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ANSGAR JÜNGEL AND DANIEL MATTHES

Abstract. The logarithmic fourth-order equation

∂tu +
1

2

d
X
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∂
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ij(u∂
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ij log u) = 0, u(0, ·) = u0,

called the Derrida-Lebowitz-Speer-Spohn equation, with periodic bound-
ary conditions is analyzed. The global-in-time existence of weak nonnega-
tive solutions in space dimensions d ≤ 3 is shown. Furthermore, a family
of entropy–entropy dissipation inequalities is derived in arbitrary space di-
mensions, and rates of the exponential decay of the weak solutions to the
homogeneous steady state are estimated. The proofs are based on the algo-
rithmic entropy construction method developed by the authors and on an
exponential variable transformation. Finally, an example for non-uniqueness
of the solution is provided.
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1. Introduction

The logarithmic fourth-order equation

(1) ∂tu +
1

2
∂2

ij(u∂2
ij log u) = 0, u(0, ·) = u0 ≥ 0,

appears in various places in mathematical physics (notice that we employed the
summation convention). It has been first derived by Derrida, Lebowitz, Speer,
and Spohn [11, 12], and we shall therefore refer to (1) as the DLSS equation.
Derrida et al. studied in [11, 12] interface fluctuations in a two-dimensional spin
system, the so-called (time-discrete) Toom model. In a suitable scaling limit,
a random variable u related to the deviation of the interface from a straight
line satisfies the one-dimensional equation (1). The multi-dimensional DLSS
equation appears in quantum semiconductor modeling as the zero-temperature,
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zero-field limit of the quantum drift-diffusion model [19]. The variable u de-
scribes the electron density in a microelectronic device or in a quantum plasma.
In both applications, the variable u is a nonnegative quantity.

In fact, to prove preservation of positivity or non-negativity of solutions con-
stitutes the main analytical difficulty in rigorous studies of (1). There is gen-
erally no maximum principle available for fourth-order equations, which would
allow to conclude from u0 ≥ 0 that also u(t, ·) ≥ 0 at later times t > 0. Con-
sequently, one has to rely on suitable regularization techniques and a priori
estimates. The latter are difficult to obtain because of the highly nonlinear
structure of the equation. We remark that similar difficulties appear in studies
of the thin-film equation

∂tu + div(uα∇∆u) = 0, u(0, ·) = u0 ≥ 0.

For this equation it is well-known that preservation of positivity strongly de-
pends on the parameter α > 0. For a certain range of α’s, there are solutions
which are strictly positive initially, but which vanish at certain points after
finite time [2].

In the present paper, we prove global-in-time existence of non-negative weak
solutions to (1) on the d-dimensional torus T

d, and we calculate rates for the
exponential decay of the solutions to the homogeneous steady state. Moreover,
we provide a family of initial data u0 for which there exist at least two solutions.
These results are new in the literature (also see below). Our method of proof is
based on the entropy construction method recently developed in [17] to derive
a priori estimates and an exponential transformation of variables to prove the
nonnegativity of solutions.

The first mathematically rigorous treatment of (1) is due to [4]. There, local-

in-time existence of classical solutions for strictly positive W 1,p(Td) initial data
with p > d was proven. The existence result is obtained by means of classical
semigroup theory applied to the equation

2∂t

√
u + ∆2√u − (∆

√
u)2√
u

= 0,
√

u(0, x) =
√

u0(x) > 0, x ∈ T
d,

which is equivalent to (1) as long as u remains bounded away from zero. Lacking
suitable a priori estimates, existence was proven only locally in time (for d > 1),
even for strictly positive solutions.

More information is available in dimension d = 1 because equation (1) is
then well-posed in H1. The Fisher information

F =

∫

T

(
√

u)2xdx

is a Lyapunov functional, dF/dt ≤ 0, which allows to relate global existence of
solutions to strict positivity: if a classical solution breaks down at t = t∗, then
the limit profile limt↗t∗ u(t, x) is still in H1 but vanishes at some point x ∈ T.

This observation has motivated the study on nonnegative weak solutions
instead of positive classical solutions. In [18] global existence for the one-
dimensional DLSS equation was shown in the class of functions with finite

generalized entropy, Ẽ0 =
∫

T
(u − log u)dx < ∞, and with physically motivated
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boundary conditions. The key ingredient in the proof is the observation that

Ẽ0 constitutes another Lyapunov functional for (1), providing nonnegativity of

the solutions. The restriction to one spatial dimension is essential, since Ẽ0 is
seemingly not a Lyapunov functional in dimensions d > 1.

In the following years, the one-dimensional DLSS equation with (mainly)
periodic boundary conditions was extensively studied in the context of entropy–
entropy production methods, and the exponentially fast decay of the solutions
to the steady state has been proved [6, 7, 13, 15, 17, 20]. A numerical study of
the long-time asymptotics for various boundary conditions can be found in [9].

Concerning the multi-dimensional problem, we remark that an independent
investigation of (generalizations to) the DLSS equation has been just finished
[14]. There, it is proven that (1) constitutes the gradient flow for the Fisher
information with respect to the Wasserstein measure. The resulting existence
theorem is more general than ours as it also holds in the non-physical dimensions
d ≥ 4, and on unbounded domains. Clearly, the treatment of the DLSS equation
as a gradient flow promotes a deeper understanding of its nature. Our approach
in the present note is complementary as it is very direct and much simpler (and
also much shorter). Furthermore, we point out that the decay estimates derived
by our methods are slightly sharper than those of [14], and we are able to present
an example of non-uniqueness of solutions.

In the following we describe our results in more detail. The global existence
result is based on the fact that the physical entropy

(2) Ẽ1 =

∫

Td

u log
( u∫

udx

)
dx ≥ 0

is a Lyapunov functional in any space dimension d ≥ 1. In fact, multiplying (1)
formally by log u, integrating over T

d and integrating by parts leads to

dẼ1

dt
+

1

2

∫

Td

u‖∇2 log u‖2dx = 0,

where ∇2 log u is the Hessian of log u and ‖ · ‖ is the Euclidean norm. We call
the above integral the entropy production. Since there is no lower bound for u
available, this does not yield an H2 bound on log u. However, we are able to
show that

(3)
1

4

∫

Td

u‖∇2 log u‖2dx ≥ κ1

∫

Td

‖∇2√u‖2dx, where κ1 =
4d − 1

d(d + 2)
,

leading to an H2 bound for
√

u. This motivates to rewrite the nonlinearity in
(1) in terms of

√
u, yielding the following equivalent form of the DLSS equation:

∂tu + ∂2
ij

(√
u∂2

ij

√
u − ∂i

√
u∂j

√
u
)

= 0, x ∈ T
d, t > 0,(4)

u(0, x) = u0(x), x ∈ T
d.(5)

The other crucial idea, which eventually provides non-negativity of u, is an
exponential variable transformation. To be more precise, for the fixed-point ar-
gument leading to the existence result, we also work in the original formulation
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(1),

∂tu +
1

2
∂2

ij(u∂2
ijy) = 0,

with the exponential variable y = log u. In a suitable regularization regime, y
is bounded in modulus, and hence u = exp(y) is strictly positive.

Our proof of the crucial inequality (3) is inspired by the algorithmic entropy
construction method of [17]; there, the task of deriving inequalities like (3) is
reformulated as a decision problem for polynomial systems. The latter can be
solved (at least in principle) by computer algebra systems. The solution of the
decision problem determines how to perform integration by parts in a way which
leads to the desired inequality. By this method, the proof of (3) becomes quite
short and elementary. Positivity of u is needed to make the computer-aided
manipulations mathematically rigorous.

Our existence result reads as follows.

Theorem 1. Let T > 0 and d ≤ 3. Furthermore, let u0 be a nonnegative

measurable function on T
d with finite physical entropy E1(u0) =

∫
T (u0(log u0 −

1) + 1)dx < +∞. Then there exists a weak solution u to (4)-(5) satisfying

u(t, ·) ≥ 0 a.e., u ∈ W 1,1(0, T ; H−2(Td)),
√

u ∈ L2(0, T ; H2(Td)),

and for all z ∈ L∞(0, T ; H2(Td)),
∫ T

0
〈∂tu, z〉H−2,H2dt +

∫ T

0

∫

Td

(√
u∂2

ij

√
u − ∂i

√
u∂j

√
u
)
∂2

ijzdx = 0.

The theorem is valid in the physically relevant dimensions d ≤ 3. This restric-
tion is related to the lack of certain Sobolev-embeddings in higher dimensions
d ≥ 4. Most prominently, the fixed-point argument exploits the continuous em-
bedding H2(Td) ↪→ L∞(Td) to conclude absolute boundedness of y and hence
strict positivity of u = exp(y). We have chosen periodic boundary conditions
in order to avoid boundary integrals. For the treatment of nonhomogeneous
boundary conditions of Dirichlet-Neumann-type in one space dimension, we
refer to [15].

Our second result concerns the long-time behavior of weak solutions to the
homogeneous steady state u∞, and generally the systematic investigation of
Lyapunov functionals. More specifically, we determine a range of parameters
γ > 0, for which the entropies

Ẽγ =
1

γ(γ − 1)

∫

Td

(
u(t, ·)γ − uγ

∞

)
dx

monotonically decay to zero. (Recall that Ẽ1 is the physical entropy from (2).)
Starting from the results of [4], Lyapunov functionals of this (and more general)
type have been investigated for d = 1. Here, we extend the entropy construction
method developed in [17] to the multi-dimensional case.

To prove entropy decay, we multiply (4) formally by v2(γ−1)/(γ − 1), where
v =

√
u, integrate over the torus and integrate by parts. This leads to

dẼγ

dt
+

1

γ − 1

∫

Td

v2∂2
ij(log v)∂2

ij(v
2(γ−1))dx = 0.
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Next, we need to relate the entropy production to the entropy itself. For this,
inequality (3) in generalized. We show, by using the method of [17], that if
0 < γ < 2(d + 1)/(d + 2) then

(6)
1

2(γ − 1)

∫

Td

v2∂2
ij(log v)∂2

ij(v
2(γ−1))dx ≥ κγ

∫

Td

(∆vγ)2dx,

where

κγ =
−(d + 2)2γ2 + 2(d + 1)(d + 2)γ − (d − 1)2

γ2(−(d + 2)2γ2 + 2(d + 1)(d + 2)γ)
.

The constant κγ is positive if and only if (
√

d − 1)2/(d + 2) < γ < (
√

d +
1)2/(d + 2). By a Beckner-type inequality, we can relate the integral of ∆vγ to

the entropy itself, giving dẼγ/dt + cẼγ ≤ 0 for some c > 0. A similar strategy
works for the physical entropy, γ = 1. Eventually, Gronwall’s lemma yields the
following exponential decay estimates:

Theorem 2. Assume that u is either a positive classical solution to (4)-(5), or

the weak solution from Theorem 1. Let u∞ ≡ meas(Td)−1
∫

Td u0dx > 0. Then

the entropies decays exponentially fast,

Ẽγ(u(t, ·)) ≤ Ẽγ(u0) exp(−16π4γ2κγt) for 1 ≤ γ <
(
√

d + 1)2

d + 2
,

and the solution itself decays exponentially in the L1 norm,

‖u(t, ·) − u∞‖L1(Td) ≤ (2Ẽ1(u0))
1/2 exp(−8π4κ1t).

In order to make the above inequalities rigorous, we consider a regularized
semi-discrete version of (4) for which we obtain positive H2 solutions. Since
the fourth-order differential operator in (1) is not strictly elliptic in y = log u
(u = 0 may be possible), we add the regularization −ε(∆2y + y) for ε > 0
to the right-hand side of (1). Unfortunately, this regularization destroys the
dissipative structure of the DLSS equation, and we cannot prove anymore the
entropy–entropy production inequality for γ 6= 1. To cure this problem, we
need to add the expression

εdiv(|∇ log max{v, µ}|2∇y) for some µ > 0.

The third main result of this paper concerns the nonuniqueness of solutions.
We show that, for a family of particular initial data, there exist at least two so-
lutions to (4)-(5) in the class of nonnegative functions in L1(0, T ; H2(Td)) with
finite physical entropy E1. Recall that uniqueness holds in the class of positive
smooth functions [4]. Here, the initial data are chosen in such a way that they
vanish on a set of measure zero, and that they represent classical solutions to
the stationary and hence, to the transient equation. On the other hand, our
existence result provides a solution which converges to the homogeneous posi-
tive steady state u∞. Therefore, this solution is not equal to the first one. This
observation may give a criterium how to choose the physically relevant solution:
it should dissipate the physical entropy.

Throughout this paper, we make the following simplification. Due to the
scaling invariance of (5) with respect to x → ξx, t → ξ4t, and u → ηu for
ξ, η > 0, we may assume that the torus T

d is normalized, T
d ∼= [0, 1]d. We



6 ANSGAR JÜNGEL AND DANIEL MATTHES

further assume that the initial datum has unit mass,
∫

Td u0dx = 1; notice that
the DLSS equation is mass preserving.

The paper is organized as follows. In section 2 we show some inequalities
needed for the analysis of the DLSS equation. In particular we prove (3) and
(6). Theorem 2 is proved in section 3 for smooth positive solutions. Then the
existence of solutions is shown in section 4. Section 5 is devoted to the proof of
Theorem 2 for weak solutions. Finally, in section 6 the non-uniqueness result
is presented.

2. Some inequalities

We collect some inequalities which are needed in the following sections. We
start with a lower bound on the Euclidean norm of a matrix. Let A = (aij) ∈
R

d×d be a matrix and a ∈ R
d be a vector. We define the Euclidean norm of

A and a, respectively, by ‖A‖2 =
∑

i,j a2
ij and ‖a‖2 =

∑
j a2

j . Furthermore,

trA =
∑

j ajj is the trace of A and

A : (a)2 =
d∑

i,j=1

aijaiaj .

Lemma 3. Let A ∈ R
d×d be a real symmetric matrix and let a ∈ R

d be a

non-zero vector. Then

(7) ‖A‖2 ≥ 1

d
(tr A)2 +

d

d − 1

(
A : (a)2

‖a‖2
− tr A

d

)2

.

Proof. Since A is real and symmetric, one can assume (by the spectral theorem)
without loss of generality that A is a diagonal matrix, A = diag(λ1, . . . , λd);
recall that norms and traces are invariant under orthogonal transformations.
Furthermore, one can also assume, by homogeneity of (7), that a = (a1, . . . ,
ad)

> is a unit vector,
∑

j a2
j = 1. It is elementary to conclude, by Cauchy’s

inequality, that
∑

j a4
j ≥ 1/d with equality if and only if a2

1 = · · · = a2
d = 1/d.

In the latter case, (7) reduces to
∑

j λ2
j ≥ 1/d · (∑j λj)

2, which is true, again
by Cauchy’s inequality. From now on, we assume that

(8)
d∑

j=1

a2
j >

1

d
.

We prove (7) by determining the minimal value of

F (λ) =
1

2
‖A‖2 =

1

2

d∑

j=1

λ2
j , λ = (λ1, . . . , λd)

>,

subject to the constraints

t =
1

d
trA =

1

d

d∑

j=1

λj and s = A : (a)2 =
d∑

j=1

λja
2
j
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for given values of s, t ∈ R. A constrained extremum of F is attained at a point
λ = λ̄ if and only if, for some α, β ∈ R,

(λ̄1, . . . , λ̄d) = ∇λF = α∇λt + β∇λs = (α/d)(1, . . . , 1) + β(a2
1, . . . , a

2
d),

so that λ̄j = α/d + βa2
j . The Lagrange multipliers α, β ∈ R are determined by

the constraints, i.e. as the solution to the linear system

t =
1

d

d∑

j=1

λ̄j =
α

d
+

β

d
,(9)

s =
d∑

j=1

λ̄ja
2
j =

α

d
+

( d∑

j=1

a4
j

)
β.(10)

By assumption (8), the extremal point is unique and consequently the global
minimum point of the convex functional F under the constraints. The minimal
value is given by

F (λ̄) =
1

2

d∑

j=1

λ̄2
j =

α2

2d
+

αβ

d
+

β2

2

d∑

j=1

a4
j .

Take the square of (9) to simplify this expression to

F (λ̄) =
dt2

2
+

β2

2

( d∑

j=1

a4
j −

1

d

)
.

Now calculate β from (9) and (10),

β = (s − t)
( d∑

j=1

a4
j −

1

d

)−1

and insert this in the above expression for F (λ̄) to find

F (λ̄) =
dt2

2
+

1

2
(s − t)2

( d∑

j=1

a4
j −

1

d

)−1
.

In conclusion,

‖A‖2 ≥ 2F (λ̄) =
1

d

(
trA

)2
+

(
A : (a)2 − 1

d
trA

)2( d∑

j=1

a4
j −

1

d

)−1
,

and the final formula (7) follows since obviously
∑

j a4
j ≤ (

∑
j a2

j )
2 = 1. �

The main result of this section is the following inequality.

Lemma 4. Let v ∈ H2(Td)∩W 1,4(Td)∩L∞(Td) in dimension d ≥ 2. Assume

that v is strictly positive. Then, for any 0 < γ < 2(d + 1)/(d + 2),

(11)
1

2(γ − 1)

∫

Td

v2∂2
ij(log v)∂2

ij(v
2(γ−1))dx ≥ κγ

∫

Td

(∆vγ)2dx,
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if γ 6= 1, or

(12)

∫

Td

v2∂2
ij(log v)2dx ≥ κ1

∫

Td

(∆v)2dx,

if γ = 1, respectively, where

(13) κγ =
p(γ)

γ2(p(γ) − p(0))
and p(γ) = −γ2 +

2(d + 1)

d + 2
γ −

(d − 1

d + 2

)2
.

The function ∇2v denotes the Hessian of v. By Sobolev embedding, it is
sufficient to assume v ∈ H2(Td) in space dimensions d ≤ 3. The condition
0 < γ < 2(d + 1)/(d + 2) ensures that p(γ) > p(0) such that κγ is well defined;

if the stronger condition (
√

d − 1)2/(d + 2) < γ < (
√

d + 1)2/(d + 2) holds,
then κγ > 0. Finally, we remark that the method of [17] directly applies to the
one-dimensional situation, yielding (11) and (12), respectively, for 0 ≤ γ ≤ 3

2 ,

with κγ = min(γ, 12 − 8γ)/γ3.

Proof. In order to simplify the computations, we introduce the functions θ, λ
and µ, respectively, by (recall that v > 0)

θ =
|∇v|

v
, λ =

1

d

∆v

v
, (λ + µ)θ2 =

1

v3
∇2v : (∇v)2,

and ρ ≥ 0 by

‖∇2v‖2 =
(
dλ2 +

d

d − 1
µ2 + ρ2

)
v2.

We need to show that ρ is well defined. But this is clear since

‖∇2v‖2 ≥
(
dλ2 +

d

d − 1
µ2

)
v2

follows directly from (7) after taking A = ∇2v and a = ∇v.
We compute the left-hand side of (11),

J =
1

2(γ − 1)

∫

Td

v2∂2
ij(log v)∂2

ij(v
2(γ−1))dx

=
1

2(γ − 1)

∫

Td

(v∂2
ijv − ∂iv∂jv)∂2

ij(v
2(γ−1))dx

=

∫

Td

(v∂2
ijv − ∂iv∂jv)v2(γ−2)

(
v∂2

ijv + (2γ − 3)∂iv∂jv
)
dx

=

∫

Td

v2γ
(‖∇2v‖2

v2
− 2(2 − γ)

∇2v

v2
:
(∇v

v

)2
+ (3 − 2γ)

|∇v|4
v4

)
dx,

and express it in terms of the functions θ, λ, µ, and ρ defined above,

J =

∫

Td

v2γ
(
dλ2 +

d

d − 1
µ2 + ρ2 − 2(2 − γ)(λ + µ)θ2 + (3 − 2γ)θ4

)
dx.

This integral is compared to

K =
1

γ2

∫

Td

(∆vγ)2dx =

∫

Td

v2(γ−2)
(
v∆v + (γ − 1)|∇v|2

)2
dx

=

∫

Td

v2γ
(
dλ + (γ − 1)θ2

)2
dx.
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More precisely, we shall determine a constant c0 > 0 independent of v such
that J − c0K ≥ 0 for all (positive) functions v. Our strategy is an adaption of
the method developed in [17]. We formally perform integration by parts in the
expression J−c0K by adding a linear combination of certain “dummy” integrals
– which are actually zero and hence do not change the value of J − c0K. The
coefficients in the linear combination are determined in such a way that makes
the resulting integrand pointwise non-negative. The latter is a decision problem
from real algebraic geometry, and it is solved with computer aid.

We shall rely on the following two “dummy” integral expressions:

J1 =

∫

Td

div
(
v2γ−2(∇2v − ∆vI) · ∇v

)
dx,

J2 =

∫

Td

div
(
v2γ−3|∇v|2∇v

)
dx,

where I is the unit matrix in R
d×d. Clearly, in view of the periodic boundary

conditions, J1 = J2 = 0. The goal is to find constants c0, c1, and c2 such that
J − c0K = J − c0K + c1J1 + c2J2 ≥ 0; moreover, c0 should be as large as
possible. Since, with the above notations,

J1 =

∫

Td

v2(γ−2)
(
v2(‖∇2v‖2 − (∆v)2) + 2(γ − 1)v(∇2v − ∆vI) : (∇v)2

)
dx

=

∫

Td

v2γ
(
− d(d − 1)λ2 +

d

d − 1
µ2 + ρ2

+ 2(γ − 1)(−(d − 1)λθ2 + µθ2)
)
dx

and

J2 =

∫

Td

v2(γ−2)
(
(2∇2v + ∆vI) : (∇v)2 + (2γ − 3)|∇v|4

)
dx

=

∫

Td

v2γ
(
(d + 2)λθ2 + 2µθ2 + (2γ − 3)θ4

)
dx,

we obtain

J − c0K + c1J1 + c2J2 =

∫

Td

v2γ
{
dλ2

[
1 − dc0 − (d − 1)c1

]

+ λθ2
[
2(γ − 1)(1 − dc0 − (d − 1)c1) + (d + 2)c2 − 2

]
+ Q(θ, µ, ρ)

}
dx,(14)

where Q is a polynomial in θ, µ, and ρ with coefficients depending on c0, c1,
and c2 but not on λ. We choose to eliminate λ from the above integrand by
defining c1 and c2 appropriately. The linear system

1 − dc0 − (d − 1)c1 = 0,

2(γ − 1)(1 − dc0 − (d − 1)c1) + (d + 2)c2 − 2 = 0

has the solution c1 = (1 − dc0)/(d − 1) and c2 = 2/(d + 2). With this choice,
the polynomial Q in (14) reads as

Q(θ, µ, ρ) =
1

(d − 1)2(d + 2)

(
b1µ

2 + 2b2µθ2 + b3θ
4 + b4ρ

2
)
,
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where

b1 = d2(d + 2)(1 − c0),

b2 = d(d − 1)
(
(d + 2)(γ + c0(1 − γ)) − 2d − 1

)
,

b3 = (d − 1)2
(
d(3 − 2γ) − c0(d + 2)(γ − 1)2

)
,

b4 = d(d + 2)(d − 1)(1 − c0).

If c0 ≤ 1, then b4 ≥ 0. We wish to choose c0 ≤ 1 in such a way that the
remaining sum b1µ

2 + 2b2µθ2 + b3θ
4 is nonnegative as well, for any µ and θ.

This is the case if (i) b1 > 0 and (ii) b1b3 − b2
2 ≥ 0. Condition (ii) is equivalent

to

0 ≤ (1 − c0)(d + 2)
(
2(d + 1)γ − (d + 2)γ2

)
− (d − 1)2

= (1 − c0)(d + 2)2(p(γ) − p(0)) − (d − 1)2,

which is further equivalent to (recall that p(γ) > p(0) on the considered range
of γ’s)

c0 ≤ p(γ)

p(γ) − p(0)
.

The best choice for c0 is obviously to make it equal to the right-hand side.
As p(0) < 0, one has in particular that c0 < 1, so condition (i) is satisfied
as well. Thus we have found constants c0, c1, and c2 for which the expression
J−c0K +c1J1 +c2J2 is nonnegative. With κγ = c0/γ2, Lemma 4 is proven. �

Remark 5. Elimination of λ from the integrand in (14) is clearly not the only
strategy to initiate the polynomial reduction process. However, from numer-
ical studies of the multivariate polynomial, there is strong evidence that this
strategy leads to the optimal values for c0, at least for γ close to one.

As a consequence of Lemma 4 for v =
√

u and γ = 1, we obtain the inequal-
ity (3) which connects the entropy production of (4) to the smoothness of its
solution.

Lemma 6. For all d ≥ 1 and all strictly positive functions u such that
√

u ∈
H2(Td) ∩ L∞(Td) it holds

1

4

∫

Td

u‖∇2 log u‖2dx ≥ κ1

∫

Td

‖∇2√u‖2dx, where κ1 =
4d − 1

d(d + 2)
.

We also need the following generalized convex Sobolev inequalities.

Lemma 7. Let f ∈ H2(Td) be nonnegative. Then, for 1 < p ≤ 2,

(15)
p

p − 1

( ∫

Td

f2dx −
( ∫

Td

f2/pdx
)p)

≤ 1

8π4

∫

Td

(∆f)2dx.

Furthermore,

(16)

∫

Td

f2 log
(
f2/‖f‖2

L2

)
dx ≤ 1

8π4

∫

Td

(∆f)2dx.
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Inequality (16) represents the limit of (15) as p ↘ 1. Unfortunately, (15)
does seemingly not generalize for parameters 0 < p < 1 in dimensions d > 1.
The reason is that the functional on the left-hand side is convex in f only if
1 ≤ p ≤ 2, see the discussion in [5]. This limits our decay estimates to entropies
Eγ with γ ≥ 1.

Proof. We only prove inequality (15) as (16) follows in a completely analogous
manner. The estimate is a consequence of the Beckner-type inequality and the
Poincaré inequality. For the one-dimensional torus T, the former reads as [3]

p

p − 1

( ∫

T

f2dxj −
( ∫

T

f2/pdxj

)p)
≤ 1

2π2

∫

T

|∂jf |2dxj

(see, e.g., [13] for an easy proof). In several space dimensions, we obtain the
same result since the above inequality tensorizes. Indeed, by employing the
relation

∫

Td

f2dx −
( ∫

Td

f2/pdx
)p

≤
d∑

j=1

∫

Td

( ∫ 1

0
f2dxj −

( ∫ 1

0
f2/pdxj

)p)
dx

from Proposition 4.1 in [22], it follows that

p

p − 1

( ∫

Td

f2dx −
( ∫

Td

f2/pdx
)p)

≤ 1

2π2

d∑

j=1

∫

Td

( ∫ 1

0
(∂jf)2dxj

)
dx

=
1

2π2

∫

Td

|∇f |2dx.

Now, Poincaré’s inequality for multi-periodic functions with zero mean,
∫

Td

|∇f |2dx ≤ 1

4π2

∫

Td

‖∇2f‖2dx =
1

4π2

∫

Td

(∆f)2dx,

gives the assertion. �

In section 4 we frequently refer to the Gagliardo-Nirenberg inequalities which
we recall for convenience [16].

Lemma 8. Let m, k ∈ N0 with 0 ≤ k ≤ m, 0 ≤ θ < 1, and 1 ≤ p, q, r ≤ ∞.

If both

k − d

p
≤ θ

(
m − d

q

)
+ (1 − θ)

(
− d

r

)
and

1

p
≤ θ

q
+

1 − θ

r
,

then any function f ∈ Wm,q(Td)∩Lr(Td) belongs to W k,p(Td), and there exists

a constant C > 0 independent of f such that

(17) ‖f‖W k,p ≤ C‖f‖θ
W m,q‖f‖1−θ

Lr .

If additionally k ≥ 1, we conclude from (17) that

(18) ‖∇kf‖Lp ≤ C‖∇mf‖θ
Lq‖f‖1−θ

Lr

by means of the Poincaré inequality.
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3. Decay rates for smooth positive solutions

We show Theorem 2 first for smooth positive solutions by using Lemmas 4
and 7. The proof for weak solutions is based on estimates for the semi-discrete,
regularized problem and is therefore presented later in section 5. Both proofs
are identical in their structure, but the proof for smooth solutions is stripped
of the technicalities that are introduced by the regularization process.

The essential tool to derive the a priori estimates are the so-called relative

entropies

Eγ(u1|u2) =

∫

Td

φγ

(u1

u2

)
u2dx, γ 6∈ {0, 1},

where u1 and u2 are nonnegative functions on T
d with unit mean value, and φγ

is given by

(19) φγ(s) =
1

γ(γ − 1)

(
sγ − γs + γ − 1

)
, s ≥ 0.

The natural continuation for γ = 1 is φ1(s) = s(log s − 1) + 1; the functional
E1 corresponds to the physical entropy. The functions φγ are nonnegative
and convex and attain their minimal value at s = 1. Consequently, Eγ is
nonnegative (possibly +∞) and vanishes if and only if u1 = u2.

To obtain the a priori estimates (and the decay rates), we consider entropies
of solutions u1 = u relative to the spatial homogeneous steady state u2 ≡ 1:

(20) Eγ(u(t, ·)) =
1

γ(γ − 1)

( ∫

Td

u(t, x)γdx − 1
)
, γ ≥ 1.

We obtain the following entropy–entropy production estimate.

Proposition 9. Assume that u is a smooth positive solution to (4)-(5) in di-

mensions d ≥ 2. Then

(21)
dEγ

dt
+ 2κγ

∫

Td

(∆uγ/2)2dx ≤ 0, for 0 < γ <
2(d + 1)

d + 2
,

where κγ > 0 is defined in (13).

Proof. For convenience, we work with the function v =
√

u instead of u. If γ 6=
1, we integrate the DLSS equation (4) against the test function v2(γ−1)/2(γ−1).
Then we obtain for the time derivative

1

2(γ − 1)

∫

Td

∂t(v
2)v2(γ−1)dx =

1

2γ(γ − 1)

∫

Td

∂t(v
2γ)dx =

1

2

dEγ

dt
.

In combination with Lemma 4,

1

2

dEγ

dt
= − 1

2(γ − 1)

∫

Td

v2∂2
ij(log v)∂2

ij(v
2(γ−1))dx ≤ −κγ

∫

Td

(∆vγ)2dx.

If γ = 1, we use the test function log v instead. �

Remark 10. As pointed out before, the coefficient function κγ follows a dif-
ferent law in dimension d = 1, see the remarks after Lemma 4. In conclusion,
the entropy production is estimated as

dEγ

dt
+

2µγ

γ2

∫

T

|(uγ/2)xx|2dx ≤ 0,
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where

µγ =

{
1 for 0 < γ < 4/3

12/γ − 8 for 4/3 < γ < 3/2.

Estimates for the limiting case γ = 0 are also available (see Theorem 3 in [7]).

The proof of Theorem 2 is immediate: applying Lemma 7 to f = uγ/2 with
p = γ, and taking into account that u has unit mass, we obtain from Proposition
9

dEγ

dt
+ (2π)4γ2κγEγ ≤ 0.

Gronwall’s lemma shows the entropy decay. The decay in the L1 norm is a
straight-forward consequence of the Csiszár-Kullback inequality [10, 21].

The values of κγ as a function of γ are plotted in Figure 1 (left). For γ ≥
1, these correspond to exponential decay rates of the respective entropy Eγ .
(There is no immediate interpretation of κγ for 0 < γ < 1.) The right figure
shows the decay rate 8π4κ1 in the L1 norm for γ = 1 as a function of the
dimension d. This rate is given by

8π4κ1 = 8π4 4d − 1

d(d + 2)
;

this is slightly better than the rate obtained in [14], which amounts to 24π4/(d+
2) for equation (1).

0 0.5 1 1.5
0

200

400

600

800

1000

1200

1400

1600

γ

(2
π)

4 γ2 κ γ

 

 

d = 1
d = 2
d = 3
d = 4
d = 5

0 2 4 6 8 10
200

300

400

500

600

700

800

dimension d

8π
4 κ γ

Figure 1. Decay rates for the entropy Eγ (left) and in the L1

norm for γ = 1 (right) depending on the dimension d.

4. Existence of solutions

In this section we prove Theorem 1. The proof is divided into a series of
lemmas. We continue to use v =

√
u for easier notation.

4.1. Existence of a time-discrete solution. Let T > 0 be a terminal time
and τ > 0 a time step. Let w be a given function. We wish to find a solution
v ∈ H2(Td) to the semi-discrete equation

(22)
1

τ
(v2 − w2) = −∂2

ij

(
v∂2

ijv − ∂iv∂jv
)
.
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Lemma 11. Let d ≤ 3. Assume that w is a nonnegative measurable function

on T
d with finite entropy E1(w

2) < +∞ and unit mass
∫

Td w2dx = 1. Then

there exists a nonnegative weak solution v ∈ H2(Td) to (22). Furthermore, v2

has unit mass, the physical entropy is dissipated in the sense

(23) E1(v
2) + 2τκ1

∫

Td

‖∇2v‖2dx ≤ E1(w
2),

and the entropies Eγ(v2) and Eγ(w2) are related by

(24) (1 + 16π4τγ2κγ)Eγ(v2) ≤ Eγ(w2),

where 1 ≤ γ < (
√

d + 1)2/(d + 2) and κγ is defined in (13).

Proof. Step 1: definition of the regularized problem. The solution to (22) is
obtained as the limit of solutions to a regularized problem. For this, recall that
(4) can be written as

∂t(v
2) = −1

2
∂2

ij(v
2∂2

ijy) with y = log(v2).

We regularize (22) in the above formulation by adding a strongly elliptic oper-
ator in y:

(25)
1

τ
(v2 − w2) = −1

2
∂2

ij(v
2∂2

ijy) − ε(∆2y + y) + εdiv
(
|∇ log[v]µ|2∇y

)
,

where ε, µ > 0 are regularization parameters and [v]µ = max{v, µ}. The fourth-
order operator ε(∆2y + y) guarantees coercivity of the above right-hand side
with respect to y. The nonlinear second-order operator allows to derive the a
priori estimates for the general entropy Eγ .

Step 2: solution of the regularized problem. In order to solve (25) we employ
the Leray-Schauder fixed-point theorem (see Theorem B.5 in [24]). Let σ ∈ [0, 1]
and v̄ ∈ W 1,4(Td) ↪→ L∞(Td), and introduce for y, z ∈ H2(Td),

a(y, z) =
1

2

∫

Td

v̄2∂2
ijy∂2

ijzdx + ε

∫

Td

(∆y∆z + yz + |∇ log[v̄]µ|2∇y · ∇z)dx,

f(z) =
σ

τ
〈v̄2 − w2, z〉H−2,H2 .

Since v̄ ∈ W 1,4(Td), also log[v̄]µ ∈ W 1,4(Td), hence |∇ log[v̄]µ|2∇y · ∇z is inte-
grable. The bilinear form a is continuous and coercive since, by the Gagliardo-
Nirenberg inequality (18),

(26) a(y, y) ≥ ε

∫

Td

(
(∆y)2 + y2

)
dx ≥ Cε‖y‖2

H2 .

Moreover, w2 has finite physical entropy, so w2 ∈ L1(Td) ↪→ H−2(Td) in space
dimensions d ≤ 3, yielding continuity of the linear form f . Consequently, Lax-
Milgram’s lemma provides the existence of a unique solution to

−a(y, z) = f(z) for all z ∈ H2(Td).

Define the fixed-point operator S : W 1,4(Td) × [0, 1] → W 1,4(Td) by S(v̄, σ) :=

v = ey/2. Since y ∈ H2(Td) ↪→ L∞(Td), we have indeed that v ∈ H2(Td) ↪→
W 1,4(Td).
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We shall now verify the hypotheses of the Leray-Schauder theorem; the latter
provides a solution v of S(v, 1) = v. The operator S is constant at σ = 0,
S(v̄, 0) = 1. By standard results for elliptic equations, S is continuous and
compact since the embedding H2(Td) ↪→ W 1,4(Td) is compact. It remains to
show a uniform bound for all fixed points of S(·, σ). This bound is obtained
from the production of the physical entropy and Lemma 6.

Let v ∈ H2(Td) be a fixed point of S(·, σ) for some σ ∈ [0, 1]. Then v is a

solution to (25) with σ/τ instead of 1/τ , and with v = ey/2 > 0, y ∈ H2(Td).
Since φ(s) = s(log s − 1) + 1 is convex, φ(s1) − φ(s2) ≤ φ′(s1)(s1 − s2) for all
s1, s2 ≥ 0. Hence,

σ

2τ
(E1(v

2) − E1(w
2)) =

σ

2τ

∫

Td

(φ(v2) − φ(w2))dx

≤ σ

2τ

∫

Td

(v2 − w2) log(v2)dx = −a(y, y)(27)

≤ −1

4

∫

Td

v2‖∇2 log(v2)‖2dx − ε

∫

Td

((∆y)2 + y2)dx.

The estimate of Lemma 6 shows that

σ

τ
(E1(v

2) − E1(w
2)) + 2κ1

∫

Td

‖∇2v‖2dx ≤ 0.

As a consequence,

E1(v
2) ≤ E1(w

2) and ‖∇2v‖2
L2 ≤ 1

2τκ1
E1(w

2).

In particular, ∇2v is uniformly bounded in L2(Td). Together with the elemen-
tary inequality s ≤ φ(s) + (e − 1) for all s ≥ 0, we obtain

‖v‖2
L2 ≤

∫

Td

(φ(v2) + e − 1)dx = E1(v
2) + e − 1.

This means that v is uniformly bounded in L2(Td). Then the Gagliardo-
Nirenberg inequality gives the desired uniform bound for v:

(28) ‖v‖2
H2 ≤ C(‖∇2v‖2

L2 + ‖v‖2
L2) ≤

(
1 +

C

2τκ1

)
E1(w

2) + 2C.

The Leray-Schauder fixed-point theorem provides a solution v to S(v, 1) = v,
which we denote by vε. Obviously, vε satisfies (25).

Step 3: lower bound for vε. By construction of vε, there exists yε ∈ H2(Td)

such that vε = eyε/2. Going back to (27), we see that

1

2τ
(E1(v

2
ε) − E1(w

2)) ≤ −ε

∫

Td

((∆yε)
2 + y2

ε)dx ≤ −εC‖yε‖2
H2 ,

using the Gagliardo-Nirenberg inequality. Hence,

(29) ‖yε‖H2 ≤
(E1(w

2)

2ετC

)1/2
≤ cε−1/2,

where c > 0 is here and in the following a generic constant independent of ε.
In combination with the embedding H2(Td) ↪→ L∞(Td), this gives ‖yε‖L∞ ≤
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cε−1/2. Consequently, vε is strictly positive:

vε = exp
(yε

2

)
≥ exp

(
− c

2ε1/2

)
= µ(ε) > 0.

Thus, with µ := µ(ε), it holds [vε]µ = vε, and the respective fixed point vε ∈
H2(Td) satisfies

1

τ
(v2

ε − w2) = −∂2
ij(vε∂

2
ijvε − ∂ivε∂jvε)(30)

− ε(∆2 log vε + log vε) + εdiv(|∇ log vε|2∇ log vε).

Step 4: the limit ε → 0. The estimate (28) shows that the sequence (vε) is
bounded in H2(Td). Thus, for a subsequence which is not relabeled, vε ⇀ v
weakly in H2(Td) and vε → v strongly in W 1,4(Td) and L∞(Td) as ε → 0 for
some v ∈ H2(Td). For the first expression on the right-hand side in (30), we
thus obtain

vε∂
2
ijvε − ∂ivε∂jvε ⇀ v∂2

ijv − ∂iv∂jv weakly in L2(Td).

In order to prove that v is indeed as solution to (22), we verify that the ex-
pressions involving the factor ε vanish as ε → 0. From the refined coercivity
estimate

a(yε, yε) ≥ ε(c‖yε‖2
H2 + ‖∇yε‖4

L4),

we learn that

‖∇yε‖L4 ≤ cε−1/4.

In combination with (29), this gives
∣∣〈ε

(
∆2 log vε + log vε − div(|∇ log vε|2∇ log vε)

)
, z

〉
H−2,H2

∣∣

≤ ε
(
‖ log vε‖H2‖z‖H2 + ‖ log vε‖L2‖z‖L2 + ‖∇ log vε‖3

L4‖z‖W 1,4

)

≤ c(ε1/2 + ε1/4)‖z‖H2

for any test function z ∈ H2(Td). Therefore,

ε
(
∆2 log vε + log vε − div(|∇ log vε|2∇ log vε)

)
⇀ 0 weakly in H−2(Td),

so v satisfies (22).
Step 5: verification of (23) and (24). Conservation of mass follows from the

weak formulation of (22) by using z ≡ 1 as a test function. From (27) and
Lemma 6 it follows that

E1(v
2
ε) + 2τκ1

∫

Td

‖∇2vε‖2dx ≤ E1(w
2).

In the limit ε → 0, this inequality gives (23) since (a subsequence of) vε con-
verges weakly to v in H2(Td) and the L2-norm of the Hessian of vε constitutes
a weakly lower semicontinuous functional on H2(Td).

Next, we prove (24). Recall that the solutions vε of the regularized equation
(25) are strictly positive and bounded in modulus. Hence log vε and vp

ε , for
arbitrary exponents p ∈ R, are well-defined functions in H2(Td). Using the
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test function φ′
γ(vε)/2 = (v

2(γ−1)
ε − 1)/2(γ − 1) in (30) gives (see (19) for the

definition of φγ),

1

2τ
(Eγ(v2

ε) − Eγ(w2)) =
1

2τ

∫

Td

(
φγ(v2

ε) − φγ(w2)
)
dx

≤ 1

2τ

∫

Td

φ′
γ(v2

ε)(v
2
ε − w2)dx =

1

2(γ − 1)τ

∫

Td

(v2
ε − w2)∂2

ij(v
2(γ−1)
ε )dx

= − 1

2(γ − 1)

∫

Td

(vε∂
2
ijvε − ∂ivε∂jvε)∂

2
ij(v

2(γ−1)
ε )dx

− ε

γ − 1

∫

Td

(
∆(v2(γ−1)

ε )∆(log vε) + |∇ log vε|2∇(log vε) · ∇(v2(γ−1)
ε )

)
dx

− ε

2(γ − 1)

∫

Td

vγ−1
ε log vεdx

= A1 − εA2 − εA3.

Now, by Lemma 4,

A1 ≤ −κγ

∫

Td

(∆uγ/2)2dx.

Furthermore, by Lemma 7, applied to f = uγ/2 and p = γ, and since u has unit
mass, we obtain

γ

γ − 1

( ∫

Td

uγdx − 1
)
≤ 1

8π4

∫

Td

(∆uγ/2)2dx,

so finally,

A1 ≤ −8π4γκγ

γ − 1

( ∫

Td

uγdx − 1
)

= −8π4γ2κγEγ(v2
ε).

Now, we show that A2 and A3 are bounded from below, uniformly in ε > 0.
This is clear for A3 since γ > 1. The remaining integral can be written as

A2 =

∫

Td

v2(γ−1)
ε

((∆vε

vε

)2
− 2(2 − γ)

∆vε

vε

∣∣∣
∇vε

vε

∣∣∣
2
+ 2(2 − γ)

∣∣∣
∇vε

vε

∣∣∣
4)

dx

=

∫

Td

v2(γ−1)
ε

((∆vε

vε
− (2 − γ)

∣∣∣
∇vε

vε

∣∣∣
2)2

+ γ(2 − γ)
∣∣∣
∇vε

vε

∣∣∣
4)

dx

≥ 0

since γ < (
√

d + 1)2/(d + 2) ≤ 3/2. These estimates give

1

τ
(E1(v

2
ε) − E1(w

2)) ≤ −16π4γ2κγEγ(v2
ε).

We pass to the limit ε → 0 in this inequality. As vε → v strongly in L∞(Td),
integration and limit commute and we conclude

1

τ
(E1(v

2) − E1(w
2)) ≤ −16π4γ2κγEγ(v2)

from which (24) follows. This finishes the proof. �
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4.2. A priori estimates. Let an arbitrary terminal time T > 0 be fixed in the
following. Define the step function v(τ) : [0, T ) → L2(Td) recursively as follows.
Let v0 =

√
u0, and for given k ∈ N, let vk ∈ H2(Td) be the non-negative solution

(according to Lemma 11) to (22) with w = vk−1. Now define v(τ)(t) := vk for

(k − 1)τ < t ≤ kτ . Then v(τ) satisfies

(31)
1

τ

(
(v(τ))2 − (στv

(τ))2
)

= −∂2
ij

(
v(τ)∂2

ijv
(τ) − ∂iv

(τ)∂jv
(τ)

)
,

where στ denotes the shift operator (στv
(τ))(t) = v(τ)(t − τ) for τ ≤ t < T . In

order to pass to the continuum limit τ → 0 in (31), we need the following a
priori estimate.

Lemma 12. The function v(τ) satisfies

(32) ‖(v(τ))2‖L11/10(0,T ;H2(Td)) + τ−1‖(v(τ))2 − (στv
(τ))2‖L11/10(0,T ;H−2(Td)) ≤ c,

where the constant c > 0 is independent of τ .

Proof. From Lemma 11 we know that

‖v(τ)‖L∞(0,T ;L2(Td)) = ‖u0‖1/2

L1(Td)
= 1, ‖∇2v(τ)‖L2(0,T ;L2(Td)) ≤ c.

In order to derive (32), we employ the Gagliardo-Nirenberg and Hölder inequal-
ities. The former inequality shows that

‖v(τ)‖8/3

L8/3(0,T ;L∞(Td))
≤ C

∫ T

0
‖v(τ)(t, ·)‖8θ/3

H2 ‖v(τ)(t, ·)‖8(1−θ)/3
L2 dt

≤ C‖v(τ)‖8(1−θ)/3

L∞(0,T ;L2(Td))

∫ T

0
‖v(τ)(t, ·)‖8θ/3

H2 dt,(33)

where θ = d/4. Since 8θ/3 = 2d/3 ≤ 2 in dimensions d ≤ 3, the right-hand
side is uniformly bounded. Applying Hölder’s inequality with respect to t, for
p = 9/5 and p′ = 9/4, we infer

‖v(τ)∂2
ijv

(τ)‖11/10

L11/10(0,T ;L2(Td))
≤ C

∫ T

0
‖v(τ)(t, ·)‖11/10

H2 ‖v(τ)(t, ·)‖11/10
L∞ dt

≤ C‖v(τ)‖11/10

L11p/10(0,T ;H2(Td))
‖v(τ)‖11/10

L11p′/10(0,T ;L∞(Td))
.(34)

Since 11p/10 = 99/50 ≤ 2 and 11p′/10 = 99/40 ≤ 8/3, the right-hand side is

uniformly bounded in view of the boundedness of v(τ) in L8/3(0, T ; L∞(Td)).
On the other hand, by the Gagliardo-Nirenberg inequality,

‖v(τ)‖16/7

L16/7(0,T ;W 1,4(Td))
≤ C

∫ T

0
‖v(τ)(t, ·)‖16θ/7

H2 ‖v(τ)(t, ·)‖16(1−θ)/7
L2 dt

≤ C‖v(τ)‖16(1−θ)/7

L∞(0,T ;L2(Td))
‖v(τ)‖16θ/7

L16θ/7(0,T ;H2(Td))
,(35)
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where θ = (d + 4)/8. As 16θ/7 = 2(d + 4)/7 ≤ 2 in dimensions d ≤ 3, v(τ) is

uniformly bounded in L16/7(0, T ; W 1,4(Td)). As a straightforward conclusion,

‖∂iv
(τ)∂jv

(τ)‖11/10

L11/10(0,T ;L2(Td))
≤

∫ T

0
‖∇v(τ)(t, ·)‖22/10

L4 dt

≤ ‖v(τ)‖22/10

L22/10(0,T ;W 1,4(Td))
≤ c,(36)

since 22/10 < 16/7. Estimates (34) and (36) together yield

‖∇2(v(τ))2‖L11/10(0,T ;L2(Td))

≤ 2
d∑

i,j=1

‖v(τ)∂ijv
(τ) + ∂iv

(τ)∂jv
(τ)‖L11/10(0,T ;L2(Td)) ≤ c.

Moreover, by (33) and (35), since 22/10 < 8/3 and 22/10 < 16/7,

‖∇(v(τ))2‖L11/10(0,T ;L2(Td)) ≤ 2‖v(τ)‖L22/10(0,T ;L4(Td))‖∇v(τ)‖L22/10(0,T ;L4(Td)).

The right-hand side is bounded by the considerations above. This estimates
the first term in (32). To obtain a uniform bound on the second term in (32),
we combine again (34) and (36):

1

τ
‖(v(τ))2 − (στv

(τ))2‖L11/10(0,T ;H−2(Td))

≤
d∑

i,j=1

(
‖v(τ)∂2

ijv
(τ)‖L11/10(0,T ;L2(Td)) + ‖∂iv

(τ)∂jv
(τ)‖L11/10(0,T ;L2(Td))

)
≤ c.

�

4.3. The limit τ → 0. The a priori estimates of the previous subsection are
sufficient to pass to the limit τ → 0.

Lemma 13. There exists some nonnegative function u ∈ W 1,1(0, T ; H−2(Td))

with
√

u ∈ L2(0, T ; H2(Td)) such that, for a subsequence of (v(τ)), which is not

relabeled, as τ → 0,

1

τ

(
(v(τ))2 − στ (v

(τ))2
)

⇀ ∂tu weakly in L11/10(0, T ; H−2(Td)),

v(τ)∂2
ijv

(τ) ⇀
√

u∂2
ij

√
u weakly in L1(0, T ; L2(Td)),

∂iv
(τ)∂jv

(τ) ⇀ ∂i

√
u∂j

√
u weakly in L1(0, T ; L2(Td)).

Moreover, u is a weak solution to (4)-(5).

Proof. Estimate (32) allows to apply the Aubin lemma [23], showing that, up to

a subsequence, (v(τ))2 → u in L11/10(0, T ; L∞(Td)) as τ → 0 for some limit func-
tion u. Here, we have used that H2(Td) embeddes compactly into L∞(Td) in

dimensions d ≤ 3. In particular, (v(τ)) converges pointwise a.e. Since obviously,

(v(τ))2 is nonnegative, so is u, and we can define
√

u ∈ L22/10(0, T ; L∞(Td));

note that v(τ) converges strongly to
√

u in this space.
Now, the first claim follows directly from (32) and the construction of v(τ).

Estimate (32) further yields weak convergence of v(τ) in L2(0, T ; H2(Td)). The
weak limit necessarily coincides with

√
u, the strong limit from above.
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By Hölder’s inequality,

‖v(τ) −
√

u‖2
L2(0,T ;L∞(Td) ≤ ‖(v(τ) −

√
u)2‖L11/10(0,T ;L∞(Td)) · T 1/11

≤ ‖(v(τ))2 − u‖L11/10(0,T ;L∞(Td)) · T 1/11.(37)

In the last step, we have used that (a− b)2 ≤ |a2− b2| for arbitrary nonnegative
a, b ∈ R. Now, by the Gagliardo-Nirenberg and Hölder inequalities,

‖∇(v(τ) −
√

u)‖2
L2(0,T ;L4(Td))

≤ C‖v(τ) −
√

u‖L2(0,T ;H2(Td))‖v(τ) −
√

u‖L2(0,T ;L∞(Td)).

The first term in the product is bounded (cf. estimate (23)); the second term

converges to zero by (37) above. Thus v(τ) → √
u strongly in L2(0, T ; W 1,4(Td))

and

∂iv
(τ)∂jv

(τ) ⇀ ∂i

√
u∂j

√
u weakly in L1(0, T ; L2(Td)).

The remaining limit follows from (37) and weak convergence of v(τ) to
√

u
in L2(0, T ; H2(Td)). Finally, since L2(0, T ; H2(Td)) ↪→ L2(0, T ; L∞(Td)), one
verifies that u =

√
u · √u ∈ L1(0, T ; H2(Td)) by the Hölder and Gagliardo-

Nirenberg estimates. �

5. Decay rates for nonnegative weak solutions

We prove Theorem 2 for the solutions constructed in the previous section.
First, we show κγ > 0 for 1 ≤ γ < (

√
d + 1)2/(d + 2). Indeed, by definition,

κγ > 0 if p(γ) > 0, with the quadratic polynomial p(γ) given in (13). But
p(γ) > 0 if and only if γ− < γ < γ+ where γ± are the two roots of p. Now,

a computation yields γ± = (
√

d ± 1)2/(d + 2), and it is immediately seen that
γ− < 1 < γ+.

Next, set tn = nτ for n = 0, . . . , M . From (24) we know that

Eγ

(
v(τ)(tn+1, ·)2

)
− Eγ

(
v(τ)(tn, ·)2

)
≤ −(2π)4τγ2κγEγ

(
v(τ)(tn+1, ·)2

)
.

Summation over n = 0, . . . , M − 1 gives

Eγ

(
v(τ)(tM , ·)2

)
− Eγ(u0) ≤ −(2π)4τγ2κγ

M∑

j=1

Eγ

(
v(τ)(tj , ·)2

)

≤ −(2π)4τγ2κγ

∫ tM

τ
Eγ

(
v(τ)(s, ·)2

)
ds.

Keep t fixed; perform the limits τ → 0 and M → ∞ such that tM = Mτ → t.
Since v(τ) → √

u strongly in L2(0, T ; L∞(Td)) as τ → 0,

Eγ

(
u(t, ·)

)
≤ Eγ(u0) − (2π)4τγ2κγ

∫ t

0
Eγ

(
u(s, ·)

)
ds.

Gronwall’s lemma leads to the desired decay estimate. Decay in the L1-norm
follows immediately from the Csiszár-Kullback inequality. This finishes the
proof of Theorem 2.
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6. Non-uniqueness of solutions

In dimensions d ≤ 3, we provide a family of initial conditions for which the
DLSS equation (4)-(5) has at least two solutions in the class L1(0, T ; H2(Td))
for all T > 0. Namely, for arbitrary integers n1, . . . , nd, let

û(t, x) = cos2(n1πx1) · · · cos2(ndπxd), x = (x1, . . . , xn)> ∈ T
d.

This function is C∞ smooth, time-independent, spatially multi-periodic, and
has finite physical entropy,

∫
Td(û(log û − 1) + 1)dx < +∞. Moreover, a simple

calculation shows that the distribution

∂2
ij

(√
û∂2

ij

√
û − ∂i

√
û∂j

√
û
)

is identically zero. In other words, û is a weak solution of the stationary, and
hence also of the transient equation. This time-independent function is clearly
not physical: it does not converge to the homogeneous steady state, and it does
not dissipate the physical (or any other) entropy.

On the other hand, Theorems 1 and 2 provide the existence of a weak solution
u(t, ·) to (4) with initial datum u0(x) = û(0, x) which converges to the constant
steady state as t → ∞. Thus, u 6= û. Hence, we have found two weak solutions
to (4)-(5) in the class of nonnegative functions in L1(0, T ; H2(Td)).

Moreover, the above observation makes clear that one cannot expect strict
positivity of weak solutions for t > 0 if the initial conditions attain zero some-
where. On the other hand, numerical experiments (see, e.g., [9]) lead to the
conjecture that for strictly positive initial data, the solutions are also strictly
positive.

We remark that the stationary solution û does not have the regularity stated
in the conclusions of Theorem 1: observe that

√
û /∈ L2(0, T ; H2(Td)). Whether

the condition
√

u ∈ L2(0, T ; H2(Td)) is sufficient to obtain entropy-dissipative
solutions (or perhaps even uniqueness and positivity) remains an open question.
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[20] A. Jüngel and G. Toscani. Exponential decay in time of solutions to a nonlinear fourth-

order parabolic equation. Z. Angew. Math. Phys. 54 (2003), 377-386.
[21] S. Kullback. A lower bound for discrimination information in terms of variation. IEEE

Trans. Inform. Theory 4 (1967), 126-127.
[22] M. Ledoux. On Talagrand’s deviation inequalities for product measures. ESAIM Prob.

Statist. 1 (1995/97), 63-87.
[23] J. Simon. Compact sets in the space Lp(0, T ; B). Ann. Mat. Pura Appl. (4) 146 (1987),

65–96.
[24] M. Taylor. Partial Differential Equations. III. Nonlinear Equations. Springer, New York,

1997.

Institut für Mathematik, Universität Mainz, Staudingerweg 9, 55099 Mainz,

Germany

E-mail address: {juengel,matthes}@mathematik.uni-mainz.de.


