A NOTE ON AUBIN-LIONS-DUBINSKI | LEMMAS
XIUQING CHEN, ANSGAR INGEL, AND JIAN-GUO LIU

AssTrACT. Strong compactness results for families of functions imisermed nonnegative cones
in the spirit of the Aubin-Lions-Dubinskiemma are proven, refining some recent results in the
literature. The first theorem sharpens slightly a result biDski (1965) for seminormed cones.
The second theorem applies to piecewise constant funciiotisme and sharpens slightly the
results of Dreher andihgel (2012) and Chen and Liu (2012). An application is giwehich is
useful in the study of porous-medium or fastfdsion type equations.

1. INTRODUCTION

The Aubin-Lions lemma states criteria under which a set n€fions is relatively compact in
LP(O,T; B), wherep > 1, T > 0, andB is a Banach space. The standard Aubin-Lions lemma
states that itJ is bounded irLP(0, T; X) andoU/aot = {du/dt : u € U} is bounded irL"(0, T; YY),
thenU is relatively compact i.P(0, T; B), under the conditions that

X — Bcompactly B < Y continuously

and either 1< p < oo, r = 1 0rp = oo, r > 1. Typically, whenU consists of approximate
solutions to an evolution equation, the boundednedd of LP(0, T; X) comes from suitable a
priori estimates, and the boundednes®dfot in L"(0, T;Y) is a consequence of the evolution
equation at hand. The compactness is needed to extract ansequn the set of approximate
solutions, which converges strongly (0, T; B). The limit is expected to be a solution to the
original evolution equation, thus yielding an existencsuie

In recent years, nonlinear counterparts of the Aubin-Li@nsma were shown [4, 8, 17]. In
this note, we aim to collect these results, which are seadtar the literature, and to prove
some refinements. In particular, we concentrate on the casdich the set) is bounded in
LP(0, T; M,), whereM, is a nonnegative cone (see below). This situation was fivetstigated
by Dubinski, and therefore, we call the corresponding results Aubhom&-Dubinski lemmas.

Before detailing our main results, let us review the compasdrtheorems in the literature. The
first result on the compact embedding of spaces of Banach spae functions was shown by
Aubin in 1963 [3], extended by Dubingkin 1965 [11], also see [16, Boreme 5.1, p. 58].
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Some unnecessary assumptions on the spaces were removiaadoyiis his famous paper [22].
The compactness embedding result was sharpened by Amammvf®}ing spaces of higher
regularity, and by RolBek, assuming that the spa¥eés only locally convex Hausdét[20] or
thatoU/at is bounded in the space of vector-values measures [21, @orGll9]. This condition
can be replaced by a boundedness hypothesis in a space tbfhswith generalized bounded
variations [15, Prop. 2]. A result on compactneskfi(R; B) can be found in [23, Theorem 13.2].

The boundedness & in LP(0, T; B) can be weakened to tightness dfwith respect to a
certain lower semicontinuous function; see [19, TheoremAl$o the converse of the Aubin-
Lions lemma was proved (see [18] for a special situation).

Already Dubinski [11] observed that the spaecan be replaced by a seminormed set, which
can be interpreted as a nonlinear version of the Aubin-Liemsna. (Recently, Barrett andifs
[4] corrected an oversight in Theorem 1 of [11].) Furthereydhe spac® can be replaced by
K(X), whereK : X — B is a compact operator, as shown by Maitre [17], motivatedhay t
nonlinear compactness result of Alt and Luckhaus [1].

Instead of boundedness @il /ot in L"(0, T;Y), the condition on the time shifts

llonu — UllLeor-hyv) = O ash — 0, uniformlyinue U,

where ¢hu)(t) = u(t + h), can be imposed to achieve compactness [22, Theorem 5helf t
functionsu, in U are piecewise constant in time with uniform time step 0, this assumption
was simplified in [10, Theorem 1] to

||O-TUT - u‘rHL’(O,T—T;Y) < CT,

whereC > 0 does not depend an This condition avoids the construction of linear integi@ns
of u, (also known as Rothe functions [14]}.was shown in [10, Prop. 2] that the ratecannot
be replaced by® with 0 < @ < 1. Nonlinear versions were given in [8], generalizing the hssu
of Maitre.

In the literature, discrete versions of the Aubin-Lions leanwere investigated. For instance,
compactness properties for a discontinuous and continGalerkin time-step scheme were
shown in [24, Theorem 3.1]. In [12], compactness to sequetdunctions obtained by a
Faedo-Galerkin approximation of a parabolic problem wadistl.

In this note, we generalize some results of [8, 10] (and [t2$eminormed nonnegative cones.
We callM, aseminormed nonnegative canea Banach spadg if the following conditions hold:
M, c B; forallue M, andc > 0, cu € M,; and if there exists a function][: M, — [0, )
such thati] = 0 if and only ifu = 0, and Eu] = c[u] for all c > 0. We say thaM, — B
continuously, if there exist€ > 0 such thatullg < C[u] for all u € M, c B. Furthermore, we
write M, < B compactly, if for any bounded sequer(cg) in M, (here the boundedness means
that there exist€ > 0 such that for alh € N, [u,] < C), there exists a subsequence converging
in B.

Theorem 1 (Aubin-Lions-Dubinski). Let B, Y be Banach spaces and, Me a seminormed
nonnegative cone in B with MnY # 0. Letl < p < co. We assume that

(i) M, — B compactly.

(i) Forall (w,) cBNnY,w, > winB,w, — 0inY as n— oo imply that w= 0.
@ii) U c LP(O, T; M, NnY)is boundedin B0, T; M,).



A NOTE ON AUBIN-LIONS-DUBINSKII LEMMAS 3

(iv) llowu = UllLer-ry) = 0as h— 0, uniformly in ue U.
Then U is relatively compact in®(0, T; B) (and in C([0, T]; B) if p = o).

This result generalizes slightly Theorem 3 in [8]. The noyvé&d that we donot require the
continuous embeddinB — Y. If both B andY are continuously embedded int@pological
vector spacésuch as some Sobolev space with negative index) or in tleeggaistribution)’,
which is naturally satisfied in nearly all applications,rifeondition (ii) clearly holds. Therefore,
we do not need to check the continuous embeddirg Y, which is sometimes not obvious,
like in [9, pp. 1206-1207], wherB is anL! space with a complicated weight axds related to a
Sobolev space with negative index. Thus, this generatimasi not only interesting in functional
analysis but also in applications.

The proof of Theorem 1 is motivated by Theorem 3.4 in [12] aeeds a simple but new idea.
Taking the proof of Theorem 5 in [22] as an example, we compfeeraditional proof and our
new idea. For this, we first list some statements:

Q) B — Y continuously

(2) X «— B compactly

3) X < Y compactly

(4) Ve>0,3C, >0, Yue X [ulls < é&llullx + Ccllully,

(5) U is a bounded subset &f(0, T; X),

(6) llonu = Ul e r-hyy — 0 ash — 0, uniformly foru e U,
(7 llowu — UllLeor-n) — 0 ash — 0, uniformly foru e U,
(8) U is relatively compact in.P(0, T;Y),

9) U is relatively compact in.(0, T; B).

Simon proves (9) [22, Theorem 5] using the steps
I. Theorem 5in [22]: (1), (2), (5), (6 (9).

Il. Lemma 8 in [22]: (1), (2)= (4).

lll. Theorem 3in [22]: (2), (5), (7 (9), or (3), (5), (6)= (8).
More precisely,

Traditional proof of I: New proof of I
1).0= © 2
1]
L.@= @) 4 =0 WS @ = (9)
(5)}=> (8) ) (=
(6) (6)

In the traditional proof of I, the step (1), (2 (3) depends on the continuous embedding (1).
Hence, in that proof, (1) is essential. In our new proof, atp II: (1), (2)= (4) depends on
(1), which can be replaced by condition (ii) of Theorem 1.sI¢wndition follows from (1) and
hence, it is weaker than (1).
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If U consists of piecewise constant functions in tinmg) (with values in a Banach space,
condition (iv) in Theorem 1 can be simplified. The main featigrthat it is sficient to verify
one uniform estimate for the time shifig(- + 7) — u, instead of all time shiftsi,. (- + h) — u, for
h> 0.

Theorem 2 (Aubin-Lions-Dubinski for piecewise constant functions in timelet B, Y be Ba-
nach spaces and Mbe a seminormed nonnegative cone in B. Let eifhgrp < oo, r = 1 0r
p=oo,r>1 Let(u) c LPO,T; M, NnY) be a sequence of functions, which are constant on
each subinterva(k — 1), k7], 1 <k < N, T = N7. We assume that

(i) M, — B compactly.

(i) Forall(w,) cBNnY,w, - winB,w, — 0inY as n— oo imply that w= 0.
(iii) (u)is bounded in B(0, T; M,).

(iv) There exists G 0 such that for allr > O, [lo-U; — Uc[lLro1-rv) < Cr.
Then, if p< oo, (u,) is relatively compact in &0, T; B) and if p= oo, there exists a subsequence
of (u;) converging in (0, T; B) for all 1 < g < oo to a limit function belonging to &[0, T]; B).

This result generalizes slightly Theorem 1 in [10] and Tleeo8 in [8] (for piecewise constant
functions in time). The proof in [10] is based on a charaztdion of the norm of Sobolev-
Slobodeckii spaces. Our proof just uses elementary essiat the diferenceo,u, — u, and
thus simplifies the proof in [10]. Note that Theorems 1 ande?adso valid ifM.. is replaced by a
seminormed cone or Banach space. We observe that for fuaati@n) = ux fort € ((k—21)r, k],

1 <k < N, the estimate of (iv) can be formulated in terms of thiéedenceu,,; — U since

N-1 ~kr N-1
loette = Ul o7y = ) f U1 = Udlgdt = 7 > Il = Uillp.
k=1

(k— l)T k=1

A typical application is the cone of nonnegative functionsith u™ € W9(Q), which occurs
in diffusion equations involving a porous-medium or fagtediion term. Applying Theorem 2,
we obtain the following result.

Theorem 3. LetQ c RY (d > 1) be a bounded domain withQ2 € C%2. Let(u,) be a sequence of
nonnegative functions which are constant on each subinitéfiva 1)r, kr], 1 <k <N, T = Nr.
Furthermore, leD < m< o0,y > 0, 1 < g<eo, and p> max1l,i}.

(a) If there exists C> 0 such that for alk- > 0,

1
T o Ur = Ul - o)) + U7 Il wiaqay < C,

then (u;) is relatively compact in £P(0, T; L™(Q)), where r> 2 is such that W%(Q) —
L"(Q) is compact.

(b) If additionally max0, (d - g)/(dg)} < m< 1+ min{0, (d - q)/(dg)} and

(10) llu- log Ul w11 < C

for some C> O independent of > 0, then(u,) is relatively compact in &(0, T; L3(Q)) with
s=qd/(qdl-m)+d-q) > 1L
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Part (a) of this theorem generalizes Lemma 2.3 in [7], in Wlunly relative compactness in
L™(0, T; L™(Q)) for £ < pandqg = 2 was shown. Part (b) improves part (a) far< 1 by
allowing for relative compactness ltP with respect to time instead of the larger spacfe. It
generalizes Proposition 2.1 in [13] in which = % andp = q = 2 was assumed. Its proof
shows that the bound am logu, can be replaced by a bound ¢(u.), where¢ is continuous
and convex.

The additional estimate (10) is typical for solutions of sdistrete nonlinear diusion equa-
tions for WhichfQ u, logu.dxis an entropy (Lyapunov functional) Wit)fl2 |VuM?dxas the corre-
sponding entropy production (see, e.g., [7, Lemma 3.1])ecfém 3 improves standard com-
pactness arguments. Indeed, %ts g < d. The additional estimate yields boundedness
of (u;) in L*(0,T; L}(Q)). Hence,Vu, = ful™™vulis bounded inLP(0, T; L*(Q)) with & =
g/(1+ q(1 - m)). Thus, @) is bounded irLP(0, T; W**(Q)) — LP(0, T; L%(Q)). By the Aubin-
Lions lemma [10], ¢,) is relatively compact in.P(0, T; L#(Q2)) for all 5 < s. Part (b) of the above
theorem improves this compactnesgte: s under the condition thau(logu,) is bounded in
L>(0, T; LY{(Q)).

This note is organized as follows. In Section 2, Theoremsate3proved. Section 3 is con-
cerned with additional results.

2. ProoFs

2.1. Proof of Theorem 1. The proof of Theorem 1 is based on the following Ehrling type
lemma.

Lemma 4. Let B, Y be Banach spaces and Mbe a seminormed nonnegative cone in B. We
assume that

(i) M, — B compactly.
(i) Forall (w,) cBNnY,w, - winB,w, — 0inY as n— oo imply that w= 0.
Then for any > 0, there exists C> 0 such that for all u, v« M, NY,

llu= Vg < &([u] +[V]) + C,llu— Vlly.

Proof. The proof is performed by contradiction. Suppose that tegigtsey > 0 such that for
all n e N, there exisu,, v, € M, N'Y such that

(11) lun = Vnllg > o([Un] + [Vn]) + NllUn = Vi lly.

This implies that{i,] +[v,] > O for alln € N since otherwise U] = [Vm] = O for a certaim e N
would lead tau, = v, = 0 which contradicts (11). Define
G- Un v - Vi
" lu vl " [l + Vel
Thenu,, V, € My, nY and [U)] < 1, [4] < 1. Taking into account the compact embedding
M, — B, there exist subsequences of)(and ), which are not relabeled, such that= u
andv,, — vin B and hence,

(22) U, -V, —>u-v inB.
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We infer from (11) that|l, — V,llz > &0 + N0, — Vlly. This shows, on the one hand, that
lUn — Vnlls > &0 and, by (12)]lu — vl|lg=go. On the other hand, using the continuous embedding
M= B C 2C
.o 1. . - -

”un - Vn”Y < ﬁ”un - Vn”B < ﬁ([un] + [Vn]) < F
Consequentlyu, — ¥, — 0 in Y. Together with (12), condition (ii) implies that— v = 0O,
contradicting|u — V||>&o. O
Proof of Theorem 1First, we prove that
(13) llonu — UllLeor-rey = 0 ash — 0, uniformly inue U.

Indeed, by condition (jii), there exis@ > 0 such thaful| s 1:m,) < C for allu e U. Lemma 4
shows that for any > 0, there exist€, > O such thatforallGc h< T,ue U, andt € [0, T —h],

€
lu(t + h) — u(®)lle < 5= ([u(t + ] + [u@]) + Cellu(t + h) — u(®)llv.
Integration ovet € (0, T — h) then gives
&
llopu = Ulleo7-hB) < zllulle(o,T;Mg + Cgllonu = UllLem-h;y)
E
< > Cellonu = UllLeo.1-hyv)-

We deduce from condition (iv) that fer, = £/(2C,), there existg > 0 such that forallx h <
andue U, |lohu— U|||_p(0,'|'_h;y) < &1. This shows thato,u— U”LP(O,T—h;B) <g/2+¢€/2=¢, proving
the claim.

Because of condition (iii) and (13), the assumptions of Len@iria [8] are satisfied, and
the desired compactness result follows. In Lemma 6, onlydbmpact) embeddiniyl, — Bis
needed. Let us mention that this lemma is a consequence ofiagar Maitre-type compactness
result [8, Theorem 1] (see Proposition 7), which itself uBesorem 1 in [22]. O

2.2. Proof of Theorem 2. The proof of Theorem 2 is based on an estimate of the timesshift
onpU; — U;.

Lemmab. Letl < p< o andlety € LP(0, T; B) be piecewise constant in time, i.e,(th = uy
for(k—1r<t<kr,k=1,...,N, T=Nr. Then,foO<h<T,

N-1 1/p
1
o7l — UellLpor -y < h'/P Z U1 — Wl = THO'TUT — Uelliso1-7B)-
]

Proof. Denoting byH the Heaviside functions, defined Ib{(t) = 0 fort < 0 andH(t) = 1 for
t > 0, we find that
N-1
U(t) = Up + ) (U - UQH(t —kr), O<t<T.
k=1
This gives
N-1

u(t+h) —u.(t) = Z(UM —u)(H(t+h—-kr)-H({t-kr)), O<t<T-h,
k=1
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and
N-1

(14) llo-Ur — UrllLpoT-h;B) < Z U1 — UllgllH(t + h = kr) — H(t — k7)llLpo7-1)-
]

If1<p<oo,wehaveforl<k<N-1,

IH(t +h—kr) = H(t = k)lITyg7_py < f [H(t + h - kr) — H(t - k)| dt

kr—h kr o0 ke
:(f +f +f)|H(t+h—kT)—H(t—kT)|pdt: dt = h.
—o0 ke—h  Jke kr=h

If p= o0, we infer that
[IH(t + h—kr) = H(t = kr)ll.oo1-n) < [[H(t + h = kr) = H(t — k1)l om)
= [[H(t + h— k) = H(t = k)llLokr-hko) = 1.
Hence,
IH(t + h — kr) = H(t = ko)llL.o@7-ny < hYP, 1< p< oo
Together with (14), this finishes the proof. O

Theorem 1 above and Lemma 4 in [22] imply the following prapos involving the time
derivative instead of the time shifts.

Proposition 6. Let B, Y be Banach spaces and bk a seminormed nonnegative cone in B. Let
eitherl< p<oco,r=10rp= oo, r> 1 Assume that condition(§-(iii) of Theorem 1 hold and

% is bounded in (O, T; Y).

Then U is relatively compact in®(0, T; B) (and in C([0, T]; B) if p = o).

Proof of Theorem 2The case Kk p < « is a consequence of Theorem 1 and Lemma 5. There-
fore, letp = co. We define the linear interpolations

(1) = Uz ifo<t<r,
T = (ke =) (u - uq) /T if(k=1)r<t<kr 2<k<N
Since kr —t)/r < 1for (k— 1)r <t < kr, we have

G- lL=01:m,) < 2lUellLe@1:m,) < C,
using condition (iii). Furthermore, by condition (iv),
o0, 1
= —|lo-U; — U|lro7-rv) < C.
' ot luorn T|| Ur — UrllroT-7y)

By Proposition 6, there exists a subsequengg ¢F ({i,) such thau; — @ in C°([0, T]; B) (and
i € C°([0, T]; B)). Applying Theorem 2 withp = 1 andr = 1, there exists a subsequenog )
of (u.) such thau,» — uin L0, T; B). Since

I8 = Uellaore) < llozUe = Uellior-r) < Cr,
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it follows that (U,~) and {4.~) converge to the same limit, implying that"u. By the boundedness
of (u,) in L*(0,T; M,) c L*(0, T; B) and interpolation, we infer that for4 q < o, ast — 0,

1 1-1 1
luer = Ullsomsey < e = UllEst 1. IUer = Ulli<o ) < Clluer = Ul 1.0 = O
This shows that a subsequence ) converges irL9(0, T; B) to a limit functionu € C°([0, T];
B). O

2.3. Proof of Theorem 3. (a) We apply Theorem 2 tB = L™(Q), Y = (H3(Q))’, andM, =
{u>0:u™e Wh9(Q)} with [u] = ||um||\1,\/,§‘f;(Q forue M,. ThenM;, is a seminormed nonnegative
cone inB. We claim thatM, — B compactly. Indeed, it follows from the continuous embeddin
WLI(Q) — L"(Q) that for anyu € M.,

1

1 1
lulliriey = U™ gy < CIU™seg

= C[u].

ThenM, — B continuously. Lety,) be bounded iM,. Then ¢™ is bounded inW*9(Q). Since
W4(Q) embeddes compactly intd (2), up to a subsequence which is not relabelétd—~ z

in L"(Q) with z > 0. Again up to a subsequencé! — za.e. andy, — v := Z/™a.e. Hence
vl — v1in L'(Q) which yields

lim [Vollumrey = im VTl = IVl G = VI,

Then it follows from Brezis-Lieb theorem (see [5, p. 298, 3071 .or [6]) thatv, — vin L™(Q)
(for a subsequence). This proves the claim. Nexiyjet> win L™(Q) andw, — 0 in (H”(Q))".
SinceL™(Q) — () and H(Q)) — D'(Q), the convergences hold true ¥ () which
givesw = 0. Furthermore, the following bound holds:

_ myl/m
lUcllLmeo,1;m,) = [IUZ ”LP(O,T;WLQ(Q)) <C.

By Theorem 2,1,) is relatively compact i ."P(0, T; L™ (Q)).

(b) Note that the condition m@&, (d — g)/(dg)} < m < 1+ min{0, (d — g)/(dg)} ensures that
s> 1. By the first part of the proof, up to a subsequenge, ua.e. Itis shown in the proof of
Proposition 2.1 in [13] that this convergence and (10) intpbtu, — uin L=(0, T; L}(Q)). We
infer from the elementary inequalitst — b|*/™ < [a/™ — bY™| for all a, b > 0 that

Uy — UMl oo rvm@) < lUr = Ulls@T:110)) = 0 ast — 0.

Then the Gagliardo-Nirenberg inequality gives

1—
[T um||LF’/m(0,T:LS/m(Q)) < Cluf - um||Tp(o,T;w1<,q(Q))”u?1 - umHL"“rgE),T;Ll/m(Q))
m myl-m
< C”UT —-u |||_oo(0’-|-;|_1/m(g)) — 0.

In particular, we infer that

”uT”Tp(O’T;LS(Q» = ”uTHLP/m(O,T;LS/m(Q)) <C.
Furthermore, by the mean-value theor¢an; b| < 2(a*"™+b'*™)|a™ - b™ for all a, b > 0, which
yields, together with the &lder inequality,

llu; — U”LP(O,T;LS(Q)) < C(”uTlli;(T)’T;LS(Q)) + ”u”i;(r(n)’_r;l_s(g)))”u;n - um||LP/'“(0,T;LS/”‘(Q))
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< Clluf" = UM|Lpimgo 1 L5m) — O.

This proves the theorem.

3. ADDITIONAL RESULTS

Using Lemma 5, we can specify Maitre’s nonlinear compaanesult and Aubin-Lions
lemma with intermediate spaces assumption for piecewigstant functions in time.

Proposition 7 (Maitre nonlinear compactnesd)et eitherl < p< oo, r=10rp=oo,r > 1.
Let X, B be Banach spaces, and let K — B be a compact operator. Furthermore, (&t) C
L0, T; X) be a sequence of functions, which are constant on each solahi{gk — 1)r, kr],
1<k<N,T=Nr, andlety = K(v,) € LP(0, T; B). Assume that

(i) (v,) is bounded in E(0, T; X), (u,) is bounded in £(0, T; B).

(i) There exists G 0 such that for allr > O, [lo-U. — U[lro1-78) < Cr.
Then, if p< oo, (U,) is relatively compact in (0, T; B) and if p= oo, there exists a subsequence
of (u,) converging in (0, T; B) for all 1 < q < oo to a limit function belonging to &[0, T]; B).

This result extends Theorem 1 in [8], which was provernrfer p only, for piecewise constant
functions in time. In fact, Lemma 5 shows that condition ifiplies a bound omryu, — u, in
LP(O, T — h; B), and Theorem 1 in [8] applies fg@r < . The case = « is treated as in the
proof of Theorem 2.

Proposition 8 (Aubin-Lions compactness).et X B, Y be Banach spaces aldd< p < oo.
Assume that X— Y compactly, X» B < Y continuously and there exiéte (0,1), Cy, > 0
such that for any & X, ||ullg < C9||u||§(“’||u||$. Furthermore, let(u,) be a sequence of functions,
which are constant on each subinter¢@t — 1)r, kr], L <k <N, T = N7. If

() (u,) is bounded in (0, T; X).

(i) There exists G 0such that for allr > 0, [|o;U, — Uc[lL2o1-rv) < Cr.

Then(u,) is relatively compact in 40, T; B) forall p < g < p/(1 - 6).

Proof. Letp < q < p/(1 - 06) and sett = 8/(1/q- (1 —6)/p). Thent € [1,) and ¥q =
(1 - 6)/p+ 6/¢. Hence it follows from Lemma 5 thdlornu. — UllqoT-ny) < ChY¢ for all
0 < h< T. This and Theorem 7 of [22] prove the result. O

This result improves Theorem 1 in [10] for the cgse ~. For piecewise constant functions,
Lemma 5 can be applied to Theorem 1.1 of [2] which yields agotibmpactness result.

In finite-element or finite-volume approximatiam, € Y, may be the solution of a discretized
evolution equation, whererf) is a sequence of (finite-dimensional) Banach spaces whigh “a
proximates” the (infinite-dimensional) Banach spacé&ince the spaces, depend on the index
n, the classical Aubin-Lions lemma generally does not ap@gllowet and Latck [12] have
proved a discrete version of this lemma. We generalize tiesinlt for seminormed coned,
and allow for the casp = .

Proposition 9 (Discrete Aubin-Lions-DubinsKi. Let B, Y, be Banach spacgs € N) and let
M, be seminormed nonnegative cones in B wigbkrhinorm’ [-],. Letl < p < co. Assume that
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(i) (un) € LP(O, T; My N'Y,) and there exists G 0 such that|ugllieo:m,) < C.
(i) llonUn = UnllLe1-hv,) — 0 as h— 0O, uniformly in ne N.

Then(u,) is relatively compact in &0, T; B) (and in C°([0, T]; B) if p = ).

Proof. The proof uses the same techniques as in Section 2, thens®give only a sketch.
Similarly as in Lemma 4, a Ehrling-type inequality holdsitiug € M, (n € N). Assume that (i)
if [un]n < Cfor all n € N, for someC > 0, then (1) is relatively compact irB; (ii) if u, — uin
B asn — oo and lim,_ [[uy]ly, = O thenu = 0. Then for alle > 0, there existE, > 0 such that
forallneN,u,ve MynY,,

lu—Vile < &([u]n + [V]n) + Cellu = Vly,.
We infer as in the proof of Theorem 1 that conditions (i) amdifply that
llohUn — UnllLeor-ney = O ash — 0, uniformly forn e N.

Finally, as in the proof of Lemma 6 in [8], the relative compesss of (I,) in LP(0, T; B) (and in
Co([0, T]; B) if p = ) follows. m
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