again verifying
that the diffusional dissipation is non-negative.

0.4. Convergence among theories. Since the energy dissipation is non-negative, the model
fits into the general framework of hyperbolic-parabolic systems, as studied in [4], for which
the existence of a unique local-in-time strong solution has been proved in [7].

As was mentioned above, system (0.1)-(0.4) contains multiple theories encoded in the choice
of the parameters ϵ and κ. For instance, the choice ϵ = 0, κ ̸= 0 corresponds to a theory
describing heat-conduction but no mass-diffusion. One would like to investigate whether the
strong solution of the system with mass-diffusion and heat conduction converges to the strong
solution of the system with heat conduction but no mass-diffusion, obtained by setting ϵ = 0.
The answer is positive and is summarized in the following theorem from [6], where T3 is the
three-dimensional torus:

Theorem 1. Let Ūκ be a strong solution of system (0.1)-(0.4) neglecting mass-diffusive effects
(i.e. with ϵ = 0) defined on a maximal interval of existence T3×[0, T ∗) and let U ϵ,κ be a family
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of strong solutions of (0.1)-(0.4) defined on T3 × [0, T ], for some T < T ∗, which emanate
from smooth data Ūκ0 , U

ϵ,κ
0 , respectively, and satisfy the uniform bounds

(0.10) 0 < δ ≤ ρj , ρ̄j ≤M, 0 < δ ≤ θ, θ̄ ≤M

for some δ,M > 0. Moreover, assume that 0 ≤ κ(ρ1, . . . , ρn, θ) ≤ M . Then, U ϵ,κ → Ūκ in
the relative entropy sense, as ϵ→ 0.

Similarly, one can simultaneously let ϵ, κ → 0, in order to obtain convergence to the
adiabatic theory (cf. [6]):

Theorem 2. Let Ū be a strong solution of (0.1)-(0.4) with ϵ = κ = 0, defined on a maximal
interval of existence T3 × [0, T ∗), and let U ϵ,κ be a family of strong solutions of (0.1)-(0.4)
defined on T3 × [0, T ], for T < T ∗, emanating from smooth data Ū0, U

ϵ,κ
0 respectively. Under

the hypotheses of Theorem 1, U ϵ,κ → Ū in the relative entropy sense, as ϵ, κ→ 0.

The proof of Theorems 1 and 2 is based on the relative entropy [4, 6, 10],

H(U |Ū) =

∫
Ω

[
1

2
ρ|v − v̄|2 +

∑
i

1

mi

(
ρi log

ρi
ρ̄i

− (ρi − ρ̄i)

)
− cwρ

(
log

θ

θ̄
+ (θ − θ̄)

)]
dx,

which can be seen as a measure of the distance between the solutions of the two systems,
namely (U ϵ,κ, Ūκ) for Theorem 1 and (U ϵ,κ, Ū) for Theorem 2. The relative entropy identity

∂t
(
θ̄H(U |Ū)

)
+ div

[
vθ̄H(U |Ū) + (p− p̄)(v − v̄) +

∑
j

ρjuj(µj − µ̄j)

− (θ − θ̄)

(
1

θ
κ∇θ − 1

θ̄
κ̄∇θ̄

)
+ (θ − θ̄)

∑
j

ρjηjuj

]
+ θ̄κ

∣∣∣∣∇θθ − ∇θ̄
θ̄

∣∣∣∣2
− θ̄

θ

∑
j

uj · dj = (∂tθ̄ + v̄ · ∇θ̄)(−ρη)(U |Ū)− p(U |Ū)divv̄ − (η − η̄)ρ(v − v̄) · ∇θ̄

−
∑
j

∇µ̄j ·
(
ρj
ρ

− ρ̄j
ρ̄

)
ρ(v − v̄)− ρ(v − v̄)∇v̄ · (v − v̄)−

∑
j

∇µ̄j · ρjuj

−
(
∇θ
θ

− ∇θ̄
θ̄

)
· ∇θ̄
θ̄

(θ̄κ− θκ̄)− θ

θ̄
∇θ̄ ·

∑
j

ρjηjuj

where

p(U |Ū) = p− p̄−
∑
j

p̄ρj (ρj − ρ̄j)− p̄θ(θ − θ̄)

(−ρη)(U |Ū) = −ρη + ρ̄η̄ +
∑
j

(ρ̄η̄)ρj (ρj − ρ̄j) + (ρ̄η̄)θ(θ − θ̄)

is then used to obtain a stability estimate for the difference of the two solutions, by controlling
the first five terms on the right-hand side by the relative entropy of the two solutions and
absorbing the last three terms by the dissipation on the left-hand side, so that the relative
entropy of the two solutions is bounded by the relative entropy of the initial data for all times
0 < t < T . Since the two solutions emanate from the same initial data, they coincide for
t > 0; see [6] for the full proof.
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The assumption that the mass densities in (0.10) are bounded away from zero can be
avoided, at the expense of assuming that the free energy densities ψi are in C3(U), where U
is a set in the positive cone (R+)n+1 with U compact, such that:

U = {(ρ1, . . . , ρn, θ) : 0 < ρj , ρ̄j ≤M, 0 < δ ≤ ρ, ρ̄ ≤M, 0 < δ ≤ θ, θ̄ ≤M}.

However, in the case of the ideal gas (IG), the presence of the logarithm requires the technical
hypothesis that mass densities should avoid vacuum (see [6, Section 5] for details).

0.5. Mass and thermal diffusion around zero mean flow. In the case of zero mean
flow, i.e. when the barycentric velocity of the mixture v vanishes, the system reads:

(0.11)

(0.12)

(0.13)

∂tρi + divJi = 0,

∇p = 0,

∂t(ρe) + divJe = 0,

where ui is the unique solution of (0.4) and the fluxes are given by

Ji = ρiui and Je = −κ∇θ +
n∑
i=1

(ρiei + pi)ui.

Note that the choice v = 0 does not make the momentum equation disappear completely;
in fact it gives the momentum constraint (0.12), which makes sure that the system remains
consistent with the assumption of zero mean flow, since a non-zero pressure gradient would
generate motion, which contradicts the choice v = 0.

The above system falls into the realm of parabolic problems, in the sense that after a
change of variables from the set of prime variables (ρ1, . . . , ρn, θ) to the set of entropy variables
(µ1/θ, . . . , µn/θ,−1/θ), the matrix of phenomenological coefficients which relates fluxes and
entropy variables, namely the matrix D such that

(J1, . . . , Jn, Je)
⊤ = D∇

(
µi
θ
, . . . ,

µn
θ
,−1

θ

)⊤

is positive semi-definite (cf. [5, Section 2]).
System (0.11)-(0.13) is here solved in a bounded domain Ω ⊂ R3 and is completed by the

following boundary and initial conditions:

(0.14)

(0.15)

Ji · ν = 0, Je · ν = λ(θ − θ0) on ∂Ω, t > 0,

ρi(x, 0) = ρ0i (x), θ(x, 0) = θ0(x) in Ω,

where λ ≥ 0, θ0 > 0, and ν is the exterior unit normal to the boundary ∂Ω. The boundary
conditions state that mass cannot enter or exit Ω through the boundary, while heat exchange
is allowed, in a manner proportional (by λ) to the difference of the temperature of the mixture
θ and the background temperature θ0.

Even though the Maxwell-Stefan system has been studied extensively in the isothermal
case, the only known works in the non-isothermal case concerns the local-in-time existence
and uniqueness of classical solutions in [11] and the global-in-time existence of weak solutions
in [8]. The goal in [5] is to obtain global-in-time weak solutions for the above Maxwell-Stefan-
Fourier system, that is compatible with thermodynamics and differs from the model presented
in [8] in several points, as explained in [5, Section 1].
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Theorem 3. Let Ω ⊂ R3 be a bounded domain with Lipschitz continuous boundary. Assume
that the diffusion coefficients are bounded above and continuous in (ρ1, . . . , ρn, θ) and the
thermal conductivity κ is continuous in (ρ1, . . . , ρn, θ) and satisfies the bounds

(0.16) ck(1 + θ2) ≤ κ(ρ1, . . . , ρn, θ) ≤ Ck(1 + θ2)

for some positive constants ck, Ck and for all θ > 0. If the initial data ρ0i ∈ L∞(Ω) are
such that the total mass is bounded away from vacuum and infinity and θ0 ∈ L∞(Ω), with
infΩ θ

0 > 0, then for every T > 0 there exists a weak solution of (0.11)-(0.15) and (0.4),
satisfying ρi > 0 and θ > 0 a.e. in ΩT := Ω× (0, T ) and having the regularity

ρi ∈ L∞(ΩT ) ∩ L2(0, T ;H1(Ω)) ∩H1(0, T ; (H2(Ω))∗),

θ ∈ L2(0, T ;H1(Ω)) ∩W 1,16/15(0, T ; (W 2,16(Ω))∗), log θ ∈ L2(0, T ;H1(Ω)).

The proof of the theorem is based on a suitable regularization and uniform estimates from
the regularized entropy (or free energy) inequality. More precisely, we discretize the equa-
tions in time by the implicit Euler scheme to avoid any issues regarding the time regularity,
transform to the so-called entropy variables, defined by the relative chemical potentials, and
add an elliptic higher-order regularization. By construction, the entropy variables yield the
positivity of the approximate densities and temperature, while the elliptic regularization gives
sufficiently regular solutions, making this transformation rigorous. The approximate problem
is solved by a fixed-point argument (Leray–Schauder theorem). Some uniform estimates are
derived from a discrete, regularized version of the entropy inequality, acquired after choosing
the entropy variables as test functions in the weak formulation of the problem and using the
technical assumption (0.16) as well as the positive semi-definiteness of matrix Aij from (0.9)
in the subspace induced by the constraint (0.4). Then the de-regularization limit can be
performed by using an Aubin–Lions compactness argument. For more details, see [5].

The uniqueness of the local-in-time strong solution was established in [1] for the isothermal
and in [11] for the non-isothermal case, but for weak solutions the problem remains open. The
most general result in the isothermal case is a weak-strong uniqueness property, i.e., whenever
there is a strong solution, any weak solution will coincide with the strong one, and can be
found in [10]. A similar result but for the non-isothermal system (0.11)-(0.15) was proved in
[5], in the case when no heat exchange is allowed through the boundary, i.e. λ = 0.

Theorem 4. Let U = (ρ1, . . . , ρn, θ) be a weak solution of (0.11)-(0.15), with λ = 0 in (0.14),
and let Ū = (ρ̄1, . . . , ρ̄n, θ̄) be a strong solution. Assume that there exist δ,M > 0 such that
the weak solution satisfies

(0.17) 0 < ρi ≤M, 0 < θ ≤M,

and the strong solution satisfies

(0.18) 0 < δ ≤ ρ̄i ≤M, 0 < δ ≤ θ̄ ≤M

as well as

∇
√
ρ̄i ∈ L∞

loc(Ω× (0, T )), ∇ log θ̄ ∈ L∞
loc(Ω× (0, T )).

Moreover, let the thermal conductivity κ be Lipschitz continuous as a function of the tempera-
ture, satisfying (0.16). Then, if the initial data U0 = (ρ01, . . . , ρ

0
n, θ

0) and Ū0 = (ρ̄01, . . . , ρ̄
0
n, θ̄

0)
coincide, the two solutions coincide too, i.e. U(x, t) = Ū(x, t) in Ω, for all 0 ≤ t < T .



8 S. GEORGIADIS, A. JÜNGEL, AND A. E. TZAVARAS

A problematic aspect of Theorem 4 is the assumption that the mass densities of the strong
solution need to be bounded away from vacuum. Not only is this a strong mathematical
assumption, but also excludes the case of vanishing concentrations that might occur due to
the interaction of the components, if one assumes chemical reactions. Keeping this in mind,
one can restate the previous theorem, exchanging the assumption on strictly positive mass
densities with an assumption on the finiteness of the diffusional velocities, which is a natural
hypothesis, since mass is transported at finite speed.

Theorem 5. Let U = (ρ1, . . . , ρn, θ) be a weak solution to (0.11)-(0.15), with λ = 0 in (0.14),
and let Ū = (ρ̄1, . . . , ρ̄n, θ̄) be a strong solution. Assume that there exist δ,M > 0 such that
the weak solution satisfies (0.17) and the strong solution satisfies

(0.19) 0 ≤ ρ̄i ≤M, 0 < δ ≤ θ̄ ≤M

as well as

log ρ̄i ∈ H1
loc(Ω× (0, T )), ūi ∈ L∞

loc(Ω× (0, T )), ∇ log θ̄ ∈ L∞
loc(Ω× (0, T )).

Moreover, let the thermal conductivity κ be Lipschitz continuous as a function of the tempera-
ture, satisfying (0.16). Then, if the initial data U0 = (ρ01, . . . , ρ

0
n, θ

0) and Ū0 = (ρ̄01, . . . , ρ̄
0
n, θ̄

0)
coincide, the two solutions coincide too, i.e. U(x, t) = Ū(x, t) in Ω, for all 0 ≤ t < T .

The proof of Theorems 4 and 5 is similar with the one of Theorems 1 and 2. In this case,
the relative entropy reads

H(U |Ū) =

∫
Ω

(∑
i

ρi
mi

log
ρi
ρ̄i

−
∑
i

ρi − ρ̄i
mi

− cwρ log
θ

θ̄
+ cwρ(θ − θ̄)

)
dx,

since the barycentric velocity is assumed to be zero and the relative entropy identity is used
to obtain a stability estimate for the difference of a weak and a strong solution of the same
system, namely (0.11)-(0.15); see [5]. The difference between the two versions of the theorem
lies in the interpretation of the diffusional dissipation: Theorem 4 requires the inversion of
system (0.4) and the subsequent elimination of ui from the diffusional dissipation, resulting in
(0.9) and requiring more assumptions on the mass densities, while in Theorem 5 one eliminates
the generalized forces di by using (0.4) and the diffusional dissipation takes the form (0.8).
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[8] C. Helmer, A. Jüngel, Analysis of Maxwell–Stefan systems for heat conducting fluid mixtures, Nonlin.
Anal. Real World Appl. 59 (2021), no. 103263.



MULTICOMPONENT SYSTEMS OF GASES 9
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