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Abstract. The existence of global weak solutions to a coupled spin drift-diffusion and
Maxwell-Landau-Lifshitz system is proved. The equations are considered in a two-dimen-
sional magnetic layer structure and are supplemented with Dirichlet-Neumann boundary
conditions. The spin drift-diffusion model for the charge density and spin density vector
is the diffusion limit of a spinorial Boltzmann equation for a vanishing spin polarization
constant. The Maxwell-Landau-Lifshitz system consists of the time-dependent Maxwell
equations for the electric and magnetic fields and of the Landau-Lifshitz-Gilbert equation
for the local magnetization, involving the interaction between magnetization and spin den-
sity vector. The existence proof is based on a regularization procedure, L2-type estimates,
and Moser-type iterations which yield the boundedness of the charge and spin densities.
Furthermore, the free energy is shown to be nonincreasing in time if the magnetization-
spin interaction constant in the Ladau-Lifshitz equation is sufficiently small.

1. Introduction

Magnetic devices, such as magnetic sensors and hard disk read heads, typically consist of
ferromagnetic/nonmagnetic layer structures. A model for magnetic multi-layers was first
introduced by Slonczewski [33]. This model is well suited for Magnetoresistive Random
Access Memory (MRAM) devices but it is less appropriate for current-driven domain wall-
motion. A more general approach is to introduce the spin accumulation coupled to the
magnetization dynamics. The evolution of the magnetization is modeled by the Landau-
Lifshitz (-Gilbert) equation [36]. When electrodynamic effects cannot be neglected (like in
high-frequency regimes), this description needs to be coupled to the Maxwell equations.
In this paper, we analyze for the first time a coupled spin drift-diffusion Maxwell-Landau-
Lifshitz system in two space dimensions with physically motivated boundary conditions.
Let us describe our model in more detail. We consider a three-layer semiconductor

structure Ω ⊂ R
2 consisting of two ferromagnetic regions ω1, ω2 ⊂ Ω, separated by a

nonmagnetic interlayer Ω\ω, where ω = ω1 ∪ ω2 is the union of magnetic layers [1].
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Landau-Lifshitz-Gilbert equation. The dynamics of the magnetization m = (m1,
m2,m3) is governed by the Landau-Lifshitz-Gilbert (LLG) equation

(1) ∂tm = m× (∆m+H+ βs)− αm× (m× (∆m+H+ βs)) in ω, t > 0,

where the effective field Heff = ∆m +H consists of the sum of the exchange field contri-
bution ∆m and the magnetic field H, and α > 0 denotes the Gilbert damping constant.
The additional term βs models the interaction between the magnetization m and spin
accumulation s with strength β > 0 [9, 36]. We choose the initial and boundary conditions

(2) m(0) = m0 in ω, ∇m · ν = 0 on ω, t > 0,

where ν is the outward unit normal on ∂ω, we write m(0) = m(·, 0), and the notation
∇m · ν = 0 means that ∇mi · ν = 0 for i = 1, 2, 3. The Neumann conditions were also
used in, e.g., [1, 17]. We set m = 0 in Ω\ω.
The existence and non-uniqueness of weak solutions to the LLG equation goes back to

[3, 34]. The local existence of a unique strong solution was proven in [5]. In two space
dimensions and for sufficiently small initial data, the strong solution is, in fact, global in
time [5]. For general initial data, the two-dimensional solution may develop finitely many
point singularities after finite time; see [20] for a discussion. The existence of weak solutions
in three space dimensions with physically motivated boundary conditions was shown in [4],
based on a finite-element approximation. For a complete review on analytical results, we
refer to [10, 26].

Maxwell equations. The Maxwell equations are given by the time-dependent Ampère
and Faraday laws for the electric and magnetic fields E = (E1, E2, E3) and H = (H1, H2,
H3), respectively,

(3) ∂tE− curlH = Je, ∂tH+ curlE = −∂tm in Ω, t > 0,

and by the Gauss laws

(4) divE = ρ− C(x), div(H+m) = 0 in Ω, t > 0.

Here, Je is the electron current density, ρ the electron charge density, and C(x) the doping
concentration characterizing the device under consideration. We assume that the boundary
∂Ω splits into two parts: the Ohmic contacts ΓD and the union ΓN of the insulating parts,
with ∂Ω = ΓD ∪ ΓN . Then the initial and boundary conditions of E and H are given by

E(0) = E0, H(0) = H0 in Ω,(5)

E× ν = 0 on ΓD, t > 0, H× ν = 0 on ΓN , t > 0,(6)

E · ν = 0 on ΓN , t > 0.(7)

The existence analysis (for given and smooth Je and ∂tm) may be based on Kato’s theory
of quasilinear evolution equations of hyperbolic type [29] or on semigroup theory [22]; also
see Section 3.1.
Coupled Maxwell and LLG equations were intensively studied in the literature. For

instance, the Maxwell-Landau-Lifshitz system in three space dimensions with periodic
boundary conditions was investigated in [19]. Carbou and Fabrie [6] proved the existence
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of weak solutions to the LLG equation, coupled to Maxwell’s equations, in the whole space
R

3. The existence of spatially periodic strong solutions in three dimensions and their local
uniqueness were proved in [9]. The solutions are only partially regular (i.e. smooth except
on a low-dimensional set) because of possible vortices or phase transitions. We refer to [13]
for the two-dimensional case and to [12, 14] for three space dimensions.

Spin drift-diffusion system. We consider the spin drift-diffusion equations for the
charge density ρ and the spin density vector s = (s1, s2, s3)

∂tρ− div Je = 0, Je = D(∇ρ− ρE),(8)

∂ts− div Js + γm× s = −s/τ, Js = D(∇s− s⊗ E),(9)

where D > 0 is the diffusivity constant, Js the spin current density vector, γ > 0 is the
strength of the effective magnetic field, and τ > 0 denotes the spin-flip relaxation time.
The term γm× s causes the spin density vector to rotate around the magnetization, while
the spin-flip relaxation term leads, in the absence of other forces, to exponential decay to
the equilibrium spin density vector seq = 0. We assume that the densities ρ and s are
prescribed on ΓD (Ohmic contacts), while there are no-flux boundary conditions on ΓN

(insulating boundary). This results in the initial and boundary conditions

ρ(0) = ρ0, s(0) = s0 in Ω,(10)

ρ = ρD, s = 0 on ΓD, t > 0,(11)

Je · ν = 0, Js · ν = 0 on ΓN , t > 0.(12)

The spin current density is a 3 × 3 matrix with rows Js,i = ∇si − siE for i = 1, 2, 3.
Accordingly, Js · ν is a vector in R

3 consisting of the elements Js,i · ν = 0, i = 1, 2, 3.
Spin-polarized drift-diffusion models were analyzed only recently in the literature. Glitz-

ky [18] proves the existence and uniqueness of weak solutions to a two-dimensional transient
drift-diffusion system for spin-up and spin-down densities. The stationary problem was
solved in three space dimensions in [16]. These models were derived from the spinor
Boltzmann equation in the diffusion limit with strong spin-orbit coupling in [15].
More detailed information can be obtained by introducing the spin density. Spin-vector

drift-diffusion equations can be derived from the spinor Boltzmann equation by assuming a
moderate spin-orbit coupling [15]. Projecting the spin-vector density in the direction of the
magnetization, we recover the two-component drift-diffusion system as a special case. In
[15], the scattering rates are supposed to be scalar quantities. Assuming that the scattering
rates are positive definite Hermitian matrices, a more general matrix drift-diffusion model
was derived in [30]. The global existence of weak solutions to this model was shown in
[25]. An energy-dissipative finite-volume discretization was presented in [7].
Equations (8)-(9) result from the cross-diffusion model in [30] by choosing a vanishing

spin polarization constant. By this choice, the diffusion matrix becomes diagonal which
makes our analysis possible. For a more general spin drift-diffusion LLGmodel, but without
coupling to Maxwell’s equations and with saturating drift velocity, we refer to [35].
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In the physical literature, also other equations for the spin density vector have been
suggested. In [28, Formula (8)], the spin density is defined as the difference of the spin-
up and spin-down densities. Thus, the underlying equation is a two-component model
which is a special case of the general model. Starting from kinetic equations for the
charge and spin components of the Wigner-transformed density matrix, Lueffe et al. [27,
Formula (54)] derived a spin diffusion equation for weak spin-orbit interaction or strong
scattering. Another derivation employs a SU(2) gauge field theoretical description of the
spin-orbit coupling and the Heisenberg field operators for the definition of the spin density
[31, Formulas (1)-(4)]. The resulting equation is similar to (9) but the spin current density
also depends on the charge current. Finally, assuming that the diffusivity in the drift-
diffusion equation for the density matrix is proportional to the magnetization vector, the
authors in [36] obtain (9) with a spin current density whose drift term equals m ⊗ E

instead of s⊗E as in (9). The former drift term can be derived from the Wigner equation
in the diffusion limit by approximating the Wigner function appropriately [8, Formula
(23)]. We stress the fact that the model (8)-(9) is derived from the spinor Boltzmann
equation without heuristic arguments.

Main results. We show that there exists a global-in-time weak solution to the coupled
spin drift-diffusion Maxwell-LLG system. Our assumptions are as follows:

ω ⊂ Ω ⊂ R
2 are bounded domains with smooth boundaries,(13)

α, β, γ, D, τ > 0, C ∈ L∞(Ω),(14)

ρD, ρ0, s0, E0, H0 ∈ H1(Ω), m0 ∈ H1(ω), |m0| = 1 in ω,(15)

divE0 = ρ0 − C(x), div(H0 +m0) = 0 in Ω, E0 · ν = 0 on ΓN .(16)

We also suppose that ∂Ω = ΓD∪ΓN , ΓD∩ΓN = ∅, and ΓN is open and has positive measure
in ∂Ω. To simplify the notation, we write sometimes u ∈ H1(Ω) instead of u ∈ H1(Ω)3 for
vector-valued functions u. We denote by H1

D(Ω) the space of all functions in H1(Ω) with
zero trace on ΓD and by H1

D(Ω)
′ its dual space.

Let us discuss assumptions (13)-(16). The restriction to two space dimensions is (only)
needed in the uniqueness proof for the regularized LLG equation (23). This property is
required to obtain a well-defined fixed-point operator. In (16), we suppose that equations
(4) and (7) hold initially. These properties allow us to conclude the validity of (4) and (7)
from (3) and (6) (see e.g. [11, p. 435f.]).
The first main result is the following theorem.

Theorem 1 (Existence of global weak solutions). Let assumptions (13)-(16) hold. Then
there exists a weak solution to (1)-(12) satisfying

ρ ≥ 0 in Ω, m = 0 in Ω\ω, t > 0,

ρ, s ∈ L2
loc(0,∞;H1(Ω)) ∩ L∞

loc(0,∞;L∞(Ω)), ∂tρ, ∂ts ∈ L2
loc(0,∞;H1

D(Ω)
′),

E, H ∈ C0([0,∞);L2(Ω)),

m ∈ L∞
loc(0,∞;H1(ω)), ∂tm ∈ L2

loc(0,∞;L2(ω)), |m| = 1 in ω.
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The L∞ bounds on ρ and s can be shown to be uniform in time; see Remark 8.
The proof of this theorem is based on a combination of semigroup techniques for the

Maxwell equations (3), a Galerkin approximation for the LLG equation (1), and L2 esti-
mates for the spin drift-diffusion model (8)-(9). Note that it is sufficient to solve (3) with
(5)-(6) as (4) with (7) are consequences of the former equations. Since Je and ∂tm are not
regular a priori, we approximate these terms by regularizing ∇ρ, ∂tm and truncating ρ, s
in the drift terms in (8)-(9), respectively. This regularization is similar to that employed by
Jochmann [22] for a coupled Maxwell drift-diffusion system (without spin). The challenge
in the proof is to remove the regularization and truncation. For the de-regularization limit,
we derive uniform estimates for the variables by showing that the functional

(17) S(t) =
1

2

∫

Ω

(

(ρ− ρD)
2 + |s|2 + |E|2 + |H|2

)

dx+
1

2

∫

ω

|∇m|2dx

satisfies the inequality

S(t) + c1

∫ t

0

∫

Ω

(

|∇ρ|2 + |∇s|2
)

dx+ c2

∫ t

0

∫

ω

|∂tm|2dx ≤ c3(T ), t ∈ (0, T ),

where c1, c2, c3(T ) > 0 are some constants which are independent of the solution. Further
details on the proof are given in Section 2. In order to remove the truncation, we derive
L∞ estimates for m, ρ, and s by using a Moser-type iteration procedure.
The functional S(t) is not the energy of the system. The (relative) free energy consists of

the von-Neumann energy for the spin system, the electromagnetic energy, and the exchange
energy of the magnetization:

E(t) =
1

2

∫

Ω

(

ρ+(log ρ+ − 1) + ρ−(log ρ− − 1)− 2 log ρD(ρ− ρD)
)

dx(18)

+
1

2

∫

Ω

(

|E− log ρD|
2 + |H|2

)

dx+
1

2

∫

ω

|∇m|2dx,

where ρ± = ρ± |s| (see Section 4). This formulation implicitly assumes that ρ ≥ |s|. Our
second main result is the proof that E(t) is nonincreasing in time under the conditions that
the interaction parameter β > 0 is sufficiently small and the solution is smooth and satisfies
ρ > |s|. This shows that the coupled system dissipates the free energy. The constraint
on the parameter β may come from the fact that the term βs is introduced in the LLG
equation only heuristically, but we leave further investigations to future research.
The paper is organized as follows. The strategy of the existence proof is explained in

Section 2 and the full proof is given in Section 3. We conclude in Section 4 with the
monotonicity proof for the free energy E(t).

2. Strategy of the proof of Theorem 1

In order to prove Theorem 1, we first consider a truncated and regularized problem. For
this, let T > 0, ε > 0, M > 0 and set [z]M := min{M,max{0, z}} for z ∈ R. We wish to
prove the existence of weak solutions to

∂tρ− div(D(∇ρ− [ρ]ME)) = 0,(19)
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∂ts− div

(

D

(

∇s− [|s|]M
s

|s|
⊗ E

))

+ γm× [|s|]M
s

|s|
= −

s

τ
,(20)

∂tE− curlH = D(∇Rx
ε (ρ)− [ρ]ME),(21)

∂tH+ curlE = −∂tR
t
ε(m) in Ω× (0, T ), ,(22)

∂tm− ε∆m = m× (∆m+H+ βs)− αm× (m× (∆m+H+ βs)) in ω × (0, T )(23)

with the initial and boundary conditions (2), (5)-(6), and (10)-(12). In the Maxwell equa-
tions (21)-(22), Rx

ε and Rt
ε are two families of linear regularization operators acting on

functions of x and t, respectively, satisfying for all u ∈ L2(Ω) and v ∈ L2(0, T ),

‖Rx
ε (u)‖C1(Ω) ≤ kε‖u‖L2(Ω),(24)

‖Rx
ε (u)‖H1(Ω) ≤ k0‖u‖H1(Ω), lim

ε→0
‖Rx

ε (u)− u‖L2(Ω) = 0,(25)

‖Rt
ε(v)‖C1([0,T ]) ≤ kε‖v‖L2(0,T ),(26)

‖Rt
ε(v)‖H1(0,T ) ≤ k0‖v‖H1(0,T ), lim

ε→0
‖Rt

ε(v)− v‖L2(0,T ) = 0,(27)

where kε > 0 depends on ε but k0 > 0 is independent of ε. The space-regularization
operator Rx

ε was introduced in [22, p. 665f], where also their existence and the above
properties were proved. The time-regularization operator Rt

ε can be defined in a similar
way.
In the following, we abbreviate X = L2(0, T ;L2(Ω))4 and Y = C0([0, T ];L2(Ω))3.
The first step of the proof of Theorem 1 is the application of the Leray-Schauder fixed-

point theorem to the map

F : X × Y × [0, 1] → X × Y, (ρ, s;m; σ) 7→ (ρ∗, s∗;m∗),

which is defined as follows (details will be given in the following subsections). Let (ρ, s;m;
σ) ∈ X × Y × [0, 1] be given.

I. Solve the regularized Maxwell equations

∂tE− curlH = σD(∇Rx
ε (ρ)− [ρ]ME),(28)

∂tH+ curlE = −σ∂tR
t
ε(m) in Ω× (0, T ),(29)

with initial and boundary conditions

E(0) = σE0, H(0) = σH0 in Ω,(30)

E× ν = 0 on ΓD, t > 0, H× ν = 0 on ΓN , t > 0,(31)

and obtain (E,H) ∈ C0([0, T ];L2(Ω)).
II. Solve the regularized (nonlinear) LLG equations

∂tm
∗ − ε∆m∗ = m∗ × (∆m∗ + σH+ σβs)(32)

− αm∗ × (m∗ × (∆m∗ + σH+ σβs)) in ω × (0, T )

with initial and boundary conditions

(33) m∗(0) = σm0 in ω, ∇m∗ · ν = 0 on ω, t > 0,
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and obtain m∗ ∈ L∞(0, T ;H1(Ω))∩H1(0, T ;L2(Ω)) satisfying |m∗| ≤ 1 in Ω×(0, T ).
III. Solve the linearized spin drift-diffusion equations

∂tρ
∗ − div(D(∇ρ∗ − σ[ρ∗]ME)) = 0 in Ω× (0, T ),(34)

∂ts
∗ − div

(

D

(

∇s∗ − σ[|s∗|]M
s∗

|s∗|
⊗ E

))

+ σγm∗ × [|s∗|]M
s∗

|s∗|
= −

s∗

τ
,(35)

with the initial and boundary conditions

ρ∗(0) = σρ0, s∗(0) = σs0 in Ω,

ρ∗ = σρD, s∗ = 0 on ΓD, t > 0,

(∇ρ∗ − σ[ρ∗]ME) · ν = D

(

∇s∗ − σ[|s∗|]M
s∗

|s∗|
⊗ E

)

· ν = 0 on ΓD, t > 0,

and obtain (ρ∗, s∗) ∈ L2(0, T ;H1(Ω)) ∩H1(0, T ;H1
D(Ω)

′) ⊂ X.

The regularization in (23) ensures that the solution is unique, which is necessary for
the definition of the fixed-point operator. Observe that F (ρ, s;m; 0) = (0, 0; 0) since
the solutions to the homogeneous subproblems (σ = 0) are trivial. Standard arguments
show that the operator F is continuous. By Aubin’s lemma [32], bounded sequences in
L2(0, T ;H1(Ω))∩H1(0, T ;H1

D(Ω)
′) are relatively compact in L2(0, T ;L2(Ω)) and bounded

sequences in L∞(0, T ;H1(Ω))∩H1(0, T ;L2(Ω)) are relatively compact in C0([0, T ];L2(Ω)).
Consequently, F is compact. It remains to prove uniform estimates for all fixed points of
F (·, σ). They will be derived from estimates for the functional S(t) defined in (17); see
Section 3.3. Then the Leray-Schauder fixed-point theorem implies the existence of a fixed
point of F (·, 1), i.e. of a solution to (19)-(23) with the corresponding initial and boundary
conditions.
The estimates from S(t) turn out to be independent of ε which allows us in the second

step of the proof to perform the limit ε → 0. The proof that we can remove the truncation
in (19)-(20) is more delicate. We prove in the third step L∞ bounds for ρ and s by employing
a Moser-type iteration technique. The idea is to derive Lp estimates of ρ and s, which are
independent of p, and then to pass to the limit p → ∞. By a refined Moser-Alikakos
iteration technique, it is even possible to show that the L∞ bounds are uniform in time;
see Remark 8.
The proof of |m| = 1 is slightly different. First, we show for the regularized LLG

equation (23), by using a Moser-type iteration, that ‖m‖L∞(ω) ≤ 1. After the limit ε → 0,
we can take the inner product of the limit equation (1) and m to deduce immediately that
|m| = 1 in ω, t > 0.

3. Proof of Theorem 1

3.1. Analysis of the regularized Maxwell equations. We show that the regularized
Maxwell equations (21)-(22) are uniquely solvable.
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Lemma 2 (Existence of the regularized Maxwell equations). Let (ρ,m) ∈ L2(0, T ;L2(Ω))
×C0([0, T ];L2(Ω))3 and σ ∈ [0, 1]. Then there exists a unique mild solution (E,H) ∈
C0([0, T ; L2(Ω))6 to (28)-(31).

Note that equations (4) and (7) are yet not proved. They will be shown in Section 3.4
to hold for the de-regularized system.

Proof. The proof is based on semigroup theory and the Banach fixed-point theorem. In
principle, a fixed-point argument is not necessary since the Maxwell equations are linear.
However, we would need to deal with a non-autonomous operator because of the presence
of the term [ρ(x, t)]ME on the right-hand side of (28). Therefore, we prefer the simple
fixed-point argument. Following [22], we introduce the spaces

W =
{

u ∈ L2(Ω)3 : curlu ∈ L2(Ω)3
}

,

WE =

{

u ∈ W :

∫

Ω

(φ · curlu− u · curlφ)dx = 0 for φ ∈ C∞
0 (R2\ΓN)

3

}

,

WH =

{

v ∈ W :

∫

Ω

(u · curlv − v · curlu)dx = 0 for u ∈ WE

}

.

The space WE consists of all functions u satisfying u×ν = 0 on ΓD in a generalized sense,
and the space WH consists of all functions v such that v × ν = 0 on ΓN in a weak sense.
It is shown in Theorem 1, Chapter IX, § 3 of [11] that the operator

A : WE ×WH → L2(Ω)3 × L2(Ω)3, (u,v) 7→ (− curlv, curlu),

is skew self-adjoint, i.e. A∗ = −A. Thus, −iA is self-adjoint and by the Theorem of Stone,
−A generates a unitary C0 group (e−tA)t∈R in L2(Ω)3 × L2(Ω)3.
The regularized Maxwell equations (28)-(29) can be reformulated as

∂t(E,H) + A(E,H) = σ
(

D(∇Rx
ε (ρ)− [ρ]ME),−∂tR

t
ε(m)

)

, t > 0.

The right-hand side is a function in L1(0, T ;L2(Ω))6. Thus, by Duhamel’s formula,

(E,H)(t) = e−tA(E0,H0) + σ

∫ t

0

e−(t−s)A
(

D(∇Rx
ε (ρ)− [ρ]ME),−∂tR

t
ε(m)

)

(s)ds.

We infer that the solutions to (28)-(29) are the fixed points of the operator G : C0([0, T ];
L2(Ω))6 → C0([0, T ];L2(Ω))6, defined by

G(E,H) = e−tA(E0,H0) + σ

∫ t

0

e−(t−s)A
(

D(∇Rx
ε (ρ)− [ρ]ME),−∂tR

t
ε(m)

)

(s)ds.

Since (e−tA)t∈R is a unitary group and 0 ≤ [ρ]M ≤ M in Ω× (0, T ), we obtain for (E,H),
(E′,H′) ∈ C0([0, T ];L2(Ω))6,

∥

∥G(E,H)−G(E′,H′)
∥

∥

L2(Ω)6
≤

∥

∥

∥

∥

∫ t

0

e−(t−s)A(D[ρ]M(E− E′), 0)(s)ds

∥

∥

∥

∥

L2(Ω)6

≤ DM

∫ t

0

‖E− E′‖L2(Ω)3ds ≤ DMT‖E− E′‖C0([0,T ];L2(Ω))3 .
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Thus, choosing T > 0 sufficiently small, G becomes a contraction, and there exists a unique
local-in-time mild solution (E,H) to (28)-(29). The global solvability is a consequence of
the energy estimate (see e.g. [24, Prop. 2.4]):

1

2

d

dt

∫

Ω

(|E|2 + |H|2)dx = σ

∫

Ω

(

D(∇Rx
ε (ρ)− [ρ]ME) · E− ∂tR

t
ε(m) ·H

)

dx

≤ σ

∫

Ω

(

D∇Rx
ε (ρ) · E− ∂tR

t
ε(m) ·H

)

dx

≤
1

2

∫

Ω

(|E|2 + |H|2)dx+ c

∫

Ω

(

|∇Rx
ε (ρ)|

2 + |∂tR
t
ε(m)|2

)

dx,

where here and in the following, c > 0 denotes a generic constant independent of ε and
M if not stated otherwise. By Gronwall’s lemma and the properties (24) and (26) of the
regularization operators,

∫

Ω

(|E(t)|2 + |H(t)|2)dx ≤ c+ c(ε)

∫ t

0

∫

Ω

(ρ2 + |m|2)dxds, t ≥ 0.

This estimate allows us to continue the local solution for all time t > 0. �

3.2. Analysis of the regularized LLG equation. We show that (32) possesses a unique
strong solution.

Lemma 3 (Existence of the regularized LLG equation). Let Hσ := σ(H + βs) ∈ L2(ω ×
(0, T )). Then there exists a unique strong solution m to (32)-(33) satisfying |m| ≤ 1 in
ω × (0, T ),

m ∈ L∞(0, T ;H1(ω)) ∩ L2(0, T ;H2(ω)), ∂tm ∈ L2(0, T ;L2(ω)),

and the estimate

‖m‖L∞(0,T ;H1(ω)) + ε1/2‖m‖L2(0,T ;H2(ω)) + ‖∂tm‖L2(0,T ;L2(ω)) ≤ c,

where c > 0 is independent of ε.

Proof. The proof is based on the Galerkin method, standard L2 estimates, and a Moser-
type iteration to prove the L∞ bound for m.
Step 1: Existence of solutions to (32)-(33). Let ei ∈ H2(ω) ∩ L∞(ω) (i ∈ N) be the

eigenfunctions of −∆ in ω with homogeneous Neumann boundary conditions and with
associated eigenvalues λi > 0. Let m(N)(x, t) =

∑N
j=1 m

(N,j)(t)ej(x) be the approximated

solution to (32)-(33), that is
∫

ω

(

∂tm
(N) − ε∆m(N) −m(N) × (∆m(N) +Hσ)(36)

+ αm(N) × (m(N) × (∆m(N) +Hσ))
)

eidx = 0, i = 1, . . . , N.

This is a system of ordinary differential equations in the unknowns (m(N,j))j=1,...,N , which
has a unique H2 solution m(N) in a suitable time interval (0, T ∗) with T ∗ ≤ T . It remains
to find N -independent estimates for m(N) in order to conclude global solvability.
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We take the inner product of (36) and m(N,i) and sum over i, yielding

1

2

d

dt

∫

ω

|m(N)|2dx+ ε

∫

ω

|∇m(N)|2dx = 0

and hence ‖m(N)(t)‖L2(ω) ≤ ‖m(N)(0)‖L2(ω) ≤ c for t < T ∗, where c > 0 does not depend

on N . Next, we take the inner product of (36) and λim
(N,i), sum over i, and employ the

elementary itentity (a× b) · c = (c× a) · b for a, b, c ∈ R
3:

1

2

d

dt

∫

ω

|∇m(N)|2dx+ ε

∫

ω

|∆m(N)|2dx+ α

∫

ω

|m(N) ×∆m(N)|2dx(37)

=

∫

ω

(

−m(N) ×Hσ + αm(N) × (m(N) ×Hσ)
)

·∆m(N)dx

=

∫

ω

(−Hσ + αm(N) ×Hσ) · (∆m(N) ×m(N))dx

≤
α

2

∫

ω

|m(N) ×∆m(N)|2dx+ c

∫

ω

|Hσ|
2(1 + |m(N)|2)dx

≤
α

2

∫

ω

|m(N) ×∆m(N)|2dx+ c(1 + ‖m(N)‖2L∞(ω))‖Hσ‖
2
L∞(0,T ;L2(ω)),

where c > 0 is a generic constant independent of N . By the Gagliardo-Nirenberg inequality,
the L∞ norm of m(N) can be bounded by

‖m(N)‖L∞(ω) ≤ c‖m(N)‖
1/2

H2(ω)‖m
(N)‖

1/2

L2(ω) ≤ δ‖m(N)‖H2(ω) + c(δ)‖m(N)‖L2(ω),

where δ > 0 is arbitrary. The H2 norm of m(N) can be estimated by the L2 norms of
∆m(N) and m(N) [5, Lemma 2.1]:

‖m(N)‖H2(ω) ≤ c
(

‖∆m(N)‖L2(ω) + ‖m(N)‖L2(ω)

)

≤ c
(

1 + ‖∆m(N)‖L2(ω)

)

,

which holds for all H2 functions with homogeneous Neumann boundary conditions. Choos-
ing δ > 0 sufficiently small, we infer from (37) after an integration over (0, t) with t < T ∗

that

1

2

∫

ω

|∇m(N)(t)|2dx+
ε

2

∫ t

0

∫

ω

|∆m(N)|2dxds+
α

2

∫ t

0

∫

ω

|m(N) ×∆m(N)|2dxds ≤ c(ε),

where c(ε) > 0 depends on ε and ‖∇m(N)(0)‖L2(Ω) but is independent of N . This shows

that the solution m(N) to (36) exists on [0, T ]. Moreover, the above bound also allows us
to perform the limit N → ∞ in (36), which gives a strong solution m ∈ L∞(0, T ;H1(ω))∩
L2(0, T ;H2(ω)), ∂tm ∈ L2(0, T ;L2(ω)) to (32)-(33).
Step 2: ε-uniform estimates for m. Next, we prove some estimates for m which are

independent of ε. First, we show the L∞ bound. Let p > 1. We take the inner product of
(32) and |m|p−1m ∈ L2(0, T ;L∞(ω)):

1

p+ 1

d

dt

∫

ω

|m|p+1dx+ ε

∫

ω

3
∑

k=1

∂k(|m|p−1m) · ∂kmdx = 0,
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where we abbreviated ∂k = ∂/∂xk. Since

3
∑

k=1

∂k(|m|p−1m) · ∂km =
3

∑

i,j=1

3
∑

k=1

|m|p−1

(

δij + (p− 1)
mimj

|m|2

)

∂kmi∂kmj ≥ 0,

we obtain ‖m(t)‖Lp+1(ω) ≤ ‖m0‖Lp+1(ω) for all t ∈ [0, T ] and p > 1. Exploiting the fact
that |m0| = 1 in ω, we may let p → ∞ to deduce that ‖m(t)‖L∞(ω) ≤ 1 for t ∈ [0, T ].
In order to derive some uniform gradient estimates, we take the inner product of (32)

and −∆m and integrate in ω. Similarly as in (37), this gives

1

2

d

dt

∫

ω

|∇m|2dx+ ε

∫

ω

|∆m|2dx+
α

2

∫

ω

|m×∆m|2dx(38)

≤ c

∫

ω

|Hσ|
2(1 + |m|2)dx ≤ 2c

∫

ω

|Hσ|
2dx,

where we have used the fact that |m| ≤ 1. Taking the inner product of (32) and ∂tm and
integrating in ω leads to

∫

ω

|∂tm|2dx+
ε

2

d

dt

∫

ω

|∇m|2dx =

∫

ω

∂tm · (m× (∆m+Hσ))dx

− α

∫

ω

∂tm ·
(

m× (m× (∆m+Hσ))
)

dx.

We integrate over (0, t), apply Young’s inequality, use the boundedness of m, and take into
account estimate (38):

∫ t

0

∫

ω

|∂tm|2dxds+
ε

2

∫

ω

|∇m(t)|2dx−
ε

2

∫

ω

|∇m(0)|2dx

≤
1

2

∫ t

0

∫

ω

|∂tm|2dxds+ c

∫ t

0

∫

ω

|m×∆m|2dxds+ c

∫ t

0

∫

ω

|Hσ|
2dxds

≤
1

2

∫ t

0

∫

ω

|∂tm|2dxds+ c

∫ t

0

∫

ω

|Hσ|
2dxds.

Then, combining this estimate and the time-integrated version of (38), we obtain
∫

ω

|∇m(t)|2dx−

∫

ω

|∇m(0)|2dx+ ε

∫ t

0

∫

ω

|∆m|2dxds(39)

+

∫ t

0

∫

ω

|∂tm|2dxds ≤ c

∫ t

0

∫

ω

|Hσ|
2dxds.

This gives ε-uniform estimates for m in the spaces L∞(0, T ;H1(ω)) and H1(0, T ;L2(ω))
and for ε1/2m in L2(0, T ;H2(ω)).
Step 3: Uniqueness of solutions. Letm,m′ be two strong solutions to (32)-(33) satisfying

|m| ≤ 1, |m′| ≤ 1 in ω × (0, T ). Set u := m − m′ and recall that Hσ = σ(H + βs) ∈
L2(0, T ;L2(ω)). Then u solves

∂tu− ε∆u = m× (∆m+Hσ)−m′ × (∆m′ +Hσ)
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− α
(

m× (m× (∆m+Hσ))−m′ × (m′ × (∆m′ +Hσ))
)

= u× (∆m+Hσ) +m′ ×∆u− αu× (m× (∆m+Hσ))

− αm′ × (u× (∆m+Hσ))− αm′ × (m′ ×∆u).

Taking the inner product of this equation and u, the first and third terms on the right-hand
side cancel. Then, integrating in ω leads to

1

2

d

dt

∫

ω

|u|2dx+ ε

∫

ω

|∇u|2dx =

∫

ω

u · (m′ ×∆u)dx(40)

− α

∫

ω

u ·
(

m′ × (u× (∆m+Hσ))
)

dx− α

∫

ω

u · (m′ × (m′ ×∆u))dx.

Integrating by parts, the first two integrals on the right-hand side are estimated as follows:
∫

ω

u · (m′ ×∆u)dx− α

∫

ω

u ·
(

m′ × (u× (∆m+Hσ))
)

dx

= −

∫

ω

u · (∇m′ ×∇u)dx−

∫

ω

∇u · (m′ ×∇u)dx

+ α

∫

ω

u · (m′ × (∇u×∇m))dx+ α

∫

ω

u · (∇m′ × (u×∇m))dx

+ α

∫

ω

∇u · (m′ × (u×∇m))dx− α

∫

ω

u · (m′ × (u×Hσ))dx

≤ c

∫

ω

|u|
(

|∇m|+ |∇m′|
)

|∇u|dx+ c

∫

ω

|u|2|∇m| |∇m′|dx+ c

∫

ω

|u|2|Hσ|dx.

The last integral on the right-hand side of (40) can be treated in a similar way:

−α

∫

ω

u · (m′ × (m′ ×∆u))dx = α

∫

ω

u · (m′ × (∇m′ ×∇u))dx

+ α

∫

ω

u · (∇m′ × (m′ ×∇u))dx+ α

∫

ω

∇u · (m′ × (m′ ×∇u))dx

≤ c

∫

ω

|u| |∇m′| |∇u|dx− α

∫

ω

|m×∇u|2dx.

Inserting these estimates into (40), we deduce that

1

2

d

dt

∫

ω

|u|2dx+ ε

∫

ω

|∇u|2dx ≤ c

∫

ω

|u|
(

|∇m|+ |∇m′|
)

|∇u|dx(41)

+ c

∫

ω

|u|2|∇m| |∇m′|dx+ c

∫

ω

|u|2|Hσ|dx.

The first integral on the right-hand side becomes
∫

ω

|u|
(

|∇m|+ |∇m′|
)

|∇u|dx ≤ ‖u‖L4(ω)

(

‖∇m‖L4(ω) + ‖∇m′‖L4(ω)

)

‖∇u‖L2(ω).
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The Gagliardo-Nirenberg inequality and the bound |m| ≤ 1 imply that

‖u‖L4(ω) ≤ c‖u‖
1/2

H1(ω)‖u‖
1/2

L2(ω),

‖∇m‖L4(ω) ≤ c‖m‖
1/2

H2(ω)‖m‖
1/2
L∞(ω) ≤ c‖m‖

1/2

H2(ω),

‖∇m′‖L4(ω) ≤ c‖m′‖
1/2

H2(ω)‖m
′‖

1/2
L∞(ω) ≤ c‖m′‖

1/2

H2(ω).

This shows that
∫

ω

|u|
(

|∇m|+ |∇m′|
)

|∇u|dx ≤ c‖u‖
1/2

L2(ω)

(

‖m‖
1/2

H2(ω) + ‖m′‖
1/2

H2(ω)

)

‖u‖
3/2

H1(ω)

≤ δ‖u‖2H1(ω) + c(δ)‖u‖2L2(ω)

(

‖m‖2H2(ω) + ‖m′‖2H2(ω)

)

,

where δ > 0 is arbitrary. This argument is only possible in two space dimensions. Indeed,
in three dimensions, we obtain the expression c(δ)‖u‖2L2(ω)

(

‖m‖4H2(ω) + ‖m′‖4H2(ω)

)

, which

we cannot estimate since we do not have the regularity m, m′ ∈ L4(0, T ;H2(ω)).
The second integral on the right-hand side of (41) can be estimated in a similar way,

using the continuous embedding H1(ω) →֒ L4(ω):
∫

ω

|u|2|∇m| |∇m′|dx ≤ ‖u‖2L4(ω)‖∇m‖L4(ω)‖∇m′‖L4(ω)

≤ δ‖u‖2H1(ω) + c(δ)‖u‖2L2(ω)‖m‖H2(ω)‖m
′‖H2(ω).

(Also this estimate holds in two space dimensions only.) Finally, the last integral in (41)
becomes

∫

ω

|u|2|Hσ|dx ≤ ‖u‖2L4(ω)‖Hσ‖L2(ω) ≤ c‖u‖H1(ω)‖u‖L2(ω)‖Hσ‖L2(ω)

≤ δ‖u‖2H1(ω) + c(δ)‖Hσ‖
2
L2(ω)‖u‖

2
L2(ω).

Putting these estimates together and choosing δ > 0 sufficiently small, we conclude from
(41) that

1

2

d

dt

∫

ω

|u|2dx+
ε

2

∫

ω

|∇u|2dx ≤ c(ε)
(

1 + g(t)
)

∫

ω

|u|2dx,

where g(t) = ‖Hσ(t)‖
2
L2(ω) + ‖m(t)‖2H2(ω) + ‖m′(t)‖2H2(ω).

As g ∈ L1(0, T ), Gronwall’s lemma and u(0) = 0 imply that u(t) = 0 in ω, t > 0, which
finishes the proof. �

3.3. Uniform estimates and existence of the regularized problem. We need uni-
form estimates for all fixed points of the operator F , defined in Section 2. Such an
estimate is provided by the following lemma. Recall that X = L2(0, T ;L2(Ω))3 and
Y = C0([0, T ];L2(ω)).

Lemma 4 (L2 estimate). Let (ρ, s;m) ∈ X × Y be a fixed point of F (·, σ) for some
σ ∈ [0, 1]. Then there exist constants c1, c2(M) > 0, which are independent of ε and σ,
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such that for all t ∈ (0, T ), the functional S(t), defined in (17), satisfies

S(t) + c1

∫ t

0

∫

Ω

(

|∇ρ|2 + |∇s|2
)

dx+ c1

∫ t

0

∫

ω

|∂tm|2dx ≤ c2(M).

Proof. To simplify the computations, we let σ = 1. The proof for general σ ∈ [0, 1] is
similar. We compute

(42)
dS

dt
= 〈∂tρ, ρ− ρD〉+ 〈∂ts, s〉+

1

2

d

dt

∫

Ω

(

|E|2 + |H|2
)

dx+
1

2

d

dt

∫

ω

|∇m|2dx,

where 〈·, ·〉 is the dual product between H1
D(Ω)

′ and H1
D(Ω). Employing (34) with σ = 1

and ρ = ρ∗, we find that

∫ t

0

〈∂tρ, ρ− ρD〉ds = −

∫ t

0

∫

Ω

D∇(ρ− ρD) · (∇ρ− [ρ]ME)dxds(43)

≤ −
1

2

∫ t

0

∫

Ω

D|∇ρ|2dxds+
1

2

∫ t

0

∫

Ω

D|∇ρD|
2dxds

+ cM

∫ t

0

∫

Ω

|∇(ρ− ρD)| |E|dxds

≤ −c

∫ t

0

∫

Ω

|∇ρ|2dxds+ c

∫ t

0

∫

Ω

|E|2dxds+ c(M).

Furthermore, using (35) with σ = 1, s∗ = s, and m = m∗,

∫ t

0

〈∂ts, s〉ds = −

∫ t

0

∫

Ω

D|∇s|2dxds+

∫ t

0

∫

Ω

D[|s|]M∇s :

(

s

|s|
⊗ E

)

dxds(44)

−

∫ t

0

∫

Ω

|s|2

τ
dxds

≤ −

∫ t

0

∫

Ω

D|∇s|2dxds+ c(M)

∫ t

0

∫

Ω

|∇s| |E|dxds−

∫ t

0

∫

Ω

|s|2

τ
dxds

≤ −c

∫ t

0

∫

Ω

|∇s|2dxds+ c(M)

∫ t

0

∫

Ω

|E|2dxds.

Next, we have the energy estimate for the Maxwell equations (28)-(29):

1

2

∫ t

0

d

dt

∫

Ω

(

|E|2 + |H|2
)

dxds

=

∫ t

0

∫

ω

D
(

∇Rx
ε (ρ) · E− [ρ]M |E|2

)

dxds−

∫ t

0

∫

ω

∂tR
t
ε(m) ·Hdxds

≤ δ

∫ t

0

∫

ω

(

|∇Rx
ε (ρ)|

2 + |∂tR
t
ε(m)|2

)

dxds+ c(δ)

∫ t

0

∫

ω

|H|2dxds,



A SPIN DRIFT-DIFFUSION MAXWELL-LANDAU-LIFSHITZ SYSTEM 15

where δ > 0 is arbitrary. By the properties (25) and (27) of the regularization operators,
it follows that

1

2

∫ t

0

d

dt

∫

Ω

(

|E|2 + |H|2
)

dx ≤ δ

∫ t

0

‖ρ(s)‖2H1(Ω)ds+ δ

∫ t

0

‖∂tm(s)‖2L2(ω)ds

+ δ

∫ t

0

‖m(s)‖2L2(ω)ds+ c(δ)

∫ t

0

∫

ω

|H|2dxds.

The L2 norm of ∇ρ can be absorbed by the corresponding term in (43), choosing δ > 0
sufficiently small. Estimate (39) can be formulated as

d

dt

∫

ω

|∇m(t)|2dx+ ε

∫

ω

|∆m|2dx+

∫

ω

|∂tm|2dx ≤ c

∫

ω

(|H|2 + |s|2)dx.

Combining the above estimates, (42) becomes, after time integration,

S(t) + c

∫ t

0

∫

Ω

(

|∇ρ|2 + |∇s|2
)

dxds+

∫ t

0

∫

ω

|∂tm|2dxds ≤ c+ c(M)

∫ t

0

S(s)ds.

An application of Gronwall’s lemma ends the proof. �

Corollary 5 (Solution of the regularized problem). There exists a weak solution (ρ, s,E,
H,m) to (19)-(23) satisfying the initial and boundary conditions (2), (5)-(6), and (10)-(12)
as well as the regularity properties stated in Theorem 1.

Proof. Lemma 4 provides uniform estimates for the fixed-point operator F defined in Sec-
tion 2. Thus, the result follows from the Leray-Schauder fixed-point theorem. �

3.4. The limit ε → 0. The estimate in Lemma 4 is independent of ε, which allows us to
perform the limit ε → 0.

Lemma 6. There exists a weak solution (ρ, s,E,H,m) to

∂tρ− div(D(∇ρ− [ρ]ME) = 0,(45)

∂ts− div

(

D

(

∇s− [|s|]M
s

|s|
⊗ E

))

+ γm× [|s|]M
s

|s|
= −

s

τ
,(46)

∂tE− curlH = D(∇ρ− [ρ]ME),(47)

∂tH+ curlE = −∂tm in Ω× (0, T ),(48)

∂tm = m× (∆m+H+ βs)− αm× (m× (∆m+H+ βs)) in ω × (0, ω),(49)

with the initial and boundary conditions (2), (5)-(6), (10)-(12), satisfying the regularity
properties stated in Theorem 1 and the constraint |m| = 1 in ω × (0, T ).

Proof. We denote the solution to (19)-(23) with a superindex ε to indicate the dependence
on this parameter. Lemma 4 gives the uniform estimates

‖ρ(ε)‖L2(0,T ;H1(Ω)) + ‖s(ε)‖L2(0,T ;H1(Ω)) ≤ c,

‖m(ε)‖L∞(0,T ;H1(ω)) + ‖∂tm
(ε)‖L2(0,T ;L2(ω)) ≤ c,

‖E(ε)‖L∞(0,T ;L2(Ω)) + ‖H(ε)‖L∞(0,T ;L2(Ω)) ≤ c.
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These estimates and (19)-(20) show that

‖∂tρ
(ε)‖L2(0,T ;H1

D
(Ω)′) + ‖∂ts

(ε)‖L2(0,T ;H1(Ω)′) ≤ c,

where the constant c > 0 may depend on the truncation parameter M but not on ε. There-
fore, we infer from the Aubin lemma [32] and weak compactness that, up to subsequences
which are not relabeled, as ε → 0,

ρ(ε) → ρ, s(ε) → s strongly in L2(0, T ;L2(Ω)),

ρ(ε) ⇀ ρ, s(ε) ⇀ s weakly in L2(0, T ;H1(Ω)),

∂tρ
(ε) ⇀ ∂tρ weakly in L2(0, T ;H1

D(Ω)
′),

∂ts
(ε) ⇀ ∂ts weakly in L2(0, T ;H1

D(Ω)
′),

E(ε) ⇀∗ E, H(ε) ⇀∗ H weakly* in L∞(0, T ;L2(Ω)),

m(ε) → m strongly in C0([0, T ];Lp(ω)), p < ∞,

m(ε) ⇀∗ m weakly* in L∞(0, T ;H1(ω)),

∂tm
(ε) ⇀ ∂tm weakly in L2(0, T ;L2(ω)).

According to [22, p. 671], ∇Rx
ε (ρ

(ε)) and ∂tR
t
ε(m

(ε)) converge weakly in L2 to ∇ρ and ∂tm,
respectively, taking into account (25), (27). These convergences allow us to perform the
limit ε → 0 in (19)-(22), showing that (ρ, s,E,H) is a weak solution to (45)-(48).
It remains to pass to the limit ε → 0 in the regularized LLG equation (23). For this,

we observe that (23) can be rewritten as v − αm(ε) × v = fε, where v = m(ε) × (∆m(ε) +
H(ε) + βs(ε)) and fε = ∂tm

(ε) − ε∆m(ε). The solution of this equation is v = G(αm(ε))fε,
where

G(αm(ε)) : R3 → R
3, G(αm(ε))f = (1 + |v|2)−1

(

f + αm(ε) × f + (αm(ε) · f)f
)

,

is the inverse of the mapping u 7→ u− αm(ε) × u for u ∈ R
3. Thus, (23) rewrites as

G(αm(ε))
(

∂tm
(ε) − ε∆m(ε)

)

= m(ε) × (∆m(ε) +H(ε) + βs(ε)).

Multiplying this equation with the test function φ ∈ C∞(ω) and integrating over ω, inte-
gration by parts leads to

∫

ω

G(αm(ε))∂tm
(ε)φdx+ ε

∫

ω

(

G(αm(ε))∇m(ε) · ∇φ+ αφG′(αm(ε))|∇m(ε)|2
)

dx

= −

∫

ω

∇φ · (m(ε) ×∇m(ε))dx+

∫

ω

φm(ε) × (H(ε) + βs(ε))dx.

By the above convergence results, we can let ε → 0 to obtain
∫

ω

G(αm)∂tmφdx = −

∫

ω

∇φ · (m×∇m)dx+

∫

ω

φm× (H+ βs)dx

a.e. in (0, T ), which is the weak formulation of (49). Taking the inner product of (49) and
m, we conclude immediately that |m(t)| = |m(0)| = 1 in ω × (0, T ). �
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We conclude this section by showing that (4) and (7) hold in a weak sense. Let φ ∈
C∞

0 (Ω\ΓD). Taking the inner product of (47) and ∇φ, integrating over Ω, and employing
(45) gives

d

dt

∫

Ω

E · ∇φdx =

∫

Ω

curlH · ∇φdx+

∫

Ω

D(∇ρ− [ρ]ME) · ∇φdx = −
d

dt

∫

Ω

ρφdx.

Consequently,

(50)
d

dt

∫

Ω

(divE− ρ)φdx =
d

dt

∫

ΓN

E · νφdσ.

If φ ∈ C∞
0 (Ω), we infer that divE(t) − ρ(t) is constant in time. Taking into account the

first equation in (16), it follows that divE − ρ(t) = −C(x) holds for all t ≥ 0. When
φ ∈ C∞

0 (Ω\ΓD), (50) becomes (d/dt)
∫

ΓN
E · νφdσ = 0 and then the third equation in (16)

shows that E(t) · ν = 0 on ΓN for t ≥ 0. Finally, taking the divergence of (48), it follows
that ∂t div(H +m) = 0 in the sense of distributions and, because of the second equation
in (16), div(H(t) +m(t)) = 0 for t ≥ 0.

3.5. Uniform L∞ bounds for the charge and spin densities. We show that ρ and s

are bounded uniformly in M which allows us to remove the truncation in (45)-(47).

Lemma 7. Let (ρ, s,E,H,m) be a weak solution to (45)-(49) satisfying the initial and
boundary conditions (2), (5)-(6), (10)-(12), and equations (4), (7), |m| = 1 in ω × (0, T ).
Then ρ ≥ 0 in Ω×(0, T ) and there exists c(T ) > 0, independent of the truncation parameter
M and the parameter β, such that

‖ρ‖L∞(0,T ;L∞(Ω)) + ‖s‖L∞(0,T ;L∞(Ω)) ≤ c(T ).

Proof. Using min{0, ρ} as a test function in (45), it follows immediately that ρ ≥ 0. For
the proof of L∞ bounds for ρ and s, we employ a Moser-type iteration method. For this, let
p ≥ 2. We employ the test function [|s|]p−1

M s/|s| ∈ L2(0, T ;H1
0 (Ω)) in the weak formulation

of (46). Observing that

φp,M(σ) =

∫ σ

0

[u]Mdu ≥
1

p
[σ]pM for σ ≥ 0,

we find that

d

dt
φp,M(|s|)dx =

〈

∂ts, [|s|]
p−1
M

s

|s|

〉

= −
3

∑

i=1

∫

Ω

D

(

∇si − [|s|]M
s

|s|
E

)

· ∇

(

[|s|]p−1
M

s

|s|

)

dx−

∫

Ω

[|s|]p−1
M

|s|2

τ
dx(51)

= I1 + I2.

The integral I2 is clearly nonpositive. Since

(52) ∇
sj
|s|

=
3

∑

k=1

(

δjk −
sjsk
|s|2

)

∇sk
|s|

,
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we can write the remaining integral I1 as

I1 = −
3

∑

i=1

∫

Ω

D

(

∇si − [|s|]M
si
|s|

E

)

×

(

∇
(

[|s|]p−1
M

) si
|s|

+ [|s|]p−1
M

3
∑

j=1

1

|s|

(

δij −
sisj
|s|2

)

∇sj

)

dx

= −

∫

Ω

D∇|s| · ∇
(

[|s|]p−1
M

)

dx−
3

∑

i,j=1

∫

Ω

D
[|s|]p−1

M

|s|

(

δij −
sisj
|s|2

)

∇si · ∇sjdx

+

∫

Ω

D[|s|]E · ∇
(

[|s|]p−1
M

)

dx =: I3 + I4 + I5.

We show that I3 ≤ 0. Indeed, the definition of [ · ]M implies that ∇[|s|]M = χ{|s|≤M}∇|s|,
which yields

I3 = −

∫

Ω

D(p− 1)[|s|]p−2
M χ{|s|≤M}

∣

∣∇|s|
∣

∣

2
dx ≤ 0.

Furthermore, since the matrix I3×3 − s ⊗ s/|s|2 is positive semidefinite, I4 ≤ 0. For the
final estimate of I5, we need the assumption that D is constant (also see Remark 8). Then,
integrating by parts and employing the first equation in (4), we obtain

I5 = D(p− 1)

∫

Ω

[|s|]p−1
M E · ∇[|s|]Mdx

=
p− 1

p
D

∫

Ω

E · ∇
(

[|s|]pM
)

dx = −
p− 1

p
D

∫

Ω

[|s|]pM(ρ− C)dx

≥
p− 1

p
D‖C‖L∞(Ω)

∫

Ω

[|s|]pMdx ≥ (p− 1)D‖C‖L∞(Ω)

∫

Ω

φp,M(|s|)dx.

Therefore, (51) becomes

d

dt

∫

Ω

φp,M(|s|)dx ≤ (p− 1)D‖C‖L∞(Ω)

∫

Ω

φp,M(|s|)dx,

and Gronwall’s lemma allows us to conclude that
∫

Ω

[|s|]pMdx ≤ p

∫

Ω

φp,M(|s(·, t)|)dx

≤ p exp
(

(p− 1)D‖C‖L∞(Ω)t
)

∫

Ω

φp,M(|s(·, 0)|)dx

= p exp
(

(p− 1)D‖C‖L∞(Ω)t
)

∫

Ω

|s0|pdx,

since |s0| ≤ M . Taking the pth root and passing to the limit p → ∞, we infer that
∥

∥[|s(·, t)|]M
∥

∥

L∞(Ω)
≤ exp(D‖C‖L∞(Ω)t)‖s

0‖L∞(Ω), t ≥ 0.
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Now, we choose M > MT := exp(D‖C‖L∞(Ω)T )‖s
0‖L∞(Ω) and define ΩM(t) = {x ∈ Ω :

|s(x, t)| > M}. If ΩM(t) has positive Lebesgue measure for some 0 ≤ t ≤ T , then

M <
∥

∥[|s(·, t)|]M
∥

∥

L∞(Ω)
≤ exp(D‖C‖L∞(Ω)t)‖s

0‖L∞(Ω) ≤ MT < M,

which is absurd. Thus, ΩM(t) is a set of measure zero for a.e. t ∈ (0, T ), which implies
that |s(x, t)| ≤ M for a.e. x ∈ Ω, t ∈ (0, T ). Since M is arbitrary in the interval (MT ,∞),
we conclude that

‖s(·, t)‖L∞(Ω) ≤ MT , t ∈ (0, T ).

The proof of the boundedness of ρ is similar using (([ρ]M − K)+)p−1 with M ≥ K :=
max{‖ρD‖L∞(ΓD), ‖ρ

0‖L∞(Ω)} as a test function in (34) (see [23]). �

Remark 8 (Generalizations). The boundedness result can be generalized using refined
Moser iteration techniques. For instance, following the proof of [22], we may allow for
nonconstant diffusion coefficients D(x) in case that the electric field E is given. It turns
out that the L∞ bounds of ρ and s depend on the L∞(0, T ;L2(Ω)) norm of E. Since in our
proof, this norm depends on the truncation parameter M , we cannot conclude the proof
but the argument is valid if the Maxwell equations are replaced by given functions E and
H.
It is possible to prove that the L∞ bounds for ρ and s are also uniform in time. The

idea is to exploit the gradient norm in I3. Using |s|p−2s as a test function in the weak
formulation of (46) (this is possible since we already know that s is bounded locally in
time), we find after some elementary computations that

1

p

d

dt

∫

Ω

|s|pdx+ 4
p− 1

p2
D

∫

Ω

∣

∣∇|s|p/2
∣

∣

2
dx

=
p− 1

p
D

∫

Ω

E · ∇|s|pdx−
1

τ

∫

Ω

|s|pdx.

Neglecting the last integral, integrating by parts in the first integral on the right-hand side,
and employing (4),

d

dt

∫

Ω

|s|pdx+ 4
p− 1

p
D

∫

Ω

∣

∣∇|s|p/2
∣

∣

2
dx ≤ (p− 1)D‖C‖L∞(Ω)

∫

Ω

|s|pdx.

By the Gagliardo-Nirenberg inequality, we may replace the Lp norm of s on the right-hand
side by its Lp/2 norm (by absorbing the L2 gradient norm of |s|p/2 by the corresponding
term on the left-hand side). This yields a sequence of recursive inequalities of the type

dzp
dt

≤ c1pz
2
p/2 + c2, where zp = ‖s‖pLp(Ω).

The strategy of the rest of the proof is to derive iteratively bounds for z2m for all m ∈ N,
which are uniform in m, and to pass to the limit m → ∞. This can be done exactly as in
[21]. This idea goes back to Alikakos [2]. The result is the estimate

‖s(·, t)‖L∞(Ω) ≤ cmax{1, ‖s0‖L∞(Ω)}, t ≥ 0,

where the constant c > 0 only depends on ‖C‖L∞(Ω). �
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4. Free energy estimate

We show that the relative free energy (18) is nonincreasing in time under certain con-
ditions. First, we comment on the spin contribution of the energy. It comes from the
von-Neumann entropy density tr(N logN − N), where “tr” is the trace of a matrix and
N = ρσ0 + s ·σ is the density matrix, which is a Hermitian 2× 2 matrix. Here, σ0 denotes
the identity matrix and σ = (σ1, σ2, σ3) is the vector of the Pauli matrices (see [30, For-
mula (1)] for a definition). We may decompose N according to N = ρ+Π+ + ρ−Π−, where
ρ± = ρ±|s| are the eigenvalues of N and Π± = 1

2
(σ0±(s/|s|) ·σ) are the projections on the

corresponding eigenspaces, satisfying Π2
± = Π± and Π+Π− = 0. Then, by spectral theory,

N logN −N = ρ+(log ρ+ − 1) + ρ−(log ρ− − 1),

which is the expression used in (18).

Proposition 9 (Monotonicity of the free energy). Let (ρ, s,E,H,m) be a smooth solution
to (1)-(12) satisfying ρ > |s|. Furthermore, let ‖ρ(t)‖L∞(Ω) ≤ M(T ), where M(T ) > 0 does
not depend on β but possibly on T (this is guaranteed by Lemma 7). If β2 ≤ 4α/(τM(T )(1+
α2)) then the free energy (18) fulfills the inequality

dE

dt
+

1

2

∫

Ω

D
(

ρ+|∇ log ρ+ − E|2 + ρ−|∇ log ρ− − E|2
)

dx ≤ 0, 0 ≤ t ≤ T.

In this proposition, the diffusion constant D = D(x) is allowed to depend on x.

Proof. We denote the von-Neumann entropy part by Espin, the electromagnetic energy by
Eem, and the exchange energy by Eex. By computing the time derivative of Espin and
employing (8)-(9) and 2ρ = ρ+ + ρ−, we find that

dEspin

dt
=

1

2

∫

Ω

D

(

∂tρ+ log
ρ+
ρD

+ ∂tρ− log
ρ−
ρD

)

dx

=
1

2

∫

Ω

D

(

∂tρ log
ρ+ρ−
ρ2D

+
s

|s|
· ∂ts log

ρ+
ρ−

)

dx

= −
1

2

∫

Ω

D∇ log
ρ+ρ−
ρ2D

· (∇ρ− ρE)dx−
1

2

∫

Ω

D

3
∑

j=1

sj
|s|

∇ log
ρ+
ρ−

· (∇sj − sjE)dx

−
1

2

∫

Ω

D
3

∑

j=1

log
ρ+
ρ−

∇

(

sj
|s|

)

· (∇sj − sjE)dx−
1

2

∫

Ω

|s|

τ
log

ρ+
ρ−

dx

= I1 + I2 + I3 + I4.

The second integral becomes

I2 = −
1

2

∫

Ω

D∇ log
ρ+
ρ−

· (∇|s| − |s|E)dx.
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Taking into account (52), we can reformulate a part of the integrand of I3:

3
∑

j=1

∇

(

sj
|s|

)

· (∇sj − sjE) =
1

|s|

3
∑

j,k=1

(

δjk −
sjsk
|s|2

)

∇sj · ∇sk

−
1

|s|

3
∑

j,k=1

(

δjk −
sjsk
|s|2

)

sj∇sk · E =
1

|s|

3
∑

j,k=1

(

δjk −
sjsk
|s|2

)

∇sj · ∇sk.

The matrix A = (ajk), defined by ajk = 1
2
(δjk − sjsk/|s|

2), is a projection and satisfies
A2 = A. Consequently,

3
∑

j=1

∇

(

sj
|s|

)

· (∇sj − sjE) =
2

|s|

3
∑

i=1

∂s

∂xi

A
∂s

∂xi

=
2

|s|

3
∑

i=1

∂s

∂xi

A2 ∂s

∂xi

=
2

|s|
|A∇s|2 = 2|s|

∣

∣

∣
∇

s

|s|

∣

∣

∣

2

,

and we infer that

I3 = −

∫

Ω

D
∣

∣

∣
∇

s

|s|

∣

∣

∣

2

|s| log
ρ+
ρ−

dx.

Then combining the integrals I1 and I2, we obtain

dEspin

dt
= −

1

2

∫

Ω

D
(

(∇ log ρ+ −∇ log ρD) · (∇ρ+ − ρ+E)

+ (∇ log ρ− −∇ log ρD) · (∇ρ− − ρ−E)
)

dx

−

∫

Ω

(

1

2τ
+
∣

∣

∣
∇

s

|s|

∣

∣

∣

2
)

|s| log
ρ+
ρ−

dx.

Next, we compute the time derivatives of Eem and Eex:

dEem

dt
=

∫

Ω

D(∇ρ− ρE) · (E−∇ log ρD)−

∫

ω

H · ∂tmdx

=
1

2

∫

Ω

D
(

(∇ρ+ − ρ+E) · (E−∇ log ρD)

+ (∇ρ− − ρ−E) · (E−∇ log ρD)
)

dx−

∫

ω

H · ∂tmdx,

dEex

dt
=

∫

ω

∇m · ∇∂tmdxdx = −

∫

ω

∆m · ∂tmdx.

Adding all time derivatives, the terms involving ∇ log ρD cancel and we end up with

dE

dt
= −

1

2

∫

Ω

D
(

ρ+|∇ log ρ+ − E|2 + ρ−|∇ log ρ− − E|2
)

dx(53)

−

∫

Ω

(

1

2τ
+

∣

∣

∣

∣

∇
s

|s|

∣

∣

∣

∣

2 )

|s| log
ρ+
ρ−

dx−

∫

ω

(H+∆m) · ∂tmdx.
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We employ the LLG equation to reformulate the last integral:

−

∫

ω

(H+∆m) · ∂tmdx(54)

= −

∫

ω

(

(H+∆m) · (m× βs) + α|(H+∆m)×m|2

− α((H+∆m)×m) · (m× βs)
)

dx

= −α

∫

ω

|(H+∆m)×m|2dx− β

∫

ω

((H+∆m)×m) · (s− αm× s)dx.

At this point, we need to make some estimates. Applying Young’s inequality to the last
integral, it follows that

−β

∫

ω

((H+∆m)×m) · (s− αm× s)
)

dx

≤ α

∫

ω

|(H+∆m)×m|2dx+
β2

4α

∫

ω

|s− αm× s|2dx

= α

∫

ω

|(H+∆m)×m|2dx+
β2

4α

∫

ω

(

|s|2 + α2|m|2|s|2
)

dx

= α

∫

ω

|(H+∆m)×m|2dx+ β21 + α2

4α

∫

ω

|s|2dx.

Thus, (54) becomes

−

∫

ω

(H+∆m) · ∂tmdx ≤ β21 + α2

4α

∫

ω

|s|2dx.

Since log((1 + z)/(1− z)) ≥ 2z for 0 < z < 1, we estimate

I4 = −

∫

Ω

|s|

2τ
log

ρ+
ρ−

dx = −

∫

Ω

|s|

2τ
log

1 + |s|/ρ

1− |s|/ρ
dx ≤ −

∫

Ω

|s|2

τρ
dx.

Inserting these estimates into (53), we arrive at

dE

dt
+

1

2

∫

Ω

D
(

ρ+|∇ log ρ+ − E|2 + ρ−|∇ log ρ− − E|2
)

dx

≤

∫

ω

(

β21 + α2

4α
−

1

τρ

)

|s|2dx.

Since ρ ≤ M(T ), the result follows. �
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