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Abstract. Two drift-diffusion models for the quantum transport of electrons in gra-
phene, which account for the spin degree of freedom, are derived from a spinorial Wigner
equation with relaxation-time or mass- and spin-conserving matrix collision operators
using a Chapman-Enskog expansion around the thermal equilibrium. Explicit models
are computed by assuming that both the semiclassical parameter and the scaled Fermi
energy are sufficiently small. For one of the models, the global existence of weak solutions,
entropy-dissipation properties, and the exponential long-time decay of the spin vector are
proved. Finally, numerical simulations of a one-dimensional ballistic diode using both
models are presented, showing the temporal behavior of the particle density and the
components of the spin vector.

1. Introduction

Graphene is a new semiconductor material, which is a subject of great interest for
nanoscale electronic applications. The reason for this interest is due to the very remark-
able properties of graphene, such as the high electron mobility and long coherence length.
Therefore, graphene is a promising candidate for the construction of a new generation of
electronic devices with far better performances than current silicon devices [8]. Potential
applications include, for instance, spin field-effect transistors [12, 24], extremely sensitive
gas sensors [23], one-electron graphene transistors [19], and graphene spin transistors [3].

Physically, graphene is a two-dimensional semiconductor with a zero-width band gap,
consisting of a single layer of carbon atoms arranged in a honeycomb lattice. In the
energy spectrum, the valence band intersects the conduction band at some isolated points,
called the Dirac points. Around these points, quasiparticles in graphene exhibit the linear
dispersion relation E = vF |p|, where p denotes the crystal momentum and vF ≈ 106 m/s is
the Fermi velocity [16]. This energy spectrum resembles the Dirac spectrum for massless
relativistic particles, E = c|p|, where c is the speed of light. Hence, the Fermi velocity vF ≈
c/300 takes the role of the speed of light. The system Hamiltonian can be approximated
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near a Dirac point, for low energies and in the absence of a potential, by the Dirac-like
operator

(1) H0 = −i~vF

(
σ1

∂

∂x1

+ σ
∂

∂x2

)
,

where ~ is the reduced Planck constant, and σ1 and σ2 are the Pauli matrices (see (3)).
In order to understand and predict the charge carrier transport in graphene, transport

models, which incorporate the spin degree of freedom, have to be devised. Theoretical mod-
els for spin-polarized transport involve fluid-type drift-diffusion equations, kinetic transport
equations, and Monte-Carlo simulation schemes; see the references in [18]. A hierarchy of
fluiddynamic spin models was derived from a spinor Boltzmann transport equation in [2].
Suitable matrix collision operators were suggested and analyzed in [20]. Drift-diffusion
models for spin transport were considered in several works; see, e.g., [1, 6, 22]. A mathe-
matical analysis of spin drift-diffusion systems for the band densities is given in [10].

Fluiddynamic equations provide a compromise between physical accuracy and numer-
ical efficiency. Another advantage is that they contain already the physically interesting
quantities, such as the particle density, momentum, and spin densities, whereas other mod-
els usually involve variables which do not have an immediate physical interpretation, like
wavefunctions, density operators, and Wigner distributions. In the latter case, further
computations have to be made to obtain the quantities of physical interest.

In this work, we address the quantum kinetic and diffusion level of spin-polarized trans-
port in graphene. More precisely, starting from a spinorial Wigner equation, we aim to
derive via a moment method and a Chapman-Enskog expansion macroscopic drift-diffusion
models for the particle density and spin vector. Furthermore, we prove the global existence
of weak solutions to one of these models and we illustrate the behavior of the solutions in
a ballistic diode by numerical experiments..

We note that there are only very few articles concerned with kinetic or macroscopic
transport models for graphene. In the physics literature, the focus is on transport properties
such as the carrier mobility [11], charged impurity and phonon scattering [4], and Klein
tunneling [17]. Wigner models were investigated in [15]. Starting from a Wigner equation,
hydrodynamic spin models were derived in [27], and the work [26] is concerned with the
derivation of drift-diffusion models for the band densities. In contrast, we will work in
the present paper with all components of the spin vector. Furthermore, we provide a
mathematical analysis of one of the models and numerical simulations of both models.

In the following, we describe our approach and the main results. ¿From the unique
features of graphene follow that Fermi-Dirac statistics would be more suitable to describe
quantum transport in the material than Maxwell-Boltzmann statistics, since the energy
spectrum of the Hamiltonian (1) is not bounded from below. We overcome this problem
by modifying the Hamiltonian H0. In fact, we assume that the system Hamiltonian is
approximated by the following operator which is bounded from below:

(2) H = H0 −
(

~
2

2m
∆

)
σ0,
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where m > 0 is a parameter with the dimension of a mass and σ0 is the unit matrix in R
2×2

(see (3)). This is not a very restrictive assumption since the operator (1) is itself only an
approximation of the correct system Hamiltonian, valid for small values of the momentum
|p|.

Starting from the Hamiltonian H + V σ0, where V is the electric potential, Wigner
equations were derived from the Von-Neumann equation in [27]. In order to derive diffusion
models, we consider two types of collision operators in the Wigner model.

First, we employ relaxation-time terms of BGK-type, Q(w) = (g − w)/τc, where w is
the Wigner distribution, τc > 0 is the mean free path, and g is the thermal equilibrium
distribution derived from the quantum minimum entropy principle [5]; see Sections 2.1
and 2.2. We assume that the wave energy is much smaller than the typical kinetic energy
(semiclassical hypothesis) and that the the scaled Planck constant is of the same order as
the scaled Fermi energy (low scaled Fermi speed hypothesis). Performing a diffusive limit
and a Chapman-Enskog expansion around the equilibrium distribution formally yields the
first quantum spin diffusion model (QSDE1) for the particle density n0 and the spin vector
~n = (n1, n2, n3), which are the zeroth-order moments of the Wigner distribution w:

∂tn0 − div J0 = 0, J0 = ∇n0 + n0∇V,
∂tnj − div Jj = Fj, Jj = A0(~n/n0)∇~n+ ~n⊗∇V +B0(n0, ~n), j = 1, 2, 3,

where A0 and B0 are some functions, and Fj depends on n0, ~n, ∇~n, and ∇V . We refer
to Section 2.3 for details. Note that the equations for the particle density and spin vector
decouple; only the spin vector equation depends nonlinearly on n0 and ~n. The functions A0

and B0 are well defined only if 0 ≤ |~n|/n0 < 1. Hence, the main difficulty in the analysis
of this model is the proof of lower and upper bounds for |~n|/n0.

Second, we employ a mass- and spin-conserving matrix collision operator suggested in
[20] for a semiconductor subject to a magnetic field. Performing a diffusive limit and a
Chapman-Enskog expansion similarly as for the first model, we derive the second quantum
spin diffusion model (QSDE2) in which the equations for the particle density n0 and the
spin vector ~n are fully coupled:

∂tn0 − div J0 = 0, J0 = A1(∇n0 + n0∇V ) +B1 · (∇~n+ ~n⊗∇V ) + C1(n0, ~n),

∂tnj − div Jj = Gj, Jj = A2(∇n0 + n0∇V ) +B2 · (∇~n+ ~n⊗∇V ) + C2(n0, ~n),

where Aj, Bj, and Cj are some functions depending also on the (given) pseudo-spin polar-
ization and the direction of the local pseudo-magnetization, and Gj depends on ~n and Jj.
We refer to Section 2.4 for details. Because of the cross-diffusion structure, the analysis of
this model is not immediate, and we solve this model only numerically (see Section 4).

Thanks to the decoupled structure of the model QSDE1, we are able to perform an
analytical study. More precisely, we show in Section 3 the global existence and uniqueness
of weak solutions, some entropy-dissipation properties, and the exponential long-time decay
of the spin vector. As mentioned above, the main challenge is the proof of |~n|/n0 < 1. By
the maximum principle, it is not difficult to prove that n0 is strictly positive. However, an
application of the maximum principle to the equation for the spin vector is less obvious.
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Our idea is to show that u = 1 − |~n|2/n2
0 satisfies the equation

∂tu− ∆u−∇(log n0 + V ) · ∇u = 2G[~n/n0],

where G[~n/n0] is some nonnegative function. This simple structure comes from the fact
that certain antisymmetric terms in A0 and B0 cancel in this situation. By Stampacchia’s
truncation method, we conclude that there exists a positive lower bound for u which proves
that |~n|/n0 < 1.

Finally, we present in Section 4 some numerical results for the models QSDE1 and
QSDE2, applied to a simple ballistic diode in one space dimension. The equations are
discretized by a Crank-Nicolson finite-difference method. We illustrate the behavior of
the particle density n0 and the spin components nj for various instants of time and the
exponential convergence of the particle density to the steady state.

The paper is organized as follows. Section 2 is concerned with the derivation of the
models QSDE1 and QSDE2. The model QSDE1 is analyzed in Section 3. Finally, numerical
experiments are presented in Section 4.

2. Modeling

2.1. A kinetic model for graphene. We describe the kinetic model for the quantum
transport in graphene associated to the Hamiltonian H+V σ0, where H is given by (2), and
V is the electric potential. Let w(x, p, t) denote the system Wigner distribution, depending
on the position x ∈ R

2, momentum p ∈ R
2, and time t ≥ 0. The Wigner function takes

values in the space of complex Hermitian 2 × 2 matrices, which is an Hilbert space with
respect to the scalar product (A,B) = 1

2
tr(AB), where tr(A) denotes the trace of the

matrix A. The set of Pauli matrices

(3) σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)

is a complete orthonormal system on that space. Therefore, we can develop the Wigner
function w in terms of the Pauli matrices, w =

∑3
j=0wjσj, where wj(x, p, t) are real-valued

scalar functions. We set ~w = (w1, w2, w3), ~p = (p1, p2, 0), p = (p1, p2), ~σ = (σ1, σ2, σ3),

and we abbreviate ∂t = ∂/∂t and ~∇ = (∂/∂x1, ∂/∂x2, 0). With this notation, we can write
w = w0σ0 + ~w · ~σ. By applying the Wigner transform to the Von-Neumann equation,
associated to the Hamilonian H + V , the following Wigner equations for the quantum
transport in graphene have been derived in [27]:

(4)

∂tw0 +

(
~p

m
· ~∇
)
w0 + vF

~∇ · ~w + θ~[V ]w0 =
g0 − w0

τc
,

∂t ~w +

(
~p

m
· ~∇
)
~w + vF

(
~∇w0 +

2

~
~w ∧ ~p

)
+ θ~[V ]~w =

~g − ~w

τc
,

where ~ is the reduced Planck constant. The parameter m, which has the dimension of a
mass, appears in the Hamiltonian H; see (2). The expressions ((~p/m)· ~∇)wj are originating
from the quadratic term in the Hamiltonian H. Compared to Formula (12) in [27], we have
allowed for BGK-type collision operators on the right-hand sides of (4) with the relaxation
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time τc and the thermal equilibrium distribution g = g0σ0 +~g ·~σ which is defined in Section
2.2. The pseudo-differential operator θ~[V ]w is given by

(θ~[V ]w)(x, p) =
i

~

1

(2π)2

∫

R2

∫

R2

δV (x, ξ)w(x, p′)e−i(p−p′)·ξdξdp′,

with its symbol

δV (x, ξ) = V

(
x+

~

2
ξ

)
− V

(
x− ~

2
ξ

)
.

In order to derive macroscopic diffusive models, we perform a diffusion scaling. We

introduce a typical spatial scale x̂, time scale t̂, momentum scale p̂, and potential scale V̂ :

x→ x̂, t→ t̂t, p→ p̂p, V → V̂ V,

where the scales are related to

2vF p̂

~
=
V̂

x̂p̂
,

2p̂vF τc
~

=
~

2p̂vF t̂
, p̂ =

√
mkBT .

Here, T is the (constant) system temperature and kB the Boltzmann constant. The third
relation means that the typical value of the momentum equals to the thermal momentum.
Let L denote the average distance which a particle travels with the Fermi velocity vF

between two consecutive collisions, i.e. L = τcvF . Then the first relation can be written as

x̂

L
=

1

2

V̂ (~/τc)

(p̂2/m)(mv2
F )
.

Thus, the ratio of the typical length scale and the “Fermi mean free path” is assumed to
be of the same order as the quotient of the electric/wave energies and the kinetic/Fermi
energies. The second relation

t̂

τc
=

1

4

(~/τc)
2

(p̂2/m)(mv2
F )

means that the ratio of the typical time scale and the relaxation time is of the same order
as the quotient of the square of the wave energy and the kinetic/Fermi energies.

We introduce the semiclassical parameter ε, the diffusion parameter τ , and the scaled
Fermi speed c, given by

ε =
~

x̂p̂
, τ =

2p̂vF τc
~

, c =

√
mv2

F

kBT
.

We suppose the semiclassical hypothesis ε ≪ 1 and the so-called low scaled Fermi speed
hypothesis,

(5) γ :=
c

ε
= O(1) as ε→ 0.
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With the above scaling, equations (4) become

(6)

τ∂tw0 +
1

2γ
(~p · ~∇)w0 +

ε

2
~∇ · ~w + θε[V ]w0 =

g0 − w0

τ
,

τ∂t ~w +
1

2γ
(~p · ~∇)~w +

ε

2
~∇w0 + ~w ∧ ~p+ θε[V ]~w =

~g − ~w

τ
.

The “drift” terms (ε/2)~∇ · ~w and (ε/2)~∇w0 are of order O(ε), whereas the “precession”
term ~w ∧ ~p is of order one. This means that we have chosen a time scale which is of the
same order as the magnitude of the precession period of the spin around the current, which
is smaller than the typical time scale of the drift process.

2.2. Thermal equilibrium distribution. We define now the thermal equilibrium distri-
bution g = g0σ + ~g · ~σ using the minimum entropy principle. We introduce the (unscaled)
quantum entropy by

A[w] =

∫

R2

∫

R2

tr

(
w

(
Log(w) − 1 +

h(p)

kBT

))
dxdp,

where Log(w) = Op−1
ε log Opε(w) is the so-called quantum logarithm introduced by Degond

and Ringhofer [5], Opε is the Weyl quantization, defined for any symbol γ(x, p) and any
test function ψ by [7, Chapter 2]

(Opε(γ)ψ)(x) =
1

(2π~)2

∫

R2

∫

R2

γ

(
x+ y

2
, p

)
ψ(y)ei(x−y)·p/~dydp,

and

h(p) =
|p|2
2m

σ0 + vF (p1σ1 + p2σ2)

is the symbol of the Hamiltonian H, i.e. H = Op~(h).
According to the theory of Degond and Ringhofer [5], we define the Wigner distribution

at local thermal equilibrium related to the given functions n0 and ~n as the formal solution
g = g[n0, ~n] (if it exists) to the problem

A
[
g[n0, ~n]

]
= min

w

{
A[w] :

∫

R2

w0dx = n0,

∫

R2

~wdx = ~n

}
,

where the minimum is taken over all Wigner functions with complex Hermitian values and
w is decomposed according to w = w0σ0 + ~w · ~σ. This problem can be solved formally by
means of Lagrange multipliers; see [26, Section 3.2]. For scalar-valued Wigner functions,
such problems are studied analytically in [14]. Formally, the (scaled) solution is given by

(7) g[n0, ~n] = Exp(−hA,B), hA,B =

( |p|2
2

+ A

)
σ0 + (c~p+ ~B) · ~σ,

where A = A(x, t) and ~B = ~B(x, t) = (B1, B2, B3)(x, t) are the Lagrange multipliers
determined by

(8)

∫

R2

g[n0, ~n](x, p, t)dp = n0(x, t),

∫

R2

~g[n0, ~n](x, p, t)dp = ~n(x, t),
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and Exp(w) = Op−1
ε exp Opε(w) is the quantum exponential [5].

We wish to find an approximate but explicit expression for g. To this end, we expand
the quantum exponential in terms of powers of ε, using the semiclassical and the low scaled
Fermi speed hypotheses. The expansion follows the lines of Section 3.4 in [26]. We obtain
from (7):

g[n0, ~n] = Exp(a+ εb), a = −
( |p|2

2
+ A

)
σ0 − ~B · ~σ, b = −γ~p · ~σ.

Note that a and b are of order one, in view of (5). Employing formulas (29), (37), and (38)
of [26], we deduce that g = g(0) + εg(1) +O(ε2), where

(9)

g(0) = e−(A+|p|2/2)

(
cosh | ~B|σ0 −

sinh | ~B|
| ~B|

~B · ~σ
)
,

g(1) = γe−(A+|p|2/2)

{
sinh | ~B|
| ~B|

( ~B · ~p)σ0

−
[((

cosh | ~B| − sinh | ~B|
| ~B|

)
~B ⊗ ~B

| ~B|2
+

sinh | ~B|
| ~B|

I

)
~p

+

(
cosh | ~B| − sinh | ~B|

| ~B|

)
((~p · ~∇x) ~B) ∧ ~B

2γ| ~B|2

]
· ~σ
}
,

where I denotes the unit matrix in R
3×3. Finally, it remains to express the Lagrange

multipliers A and ~B in terms of n0 and ~n by means of the contraints (8). We find after
tedious but straightforward computations that

(10) e−A =
1

2π

√
n2

0 − |~n|2 +O(ε2), ~B = − ~n

|~n| log

√
n0 + |~n|
n0 − |~n| +O(ε2),

where I denotes the unit matrix. Equations (9) and (10) provide an explicit approximation
of the thermal equilibrium distribution. The functions g0 and ~g are defined by g(0)+εg(1) =
g0σ0 + ~g · ~σ.

2.3. Derivation of the first model. We derive our first spinorial drift-diffusion model.
We assume that both the semiclassical parameter ε and the diffusion parameter τ in (6)
are small and of the same order. We will perform the limit τ → 0 and ε→ 0, setting

λ :=
c

τ
=
εγ

τ
= O(1) as τ → 0.

From (6) follows that the lowest-order approximations of w0 and ~w are g0 and ~g, respec-
tively. In order to compute the first-order approximation, we employ a Chapman-Enskog
expansion of the Wigner function w = w0 + ~w · ~σ around the equilibrium distribution g.

Inserting the expansions w0 = g0σ0 + τf0, ~w = ~g + τ ~f into (6) and performing the formal
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limit τ → 0, we infer that

f0 = − 1

2γ
(~p · ~∇)g0 + ~∇V · ~∇pg0, ~f = − 1

2γ
(~p · ~∇)~g + ~∇V · ~∇p~g − ~g ∧ ~p.

Here, we have used the expansion θε[V ] = −~∇V · ~∇p +O(ε).
The moment equations of (6) read as

(11)

τ∂tn0 +
1

2γ
~∇ ·
∫

R2

~pw0dp+
ε

2
~∇ · ~n = 0,

τ∂t~n+
1

2γ
~∇ ·
∫

R2

~w ⊗ ~pdp+
ε

2
~∇n0 +

∫

R2

~w ∧ ~pdp = 0,

since
∫

R2 θε[V ]wjdp = 0 for j = 0, 1, 2, 3. We need to compute the first-order moments
∫

R2

pjwkdp, j = 1, 2, k = 0, 1, 2, 3,

in order to close the moment equations (11). For this, we insert in these integrals the
expansions for w0 and ~w as well as the expansions (9)-(10). After long but straightforward
computations and rescaling x → x/(2γ) and V → V/(2γ) in order to get rid of the factor
1/(2γ), we arrive at the expressions, up to terms of order O(τ 2),

∫

R2

pkw0dp = −τ(λnk + ∂kn0 + n0∂kV ),

∫

R2

pkwsdp = −τ(λQks + ∂kns + ns∂kV + ηsℓknℓ),

where we have set ∂1 = ∂/∂x1, ∂2 = ∂/∂x2, ∂3 = 0,

Qks = n0δks −
1

n0

Φ

( |~n|
n0

)(
|~n|2δks − nkns + ηsjℓnj∂knℓ

)
,

Φ(y) = y−2

(
1 − 2y

log(1 + y) − log(1 − y)

)
, 0 < y < 1,

using Einstein’s summation convention, and (ηjkℓ) is the only antisymmetric 3-tensor which
is invariant under cyclic index permutations such that η123 = 1. In other words, ηjkℓajbk =

(~a ∧~b)ℓ for ~a, ~b ∈ R
3. Inserting these expressions into (11), we find the model QSDE1:

∂tn0 − div J0 = 0, J0 = ∇n0 + n0∇V,(12)

∂tnj − div Jj = Fj, Fj = ηjkℓnk∂ℓV − 2nj + bk[~n/n0]∂knj − bj[~n/n0]~∇ · ~n,(13)

Jjs =
(
δjℓ + bk[~n/n0]ηjkℓ

)
∂snℓ + nj∂sV − 2ηjsℓnℓ + bk[~n/n0](δjkns − δjsnk),(14)

where j, s = 1, 2, 3. The functions

bk[~v] = λ
vk

|~v|2
(

1 − 2|~v|
log(1 + |~v|) − log(1 − |~v|)

)
, k = 1, 2, 3, ~v ∈ R

3, 0 < |~v| < 1,
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satisfy 0 < bk[~v] < λ for all 0 < |~v| < 1, lim|~v|→0 bk[~v] = 0, and the function |~v| 7→ Φ(|~v|) =
bk[~v]/(λvk) is increasing. This allows us to set bk[0] = 0 such that bk is defined for all
0 ≤ |~v| < 1.

The above equations are complemented by the Poisson equation

(15) −λ2
D∆V = n0 − C(x)

for the electric potential, where λD > 0 is the scaled Debye length.

2.4. Derivation of the second model. In the model (12)-(14), the particle density n0

evolves independently from the spin vector ~n. We will modify this model in order to derive
a fully coupled system by adding a “pseudo-magnetic” field which is supposed to be able
to interact with the charge carrier pseudo-spin.

Possanner and Negulescu [20] consider a semiconductor subject to a magnetic field which
interacts with the electron spin and they build a purely semiclassical diffusive model for
the particle density n0 and the spin vector ~n by a Chapman-Enskog expansion around
the equilibrium distribution. Instead of the relaxation-time model used in Section 2.3, we
employ here the mass and spin conserving collision operator (49) of [20],

Q(w) = P 1/2(g − w)P 1/2,

where g is the equilibrium distribution, defined in Section 2.2, and P = σ0 + ζ~ω · ~σ is
the polarization matrix with the pseudo-spin polarization ζ(x, t) of the scattering rate and
~ω(x, t) is the direction of the pseudo-magnetization (see [20, Section 4.1]). The quantity
ζ(x, t) ∈ (0, 1) satisfies

s↑ =
1 + |ζ(x, t)|
1 − |ζ(x, t)|s↓,

where s↑↓ are the scattering rates of electrons in the upper and lower band, respectively,

and it holds |~ω(x, t)| = 1. We introduce the collision operators Q0 and ~Q by

Q(w) = Q0(w)σ0 + ~Q(w) · ~σ.
We start from the scaled Wigner equations

(16)

τ∂tw0 +
1

2γ
(~p · ~∇)w0 +

ε

2
~∇ · ~w + θε[V ]w0 =

1

τ
Q0(w),

τ∂t ~w +
1

2γ
(~p · ~∇)~w +

ε

2
~∇w0 + ~w ∧ ~p+ θε[V ]~w + τ~ω ∧ ~w =

1

τ
~Q(w).

Compared with the Wigner system (6) in Section 2, the second equation in (16) contains
the (heuristic) term τ~ω∧ ~w, which describes the “precession” of ~w around the local pseudo-
magnetization. We assume again that λ := εγ/τ is of order one (as τ → 0) and we perform
a Chapman-Enskog expansion of the Wigner distribution w = w0σ0 + ~w · ~σ. The result
reads as follows:

(17) w = g − τP−1/2T [g]P−1/2,
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where

T [g] =

(
1

2γ
~p · ~∇− ~∇V · ~∇p

)
g0σ0 +

((
1

2γ
~p · ~∇− ~∇V · ~∇p

)
~g + ~g ∧ ~p

)
· ~σ.

To compute P−1/2T [g]P−1/2, we employ the following lemma whose proof is an elementary
computation.

Lemma 1. For all Hermitian matrices a = a0σ0 + ~a · ~σ, it holds

P−1/2aP−1/2 =
1

1 − ζ2
(a0 − ζ~ω · ~a)σ0

+
1

1 − ζ2

[
ζ~ωa0 + (~ω ⊗ ~ω +

√
1 − ζ2(I − ~ω ⊗ ~ω))~a

]
· ~σ.

Since the collision operator Q(w) is conserving mass and spin, the moment equations of
(16) become

τ∂tn0 +
1

2γ
~∇ ·
∫

R2

~pw0dp+
ε

2
~∇ · ~n = 0,

τ∂t~n+
1

2γ
~∇ ·
∫

R2

~w ⊗ ~pdp+
ε

2
~∇n0 +

∫

R2

~w ∧ ~pdp+ τ~ω ∧ ~n = 0.

The first-order moments
∫

R2 pkw0dp and
∫

R2 pkwsdp can be calculated up to order O(ε2) =
O(τ 2) by using (17) and Lemma 1, leading to the spin diffusion model QSDE2:

(18) ∂tn0 = div J0, ∂tnj = div Jj +Gj, j = 1, 2, 3,

where

(19)

J0s = (1 − ζ2)−1
(
(∂sn0 + n0∂sV ) − ζωk(∂snk + nk∂sV + ηkℓsnℓ)

)
,

Jjs = (1 − ζ2)−1
[
− ζωj(∂sn0 + n0∂sV )

+ (ωjωk +
√

1 − ζ2(δjk − ωjωk))(∂snk + nk∂sV + ηkℓsnℓ)
]
,

Gj = ηjks(Jks + nkωs) + ∂s

(
bk[~n/n0](ηjkℓ∂snℓ + δjkns − δjsnk)

)

+ bs[~n/n0]∂snj − bj[~n/n0]~∇ · ~n.

In contrast to the model QSDE1 (12)-(14), this system is fully coupled. It is possible to
show that the system is uniformly parabolic if ‖ζ‖L∞(0,T ;L∞(Ω)) < 1 but the presence of
the cross-diffusion terms makes it hard to prove any L∞ bounds, in particular the bound
|~n|/n0 < 1.
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3. Analysis for the first model

In this section, we consider the model QSDE1 (12)-(15) in a bounded domain Ω ⊂ R
2

with ∂Ω ∈ C1,1. For convenience, we recall the equations:

∂tn0 − div J0 = 0, J0 = ∇n0 + n0∇V,(20)

∂tnj − div Jj = Fj, Fj = ηjkℓnk∂ℓV − 2nj + bk[~n/n0]∂knj − bj[~n/n0]~∇ · ~n,(21)

Jjs =
(
δjℓ + bk[~n/n0]ηjkℓ

)
∂snℓ + nj∂sV − 2ηjsℓnℓ + bk[~n/n0](δjkns − δjsnk),(22)

− λ2
D∆V = n0 − C(x) in Ω, t > 0, j = 1, 2, 3, s = 1, 2,(23)

and the functions

bk[~v] = λ
vk

|~v|2
(

1 − 2|~v|
log(1 + |~v|) − log(1 − |~v|)

)
, k = 1, 2, 3, ~v ∈ R

3, 0 < |~v| < 1.

We impose the following boundary and initial conditions:

n0 = nD, ~n = 0, V = VD on ∂Ω, t > 0,(24)

n0(0) = n0
I , ~n(0) = ~nI in Ω.(25)

Finally, we abbreviate ΩT = Ω × (0, T ).

3.1. Existence of solutions. We impose the following conditions on the data:

nD ∈ H1(0, T ;H2(Ω)) ∩H2(0, T ;L2(Ω)) ∩ L∞(0, T ;L∞(Ω)),(26)

n0
I ∈ H1(Ω), inf

Ω
n0

I > 0, n0
I = nD(0) on ∂Ω, inf

∂Ω×(0,T )
nD > 0,(27)

VD ∈ L∞(0, T ;W 2,p(Ω)) ∩H1(0, T ;H1(Ω)), C ∈ L∞(Ω), C ≥ 0 in Ω,(28)

for some p > 2. Under these assumptions, we are able to prove the existence of strong
solutions (n0, V ) to the drift-diffusion model (20) and (23).

Theorem 2. Let T > 0 and assume (26)-(28). Then there exists a unique solution (n0, V )
to (20) and (23) subject to the initial and boundary conditions in (24)-(25) satisfying

n0 ∈ L∞(0, T ;H2(Ω)) ∩H1(0, T ;H1(Ω)) ∩H2(0, T ; (H1(Ω))′),

0 < me−µt ≤ n0 ≤M in Ω, t > 0, V ∈ L∞(0, T ;W 1,∞(Ω)),

where µ = λ−2
D and

M = max

{
sup

∂Ω×(0,T )

nD, sup
Ω
n0

I , sup
Ω
C(x)

}
, m = min

{
inf

∂Ω×(0,T )
nD, inf

Ω
n0

I

}
> 0.

Proof. The existence and uniqueness of a weak solution (n0, V ) to (20), (23), and (24)-(25)
satisfying

n0 ≥ 0, n0 ∈ L2(0, T ;H1(Ω)) ∩H1(0, T ; (H1(Ω))′), V ∈ L2(0, T ;H1(Ω))

is shown in [9], also see Section 3.9 in [13]. It remains to prove the regularity assertions.
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First, we show that n0 is bounded from above and below. Employing (n0 − M)+ =
max{0, n0 −M} ∈ L2(0, T ;H1

0 (Ω)) as a test function in the weak formulation of (20) and
using (23), we find that

1

2

d

dt

∫

Ω

(
(n0 −M)+

)2
dx+

∫

Ω

|∇(n0 −M)+|2dx = −
∫

Ω

n0∇V · ∇(n0 −M)+dx

= −1

2

∫

Ω

∇V · ∇
(
(n0 −M)+

)2
dx−M

∫

Ω

∇V · ∇(n0 −M)+dx

= − 1

2λ2
D

∫

Ω

(n0 − C(x))
(
(n0 −M)+

)2
dx− M

λ2
D

∫

Ω

(n0 − C(x))(n0 −M)+dx

≤ 0,

since n0−C(x) ≥ 0 on {n0 > M}, by the definition of M . This implies that (n0−M)+ = 0
and hence, n0 ≤M in Ω, t > 0.

Next, we employ the test function (n0 − me−µt)− = min{0, n0 − me−µt} in the weak
formulation of (20):

1

2

d

dt

∫

Ω

(
(n0 −me−µt)−

)2
dx+

∫

Ω

|∇(n0 −me−µt)−|2dx

= −
∫

Ω

(n0 −me−µt)∇V · ∇(n0 −me−µt)−dx−me−µt

∫

Ω

∇V · ∇(n0 −me−µt)−dx

+ µme−µt

∫

Ω

(n0 −me−µt)−dx

= − 1

2λ2
D

∫

Ω

(n0 − C(x))
(
(n0 −me−µt)−

)2
dx

− 1

λ2
D

∫

Ω

(n0 − C(x))(n0 −me−µt)−dx+ µme−µt

∫

Ω

(n0 −me−µt)−dx

≤ 1

2λ2
D

‖C‖L∞(Ω)

∫

Ω

(
(n0 −me−µt)−

)2
dx−

∫

Ω

(
1

λ2
D

− µ

)
me−µt(n0 −me−µt)−dx,

since we integrate over {n0 < me−µt}. By the definition of µ, the last integral vanishes.
Then, the Gronwall lemma implies that (n0 −me−µt)− = 0 and hence, n0 ≥ me−µt.

The above bounds show that the right-hand side of the Poisson equation is an element
of L∞(0, T ;L∞(Ω)). Then, by elliptic regularity, V ∈ L∞(0, T ;W 2,p(Ω)), where p > 2
is given in (28). Since W 2,p(Ω) →֒ W 1,∞(Ω) (we recall that Ω ⊂ R

2), it follows that
∇V ∈ L∞(0, T ;L∞(Ω)). Consider

−λ2
D∆∂tV = ∂tn0 in Ω, ∂tV = ∂tVD on ∂Ω.

The right-hand side of this equation satisfies ∂tn0 ∈ L2(0, T ; (H1(Ω))′). Hence, ∂tV ∈
L2(0, T ;H1(Ω)).

Finally, we prove the higher regularity for n0. For this, we consider the equation satisfied
by ρ = n0 − nD:

∂tρ− div(∇ρ+ ρ∇V ) = f in Ω, t > 0, ρ = 0 on ∂Ω, ρ(·, 0) = n0
I − nD(·, 0),
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where f = −∂tnD + div(∇nD + nD∇V ). We use the following result: If f , ∂tf ∈ L2(ΩT )
and ρ(·, 0) ∈ H2(Ω) ∩H1

0 (Ω) then n0 ∈ C0([0, T ];H2(Ω)), ∂tn0 ∈ L2(0, T ;H1(Ω)), ∂2
t n0 ∈

L2(0, T ; (H1(Ω))′) (see, e.g., [28, Theorem 1.3.1]).
The boundedness of ∇V implies that f ∈ L2(ΩT ). This gives the regularity ∂tn0 ∈

L2(ΩT ). As a consequence, V ∈ H1(0, T ;H2(Ω)). Our assumptions on the data show that
−∂2

t nD + ∆∂tnD ∈ L2(ΩT ), and it remains to prove that ∂tdiv(nD∇V ) ∈ L2(ΩT ). Now,

∂tdiv(nD∇V ) = ∂t∇nD · ∇V + ∇nD · ∇∂tV + ∂tnD∆V + nD∆∂tV.

The first term on the right-hand side lies in L2(ΩT ) since ∇V ∈ L∞(0, T ;L∞(Ω)). Fur-
thermore, ∇nD ∈ L∞(0, T ;H1(Ω)) and ∇∂tV ∈ L2(0, T ;H1(Ω)) from we conclude that
the second term is in L2(ΩT ). In a similar way, this property can be verified for the third
and fourth terms. This shows the claim and the regularity statements for n0. �

Next, given (n0, V ) as the solution to (20) and (23), we prove the existence of a solution
~n to (21) with the corresponding boundary and initial conditions in (24)-(25), satisfying
the bound |~n|/n0 < 1.

Theorem 3. Let (n0, V ) be the solution to (20), (23), and (24)-(25), according to Theorem

2, and let ~nI ∈ H1
0 (Ω)3 satisfy

sup
x∈Ω

|~nI(x)|
n0

I(x)
< 1.

Then there exists a weak solution ~n ∈ L2(0, T ;H1(Ω))3 ∩ H1(0, T ;H−1(Ω))3 to (21)-(22)
and (24)-(25) satisfying

(29) sup
(x,t)∈ΩT

|~n(x, t)|
n0(x, t)

< 1.

Furthermore, there exists at most one weak solution satisfying (29) and ~n ∈ L∞(0, T ;
W 1,4(Ω))3.

Proof. We prove first the existence of solutions to a truncated problem by applying the
Leray-Schauder fixed-point theorem. Let 0 < χ < 1 be a fixed parameter and let φχ ∈
C0(R) be a nonincreasing function satisfying φχ(y) = 1 for y ≤ 1 − χ and φχ(y) = 0 for
y ≥ 1. Then define

bχk [~v] = φχ(|~v|)bk[~v] for all ~v ∈ R
3.

Step 1: Application of the fixed-point theorem. In order to define the fixed-point operator,
let ~ρ ∈ L2(ΩT )3 and σ ∈ [0, 1]. We wish to solve the linear problem

(30)
d

dt

∫

Ω

~n · ~zdx+ a(~n, ~z; t) = 0 for all ~z ∈ H1
0 (Ω)3, ~n(0) = σ~nI ,
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where

a(~n, ~z; t) =

∫

Ω

(
(δjℓ + σbχk [~ρ/n0]ηjkℓ)∂snℓ + nj∂sV − 2ηjsℓnℓ

)
∂szjdx

+ σ

∫

Ω

bχk [~ρ/n0](δjkns − δjsnk)∂szjdx

−
∫

Ω

(
ηjkℓnk∂ℓV − 2nj + σbχs [~ρ/n0]∂snj − σbχj [~ρ/n0]∂sns

)
zjdx,

for ~z ∈ H1
0 (Ω)3. The bilinear form a : H1

0 (Ω)3×H1
0 (Ω)3 → R is continuous since |bχk [~ρ/n0]| ≤

λ and |∇V | ∈ L∞(0, T ;L∞(Ω)). Furthermore, using the antisymmetry of ηjkℓ,

a(~n, ~n; t) =

∫

Ω

(
‖∇~n‖2 + nj∂sV ∂snj − 2ηjsℓnℓ∂snj

)

+ σ

∫

Ω

bχk [~ρ/n0](δjkns − δjsnk)∂snjdx

+

∫

Ω

(
2nj − σbχs [~ρ/n0]∂snj + σbχj [~ρ/n0]∂sns

)
njdx,

where ‖∇~n‖2 =
∑3

j,k=1(∂jnk)
2. All the terms on the right-hand side can be written as

a product of nj, ∂knℓ, and possibly an L∞ function. Note that the only term, which
does not have this structure, bχkηjkℓ∂snℓ∂snj, vanishes because of the antisymmetry of ηjkℓ.
Therefore, the Hölder and Cauchy-Schwarz inequalities yield

a(~n, ~n; t) ≥ 1

2
‖~n‖2

H1(Ω) − c‖~n‖2
L2(Ω)

for some constant c > 0 which depends on the L∞ norm of ∇V . Hence, there exists a
unique weak solution ~n ∈ L2(0, T ;H1

0 (Ω))3 ∩H1(0, T ;H−1(Ω))3 to the linear problem (30)
[25, Corollary 23.26]. Moreover, there exists a constant c > 0 independent of ρ and σ such
that

(31) ‖~n‖L2(0,T ;H1(Ω))3 + ‖∂t~n‖L2(0,T ;H−1(Ω))3 ≤ c.

This defines the fixed-point operator F : L2(ΩT )3 × [0, 1] → L2(ΩT )3, F (~ρ, σ) = ~n. We
note that F (~ρ, 0) = 0.

Next, we show that F is continuous. Let (~ρ(k)) ⊂ L2(ΩT )3 and (σ(k)) ⊂ R such that
~ρ(k) → ~ρ in L2(ΩT )3 and σ(k) → σ as k → ∞. Since bχk is bounded, it follows that
bχj [ρ(k)/n0] → bχj [ρ/n0] in Lr(ΩT ) for all r < ∞. Let n(k) = F (ρ(k), σ(k)). The uniform
estimate (31) shows that, up to a subsequence,

~n(k) ⇀ ~n weakly in L2(0, T ;H1(Ω))3 and in H1(0, T ;H−1(Ω))3,

~n(k) → ~n strongly in L2(ΩT )3,

since the embedding L2(0, T ;H1(Ω)) ∩ H1(0, T ;H−1(Ω)) →֒ L2(ΩT ) is compact, by the
Aubin lemma. These convergence results are sufficient to perform the limit k → ∞ in
the weak formulation of (30) with ~n(k) instead of ~n and σ(k) instead of σ. The limit
equation shows that ~n = F (~ρ, σ). As the solution to the linear problem is unique, the
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convergence ~n(k) → ~n in L2(ΩT )3 holds for the whole sequence, and hence, S is continuous.
Furthermore, by the Aubin lemma, F is compact. Finally, let ~n be a fixed point of F (·, σ).
By the boundedness of bχj and estimate (31), we find uniform estimates for ~n in L2(ΩT )3.
Therefore, we can apply the fixed-point theorem of Leray-Schauder which yields a weak
solution to the truncated problem (30) with ~ρ replaced by ~n.

Step 2: L∞ bounds for ~n. We prove that the solution to (30) is bounded in ΩT . To this

end, we define the function ψ =
√

1 + |~n|2. Then, in the sense of distributions,

∂tψ =
∂t~n · ~n
ψ

=
1

2ψ

(
∆(|~n|2) + 2div(|~n|2∇V ) −∇V · ∇|~n|2 − 2G[~n]

)

where

(32) G[~n] = ‖∇~n‖2 + 2~n · curl~n+ 2|~n|2.
Inserting the identities

1

2ψ
∆(|~n|2) = ∆ψ +

1

ψ
|∇ψ|2,

1

ψ
div(|~n|2∇V ) = div(ψ∇V ) + ∇V · ∇ψ − ∆V

ψ
,

1

2ψ
∇V · ∇|~n|2 = ∇V · ∇ψ

in the above equation for ψ, we deduce that

(33) ∂tψ − div(∇ψ + ψ∇V ) = −ψ−1∆V − ψ−1
(
G[~n] − |∇ψ|2

)
.

Since |curl~v|2 ≤ 2‖∇~v‖2 for all ~v ∈ H1
0 (Ω)3, Young’s inequality gives

(34) G[~v] ≥ ‖∇~v‖2 −
(

2|~v|2 +
1

2
|curl~v|2

)
+ 2|~v|2 ≥ 0.

Elementary computations show that

G[~n] − |∇ψ|2 = ψ2G

[
~n

ψ

]
+

|∇(ψ2)|2
2ψ4

≥ 0.

Hence, we can estimate (33) by

∂tψ − div(∇ψ + ψ∇V ) ≤ 1

λ2
Dψ

(n0 − C(x)) ≤ n0

λ2
Dψ

≤ M

λ2
D

.

By the maximum principle, ψ ≤ c(T ) in ΩT , where c(T ) > 0 depends on the end time T > 0.
Taking into account that ψ ≥ 1 by definition, we conclude that ψ ∈ L∞(0, T ;L∞(Ω)) and
hence, |~n| ∈ L∞(0, T ;L∞(Ω)).

Step 3: Proof of |~n|/n0 < 1. We show that there exists 0 < κ < 1 such that |~n|/n0 ≤
κ < 1. Then, choosing χ > 0 sufficiently small, we can remove the truncation obtaining a
solution to the original problem.
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Let u = 1 − |~n|2/n2
0. Note that this function is well defined since n0 is strictly positive,

see Theorem 2. A tedious computation shows that u solves

∂tu− ∆u = ∇(log n0 + V ) · ∇u+ 2G[~n/n0].

in the sense of distributions, where G is defined in (32). We prove a lower bound for u
by testing the weak formulation of this equation by U := (u − k)− = min{0, u − k} ∈
L2(0, T ;H1

0 (Ω)), where k = min{inf∂Ω×(0,T ) u, infΩ×{0} u} > 0.

(35)
1

2

d

dt

∫

Ω

U2dx+

∫

Ω

|∇U |2dx =

∫

Ω

U∇(log n0 + V ) · ∇Udx+ 2

∫

Ω

UG[~n/n0]dx.

Since G(~n/n0] ≥ 0, the last integral is nonpositive. The first integral is estimated by
employing the lower bound for n0, obtained in Theorem 2, and applying Young’s and
Hölder’s inequalities:

∫
ΩU∇(log n0 + V ) · ∇Udx ≤

(
inf
ΩT

n0

)−1 ∫

Ω

|U ||∇n0||∇U |dx

≤ ε

2

∫

Ω

|∇U |2dx+ c(ε)

∫

Ω

|U |2|∇n0|2dx

≤ ε

2

∫

Ω

|∇U |2dx+ c(ε)‖∇n0‖2
L4(Ω)‖U‖2

L2(Ω).

The Gagliardo-Nirenberg, Hölder, and Poincaré inequalities imply that

‖U‖2
L4(Ω) ≤ c‖U‖L2(Ω)‖U‖H1(Ω) ≤

ε

2
‖∇U‖2

L2(Ω) + c(ε)‖U‖2
L2(Ω),

where ε > 0. By Theorem 2, ∇n0 is an element of L∞(0, T ;W 1,4(Ω)), in view of the
embedding H2(Ω) →֒ W 1,4(Ω). Collecting the above estimates, we infer that

∫

Ω

U∇(log n0 + V ) · ∇Udx ≤ ε

∫

Ω

|∇U |2dx+ c(ε)

∫

Ω

U2dx.

Inserting this inequality into (35) and choosing ε < 2, it follows that

1

2

d

dt

∫

Ω

U2dx ≤ c(ε)

∫

Ω

U2dx.

Then Gronwall’s lemma and U(·, 0) = 0 gives U = 0 in ΩT and hence, u ≥ k > 0 in ΩT .
Step 4: Uniqueness of solutions. Let ~u and ~v be two solutions to (21) and (24)-(25)

satisfying (29) and ~u ∈ L∞(0, T ;W 1,4(Ω))3. Set ~w = ~u − ~v. Taking the difference of the
equations satisfied by ~u and ~v, respectively, and employing ~w as a test function, we find
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that

1

2

d

dt

∫

Ω

|~w|2dx+

∫

Ω

‖∇~w‖2dx ≤
∫

Ω

{
− wj∂kwj∂kV + 2ηjkℓwℓ∂kwj

− (bk[~u] − bk[~v])(ηjkℓ∂suℓ + δjkus − δjsuk)∂swj − bk[~v](δjkws − δjswk)∂swj

}
dx,

+

∫

Ω

{
(ηjkℓwk∂ℓV − 2wj)wj + [(bs[~u] − bs[~v])∂suj + bs[~v]∂swj]wj

− [(bj[~u] − bj[~v])∂sus + bj[~v]∂sws]wj

}
dx.

Thanks to the L∞ bounds on ∇V , ~u, and ~v, we can estimate as follows:

1

2

d

dt

∫

Ω

|~w|2dx+

∫

Ω

‖∇~w‖2dx ≤ c

∫

Ω

(
|~w| ‖∇~w‖ + ‖∇~u‖ |~w|2 + ‖∇~u‖ |~w| |∇~w‖

)
dx

≤ 1

2

∫

Ω

‖∇~w‖2dx+ c‖∇~u‖L4(ΩT )(1 + ‖∇~u‖L4(ΩT ))

∫

Ω

|~w|2dx,

where c > 0 is some generic constant. Since ~w(0) = 0, the W 1,4 regularity for ~u and
Gronwall’s lemma imply the assertion. This finishes the proof. �

3.2. Entropy dissipation. Let (n0, ~n, V ) be a solution to (20)-(23), (24)-(25) according
to Theorems 2 and 3. We assume that the boundary data is in thermal equilibrium, i.e.

(36) nD = e−VD , V = VD, ~n = 0 on ∂Ω,

where VD = VD(x) is time-independent. In this subsection, we will show that the macro-
scopic entropy

S(t) =

∫

Ω

(
1

2
(n0 + |~n|)

(
log(n0 + |~n|) − 1

)
+

1

2
(n0 − |~n|)

(
log(n0 − |~n|) − 1

)

+ (n0 − C(x))V − λ2
D

2
|∇V |2

)
dx

is nonincreasing in time. Note that n0 < |~n| by Theorem 3 such that log(n0 − |~n|) is well
defined.

The functional S(t) can be derived as follows. Inserting the thermal equilibrium dis-
tribution g[n0, ~n] in the quantum entropy A[w], defined in Section 2.2, and taking into
account the electric energy contribution, it follows that the total macroscopic free energy
reads as

S̃(t) = A[g[n0, ~n]] −
∫

Ω

(
C(x)V +

λ2
D

2
|∇V |2

)
dx.

Then the expansion of g[n0, ~n] (see (7), (9), and (10)) yields the above formula for S̃(t) =
S(t) +O(ε2).
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Proposition 4. The entropy dissipation −dS/dt can be written as

dS

dt
= −1

2

∫

Ω

(n0 + |~n|)|∇(log(n0 + |~n|) + V )|2dx

− 1

2

∫

Ω

(n0 − |~n|)|∇(log(n0 − |~n|) + V )|2dx

− 1

2

∫

Ω

|~n| log

(
n0 + |~n|
n0 − |~n|

)
G[~n/|~n|]dx ≤ 0,

where G is defined in (32).

Note that in the drift-diffusion model without spin contribution, i.e. |~n| = 0, we recover
the standard entropy dissipation term

∫
Ω
n0|∇(log n0 + V )|2dx.

Proof. Taking the time derivative of S, we find after some computations that

dS

dt
=

∫

Ω

((
1

2
log(n2

0 − |~n|2) + V

)
∂tn0 +

1

2
log

(
n0 + |~n|
n0 − |~n|

)
~n

|~n| · ∂t~n(37)

+ (n0 − C(x))∂tV − λ2
D∇V · ∇∂tV

)
dx.

To be precise, the second term in the integral has to be understood in the sense of
L2(0, T ;H−1(Ω)). Since VD does not depend on time, we have ∂tV = 0 on ∂Ω, t > 0.
Hence, ∫

Ω

(n0 − C(x))∂tV dx = −λ2
D

∫

Ω

∆V ∂tV dx = λ2
D

∫

Ω

∇V · ∇∂tV dx,

and thus, the last two terms in dS/dt cancel.
In order to compute the second term in dS/dt, we observe that

~n · ∂t~n =
1

2
∆(|~n|2) + div(|~n|2∇V ) − 1

2
∇(|~n|2) · ∇V −G[~n],

where G is defined in (32). Then, inserting this expression and (12) into (37) and integrat-
ing by parts, we infer that

dS

dt
= −

∫

Ω

{
∇
(

1

2
log(n2

0 − |~n|2) + V

)
· (∇n0 + n0∇V )

+
1

2
∇
(

1

|~n| log
n0 + |~n|
n0 − |~n|

)
·
(

1

2
∇(|~n|2) + |~n|2∇V

)

+
1

2|~n| log
n0 + |~n|
n0 − |~n|

(
1

2
∇(|~n|2) · ∇V +G[~n]

)}
dx.

Since

∇
(

1

|~n| log
n0 + |~n|
n0 − |~n|

)
=

1

|~n|∇
(

log
n0 + |~n|
n0 − |~n|

)
+ ∇

(
1

|~n|

)
log

n0 + |~n|
n0 − |~n| ,
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we can write

dS

dt
= −

∫

Ω

{
∇
(

1

2
log(n2

0 − |~n|2) + V

)
· (∇n0 + n0∇V )

+
1

2|~n|∇
(

log
n0 + |~n|
n0 − |~n|

)
·
(

1

2
∇(|~n|2) + |~n|2∇V

)}
dx

− 1

2

∫

Ω

log
n0 + |~n|
n0 − |~n|

{
∇
(

1

|~n|

)
·
(

1

2
∇(|~n|2) + |~n|2∇V

)

+
1

|~n|

(
1

2
∇(|~n|2) · ∇V +G[~n]

)}
dx.

Straightforward computations show that

|~n|G
[
~n

|~n|

]
= ∇

(
1

|~n|

)
·
(

1

2
∇(|~n|2) + |~n|2∇V

)
+

1

|~n|

(
1

2
∇(|~n|2) · ∇V +G[~n]

)
,

which allows us to reformulate the second integral. Together with some manipulations in
the first integral, we obtain

dS

dt
= −1

2

∫

Ω

{
∇(log(n0 + |~n|) + V ) ·

(
∇(n0 + |~n|) + (n0 + |~n|)∇V

)

+ ∇(log(n0 − |~n|) + V ) ·
(
∇(n0 − |~n|) + (n0 − |~n|)∇V

)}
dx

− 1

2

∫

Ω

|~n| log

(
n0 + |~n|
n0 − |~n|

)
G

[
~n

|~n|

]
dx.

We observe that the expression

|~n| log

(
n0 + |~n|
n0 − |~n|

)
G

[
~n

|~n|

]
=

1

n0

1

|~n|/n0

log

(
1 + |~n|/n0

1 − |~n|/n0

)
|~n|2G

[
~n

|~n|

]

is integrable because infΩT
n0 > 0, supΩT

|~n|/n0 < 1, the map

(0, 1 − ε) → R, x 7→ 1

x
log

(
1 + x

1 − x

)

is bounded for all ε > 0 and |~n|2G[~n/|~n|] ∈ L1(ΩT ). Since

∇(n0 ± |~n|) + (n0 ± |~n|)∇V = (n0 ± |~n|)∇
(
log(n0 ± |~n|) + V

)
,

this finishes the proof. �

3.3. Long-time decay of the solutions. Let (n0, ~n, V ) be a solution to (20)-(23), (24)-
(25) according to Theorems 2 and 3. We will show that, under suitable assumptions on
the electric potential, the spin vector converges to zero as t→ ∞.

Theorem 5. Let 2 < p <∞. Then there exists a constant εp > 0 such that if the condition

‖∇V ‖L∞(0,T ;L∞(Ω)) ≤ εp holds then

‖~n(·, t)‖Lp(Ω) ≤ ‖~nI‖Lp(Ω)e
−κpt, t ∈ (0, T ),
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for some constant κp > 0 which depends on p, Ω, and the L∞ norm of ∇V . Furthermore,

there exists ε2 > 0 such that if ‖∆V ‖L∞(0,T ;L∞(Ω)) ≤ ε2 then

‖~n(·, t)‖L2(Ω) ≤ ‖~nI‖L2(Ω)e
−κ2t, t ∈ (0, T ),

for some constant κ2 > 0 which depends on Ω and the L∞ norm of ∆V .

Note that we may set T = ∞ yielding the desired convergence result. For the proof of
the second part of the theorem, we need the following lemma.

Lemma 6. There exists a constant cG > 0, depending only on Ω, such that for all ~u ∈
H1

0 (Ω)3, ∫

Ω

G[~u]dx ≥ cG

∫

Ω

|~u|2dx,

where G is defined in (32).

Proof. Let µ > 0 and consider the following bilinear form on H1
0 (Ω)3:

Bµ(~u,~v) =

∫

Ω

(
∇~u : ∇~v + ~u · curl~v + ~v · curl ~u+ (2 + µ)~u · ~v

)
dx,

where ∇~u : ∇~v =
∑3

j,k=1 ∂juk∂jvk. The bilinear form B is symmetric, continuous, and

coercive on H1
0 (Ω)3, since, using (34) and the Poincaré inequality,

Bµ(~u, ~u) = G[~u] + µ

∫

Ω

|~v|2dx ≥ µ

∫

Ω

|~v|2dx ≥ cµ‖~v‖H1

0
(Ω)3 .

Hence, by the Lax-Milgram lemma, for all ~f ∈ L2(Ω)3, there exists a unique solution
~u ∈ H1

0 (Ω)3 to

B(~u,~v) =

∫

Ω

~f · ~vdx, ~v ∈ H1
0 (Ω)3.

This defines the linear operator L : L2(Ω)3 → L2(Ω)3, L(~f) = ~u. Since the range of
L, R(L), is a subset of H1

0 (Ω)3, which embeddes compactly into L2(Ω)3, L is compact.

Furthermore, L is symmetric (since B is symmetric) and positive in the sense of
∫

Ω
L(~f) ·

~fdx > 0 for all ~f 6= 0 (since B is coercive). By the Hilbert-Schmidt theorem for symmetric
compact operators (see, e.g., [21, Theorem VI.16]), there exists a complete orthonormal
system (~u(k)) of L2(Ω) of eigenfunctions of L,

L(~u(k)) = λk~u
(k), 0 < λk ց 0 as k → ∞.

Note that (λk) depends on µ since L and B do so. In particular, ~u(k) ∈ R(L) ⊂ H1
0 (Ω)3

and

(38) B(~u(k), ~v) = λ−1
k

∫

Ω

~u(k) · ~vdx for ~v ∈ H1
0 (Ω)3, k ∈ N.
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We claim that λ−1
1 > µ. Otherwise, if λ−1

1 ≤ µ, the definition of B and (38) yield
∫

Ω

(
‖∇~u(1)‖2 + 2~u(1) · curl ~u(1) + (2 + µ)|~u(1)|2

)
dx

= B(~u(1), ~u(1)) = λ−1
1

∫

Ω

|~u(1)|2dx ≤ µ

∫

Ω

|~u(1)|2dx.

The terms containing µ cancel, which gives∫

Ω

(
‖∇~u(1)‖2 + 2~u(1) · curl ~u(1) + 2|~u(1)|2

)
dx ≤ 0.

However, in view of (34), the integral is nonnegative and hence, it must vanish. Therefore,

(39) ‖∇~u(1)‖2 + 2~u(1) · curl ~u(1) + 2|~u(1)|2 = 0 a.e. in Ω.

On the other hand, using |curl ~u(1)|2 ≤ 2‖∇~u(1)‖2,

0 ≥ 1

2
|curl ~u(1)|2 + 2~u(1) · curl ~u(1) + 2|~u(1)|2 =

∣∣∣∣
1√
2
curl ~u(1) +

√
2~u(1)

∣∣∣∣
2

,

from which we infer that curl ~u(1) = 2~u(1) and, by (39), ‖∇~u(1)‖2+6|~u(1)|2 = 0. This implies
that ~u(1) = 0 which is absurd. Hence, λ−1

1 > µ.
Now let ~u ∈ H1

0 (Ω)3 ∩ H2(Ω)3. We can decompose ~u in the orthonormal set (~u(k)),
~u =

∑
k∈N

ck~u
(k) for some ck ∈ R. It follows from (38) and the orthogonality of (~u(k)) on

L2(Ω)3 that

B(~u, ~u) ≥
∑

k∈N

c2kB(~u(k), ~u(k)) =
∑

k∈N

c2kλ
−1
k ≥ λ−1

1 ‖~u‖2
L2(Ω)3 .

By a density argument, this inequality also holds for all ~u ∈ H1
0 (Ω)3. Therefore,

∫

Ω

G[~u]dx = Bµ(~u, ~u) − µ

∫

Ω

|~u|2dx ≥ (λ−1 − µ)‖~u‖2
L2Ω)3 ,

and the lemma follows with cG = λ−1
1 − µ > 0. �

Proof of Theorem 5. Let p ≥ 2. Using the test function p|~n|p−2nj ∈ L2(0, T ;H1
0 (Ω)) in

(21) and summing over j = 1, 2, 3, we find after elementray computations that

d

dt

∫

Ω

|~n|pdx+
4(p− 2)

p

∫

Ω

∣∣∇|~n|p/2
∣∣2dx(40)

= −2(p− 1)

∫

Ω

|~n|p/2∇V · ∇|~n|p/2dx− p

∫

Ω

|~n|p−2G[~n]dx.

Now, we distinguish two cases. First, let p > 2. Employing Young’s inequality with
α > 0 and G[~n] ≥ 0, we find that

d

dt

∫

Ω

|~n|pdx+
4(p− 2)

p

∫

Ω

∣∣∇|~n|p/2
∣∣2dx

≤ (p− 1)2

α
‖∇V ‖2

L∞(0,T ;L∞(Ω))

∫

Ω

|~n|pdx+
α

2

∫

Ω

∣∣∇|~n|p/2
∣∣2dx.
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Then, choosing α = 4(p− 2)/p and employing the Poincaré inequality
∫

Ω

∣∣∇|~n|p/2
∣∣2dx ≥ C2

P

∫

Ω

|~n|pdx,

we infer that

d

dt

∫

Ω

|~n|pdx ≤
(
p(p− 1)2

4(p− 2)
‖∇V ‖2

L∞(0,T ;L∞(Ω)) −
2(p− 2)

p
C2

P

)∫

Ω

|~n|pdx.

This proves the first part after setting εp <
√

8(p − 2)CP/(p(p − 1)) and applying the
Gronwall lemma.

For the second part, let p = 2 in (40). By Lemma 6 and integration by parts in the term
containing the potential, we obtain

d

dt

∫

Ω

|~n|2dx = −
∫

Ω

∆V |~n|2dx− 2

∫

Ω

G[~n]dx ≤
(
‖∆V ‖L∞(0,T ;L∞(Ω)) − 2cG

) ∫

Ω

|~n|2dx.

With the choice ε2 < 2cG and the Gronwall lemma, the theorem follows. �

If the total space charge n0 − C(x) = −λ2
D∆V is positive, we are able to prove that

~n(·, t) converges to zero in the L∞ norm.

Proposition 7. Let 0 < T ≤ ∞. The following L∞ estimate holds:

‖~n(·, t)‖L∞(Ω) ≤ ‖~nI‖L∞(Ω) exp
(
(supΩ×(0,T ) ∆V )t

)
, t ∈ (0, T ).

Proof. Let 2 < p <∞ be arbitrary. From (40) we deduce that, by integrating by parts,

d

dt

∫

Ω

|~n|pdx ≤ (p− 1) sup
ΩT

∆V

∫

Ω

|~n|pdx.

Therefore

‖~n(·, t)‖Lp(Ω) ≤ exp
(
(1 − 1

p
)(supΩT

∆V )t
)
‖~nI‖Lp(Ω), t ∈ (0, T ).

Passing to the limit p→ ∞ in this inequality yields the claim. �

4. Numerical simulations

In this section, we present some numerical results for the models (12)-(15) and (18)-(19),
(15) in one space dimension, Ω = (0, 1). We choose the boundary conditions

n0 = C, ~n = 0, V = U on ∂Ω = {0, 1}, t > 0,

where U(x) = VAx and VA = 80 is the scaled applied potential, and the initial conditions

n0(x, 0) = exp(−Veq(x)), ~n(x, 0) = 0,

where Veq is the equilibrium potential, defined by

−λ2
D∂

2
xxVeq = exp(−Veq) − C(x) in Ω, Veq(0) = Veq(1) = 0.

We choose λ2
D = 10−3. The doping profile corresponds to that of a ballistic diode:

C(x) = Cmin for x̄ < x < 1 − x̄, C(x) = 1 else,
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where Cmin = 0.025 and x̄ = 0.2. The pseudo-spin polarization and the direction of the
local magnetization are defined by

ζ = 0.5, ~ω = (0, 0, 1)⊤.

Table 1 shows the values of the units which allows for the computation of the physical
values from the scaled ones.

space unit 10−7 m
time unit 0.5 × 10−13 s
voltage unit 1.25 × 10−2 V
particle density unit 1017 m−2

current density unit 2 × 1023 m−1 s−1

Table 1. Units used for the numerical simulations.

Models QSDE1 (12)-(15) and QSDE2 (18)-(19), (15) with the corresponding initial and
boundary conditions (24)-(25) are discretized with the Crank-Nicolson finite-difference
scheme and the space step △x = 10−2. The resulting nonlinear discrete ODE system is
solved by using the Matlab routine ode23s.

Since the initial spin vector is assumed to vanish, the particle density n0, computed
from the model QSDE1, corresponds exactly to the particle density of the standard drift-
diffusion model, and the spin vector vanishes for all time. This situation is different in
the model QSDE2 since the equations are fully coupled. For the model QSDE2, Figure 1
shows the particle density n0 and the components nj of the spin vector versus position at
various times. The solution at t = 1 corresponds to the steady state. We observe a charge
built-up of n0 in the low-doped region of the diode. The spin vector components vary only
slightly in this region but their gradients are significant in the high-doped regions close to
the contacts. Clearly, the components nj do not need to be positive and, in fact, they even
do not have a sign.

The models QSDE1 and QSDE2 are well defined only if |~n|/n0 < 1. We plot this ratio
in Figure 2 at various times for the model QSDE2. In all the presented cases, the quotient
stays below one. This indicates that bk[~n/n0] is well defined also in this model.

We have shown in Theorem 5 that the spin vector of the model QSDE1 converges to
zero if the electric potential satisfies certain conditions. In Figure 3, the relative difference
‖n0(t) − n0(∞)‖2/‖n0(∞)‖2 versus time is depicted (semilogarithmic plot), where n0(∞)
denotes the steady-state particle density of model QSDE1 or QSDE2, respectively. The
norm ‖ · ‖2 is the Euclidean norm. The stationary solution is approximated by n0(t

∗)
with t∗ = 1. Whereas the decay of the solution to the model QSDE1 is numerically
of exponential type (in agreement with the theoretical results), the decay for the model
QSDE2 seems to be exponential only for small times.

In the final Figure 4, we present the current-voltage characteristics for the models QSDE1
and QSDE2, i.e. the relation between J0 at x = 1 and the applied bias VA. The characteris-
tics of model QSDE1 correspond to the current-voltage curve of the standard drift-diffusion
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Figure 1. Model QSDE2: Particle density and components of the spin
vector versus position at times t = 0, t = 7 · 10−4, and t = 1.

Figure 2. Model QSDE2: Ratio |~n|/n0 versus position at various times.

model. We observe that the additional terms in the definition of J0 lead to an increase of
the particle current density.
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Figure 3. Relative difference ‖n0(t)−n0(∞)‖/‖n0(t)‖ versus time (semilog-
arithmic plot) for the models QSDE1 (solid line) and QSDE2 (dashed line).

Figure 4. Static current-voltage characteristics for the models QSDE1 and QSDE2.
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