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Abstract. The weak-strong uniqueness for Maxwell–Stefan systems and some general-
ized systems is proved. The corresponding parabolic cross-diffusion equations are consid-
ered in a bounded domain with no-flux boundary conditions. The key points of the proofs
are various inequalities for the relative entropy associated to the systems and the analysis
of the spectrum of a quadratic form capturing the frictional dissipation. The latter task is
complicated by the singular nature of the diffusion matrix. This difficulty is addressed by
proving its positive definiteness on a subspace and using the Bott–Duffin matrix inverse.
The generalized Maxwell–Stefan systems are shown to cover several known cross-diffusion
systems for the description of tumor growth and physical vapor deposition processes.

1. Introduction

The Maxwell–Stefan equations describe the diffusive transport of the components of
gaseous mixtures. Applications arise in, e.g., sedimentation, dialysis, electrolysis, and ion
exchange [34]. They were suggested in 1866 by James Maxwell [31] for dilute gases and
in 1871 by Josef Stefan [33] for fluids. While there are several works on the existence of
local-in-time smooth solutions [4, 20, 21] and global-in-time weak solutions [27] in the case
of vanishing barycentric velocity, the problem of the uniqueness of solutions is basically
unsolved. The uniqueness of strong solutions has been shown in [21, 24], and uniqueness
results for weak solutions in a very special case can be found in [10]. In this paper, we make
a step forward in the uniqueness problem by showing that strong solutions are unique in
the class of weak solutions to Maxwell–Stefan systems.

1.1. Setting. We consider an ideal gaseous mixture consisting of n components with vol-
ume fractions or concentrations ci(x, t), i = 1, . . . , n. The dynamics of the mixture is given
by the mass balance equations and the relations between the driving forces and the fluxes,

(1) ∂tci + div(ciui) = 0, ∇ci = −
n∑

j=1

cicj
Dij

(ui − uj), i = 1, . . . , n,
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where ui(x, t) are the partial velocities and Dij = Dji > 0 are diffusion coefficients. The
equations are solved in a bounded domain Ω ⊂ R

d (d ≥ 1), supplemented by the initial
and no-flux boundary conditions

(2) ci(0) = c0i in Ω, ∇ci · ν = 0 on ∂Ω, t > 0, i = 1, . . . , n,

where ν is the exterior unit normal vector to ∂Ω.
We assume that the barycentric velocity vanishes, which implies that the sum of all

fluxes vanishes,
∑n

i=1 ciui = 0. Then, supposing that c0i ≥ 0 and
∑n

i=1 c
0
i = 1 in Ω, we

deduce from mass conservation that
n∑

i=1

ci = 1 in Ω for all t > 0.

This constraint is necessary to invert the force-flux relations in (1), i.e. to express the flux
ciui as a linear combination of the driving forces ∇cj.
The global existence analysis for (1)–(2) is based on the property that the system is

endowed with the entropy functional

(3) H(c) =
n∑

i=1

∫

Ω

ci(log ci − 1)dx,

where c = (c1, . . . , cn) solves (1)–(2) and satisfies the entropy dissipation inequality [27,
(1.14)]

(4)
dH

dt
(c) + C

n∑

i=1

∫

Ω

|∇√
ci|2dx ≤ 0,

with C > 0 depending only on (Dij). The aim of this paper is to prove the weak-strong
uniqueness for (1)–(2) and generalized systems. Weak-strong uniqueness means that any
weak solution coincides with a strong solution emanating from the same initial data as
long as the latter exists. In other words, the strong solutions must be unique within the
class of weak solutions. To achieve this aim, we use ideas from our previous work [23] and
establish a relative entropy inequality. This leads to a stability estimate for the difference
of a weak and a strong solution and eventually to the weak-strong uniqueness property.
Here, the relative entropy functional is given by

(5) H(c|c̄) =
n∑

i=1

∫

Ω

(
ci log

ci
c̄i

− (ci − c̄i)

)
dx,

where c and c̄ are suitable solutions to (1)–(2).
In the literature, relative entropies are known to be useful to prove the weak-strong

uniqueness of solutions. First results were achieved for systems of hyperbolic conserva-
tion laws [14] and later for the compressible Navier–Stokes equations [16, 17] and general
hyperbolic-parabolic systems endowed with an entropy [13]. The relative entropy tech-
nique was applied to, for instance, entropy-dissipating reaction-diffusion equations [18],
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reaction-cross-diffusion systems [11], energy-reaction-diffusion systems [22], nonlocal cross-
diffusion systems [26], and quantum Euler systems [8, 19]. Compared to the results of, e.g.
[11, 22], the diffusion matrix in these works is assumed to be positive definite if ci > 0 for
all i = 1, . . . , n, which is not satisfied for the Maxwell–Stefan system.

1.2. Definitions and assumptions. We impose the following assumptions:

(A1) Domain: Ω ⊂ R
d with d ≥ 1 is a bounded domain.

(A2) Coefficients: Dij > 0 and Dij = Dji for all i, j = 1, . . . , n, i 6= j.
(A3) Initial data: 0 ≤ c0i ∈ L1(Ω) for i = 1, . . . , n, H(c0) <∞, and

∑n
i=1 c

0
i = 1 in Ω.

Next, we define the concept of weak and strong solutions employed in this paper.
We call c = (c1, . . . , cn) a weak solution to (1)–(2) if c satisfies the initial condition (2),

ci ≥ 0,
∑n

i=1 ci = 1 in Ω× (0,∞),
√
ci ∈ L2

loc(0,∞;H1(Ω)), ci ∈ C0
loc([0,∞);V ′), i = 1, . . . , n,

where V ′ is the dual space of V = {w ∈ H2(Ω) : ∇w · ν = 0 on ∂Ω}, and c satisfies (1)–(2)
in the weak sense, i.e., for any φi ∈ C1

loc([0,∞);C1(Ω)) satisfying ∇φi · ν = 0 on ∂Ω and
any T > 0, i = 1, . . . , n, we have

∫

Ω

ci(T )φi(T )dx−
∫

Ω

c0iφi(0)dx−
∫ T

0

∫

Ω

ci∂tφidxdt−
∫ T

0

∫

Ω

ciui · ∇φidxdt = 0,

where ui satisfies the force-flux relations in (1). The last integral is well defined, since the
gradient bound for

√
ci implies that

√
ciui ∈ L2

loc(0,∞;L2(Ω)) (see Lemma 7 below) and
thus, because of the property 0 ≤ ci ≤ 1, ciui ∈ L2

loc(0,∞;L2(Ω)). Finally, a weak solution
is required to satisfy the entropy inequality

(6) H(c(t)) +
1

2

n∑

i,j=1

∫ t

0

∫

Ω

cicj
Dij

|ui − uj|2dxds ≤ H(c0).

For the Maxwell-Stefan system this is not an additional requirement as it is guaranteed by
the existence theory of [27]; see Section 3.1.
We will use the term strong solution to (1)–(2) to mean that c̄ = (c̄i, . . . , c̄n) with

0 < c̄i < 1 is a weak solution satisfying additional regularity properties. The necessary
regularity is stated precisely in context. In certain cases, c̄i satisfies (1)–(2) pointwise, as
is the traditional notion of strong solutions.

1.3. Main results and key ideas of the proofs. Our first main result is concerned with
the Maxwell–Stefan system (1)–(2).

Theorem 1 (Weak-strong uniqueness). Let Assumptions (A1)–(A2) hold. Let c be a weak
solution to (1)–(2) and let c̄ be a strong solution to (1)–(2) satisfying 0 < c̄i < 1 in Ω,
t > 0, the regularity properties

log c̄i ∈ H1
loc(Ω× (0,∞)), ūi ∈ L∞

loc(Ω× (0,∞)),
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and c̄i does not have anomalous dissipation, i.e., it satisfies the entropy identity

H(c̄(t)) +
1

2

∫ t

0

∫

Ω

n∑

i,j=1

c̄ic̄j
Dij

|ūi − ūj|2dxds = H(c̄0) for t > 0.

The initial data for c and c̄ satisfy Assumption (A3). Then for any t > 0, there exists a
constant C(t) > 0, depending on t, Ω, n, and (Dij), such that

(7) H(c(t)|c̄(t)) +
n∑

i=1

∫ t

0

∫

Ω

ci|ui − ūi|2dxds ≤ C(t)H(c0|c̄0).

If the initial data coincide, i.e. c0 = c̄0 in Ω, then c(t) = c̄(t) in Ω for t > 0.

We verify in Section 3.1 that solutions with the stated regularity exist. To prove Theorem
1 we develop a relative entropy identity and use it as a yardstick to control the distance
between two solutions. First, it is shown that the relative entropy (5) satisfies the inequality

dH

dt
(c|c̄) + 1

2

n∑

i,j=1, i 6=j

∫

Ω

cicj
Dij

|(ui − ūi)− (uj − ūj)|2dx(8)

≤ −
n∑

i,j=1, i 6=j

∫

Ω

ci
Dij

(cj − c̄j)(ui − ūi) · (ūi − ūj)dx.

(see Section 3.2). Next, we study how the frictional dissipation (the second term in (8))
controls the L2 norm of ui − ūi. The quadratic form in (8) captures the dissipative effect
of friction in the following way:

1

2

n∑

i,j=1, i 6=j

cicj
Dij

|(ui − ūi)− (uj − ūj)|2 =
n∑

i=1

ci(ui − ūi) ·
n∑

j=1

1

Dij

cj
(
(ui − ūi)− (uj − ūj)

)

=
n∑

i,j=1

Aij(c)(
√
ci(ui − ūi)) · (

√
cj(uj − ūj)) = Y TA(c)Y ,(9)

where the matrix A(c) = (Aij(c)) ∈ R
n×n is defined by

(10) Aij(c) =

{ ∑n
k=1, k 6=i ck/Dik if i = j,

−√
cicj/Dij if i 6= j,

and Y = (Y1, . . . , Yn) with Yi =
√
ci(ui − ūi). The matrix A(c) is singular and thus

not positive definite. However, we can show that it is positive definite on the subspace
L := {z ∈ R

n :
√
c·z = 0} (here,

√
c is the vector with components

√
ci) and the quadratic

form satisfies

Y TA(c)Y ≥ µ|PLY |2,
where µ > 0 is a uniform lower bound for the positive eigenvalues of A(c) and PL is the
projection on L. This inequality and a careful estimate of the right-hand side of (8) implies
(7) and the weak-strong uniqueness property.
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The L∞ bound on the partial velocities ūi in Theorem 1 can be avoided at the expense
of assuming ∇√

ci ∈ L∞ and c̄i is uniformly bounded from below by a positive constant.
The uniform lower bound is not needed in Theorem 1, where only positivity is required.

Corollary 2. Let the assumptions of Theorem 1 hold, replacing ūi ∈ L∞(Ω × (0,∞)) by
∇√

c̄i ∈ L∞(Ω × (0,∞)), i = 1, . . . , n. Suppose additionally that there exists m > 0 such
that c̄i(t) ≥ m in Ω, t > 0, i = 1, . . . , n. Then there exist constants C1 > 0 and C2(t) > 0
(depending on t, Ω, n, and (Dij)) such that the following inequality holds for t > 0:

(11) H(c(t)|c̄(t)) + C1

n∑

i=1

∫ t

0

∫

Ω

|∇(
√
ci −

√
c̄i)|2dxds ≤ C2(t)H(c0|c̄0).

The relative entropy inequality (11) is the analogue of the entropy estimate (4). It can
be achieved by working with the square roots

√
ci as the main variables. More precisely,

we write the force-flux relations in (1) as

(12) 2∇√
ci = −

n∑

j=1

Aij(c)
√
cjuj, i = 1, . . . , n,

subject to
∑n

i=1 ciui = 0, where A(c) is defined in (10). This system cannot be directly in-
verted, since kerA(c) = span{√c}. However, introducing the Bott–Duffin inverse ABD(c)
of A(c) with respect to L := (span{√c})⊥ (see Section 2 and Appendix A), we can invert
(12), leading to

(13)
√
ciui = −2

n∑

j=1

ABD
ij (c)∇√

cj, i = 1, . . . , n,

and system (1) can be formulated in the concise form

(14) ∂tci = 2div

( n∑

j=1

√
ciA

BD
ij (c)∇√

cj

)
, i = 1, . . . , n.

The Bott–Duffin inverse ABD(c) equals the group inverse studied in [6], since L = ranA(c).
Compared to [6], we work here with the square roots

√
ci instead of the chemical potentials

log ci (see [6, (4.25)]). The relative entropy inequality (8) is rewritten in the form (see
Lemma 9)

dH

dt
(c|c̄) + 4

n∑

i,j=1

∫

Ω

ABD
ij (c)Zi · Zjdx(15)

≤ 4
n∑

i,j=1

∫

Ω

Zi · ∇
√
c̄j

(√
ci√
c̄i
ABD

ij (c̄)− ABD
ij (c)

√
cj√
c̄j

)
dx,

where Zi = ∇√
ci−

√
ci/c̄i∇

√
c̄i, i = 1, . . . , n. We prove in Lemma 4 that the Bott–Duffin

inverse is symmetric and positive definite on L,

ZTABD(c)Z ≥ λ|PLZ|2, Z = (Z1, . . . , Zn),
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where λ > 0 is a uniform lower bound for the positive eigenvalues of ABD(c). Inequality
(11) now follows from this property and suitable estimates for the right-hand side of (15).
The above-mentioned techniques can be extended to a class of generalized Maxwell–

Stefan systems, which includes several examples of cross-diffusion systems occurring in
applications (see Section 5):

∂tci + div(ciui) = 0,
n∑

j=1

cjuj = 0,(16)

−
n∑

j=1

Kij(c)cjuj = ci∇
δH

δci
(c)− ci

n∑

j=1

cj∇
δH

δcj
(c), i = 1, . . . , n,(17)

together with the initial and boundary conditions (2), where δH/δci denotes the variational
derivative of H. Again

∑n
i=1 c

0
i = 1 implies that

∑n
i=1 ci(t) = 1 in Ω, t > 0. We assume

that

H(c) =
n∑

i=1

∫

Ω

hi(ci)dx,

which gives δH/δci = h′i, and (Kij) ∈ R
n×n satisfies

∑n
i=1Kij(c) = 0 for all c ∈ R

n
+. This

model was proposed in [23] and can be obtained as the high-friction limit of multicompo-
nent Euler systems. It can also be derived from elementary thermodynamic considerations;
see Appendix C. If the entropy H(c) equals (3) and Kij(c) =

√
ciAij(c)/

√
cj, where Aij(c)

is defined in (10), then system (16)–(17) reduces to (1). We refer to [5, 12, 30] for mul-
ticomponent diffusion models that account for other factors, such as thermal conduction,
viscous stresses, chemical reactions, etc.
We introduce the matrix B(c) = (Bij(c)) ∈ R

n×n by

(18) Bij(c) =
1√
ci
Kij(c)

√
cj, i, j = 1, . . . , n,

and we assume that B(c) is symmetric and as before, we set L := {z ∈ R
n :

√
c · z = 0}

and L⊥ = span{√c}. We write (17) as (see the beginning of Section 4)

−
n∑

j=1

Bij(c)
√
cjuj =

n∑

j=1

(PL)ij
√
cj∇h′j(cj), i = 1, . . . , n.

We show in Lemma 11 that this system can be inverted, leading to

√
ciui = −

n∑

j=1

BBD
ij (c)

√
cj∇h′j(cj),

where BBD(c) is the Bott–Duffin inverse of B(c), and system (16)–(17) can be formulated
as

∂tci = div

( n∑

j=1

√
ciB

BD
ij (c)

√
cj∇

δH

δcj
(c)

)
, i = 1, . . . , n,

which, by the way, equals (14) if H(c) is given by (3) and B(c) = A(c).
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We suppose for all c ∈ [0, 1]n the following conditions on the matrix B(c):

(B1) B(c) is symmetric and L = ranB(c), L⊥ = ker(B(c)PL).
(B2) For all i, j = 1, . . . , n and s > 0, Bij(c) is bounded and Lipschitz continuous for all

c ∈ [s, 1]n.
(B3) There exists a function γ : (0,∞) → (0,∞) such that for all m > 0 and all s ≥ m,

it holds that γ(s) ≤ γ(m) and ‖B(c)‖F ≤ γ(mini=1,...,n ci).
(B4) All nonzero eigenvalues of B(c) are not smaller than a positive constant µ > 0.

The partial free energy functions hi(ci) are associated to the pressures pi(ci) via the
thermodynamic relations

(19) p′i(ci) = cih
′′
i (ci), pi(ci) = cih

′
i(ci)− hi(ci).

For hi(ci) and pi(ci), we assume that, for some constants K1, K2 > 0, it holds that

(H) hi ∈ C3((0, 1]), 0 < cih
′′
i (ci) ≤ K1, |p′′i (ci)| ≤ K2h

′′
i (ci) for ci ∈ (0, 1]

for i = 1, . . . , n. This hypothesis implies that hi(ci) is strictly convex, pi(ci) is Lipschitz
on (0, 1]. The functions hi(ci) = ci log ci − ci and hi(ci) = cγi , γ > 1, satisfy (H).
Our final main result is the weak-strong uniqueness property for (16)–(17).

Theorem 3 (Weak-strong uniqueness for the generalized system). Let Assumptions (A1)–
(A3) and (B1)–(B4) hold, and let hi satisfy Hypothesis (H). Let c be a weak solution and
c̄ be a strong solution to (2), (16)–(17). We suppose that c̄ satisfies c̄i(t) ≥ m in Ω, t > 0
for some constant m > 0,

h′i(c̄i) ∈ H1
loc(Ω× (0,∞)) ∩ L∞

loc(0,∞;W 2,∞(Ω)), i = 1, . . . , n,

and the entropy identity

(20) H(c̄(t)) +
n∑

i,j=1

∫ t

0

∫

Ω

√
c̄ic̄jB

BD
ij (c̄)∇h′i(c̄i) · ∇h′j(c̄j)dxds = H(c̄0)

for t > 0. Then there exists a constant C(t) > 0, depending on t, m, and (Dij), such that

H(c(t)|c̄(t)) ≤ C(t)H(c0|c̄0) for t > 0.

If the initial data coincide, then c(t) = c̄(t) in Ω for t > 0.

We do not explore the existence of solutions with the stated regularity. The existence
of weak solutions to (2), (16)–(17) can be shown by the techniques detailed in [28, 29]
under suitable assumptions on Kij and h′i that guarantee nonlinear gradient estimates.
The existence of (local-in-time) strong solutions can be shown by following the approach
of [21] by formulating (16)–(17) as

∂tci = Mi(c) := div

( n∑

j=1

Mij(c)∇cj
)
, i = 1, . . . , n,

where Mij(c) depends on B
BD(c) and h′′i (ci), and verifying that the principal part of the

operator M(c) = (M1, . . . ,Mn)(c), defined on suitable spaces, is normally elliptic and
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satisfies the Lopatinski–Shapiro condition. By [15, Theorem 8.2], the operator M(c) has
maximal regularity of type Lp and the local existence result follows from [21, Theorem A1].
The strategy of the proof of Theorem 3 is similar to that one of Theorem 1, but it is

more involved. First, we show a relative entropy inequality. The terms of this inequality
are estimated by splitting the domain into two regions: c∗(x, t) := mini=1,...,n ci(x, t) ≤ m/2
and c∗(x, t) > m/2, where m > 0 is the uniform lower bound for c̄i. The final estimate
reads

dH

dt
(c|c̄) + 1

2

n∑

i,j=1

∫

Ω

(1− χ(c))
√
cicjB

BD
ij (c)∇h′i(ci) · ∇h′j(cj)dx(21)

+ C(m)
n∑

i=1

∫

Ω

χ(c)|∇(ci − c̄i)|2dx ≤ CH(c|c̄),

where χ(c) a cutoff function that vanishes if ci ≤ m/2 for some i (see (65) for details).
An application of Gronwall’s lemma completes the proof. Notice, however, that we do not
obtain a gradient estimate as in (11).
By specifying the coefficients Kij(c) and the entropy densities hi, we prove the weak-

strong property for cross-diffusion systems describing physical vapor deposition processes
[1] and for the tumor-growth model suggested in [25] and analyzed in [27] and the Maxwell-
Stefan system considering different molar masses that is derived in [3, 5]; see Section 5.
The main contributions of this work are, first, the derivation of the relative entropy

inequality (8) for the Maxwell-Stefan system and (21) for generalized Maxwell-Stefan sys-
tems. Second, the introduction of the Bott–Duffin inverse provides an efficient way to
reduce the Maxwell–Stefan system to a (degenerate) parabolic system formulated in the
square roots

√
ci. (Related formulations using the chemical potentials δH/δci can be found

in [6].) Third, we show that our technique can be extended to more general Maxwell–Stefan
systems which may have degeneracy at zero.
The paper is organized as follows. We study the properties of the matrix A(c), defined in

(10), and its Bott–Duffin inverse ABD(c) in Section 2. In Section 3, we recall the existence
results for global weak and local strong solutions to (1)–(2), prove the relative entropy
inequalities (7) and (8) as well as Theorem 1 and Corollary 2. Section 4 is devoted to the
existence of the Bott–Duffin inverse of B(c), defined in (18), and the proof of the relative
entropy inequality (21) eventually leading to the weak-strong uniqueness Theorem 3. In
Section 5, we present some examples that fit into our framework. Finally, we recall the
definition and some properties of the Bott–Duffin inverse in Appendix A, show two simple
inequalities for the Boltzmann entropy density in Appendix B, and derive the generalized
model (16)–(17) from thermodynamic principles in Appendix C.

Notation. We set R+ = [0,∞). Elements of the matrix A ∈ R
n×n are denoted by Aij ,

i, j = 1, . . . , n, and the elements of a vector c ∈ R
n are c1, . . . , cn. If f : R → R is any

function, we define f(c) = (f(c1), . . . , f(cn)) for c ∈ R
n. In the whole paper, C > 0, Ci > 0

denote generic constants whose values change from line to line.
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2. Properties of the matrix A(c)

The properties of the matrix A(c), defined in (10), have been studied in [4, 21, 27]
under the assumption ci > 0 for all i = 1, . . . , n. Our results are valid for nonnegative
concentrations ci ≥ 0, including vacuum.
Let c ∈ R

n
+. Since (Dij) is symmetric, we have for all z ∈ R

n,

0 =
n∑

i,j=1

Aij(c)zj =
n∑

i,j=1, j 6=i

cj
Dij

zi −
n∑

i,j=1, j 6=i

√
cicj

Dij

zj =
n∑

i,j=1, j 6=i

√
cj

Dij

(
√
cjzi −

√
cizj),

showing that span{√c} = kerA(c). We set

ranA(c) = L := {x ∈ R
n :

√
c · x = 0},

kerA(c) = (ranA(c))⊥ = L⊥ = span{
√
c},

and note that
∑n

i=1 ci = 1 implies that |√c|2 = c1 + · · ·+ cn = 1. The projection matrices
PL on L and PL⊥ on L⊥ are given by

(22) (PL)ij = δij −
√
cicj, (PL⊥)ij = δij − (PL)ij =

√
cicj, i, j = 1, . . . , n.

Lemma 4. Let c ∈ R
n
+ be such that

∑n
i=1 ci = 1. Then

(23) zTA(c)z ≥ µ|PLz|2 for all z ∈ R
n,

where µ = mini 6=j(1/Dij). Moreover, the Bott–Duffin inverse

ABD(c) = PL(A(c)PL + PL⊥)−1

is well defined, symmetric, and satisfies

(24) zTABD(c)z ≥ λ|PLz|2 for all z ∈ R
n,

where λ = (2
∑

i 6=j(1/Dij + 1))−1.

Proof. We first prove (23). Let 0 < α ≤ µ and suppose that ci 6= 0 for i = 1, . . . ,M and
ci = 0 for i = M + 1, . . . , n. If necessary, we may rearrange the indices to achieve this
ordering. Since

∑n
i=1 ci = 1, it holds that M > 0. Thus, we can write −A(c) − αPL⊥ in

block diagonal form as

−A(c)− αPL⊥ =




Ã 0 0 0
0 aM+1 0
... 0

. . . 0
0 0 an


 ,

where Ã ∈ R
M×M has the coefficients Ãii = −Aii(c) − αci and Ãij = (1/Dij − α)

√
cicj

for i, j = 1, . . . ,M , i 6= j, and aj = −∑n
k=1, k 6=j ck/Dkj for j = M + 1, . . . , n. Because of

α ≤ µ, the matrix Ã is quasi-positive and irreducible. Hence, by the Perron–Frobenius

theorem [32, Chapter 8], the spectral radius of Ã is less than or equal to the Perron–

Frobenius eigenvalue that is a simple eigenvalue of Ã associated with a strictly positive

eigenvector, and all other eigenvalues of Ã have no positive eigenvector. In the present
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case, the Perron–Frobenius eigenvalue is given by λPF = −α and is associated with the
eigenvector (

√
c1, . . . ,

√
cM), recalling that ci > 0 for all i = 1, . . . ,M (also see the proof of

Lemma 2.1 in [27]). Since all eigenvalues of Ã are not larger than λPF, we have

z̃T (−Ã)z̃ ≥ α|z̃|2 for z̃ = (z1, . . . , zM) ∈ R
M .

This leads, for any α ≤ µ and z ∈ R
n, to the inequality

zT (A(c) + αPL⊥)z = z̃T (−Ã)z̃ +
n∑

i=M+1

n∑

j=1, j 6=i

cj
Dij

z2i

≥ α|z̃|2 + min
k,ℓ=1,...,M

k 6=ℓ

1

Dkℓ

n∑

j=1, j 6=i

cj

n∑

i=M+1

z2i ≥ α|z̃|2 + α

n∑

i=M+1

z2i = α|z|2,

where we have used the fact that
∑n

j=1, j 6=i cj = 1 for i = M + 1, . . . , n, since ci = 0 for
exactly these indices. This inequality implies that for all z = PLz + PL⊥z ∈ R

n,

zTA(c)z + α|PL⊥z|2 = zT (A(c) + αPL⊥)z ≥ α|PLz|2 + α|PL⊥z|2,
which shows (23).
The invertibility of A(c)PL + PL⊥ is a consequence of Lemma 17 in the appendix. Con-

sequently, the Bott–Duffin inverse ABD(c) = PL(A(c)PL + PL⊥)−1 exists.
It remains to show (24). The spectral radius r(A(c)PL +PL⊥) is bounded by the Frobe-

nius norm. Thus, because of A(c)PL = A(c) (see Lemma 17 in Appendix A) and 0 ≤ ci ≤ 1,

r(A(c)PL + PL⊥) ≤ ‖A(c) + PL⊥‖F =

( n∑

i,j=1

(Aij(c) +
√
cicj)

2

)1/2

=

{ n∑

i=1

( n∑

j=1, j 6=i

cj
Dij

+ ci

)2

+
n∑

i,j=1, i 6=j

(
1− 1

Dij

)2

cicj

}1/2

≤ 2
∑

i,j=1, i 6=j

(
1

Dij

+ 1

)
=

1

λ
.

We infer that the eigenvalues of (A(c)PL + PL⊥)−1 are larger than or equal to λ. Thus, in
view of (81), we find that for all z ∈ R

n,

zTABD(c)z = (PLz)
T (A(c)PL + PL⊥)−1PLz ≥ λ|PLz|2,

finishing the proof. �

Since (∇√
c1, . . . ,∇

√
cn) ∈ L, the existence of the Bott–Duffin inverse guarantees that

the solution of (12) can be expressed via the formula (13); see Appendix A.

3. Weak-strong uniqueness for Maxwell–Stefan systems

3.1. Existence theory. We discuss the existence of weak and strong solutions to the
Maxwell–Stefan system (1)–(2). First, we recall the existence theorem for weak solutions,
which was proved in [27].
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Theorem 5 (Global existence for Maxwell–Stefan systems). Let Assumptions (A1)–(A3)
hold. Then there exists a weak solution to (1)–(2) satisfying the entropy inequality (6) for
t > 0, or equivalently,

H(c(t)) + 4
n∑

i,j=1

∫ t

0

∫

Ω

ABD
ij (c)∇√

ci · ∇
√
cjdxds ≤ H(c0).

The existence of strong solutions was proved in [4, Theorem 1] and [21, Theorem 3.2].

Theorem 6 (Strong solutions for Maxwell–Stefan systems). Let Ω ⊂ R
d (d ≥ 1) be a

bounded domain with ∂Ω ∈ C2 and let c0 ∈ W 2−2/p,p(Ω;Rn) with c0i ≥ 0,
∑n

i=1 c
0
i = 1 in

Ω, where p > d+2. Then there exists T ∗ > 0 and a unique solution c to (1)–(2) satisfying

ci ∈ C1((0, T ∗);W 2−2/p,p(Ω)) ∩W 1,p(0, T ;Lp(Ω)) ∩ Lp(0, T ;W 2,p(Ω))

for i = 1, . . . , n.

The strong solution of Theorem 6 has the property of immediate positivity: If c0i ≥ 0 in Ω
then ci(t) > 0 in Ω for 0 < t < T ′, where T ′ ≤ T depends on c0. Moreover, if the initial data
is close to a constant vector, the strong solution can be extended globally: Let c∗ ∈ R

n
+.

Then there exists ε > 0 such that if the initial data satisfies ‖c0 − c∗‖W 2−2/p,p(Ω) ≤ ε, then
the strong solution exists globally in time.
If c0i > 0 in Ω for i = 1, . . . , n, the continuity of the strong solution implies that there

exists 0 < T ′′ ≤ T ∗ and m > 0 such that ci(t) ≥ m > 0 in Ω for i = 1, . . . , n. Therefore,
because of the embedding W 2−2/p,p(Ω) →֒ C1(Ω), we have

√
ci ∈ L∞(0, T ′′;W 1,∞(Ω)), and

T ′′ = ∞ if ‖c0 − c∗‖W 2−2/p,p(Ω) is sufficiently small. This shows that the strong solution
satisfies the regularity assumptions of Corollary 2.
The assumption

√
ci ∈ L∞

loc(0,∞;W 1,∞(Ω)) and the property ci(t) ≥ m in Ω imply
that the regularity condition ui ∈ L∞

loc(Ω × (0,∞)) of Theorem 1 is satisfied. This is a
consequence of the following lemma and m

∑n
i=1 |ui|2 ≤ ∑n

i=1 ci|ui|2 ≤ C
∑n

i=1 |∇
√
ci|2.

Moreover, the assumption log ci ∈ H1
loc(Ω × (0,∞)) follows from |∇ log ci| ≤ |∇ci|/m ∈

C0((0, T ′′);C0(Ω)).

Lemma 7. Let 0 ≤ ci ≤ 1 and let ui be given by the force-flux relations in (1) satisfying∑n
i=1 ciui = 0. Then there exists a constant C > 0, only depending on (Dij) such that

n∑

i=1

ci|ui|2 ≤ C

n∑

i=1

|∇√
ci|2.

Proof. It follows from (12) and the symmetry of A(c), defined in (10), that

4
n∑

i=1

|∇√
ci|2 =

n∑

i=1

∣∣∣∣
n∑

j=1

Aij(c)
√
cjuj

∣∣∣∣
2

=
n∑

i,j=1

√
ciui(A(c)

2)ij
√
cjuj.
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Since the eigenvalues of A(c)2 are the square of the eigenvalues of A(c), we deduce from
(23) that zTA(c)2z ≥ µ2|PLz|2 for all z ∈ R

n. This yields

4
n∑

i=1

|∇√
ci|2 ≥ µ2|PL(

√
ciui)i=1,...,n|2.

Because of
∑n

i=1

√
ci(

√
ciui) = 0, we have (

√
ciui)i ∈ L and hence, PL(

√
ciui)i = (

√
ciui)i.

The statement of the lemma follows after setting C = 4/µ2. �

3.2. Relative entropy inequality. We first derive a relative entropy inequality via a
formal computation. Using (5) and (1), we obtain

d

dt
H(c|c̄) =

n∑

i=1

∫

Ω

(
log

ci
c̄i
∂tci +

(
1− ci

c̄i

)
∂tc̄i

)
dx(25)

=
n∑

i=1

∫

Ω

(
∇ log

ci
c̄i

· (ciui)−∇ log
ci
c̄i

· (ciūi)
)
dx

=
n∑

i=1

∫

Ω

ci∇(log ci − log c̄i) · (ui − ūi)dx.

To reformulate the integrand of the right-hand side, we insert the second equation of (1),
and use the symmetry of (Dij):

n∑

i=1

ci∇(log ci − log c̄i) · (ui − ūi) = −
n∑

i=1

ci(ui − ūi) ·
∑

j 6=i

1

Dij

(
cj(ui − uj)− c̄j(ūi − ūj)

)

= −
n∑

i=1

ci(ui − ūi) ·
∑

j 6=i

cj
Dij

(
(ui − ūi)− (uj − ūj)

)

−
n∑

i,j=1, i 6=j

1

Dij

ci(ui − ūi) ·
(
(cj − c̄j)(ūi − ūj)

)
(26)

= −
n∑

i,j=1, i 6=j

cicj
2Dij

∣∣(ui − ūi)− (uj − ūj)
∣∣2 −

n∑

i,j=1, i 6=j

ci
Dij

(cj − c̄j)(ui − ūi) · (ūi − ūj).

This shows that

d

dt
H(c|c̄) + 1

2

n∑

i,j=1, i 6=j

∫

Ω

cicj
Dij

∣∣(ui − ūi)− (uj − ūj)
∣∣2dx(27)

= −
n∑

i,j=1, i 6=j

∫

Ω

ci
Dij

(cj − c̄j)(ui − ūi) · (ūi − ūj)dx.

Our aim is to make this computation rigorous. Since the computation in (26) is purely
algebraic, it holds without any regularity restrictions. In principle, one would expect that
(27) holds under the condition that all the terms are well defined, which would cover the
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class of weak solutions subject to the condition ui ∈ L∞ (to ensure integrability of the
right-hand side). However, we have not been able to establish (25) for such a class of
solutions, and stricter conditions on one of the solutions are required.

Lemma 8. Let c be a weak solution to (1)–(2) and let c̄ be a strong solution to (1)–(2)
satisfying 0 < c̄i(t) < 1 in Ω, the regularity

log c̄i ∈ L2
loc(0,∞;H1(Ω)), ∂t log c̄i ∈ L2

loc(Ω× (0,∞)), ūi ∈ L∞
loc(0,∞;L∞(Ω)),

and the entropy identity

(28) H(c̄(t)) +
n∑

i,j=1

1

2

∫ t

0

∫

Ω

c̄ic̄j
Dij

|ui − ūi|2dxds = H(c̄0) for t > 0.

Then

H(c(t)|c̄(t)) +
n∑

i,j=1

∫ t

0

∫

Ω

Aij(c)(
√
ci(ui − ūi)) · (

√
cj(uj − ūj))dxds

≤ H(c0|c̄0)−
n∑

i,j=1, i 6=j

∫ t

0

∫

Ω

ci
Dij

(cj − c̄j)(ui − ūi) · (ūi − ūj)dxds.(29)

Proof. Since

H(c|c̄) = H(c)−H(c̄)−
∫

Ω

n∑

i=1

(ci − c̄i) log c̄idx,

we need to formulate the time evolution of each of these terms. According to Theorem 5,
the weak solution c satisfies ∇√

ci,
√
ciui ∈ L2

loc(0,∞;L2(Ω)) and

H(c(t)) +
1

2

n∑

i,j=1

∫ t

0

∫

Ω

cicj
Dij

|ui − uj|2dxds ≤ H(c0) for t > 0.

The symmetry of (Dij) and the force-flux relations in (1) give

n∑

i=1

ciui · ∇ log ci = −
n∑

i,j=1

ciui ·
cj
Dij

(ui − uj) = −1

2

n∑

i,j=1

cicj
Dij

|ui − uj|2,

and we formulate the entropy inequality as

(30) H(c(t))−H(c0) ≤
n∑

i=1

∫ t

0

∫

Ω

ciui · ∇ log cidxds for t > 0.

The expression ciui ·∇ log ci has to be understood as 2∇√
ci · (

√
ciui), which is well defined

since ∇√
ci,

√
ciui ∈ L2(Ω × (0, T )) (see Lemma 7). In a similar way, we express the

entropy identity (28) as

(31) H(c̄(t))−H(c̄0) =
n∑

i=1

∫ t

0

∫

Ω

c̄iūi · ∇ log c̄idxds for t > 0.
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Next, the difference of the weak formulations for c and c̄ gives
∫

Ω

(ci − c̄i)(t)φi(t)dx−
∫

Ω

(c0i − c̄0i )φi(0)dx

=

∫ t

0

∫

Ω

(ci − c̄i)∂tφidxds+

∫ t

0

∫

Ω

(ciui − c̄iūi) · ∇φidxds

for test functions φi ∈ C1
loc([0,∞);C1(Ω)). Using a density argument we see that the test

function φi can be taken in the class H1(Ω × (0, T )) for T > 0, in which case φi(t), φi(0)
are well defined by the trace theorem. Selecting φi = log c̄i, we obtain

∫

Ω

(ci − c̄i)(t) log c̄i(t)dx−
∫

Ω

(c0i − c̄0i ) log c̄
0
i dx(32)

=

∫ t

0

∫

Ω

(ci − c̄i)
∂tc̄i
c̄i
dxds+

∫ t

0

∫

Ω

(ciui − c̄iūi) · ∇ log c̄idxds.

Taking into account the regularity properties of c̄i, we insert ∂tc̄i = − div(c̄iūi) in the third
term and integrate by parts:

∫ t

0

∫

Ω

(ci − c̄i)
∂tc̄i
c̄i
dxds =

∫ t

0

∫

Ω

∇
(
ci
c̄i

)
· (c̄iūi)dxds.

We wish to write the integrand on the right-hand side as

∇
(
ci
c̄i

)
· (c̄iūi) =

(
∇ci −

ci
c̄i
∇c̄i

)
· ūi = ci∇ log

(
ci
c̄i

)
· ūi.

Since ci ≥ 0 only, the expression log ci may be not integrable. Therefore, we define

∇ log

(
ci
c̄i

)
:=

1√
ci
(2∇√

ci −
√
ci∇ log c̄i) if ci > 0

as the product of two functions and ∇ log(ci/c̄i) arbitrary if ci = 0. Although this product
may be not integrable, the expression ci∇ log(ci/c̄i) lies in L

2(Ω×(0, T )) and consequently,
ci∇ log(ci/c̄i) · ūi lies in the same space. Therefore, we can formulate (32) as

∫

Ω

(ci − c̄i)(t) log c̄i(t)dx−
∫

Ω

(c0i − c̄0i ) log c̄
0
i dx(33)

=

∫ t

0

∫

Ω

ci∇ log

(
ci
c̄i

)
· ūidxds+

∫ t

0

∫

Ω

(ciui − c̄iūi) · ∇ log c̄idxds.

Subtracting (31) and (33) from (30) leads to

(34) H(c(t)|c̄(t))−H(c0|c̄0) ≤
n∑

i=1

∫ t

0

∫

Ω

ci∇ log

(
ci
c̄i

)
· (ui − ūi)dxds.

Finally, using (26) and the form (9) of the friction, we obtain (29). �
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3.3. Proof of Theorem 1. We proceed to estimate (29). We set Y = (Y1, . . . , Yn) with
Yi =

√
ci(ui − ūi), i = 1, . . . , n. Then, using (23), we have

(35)
n∑

i,j=1

Aij(c)(
√
ci(ui − ūi)) · (

√
cj(uj − ūj)) = Y TA(c)Y ≥ µ|PLY |2.

It follows from the constraints
∑n

i=1 ciui =
∑n

i=1 c̄iūi = 0 that

(PL⊥Y )i =
n∑

j=1

√
cicj(uj − ūj) =

√
ci

n∑

j=1

(c̄j − cj)ūj,

|PLY |2 = |Y |2 − |PL⊥Y |2 =
n∑

i=1

ci|ui − ūi|2 −
n∑

i=1

ci

∣∣∣∣
n∑

j=1

(cj − c̄j)ūj

∣∣∣∣
2

≥
n∑

i=1

ci|ui − ūi|2 − n‖ū‖L∞

n∑

j=1

(cj − c̄j)
2,

where ‖ū‖L∞ := maxj=1,...,n ‖uj‖L∞(Ω×(0,T )), and we used
∑n

i=1 ci = 1.
We turn to the last term in (29), which is estimated

∣∣∣∣
∫ t

0

∫

Ω

n∑

i,j=1, i 6=j

ci
Dij

(cj − c̄j)(ui − ūi) · (ūi − ūj)dxds

∣∣∣∣(36)

≤
∫ t

0

∫

Ω

n∑

i=1

(√
ci(ui − ūi

)(√
ci

n∑

j=1

|cj − c̄j|
Dij

|ūi − ūj|
)
dxds

≤ 2‖ū‖L∞

mini 6=j Dij

∫ t

0

∫

Ω

( n∑

i=1

ci|ui − ūi|2
)1/2(

n
n∑

j=1

|cj − c̄j|2
)1/2

dxds

≤ µ

2

∫ t

0

∫

Ω

n∑

i=1

ci|ui − ūi|2dxds+ C(µ)

∫ t

0

∫

Ω

n∑

i=1

(ci − c̄i)
2dxds,

where the constant C(µ) > 0 also depends on mini 6=j Dij and ‖ū‖L∞ . Inserting (35)–(36)
into (29) and taking into account Lemma 18 in Appendix B, we find that

H(c(t)|c̄(t)) + µ

2

n∑

i=1

∫ t

0

∫

Ω

ci|ui − ūi|2dxds

≤ H(c0|c̄0) + C(µ)

∫ t

0

∫

Ω

n∑

i=1

(ci − c̄i)
2dxds ≤ H(c0|c̄0) + 2C(µ)

∫ t

0

H(c|c̄)ds,

and an application of Gronwall’s lemma finishes the proof.

3.4. Proof of Corollary 2. In this section, we express the relative entropy via the Bott–
Duffin inverse ABD(c).
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Lemma 9. Let the assumptions of Lemma 8 hold with ūi ∈ L∞
loc(0,∞;L∞(Ω)) replaced

by
√
c̄i ∈ L∞

loc(0,∞;W 1,∞(Ω)). Then, setting Z = (Z1, . . . , Zn) with Zi = ∇√
ci −

(
√
ci/

√
c̄i)∇

√
c̄i for i = 1, . . . , n,

H(c(t)|c̄(t)) + 4
n∑

i,j=1

∫ t

0

∫

Ω

ABD
ij (c)Zi · Zjdxds(37)

≤ H(c0|c̄0) + 4
n∑

i,j=1

∫ t

0

∫

Ω

Zi · ∇
√
c̄j

(√
ci√
c̄i
ABD

ij (c̄)− ABD
ij (c)

√
cj√
c̄j

)
dxds.

Proof. Starting with the relative entropy inequality in the form (34), we express its right-
hand side by using (13):

n∑

i=1

ci∇(log ci − log c̄i) · (ui − ūi)

= −
n∑

i=1

(
∇ci −

ci
c̄i
∇c̄i

)
·

n∑

j=1

(
1√
ci
ABD

ij (c)
1

√
cj
∇cj −

1√
c̄i
ABD

ij (c̄)
1√
c̄j
∇c̄j

)

= −4
n∑

i,j=1

Zi · ABD
ij (c)Zj − 4

n∑

i,j=1

Zi ·
(
ABD

ij (c)

√
cj
c̄j

− ABD
ij (c̄)

√
ci
c̄i

)
∇
√
c̄j,

which gives (37). �

We continue with the proof of Corollary 2. We estimate the two integrals of the relative
entropy inequality (37). The integrand of the second term is estimated, because of (24),
as

(38)
n∑

i,j=1

ABD
ij (c̄)Zi · Zj ≥ λ|PLZ|2.

The definitions of PL and Z yield

(PLZ)i =

(
∇√

ci −
√
ci√
c̄i
∇
√
c̄i

)
−

n∑

j=1

√
cicj

(
∇√

cj −
√
cj√
c̄j
∇
√
c̄j

)

= ∇(
√
ci −

√
c̄i) +

√
c̄i −

√
ci√

c̄i
∇
√
c̄i −

√
ci

n∑

j=1

(
√
c̄j)

2 − (
√
cj)

2

√
c̄j

∇
√
c̄j.

Using Young’s inequality (A + B + C)2 ≥ A2/2− 4B2 − 4C2 and the bounds c̄i ≥ m and√
ci +

√
c̄i ≤ 2, we infer that

|PLZ|2 ≥
n∑

i=1

(
1

2
|∇(

√
ci −

√
c̄i)|2 − 4

∣∣∣∣
√
c̄i −

√
ci√

c̄i
∇
√
c̄i

∣∣∣∣
2

− 4

∣∣∣∣
√
ci

n∑

j=1

(
√
c̄j)

2 − (
√
cj)

2

√
c̄j

∇
√
c̄j

∣∣∣∣
2)
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≥ 1

2

n∑

i=1

|∇(
√
ci −

√
c̄i)|2 −

4(n+ 1)

m

n∑

i=1

(
√
ci −

√
c̄i)

2|∇
√
c̄i|2.

With this estimate, (38) becomes, after integration over Ω× (0, t),

4
n∑

i,j=1

∫ t

0

∫

Ω

ABD
ij (c̄)Zi · Zjdxds ≥ 2λ

n∑

i=1

∫ t

0

∫

Ω

|∇(
√
ci −

√
c̄i)|2dxds(39)

− 16(n+ 1)

m
max

j=1,...,n
‖∇

√
c̄j‖2L∞(Ω×(0,T ))

n∑

i=1

∫ t

0

∫

Ω

(
√
ci −

√
c̄i)

2dxds.

Next, we consider the last integral in (37). By Young’s inequality,

4
n∑

i,j=1

∫ t

0

∫

Ω

Zi · ∇
√
c̄j

(√
ci√
c̄i
ABD

ij (c̄)− ABD
ij (c)

√
cj√
c̄j

)
dxds ≤ λ

2

n∑

i=1

∫ t

0

∫

Ω

|Zi|2dxds(40)

+ C max
j=1,...,n

‖∇
√
c̄j‖2L∞(Ω×(0,T ))

n∑

i,j=1

∫ t

0

∫

Ω

(√
ci√
c̄i
ABD

ij (c̄)− ABD
ij (c)

√
cj√
c̄j

)2

dxds,

and the constant C > 0 depends on λ and n. The first term on the right-hand side is
estimated according to

|Zi|2 =
∣∣∣∣∇(

√
ci −

√
c̄i)−

√
ci −

√
c̄i√

c̄i
∇
√
c̄i

∣∣∣∣
2

(41)

≤ 2|∇(
√
ci −

√
c̄i)|2 +

2

m
|√ci −

√
c̄i|2|∇

√
c̄i|2.

To estimate the second term on the right-hand side of (40), we need some preparations.
We write

ABD(c) = PL(A(c) + PL⊥)−1 =
PL adj(A(c) + PL⊥)

det(A(c) + PL⊥)
=:

R(
√
c)

S(
√
c)
,

where “adj” denotes the adjugate matrix. We know that the elements of A(c), PL, and
PL⊥ are polynomials of

√
c. Therefore, R(

√
c) and S(

√
c) are also polynomials of

√
c.

Any eigenvalue of A(c) is also an eigenvalue of A(c) + PL⊥ (since L⊥ = kerA(c)). As
A(c) has the eigenvalue 0 with eigenvector

√
c, A(c) + PL⊥ has the eigenvalue 1 with the

same eigenvector. Moreover, all other eigenvalues of A(c) + PL⊥ are larger than or equal
to µ. Since the determinant of a matrix is the product of its eigenvalues, we conclude that
S(

√
c) ≥ µn−1 > 0. This shows that S(

√
c) is uniformly bounded from below. Thus, we

can estimate as follows, denoting the elements of the matrix R(
√
c) by Rij(

√
c):

∣∣∣∣
√
ci√
c̄i
ABD

ij (c̄)− ABD
ij (c)

√
cj√
c̄j

∣∣∣∣ =
∣∣∣∣
√
ciRij(

√
c̄)

√
c̄iS(

√
c̄)

−
Rij(

√
c)
√
cj

S(
√
c)
√
c̄j

∣∣∣∣

=
1

S(
√
c)S(

√
c̄)
√
c̄ic̄j

∣∣(√ciS(
√
c)−

√
c̄iS(

√
c̄)
)
Rij(

√
c̄)
√
c̄j

−
(
Rij(

√
c)
√
cj −Rij(

√
c̄)
√
c̄j
)√

c̄iS(
√
c̄)
∣∣
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≤ C(m)
n∑

i=1

|√ci −
√
c̄i|,

where C(m) > 0 depends on the Lipschitz constants of the polynomials
√
ciRij(

√
c) and√

ciS(
√
c). Inserting this estimate into (40), we obtain

4
n∑

i,j=1

∫ t

0

∫

Ω

Zi · ∇
√
c̄j

(√
ci√
c̄i
ABD

ij (c̄)− ABD
ij (c)

√
cj√
c̄j

)
dxds(42)

≤ λ
n∑

i=1

∫ t

0

∫

Ω

|∇(
√
ci −

√
c̄i)|2dxds+ C

n∑

i=1

∫ t

0

∫

Ω

(
√
ci −

√
c̄i)

2dxds,

where C > 0 also depends on the L∞ norm of ∇√
c̄i through (41).

Finally, we use estimates (39) and (42) in the relative entropy inequality (37), together
with Lemma 18 in Appendix B, to find that

H(c(t)|c̄(t)) + λ

n∑

i=1

∫ t

0

∫

Ω

|∇(
√
ci −

√
c̄i)|2dxds

≤ C

n∑

i=1

∫ t

0

∫

Ω

(
√
ci −

√
c̄i)

2dxds ≤ C

n∑

i=1

∫ t

0

H(c|c̄)ds,

and an application of Gronwall’s lemma finishes the proof.

Remark 10 (Nonhomogeneous total mass). The condition
∑n

i=1 c
0
i (x) = 1 for x ∈ Ω on

the initial total mass can be relaxed to
∑n

i=1 c
0
i (x) = M(x) for x ∈ Ω and some strictly

positive function M ∈ L∞(Ω). In this situation, the force-flux relations in (1) change to

∇ci −
ci∑n
j=1 cj

n∑

j=1

∇cj = −
n∑

j=1, j 6=i

cicj
Dij

(ui − uj), i = 1, . . . , n.

Notice that the total mass
∑n

j=1 cj = M is preserved in time. The previous equation can

be expressed in terms of the matrix A(c), defined in (10), by

n∑

j=1

(PL)ij∇
√
cj = −

n∑

j=1

Aij(c)
√
ciuj,

where the projection matrix PL is now given by (PL)ij = δij −√
cicj/M(x), i, j = 1, . . . , n.

Lemma 4 still holds in this situation with α ≤ infx∈ΩM(x)mini 6=j(1/Dij). The relative
entropy inequalities (29) and (37) do not depend on the assumption

∑n
i=1 ci = 1 such that

the relative entropy inequalities in Theorem 1 and Corollary 2 still hold but with constants
depending on M . �
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4. Weak-strong uniqueness for generalized Maxwell–Stefan systems

We consider the generalized Maxwell–Stefan system (16)–(17). First, we rewrite (17) in
terms of the Bott–Duffin inverse of B(c). To this end, we recall the definition of (PL)ij =
δij −√

cicj and rewrite the right-hand side of (17),

ci∇h′i(ci)− ci

n∑

j=1

cj∇h′j(cj) =
√
ci

(√
ci∇h′i(ci)−

n∑

j=1

√
cicj

√
cj∇h′j(cj)

)

=
√
ci

n∑

j=1

(PL)ij
√
cj∇h′j(cj),

as well as the left-hand side of (17), using definition (18) of B(c),

−
n∑

j=1

Kij(c)cjuj = −√
ci

n∑

j=1

Bij(c)
√
cjuj, i = 1, . . . , n,

showing that (17) is equivalent to

−
n∑

j=1

Bij(c)
√
cjuj =

n∑

j=1

(PL)ij
√
cj∇h′j(cj), i = 1, . . . , n.

We prove in Lemma 11 below that the Bott–Duffin inverse BBD(c) of B(c) exists. Thus,
we can invert the previous system:

√
ciui = −

n∑

j=1

(BBD(c)PL)ij
√
cj∇h′j(cj) = −

n∑

j=1

BBD
ij (c)

√
cj∇h′j(cj),

where we have used the relation BBD(c)PL = BBD(c) (see (81) in Appendix A). This
equation generalizes (13). We conclude that system (16)–(17) can be written as

(43) ∂tci = div

( n∑

j=1

√
ciB

BD
ij (c)

√
cj∇h′j(cj)

)
, i = 1, . . . , n.

4.1. Properties of the matrix B(c). We prove the following lemma.

Lemma 11. Let Assumptions (B1)–(B4) hold for B(c), defined in (18). Then the Bott–
Duffin inverse BBD(c) = PL(B(c)PL + PL⊥)−1 of B(c) exists, is symmetric and satisfies
the following properties:

• Let s > 0. Then the elements BBD
ij (c) are bounded and Lipschitz continuous for all

c ∈ [s, 1]n.
• Let m > 0. Then there exists λ(m) > 0 such that for all z ∈ R

n and c ∈ [m, 1]n,

(44) zTBBD(c)z ≥ λ(m)|PLz|2.
• The matrix BBD(c) satisfies for all z ∈ R

n and c ∈ [0, 1]n,

(45) zTBBD(c)z ≤ 1

µ
|z|2,
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recalling that µ > 0 is a lower bound for the nonzero eigenvalues of B(c); see
Assumption (B4).

Proof. Assumption (B1) and Lemma 16 (ii) in Appendix A imply that

ker(B(c)PL + PL⊥) = ker(B(c)PL) ∩ L = L⊥ ∩ L = {0}.
Hence, B(c)PL+PL⊥ is invertible and the Bott–Duffin inverse is well defined and symmet-
ric.
We continue by studying the eigenvalues of B(c)PL + PL⊥ . A computation shows that

for
√
c ∈ ker(B(c)PL) = L⊥ we have (B(c)PL + PL⊥)

√
c = PL⊥

√
c =

√
c, i.e.,

√
c is an

eigenvector of B(c)PL+PL⊥ with eigenvalue 1. Let ξ /∈ L⊥, ξ 6= 0, be another eigenvector,

(B(c)PL + PL⊥)ξ = ρξ.

Then ρ 6= 0. Applying PL on both sides, we obtain PLB(c)PLξ = B(c)(PLξ) = ρPLξ, i.e.,
PLξ 6= 0 is an eigenvector of B(c) with eigenvalue ρ. Due to Assumption (B4), we conclude
that ρ ≥ µ > 0.
We claim that the elements BBD

ij (c) are bounded and Lipschitz continuous for all c ∈
[s, 1]n. Indeed, observe that

(46) BBD(c) = PL(B(c)PL + PL⊥)−1 =
PL adj(B(c)PL + PL⊥)

det(B(c)PL + PL⊥)
,

where “adj” denotes the adjugate. Since the determinant of a matrix is the product of
its eigenvalues, det(B(c)PL + PL⊥) ≥ µn−1 > 0 and the denominator in (46) is bounded
from below. Assumption (B2) implies that the elements of B(c) are bounded. Hence, all
elements of adj(B(c)PL+PL⊥) are bounded too. We conclude from (46) that the elements
of BBD(c) are bounded. Since the product of Lipschitz continuous functions is Lipschitz
continuous, Assumption (B2) further implies that the elements of BBD(c) are Lipschitz
continuous for all c ∈ [s, 1]n for any s > 0.
We wish to verify (44). Since the spectral radius r of a matrix is bounded by its Frobenius

norm ‖ · ‖F and the Frobenius norm is submultiplicative, we have

r(B(c)PL + PL⊥) ≤ ‖B(c)PL + PL⊥‖F ≤ ‖B(c)PL‖F + ‖PL⊥‖F
≤ ‖B(c)‖F‖PL‖F + ‖PL⊥‖F .

The Frobenius norms of PL and PL⊥ are estimated according to

‖PL‖2F =
n∑

i,j=1

(δij −
√
cicj)

2 ≤
n∑

i,j=1

1 = n2,

‖PL⊥‖2F =
n∑

i,j=1

(
√
cicj)

2 =

( n∑

i=1

ci

)2

= 1.

Assumption (B3) guarantees that ‖B(c)‖F ≤ γ(m). This shows that r(B(c)PL + PL⊥) ≤
γ(m)n + 1. We infer that the smallest eigenvalue of (B(c)PL + PL⊥)−1 is larger than
λ(m) := 1/(γ(m)n+ 1) proving (44).
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It remains to prove (45). First, we show that the nonzero eigenvalues of B(c) and
BBD(c) are reciprocal to each other. Let ℓ ∈ R be a nonzero eigenvalue of BBD(c).
Then the corresponding eigenvector y ∈ L satisfies BBD(c)y = ℓy, which is PL(B(c)PL +
PL⊥)−1y = ℓy. Hence, z := (B(c)PL + PL⊥)−1y satisfies PLz = ℓ(B(c)PL + PL⊥)z.
Applying PL on both sides yields PLz = ℓPLB(c)PLz = ℓB(c)PLz. Thus, PLz is an
eigenvector of B(c) with eigenvalue 1/ℓ. Similarly, we can reverse the above argument and
verify that if z is a nonzero eigenvector of B(c) with eigenvalue ℓ, then (B(c)PL+PL⊥)z is
an eigenvector of BBD(c) with eigenvalue 1/ℓ. We conclude that the largest eigenvalue of
BBD(c) is the reciprocal of the smallest eigenvalue of B(c), and Assumption (B4) implies
that zTBBD(c)z ≤ |z|2/µ for all z ∈ R

n. �

4.2. Weak and strong solutions. We call c a weak solution to (2), (16)–(17) if

ci ∈ C0
loc([0,∞);V ′) ∩ L2

loc(0,∞;H1(Ω)), i = 1, . . . , n,

where V ′ is the dual space of V = {w ∈ H2(Ω) : ∇w · ν = 0 on ∂Ω}, it holds for any test
function φi ∈ C1

loc([0,∞);C1(Ω)) with ∇φi · ν = 0 on ∂Ω and all t > 0 that
∫

Ω

ci(t)φi(t)dx−
∫

Ω

c0iφi(0)dx−
∫ t

0

∫

Ω

ci∂tφidxds

+
n∑

j=1

∫ t

0

∫

Ω

√
ciB

BD
ij (c)

√
cj∇h′j(cj) · ∇φidxds = 0, i = 1, . . . , n,

and the entropy dissipation inequality

(47) H(c(t)) +
n∑

i,j=1

∫ t

0

∫

Ω

√
cicjB

BD
ij (c)∇h′i(ci) · ∇h′j(cj)dxds ≤ H(c0)

is satisfied for t > 0.
Furthermore, we call c̄ a strong solution to (2), (16)–(17) if ci ∈ C1

loc([0,∞);C1(Ω))
for i = 1, . . . , n, if (2), (16)–(17) are satisfied pointwise, and the entropy identity (20) is
fulfilled.

4.3. Relative entropy inequality. The partial free energies hi(ci) and pressures pi(ci)
are associated through (19). Define the associated relative free energy density and relative
pressure via

(48)
hi(ci|c̄i) := hi(ci)− hi(c̄i)− h′i(c̄i)(ci − c̄i),

pi(ci|c̄i) := pi(ci)− pi(c̄i)− p′i(c̄i)(ci − c̄i).

We prove a relative entropy inequality associated to the generalized Maxwell–Stefan sys-
tem.

Lemma 12. Let c be a weak solution to (2), (16)–(17) and let c̄ be a strong solution to
(2), (16)–(17) satisfying

h′i(c̄i) ∈ L2
loc(0,∞;H2(Ω)), h′′i (c̄i) ∈ L∞

loc(0,∞;L∞(Ω)), ∂tc̄i ∈ L2
loc(0,∞;L2(Ω)).
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Then the following relative entropy inequality holds:

H(c(t)|c̄(t))−H(c0|c̄0) +
n∑

i,j=1

∫ t

0

∫

Ω

BBD
ij (c)Yi · Yjdxds

≤ −
n∑

i,j=1

∫ t

0

∫

Ω

(
BBD

ij (c)
√
cj −

√
ciB

BD
ij (c̄)

√
c̄j√

c̄i

)
Yj · ∇h′j(c̄j)dxds

+
n∑

i=1

∫ t

0

∫

Ω

pi(ci|c̄i) div
( n∑

j=1

BBD
ij (c̄)

√
c̄j√
c̄i
∇h′j(c̄j)

)
dxds,(49)

where

(50) Yi =
√
ci∇(h′i(ci)− h′i(c̄i)), i = 1, . . . , n.

Note that the definition for Yi differs from that one used in Section 3.

Proof. We proceed as in the proof of Lemma 9, but re-arrange the terms in a different
fashion. The difference ci − c̄i satisfies the weak formulation

0 =

∫

Ω

(ci − c̄i)(t)φi(t)dx−
∫

Ω

(c0i − c̄0i )φi(0)dx−
∫ t

0

∫

Ω

(ci − c̄i)∂tφidxds

+
n∑

j=1

∫ t

0

∫

Ω

(√
ciB

BD
ij (c)

√
cj∇h′j(cj)−

√
c̄iB

BD
ij (c̄)

√
c̄j∇h′j(c̄j)

)
· ∇φidxds

for i = 1, . . . , n. We wish to use φi = h′i(c̄i) as a test function. Strictly speaking, this is
not possible, but, as in the proof of Lemma 8, we can use a density argument. Then, using
(43) for the third term and adding over i = 1, . . . , n, we obtain

(51)

0 =
n∑

i=1

∫

Ω

(ci − c̄i)(t)h
′
i(c̄i(t))dx−

n∑

i=1

∫

Ω

(c0i − c̄0i )h
′
i(c̄i0)dx

−
n∑

i=1

∫ t

0

∫

Ω

(ci − c̄i)h
′′
i (ci) div

( n∑

j=1

√
c̄iB

BD
ij (c̄)

√
c̄j∇h′j(c̄j)

)
dxds

+
n∑

i,j=1

∫ t

0

∫

Ω

(√
ciB

BD
ij (c)

√
cj∇h′j(cj)−

√
c̄iB

BD
ij (c̄)

√
c̄j∇h′j(c̄j)

)
· ∇h′i(c̄i)dxds.

Subtracting (51) and the entropy identity (20) for c̄ from the entropy inequality (47) for
c, we find that

H(c(t)|c̄(t)) ≤ H(c0|c̄0)−
n∑

i,j=1

∫ t

0

∫

Ω

BBD
ij (c)

√
cicj∇(h′i(ci)− h′i(c̄i)) · ∇h′j(cj)dxds

−
n∑

i=1

∫ t

0

∫

Ω

(ci − c̄i)h
′′
i (c̄i) div

( n∑

j=1

√
c̄iB

BD
ij (c̄)

√
c̄j∇h′j(c̄j)

)
dxds.(52)
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In turn, using (50), this is rewritten as

H(c(t)|c̄(t))−H(c0|c̄0) +
n∑

i,j=1

∫ t

0

∫

Ω

BBD
ij (c)Yi · Yjdxds

≤ −
n∑

i,j=1

∫ t

0

∫

Ω

(
BBD

ij (c)
√
cj −

√
ciB

BD
ij (c̄)

√
c̄j√
c̄i

)
Yi · ∇h′j(c̄j)dxds

−
n∑

i,j=1

∫ t

0

∫

Ω

√
ciB

BD
ij (c̄)

√
c̄j√
c̄i
Yi · ∇h′j(c̄j)dxds

−
∫ t

0

∫

Ω

n∑

i=1

(ci − c̄i)c̄ih
′′
i (c̄i) div

( n∑

j=1

BBD
ij (c̄)

√
c̄j√
c̄i
∇h′j(c̄j)

)
dxds

−
∫ t

0

∫

Ω

n∑

i=1

(ci − c̄i)h
′′
i (c̄i)∇c̄i ·

n∑

j=1

BBD
ij (c̄)

√
c̄j√
c̄i
∇h′j(c̄j)dxds

=: J1 + J2 + J3 + J4.

The sum J2 + J4 becomes

J2 + J4 = −
∫ t

0

∫

Ω

n∑

i=1

(
ci∇h′i(ci)− c̄i∇h′i(c̄i)

)
·

n∑

j=1

BBD
ij (c̄)

√
c̄j√
c̄i
∇h′j(c̄j)dxds

=

∫ t

0

∫

Ω

n∑

i=1

(pi(ci)− pi(c̄i)) div

( n∑

j=1

BBD
ij (c̄)

√
c̄j√
c̄i
∇h′j(c̄j)

)
dxds.

Combining this expression with J3 and using definition (48) finally leads to (49). �

4.4. The entropy dissipation structure. We state an auxiliary lemma that provides
some control of the entropy inequality (47) and the relative entropy inequality (49).

Lemma 13. Let c be a weak solution and c̄ be a strong solution to (2), (16)–(17), satisfying
the hypotheses of Lemma 12 and c̄i(t) ≥ m in Ω, t > 0 for some constant m > 0.

(i) Assume that ci ≥ m/2 for all i = 1 . . . , n and let Zi =
√
ci∇h′i(ci). Then, for some

constant β(m) > 0, we have

(53)
n∑

i,j=1

BBD
ij (c)Zi · Zj ≥ 2β(m)

n∑

i=1

|∇ci|2.

(ii) Assume that ci ≥ m/2 for all i = 1, . . . , n and let Yi =
√
ci∇(h′i(ci)−h′i(c̄i)). Then,

for some β(m) > 0 and C > 0, we have

(54)
n∑

i,j=1

BBD
ij (c)Yi · Yj ≥ β(m)

n∑

i=1

|∇ci −∇c̄i|2 − C

n∑

i=1

|ci − c̄i|2.
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(iii) Let the weak solution c satisfy (47) and set

(55) c∗(x, t) := min
i=1,...,n

ci(x, t).

Then

(56) H(c(t)) + 2β(m)

∫ t

0

∫

Ω

1{c∗>m/2}

n∑

i=1

|∇ci|2dxds ≤ H(c0).

Note that (56) provides a partial control of the gradients, which however might degen-
erate as m tends to zero.

Proof. Proof of (i). Inequality (44) in Lemma 11 implies that
n∑

i,j=1

BBD
ij (c)Zi · Zj ≥ λ(m/2)|PLZ|2 = λ(m/2)ZTP T

L PLZ(57)

= λ(m/2)
n∑

i,j=1

(PL)ijZi · Zj.

Before we can estimate the right-hand side, we need some preparations.
We define the vector c̃ := (c1, . . . , cn−1) without the last component and define the

entropy density in n− 1 variables according to

h̃(c̃) =
n−1∑

i=1

hi(ci) + hn

(
1−

n−1∑

j=1

cj

)
.

Its partial derivative is given by

h̃′i(c̃) :=
∂h̃(c̃)

∂ci
= h′i(ci)− h′n

(
1−

n−1∑

j=1

cj

)
, i = 1, . . . , n− 1.

Next, introduce the matrix E(c) with elements

Eij(c) = (PL)ij
√
cicj = ciδij − cicj =

{
ci − c2i if i = j.

−cicj if i 6= j.

The sum of its rows and columns vanishes,
∑n

j=1Eij(c) =
∑n

i=1Eij(c) = 0. We deduce

from the symmetry of E(c) that for all zi ∈ R
d,

n∑

i,j=1

Eij(c)zi · zj =
n∑

i=1

zi ·
( n−1∑

j=1

Eij(c)zj + Ein(c)zn

)
=

n∑

i=1

zi ·
n−1∑

j=1

Eij(c)(zj − zn)

=
n−1∑

i=1

zi ·
n−1∑

j=1

Eij(c)(zj − zn) + zn ·
n−1∑

j=1

Enj(c)(zj − zn)

=
n−1∑

i,j=1

Eij(c)(zi − zn) · (zj − zn).
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Choosing zi = ∇h′i(ci) and observing that Zi =
√
cizi, we rewrite the right-hand side of

(57):

n∑

i,j=1

(PL)ijZi · Zj =
n−1∑

i,j=1

Eij(c)(zi − zn) · (zj − zn)

=
n−1∑

i,j=1

Eij(c)∇h̃′i(c̃) · ∇h̃′j(c̃).

Introducing the matrix Q(c̃) with elements Qij(c̃) = ∂2h̃(c̃)/∂ci∂cj for i, j = 1, . . . , n− 1,
this expression becomes

n∑

i,j=1

(PL)ijZi · Zj =
n−1∑

i,j,k,ℓ=1

Eij(c)Qik(c̃)∇ck ·Qjℓ(c̃)∇cℓ.(58)

We claim that there exists ζ(m) > 0 such that for all y ∈ R
n−1,

(59) yT
(
Q(c̃)TE(c)Q(c̃)

)
y ≥ ζ(m)|y|2.

Then, letting y = ∇c in (59) and using (57) and (58) leads to (53) with β(m) =
ζ(m)λ(m/2)/2. The proof of (59) proceeds in several steps.
Consider first the matrix Q(c̃). Let η := mini=1,...,n minm/2≤ci≤1 h

′′
i (ci) > 0 and ξ ∈ R

n−1

and compute

Qij(c̃) = h′′i (ci)δij + h′′n

(
1−

n−1∑

k=1

ck

)
,

ξTQξ =
n−1∑

j=1

h′′j (cj)ξ
2
j + h′′n

(
1−

n−1∑

k=1

ck

)
(ξ1 + · · ·+ ξn−1)

2 ≥ η

2
|ξ|2.

This implies that Q(c̃) is positive definite with eigenvalues larger than or equal to η/2.

Consider next the (n− 1)× (n− 1) submatrix P̃L = ((PL)ij)i,j=1,...,n−1 of PL and note that
for ξ ∈ R

n−1, we have

ξT P̃Lξ = |ξ|2 − (ξ ·
√
c̃)2 ≥ |ξ|2 − |ξ|2(c1 + · · ·+ cn−1) = cn|ξ|2 ≥

m

2
|ξ|2.

Finally, let Ẽ(c) be the first (n− 1)× (n− 1) submatrix of E(c). Then Ẽ(c) = ST P̃LS
with S = diag(

√
c1, . . . ,

√
cn−1) and, for all y ∈ R

n−1,

yT Ẽ(c)y = (Sy)T P̃L(Sy) ≥
m

2
|Sy|2 = m

2

n−1∑

i=1

ciy
2
i ≥ m2

4

n∑

i=1

y2i ,

i.e., the eigenvalues of Ẽ(c) are larger than or equal to m2/4. Since Ẽ(c) − (m2/8)In−1,
with In−1 is the unit matrix on R

(n−1)×(n−1), and Q(c̃) are symmetric and positive definite,



26 X. HUO, A. JÜNGEL, AND A. TZAVARAS

we deduce that

Q(c̃)T Ẽ(c)Q(c̃) ≥ Q(c̃)T
m2

8
In−1Q(c̃) ≥

m2η2

32
In−1 .

This proves (59) with ζ(m) = m2η2/32.
Proof of (ii). Inequality (44) in Lemma 11 implies that

(60)
n∑

i,j=1

BBD
ij (c)Yi · Yj ≥ λ(m/2)|PLY |2 = λ(m/2)

n∑

i,j=1

(PL)ijYi · Yj.

Similarly as the derivation of (58), we compute

n∑

i,j=1

(PL)ijYi · Yj =
n−1∑

i,j,k,ℓ=1

Eij(c)
(
Qik(c̃)∇ck −Qik(˜̄c)∇c̄k

)
·
(
Qjℓ(c̃)∇cℓ −Qjℓ(˜̄c)∇c̄ℓ

)

=
n−1∑

i,j,k,ℓ=1

Eij(c)
(
Qik(c̃)∇(ck − c̄k) + (Qik(c̃)−Qik(˜̄c))∇c̄k

)

×
(
Qjℓ(c̃)∇(cℓ − c̄ℓ) + (Qjℓ(c̃)−Qjℓ(˜̄c))∇c̄ℓ

)
.

We remark that if E is any symmetric positive definite matrix, then for any z1, z2 ∈ R
n,

the Cauchy–Schwarz and Young’s inequalities show that

(z1 + z2)
TE(z1 + z2) = zT

1 Ez1 + zT
1 Ez2 + zT

2 Ez1 + zT
2 Ez2

≥ zT
1 Ez1 −

√
zT
1 Ez1 ·

√
zT
2 Ez2 −

√
zT
1 Ez1 ·

√
zT
2 Ez2 + zT

2 Ez2

≥ zT
1 Ez1 −

1

2
zT
1 Ez1 − 2zT

2 Ez2 + zT
2 Ez2 =

1

2
zT
1 Ez1 − zT

2 Ez2.

Using this inequality, (58) is estimated as

n∑

i,j=1

(PL)ijYi · Yj ≥
1

2

n−1∑

i,j,k,ℓ=1

Eij(c)Qik(c̃)Qjℓ(c̃)∇(ck − c̄k) · ∇(cℓ − c̄ℓ)(61)

−
n−1∑

i,j,k,ℓ=1

Eij(c)
(
(Qik(c̃)−Qik(˜̄c))∇c̄k

)
·
(
(Qjℓ(c̃)−Qjℓ(˜̄c))∇c̄ℓ

)
=: J5 + J6.

We infer from (59) that

(62) J5 ≥
1

2
ζ(m)

n−1∑

i=1

|∇(ci − c̄i)|2.

It follows from ∇cn = −∑n−1
k=1 ∇ck that

|∇(cn − c̄n)|2 =
∣∣∣∣
n−1∑

k=1

∇(ck − c̄k)

∣∣∣∣
2

≤ (n− 1)
n−1∑

k=1

|∇(ck − c̄k)|2,
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n∑

k=1

|∇(ck − c̄k)|2 ≤ n
n−1∑

k=1

|∇(ck − c̄k)|2.

Inserting these estimates into (62) yields finally

(63) J5 ≥
ζ(m)

2n

n∑

i=1

|∇(ci − c̄i)|2.

The estimate of the term J2 is easier. Since Eij(c) is bounded and the Hessian Q(c̃) =

D2h̃ is Lipschitz continuous,

J6 ≤ C

n−1∑

i,k=1

(Qik(c̃)−Qik(˜̄c))2|∇c̄k|2 ≤ C

n−1∑

i=1

(ci − c̄i)
2|∇c̄i|2 ≤ C

n−1∑

i=1

(ci − c̄i)
2.

Combining the above inequality with (63) and (61) gives

n∑

i,j=1

(PL)ijYi · Yj ≥
ζ(m)

2n

n∑

i=1

|∇(ci − c̄i)|2 − C
n−1∑

i=1

(ci − c̄i)
2.

We conclude (54) after inserting the previous estimate into (60).
Proof of (iii). Let c∗(x, t) be defined by (55) and split the domain of integration into

the two subdomains

Ω× (0, t) =

{
c∗ >

m

2

}
∪
{
c∗ ≤

m

2

}
.

By Lemma 11, the matrix BBD(c) is symmetric and positive semi-definite. Using (53), the
entropy inequality (47) yields (56). �

4.5. Proof of Theorem 3. Lemma 12 suggests that the relative entropy inequality can
be expressed in two ways, using either (52) or (49):

H(c|c̄)(t) ≤ H(c0|c̄0) +
∫ t

0

∫

Ω

(I1 + I2)dxds

= H(c0|c̄0) +
∫ t

0

∫

Ω

(I3 + I4 + I5)dxds,(64)

where

I1 = −
n∑

i,j=1

BBD
ij (c)

√
cicj∇(h′i(ci)− h′i(c̄i)) · ∇h′j(cj),

I2 = −
n∑

i=1

(ci − c̄i)h
′′
i (c̄i) div

( n∑

j=1

√
c̄iB

BD
ij (c̄)

√
c̄j∇h′j(c̄j)

)
,

I3 = −
n∑

i,j=1

Yi ·BBD
ij (c)Yj,
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I4 = −
n∑

i,j=1

Yi ·
(
BBD

ij (c)
√
cj −

√
ciB

BD
ij (c̄)

√
c̄j√

c̄i

)
∇h′j(c̄j),

I5 =
n∑

i,j=1

pi(ci|c̄i) div
(
BBD

ij (c̄)
√
c̄j√

c̄i
∇h′j(c̄j)

)
,

and Yi =
√
ci∇(h′i(ci)− h′i(c̄i)), i = 1, . . . , n.

Step 1: Preparations. Recall that we have assumed that c̄i(x, t) ≥ m for x ∈ Ω, t >
0 for some m > 0. Let c∗(x, t) := mini=1,...,n ci(x, t). We split the estimations of the
above integrals into two subdomains: one where c∗(x, t) ≤ m/2 and another one where
c∗(x, t) > m/2. To this end, we use a cutoff function. Let ε > 0 be sufficiently small
and ψ : [0, 1] → [0, 1] be a C2-function, which takes the values ψ = 0 on [0,m/2], ψ = 1
on [m/2 + ε, 1], and ψ ∈ (0, 1) on the complementary interval (m/2,m/2 + ε). Define
χ(c) : Rn → [0, 1] by

(65) χ(c) :=
n∏

i=1

ψ(ci) =





1 if m/2 + ε ≤ ci ≤ 1 for all i = 1, . . . , n,

0 if 0 < ci ≤ m/2 for some i,

α(c) ∈ (0, 1) else.

We employ χ(c) to split the integral (64) into two parts:

H(c|c̄)(t)−H(c0|c̄0) ≤
∫ t

0

∫

Ω

(1− χ(c))(I3 + I4 + I5)dxds(66)

+

∫ t

0

∫

Ω

χ(c)(I3 + I4 + I5)dxds =: JL + JH .

In the sequel, we estimate JL and JH separately.
Step 2: Case c∗(x, t) ≤ m/2 + ε. We estimate the term JL in (66). By replacing p(ci|c̄i)

in I5 by definitions (19) and (48) and tracing backwards the derivation from (52) to (49),
we can express the integral over (1− χ(c)(I3 + I4 + I5) by (1− χ(c)(I1 + I2) except for a
term accounting for the cutoff function:

JL =

∫ t

0

∫

Ω

(1− χ(c))(I1 + I2)dxds(67)

+

∫ t

0

∫

Ω

∇χ(c) ·
n∑

i=1

(pi(ci)− pi(c̄i))
n∑

j=1

BBD
ij (c̄)

√
c̄j√
c̄i
∇h′j(c̄j).

In the sequel, we estimate the right-hand side of (67) term-by-term. To estimate I1,
we set Z = (Z1, . . . , Zn) with Zi :=

√
ci∇h′i(ci), i = 1, . . . , n. By Lemma 11, the matrix

BBD(c) is symmetric and positive semi-definite. Therefore, using Young’s inequality and
the boundedness of BBD(c) (see Assumption (B2)),

I1 = −ZTBBD(c)Z +
n∑

i,j=1

BBD
ij (c)Zi

√
cj∇h′j(c̄j)
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≤ −1

2
ZTBBD(c)Z +

1

2

n∑

i,j=1

BBD
ij (c)(

√
ci∇h′i(c̄i)) · (

√
cj∇h′j(c̄j))

≤ −1

2
ZTBBD(c)Z + C

n∑

i=1

|∇h′i(c̄i)|2,

where C > 0 depends on m and µ (defined in Assumption (B4)). For the term I2, we use
the regularity for c̄i to conclude that

I2 ≤
n∑

i=1

(ci − c̄i)
2 + C

n∑

i,j=1

∣∣h′′i (c̄i) div
(√

c̄iB
BD
ij (c̄)

√
c̄j∇h′j(c̄j)

)∣∣2 ≤
n∑

i=1

(ci − c̄i)
2 + C.

On the set χ(c) < 1, we have c∗(x, t) < m/2 + ε, and there exists ℓ ∈ {1, . . . , n} such that
cℓ(x, t) < m/2 + ε. Thanks to Assumption (H) on page 7, we can apply Lemma 19 to find
that

hi0(ci0 |c̄i0) ≥ κm(ci0 − c̄i0)
2 ≥ κm

(
m

2
− ε

)2

when χ(c) < 1.

We infer that

I2 ≤
n∑

i=1

(ci − c̄i)
2 + C

n∑

i=1

hi(ci|c̄i) ≤ C
n∑

i=1

hi(ci|c̄i).

It remains to estimate the last term in (67), using the fact that ∇χ(c) vanishes outside
the set c∗ ∈ [m/2,m/2 + ε], the Lipschitz continuity of pi(ci), entropy inequality (56) and
Lemma 19:∣∣∣∣

∫ t

0

∫

Ω

∇χ(c) ·
n∑

i=1

(pi(ci)− pi(c̄i))
n∑

j=1

BBD
ij (c̄)

√
c̄j√
c̄i
∇h′j(c̄j)dxds

∣∣∣∣

≤ C

(
max

j=1,...,n
sup

m/2≤cj≤m/2+ε

∣∣∣∣
∂χ

∂cj
(c)

∣∣∣∣
) ∫ t

0

∫

Ω

1{m/2<c∗<m/2+ε}

n∑

i=1

|∇ci|
n∑

j=1

|cj − c̄j|dxds

≤ C

∫ t

0

∫

Ω

1{c∗>m/2}

n∑

i=1

|∇ci|2dxds+ C

∫ t

0

∫

Ω

1{c∗<m/2+ε}

n∑

j=1

|cj − c̄j|2dxds

≤ C +

∫ t

0

∫

Ω

1{c∗<m/2+ε}

n∑

j=1

|cj − c̄j|2dxds

≤ C

∫ t

0

∫

Ω

1{c∗<m/2+ε}

n∑

i=1

hi(ci|c̄i)dxds.

Note that the final constant C, depending on maxj=1,...,n supm/2≤cj≤m/2+ε |(∂χ/∂cj)(c)|, will
blow up if we let ε → 0. Therefore, we fix ε > 0. Combining the previous estimate, we
end up with

(68) JL ≤ −1

2

∫ t

0

∫

Ω

(1− χ(c))ZTBBD(c)Zdxds+ C

∫ t

0

∫

Ω

1{c∗<m/2+ε}

n∑

i=1

hi(ci|c̄i)dxds.
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Step 3: Case c∗(x, t) > m/2. We proceed to estimate the term JH in (66). The range of
integration now consists of the sets {m/2 < c∗ < m/2 + ε}, where 0 < χ(c) < 1, and the
set {m/2 + ε < c∗ ≤ 1}, where χ(c) = 1.
For the term I3, we use (54) in Lemma 13:

−
∫ T

0

∫

Ω

χ(c)I3dxds =

∫ t

0

∫

Ω

χ(c)
n∑

i,j=1

BBD
ij (c)Yi · Yjdxds

≥ β(m)

∫ t

0

∫

Ω

χ(c)
n∑

i=1

|∇(ci − c̄i)|2dxds− C

∫ t

0

∫

Ω

χ(c)
n∑

i=1

|ci − c̄i|2dxds.

By Young’s inequality with δ > 0, the term I4 can be estimated as
∫ t

0

∫

Ω

χ(c)I4dxds ≤ δ
n∑

i=1

∫ t

0

∫

Ω

χ(c)|Yi|2dxds

+
1

4δ

n∑

i,j=1

∫ t

0

∫

Ω

χ(c)

(
BBD

ij (c)
√
cj −

√
ciB

BD
ij (c̄)

√
c̄j√

c̄i

)2

|∇h′j(c̄j)|2dxds.

Recall that we work in the range ci > m/2 and c̄i ≥ m. The boundedness and Lipschitz
continuity of h′′i imply that

n∑

i=1

|Yi|2 =
n∑

i=1

ci|∇(h′i(ci)− h′i(c̄i))|2 ≤
n∑

i=1

ci|h′′i (ci)∇(ci − c̄i) + (h′′i (ci)− h′′i (c̄i))∇c̄i|2

≤ C

n∑

i=1

(
|∇(ci − c̄i)|2 + (ci − c̄i)

2|∇c̄i|2
)
.

Furthermore, the boundedness and Lipschitz continuity of BBD
ij (see Lemma 11) yield

∣∣∣∣B
BD
ij (c)

√
cj −

√
ciB

BD
ij (c̄)

√
c̄j√

c̄i

∣∣∣∣

=

∣∣∣∣Bij(c)
√
cj −BBD

ij (c̄)
√
c̄j +

(
√
c̄i −

√
ci)B

BD
ij (c̄)

√
c̄j√

c̄i

∣∣∣∣

≤ C
n∑

i=1

|ci − c̄i|+ |√ci −
√
c̄i| ≤ C

n∑

i=1

|ci − c̄i|.

Thus, the choice δ = β(m)/(2C) gives
∫ t

0

∫

Ω

χ(c)I4dxds ≤
β(m)

2

∫ t

0

∫

Ω

χ(c)
n∑

i=1

|∇(ci − c̄i)|2dxds

+ C

∫ t

0

∫

Ω

χ(c)
n∑

i=1

|ci − c̄i|2dxds.
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Finally, we use definition (48) of pi(ci|c̄i) and Hypothesis (H) to estimate

|pi(ci|c̄i)| =
∣∣∣∣(ci − c̄i)

2

∫ 1

0

∫ s

0

p′′i (τci + (1− τ)c̄i)dτds

∣∣∣∣

≤ K2(ci − c̄i)
2

∫ 1

0

∫ s

0

h′′i (τci + (1− τ)c̄i)dτds = K2hi(ci|c̄i).

In turn, this implies that

∫ t

0

∫

Ω

χ(c)I5dxds ≤ C

∫ t

0

∫

Ω

χ(c)
n∑

i=1

hi(ci|c̄i)dxds.

Summarizing the previous computations and using Lemma 19, we conclude that

(69) JH ≤ −β(m)

2

∫ t

0

∫

Ω

χ(c)
n∑

i=1

|∇(ci − c̄i)|2dxds+ C

∫ t

0

∫

Ω

χ(c)
n∑

i=1

hi(ci|c̄i)dxds.

Step 4: End of the proof. We combine the differential inequality (66) with the estimations
(68) and (69) to obtain

H(c(t)|c̄(t)) + 1

2

∫ t

0

∫

Ω

(1− χ(c))ZTBBD(c)Zdxds(70)

+
β(m)

2

∫ t

0

∫

Ω

χ(c)
n∑

i=1

|∇(ci − c̄i)|2dxds

≤ H(c0|c̄0) + C

∫ t

0

H(c|c̄)ds,

The constant C > 0 depends in particular on m and the L∞(0, T ;W 2,∞(Ω)) norm of c̄j,
j = 1, . . . , n. The proof of Theorem 3 finishes after applying Gronwall’s inequality.

Remark 14. Inequality (70) leads to a slightly stronger version of the relative entropy
inequality than stated in Theorem 3. However, we obtain gradient estimates only on the
set {c∗ > m/2}, while on {c∗ ≤ m/2}, the quadratic form ZTBBD(c)Z generally does not
lead to a control of the L2-norm of ∇ci. �

5. Examples

We present some examples for the generalized Maxwell–Stefan system (16)–(17) satisfy-
ing Assumptions (B1)–(B4).

5.1. A cross-diffusion system for thin-film solar cells. Thin-film crystalline solar
cells can be fabricated by the so-called physical vapor deposition process. This process
produces a metal vapor that can be deposited on electrically conductive materials as a
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thin coating. It is shown in [1] that the evolution of the volume fractions of the thin-film
components can be described by the cross-diffusion system

(71) ∂tci = div

( n∑

j=1

aij(uj∇ui − ui∇uj)
)
, i = 1, . . . , n,

where aij = aji > 0 for i, j = 1, . . . , n, and
∑n

i=1 ci = 1. This model can be formulated
as a generalized Maxwell–Stefan system. Indeed, let hi(ci) = ci(log ci − 1) and Kij(c) =∑n

j=1

√
ciA

BD
ij (c)

√
cj for i, j = 1, . . . , n, where A(c) is given by (10) with Dij = 1/aij .

Then B(c) = ABD(c) (see (18)) and hence BBD(c) = A(c). Equation (43) becomes

(72) ∂tci = div

( n∑

j=1

√
ciAij(c)

√
cj∇ log cj

)
, i = 1, . . . , n.

Because of (10), the mobility matrix (
√
ciAij(c)

√
cj) reads as

√
ciAij(c)

√
cj =

{ ∑
k 6=i aikcick if i = j,

−aijcicj if i 6= j,

and an elementary computation shows that (72) can actually be written as (71).
Although it can be checked that the matrix B(c) = ABD(c) satisfies Assumptions (B1)–

(B4), we can here directly verify the statements of Lemma 11. Definition (10) of A(c)
immediately implies that BBD

ij (c) is bounded and Lipschitz continuous on [0, 1]n. Property
(44) follows from (23) in Lemma 4 with λ(m) = µ. Hence, the weak-strong uniqueness
property holds for this model.

5.2. A tumor-growth model. The growth of a symmetric avascular tumor can be mod-
eled on the mechanical level by diffusion fluxes of the tumor cells, the extracellular matrix
(ECM), and the interstitial fluid (water, nutrients, etc.). The model was suggested in [25]
and analyzed in [27]. The evolution of the volume fractions ci of the tumor cells, ECM,
and interstitial fluid is given by (see, e.g., [29, Section 4.2])

∂tci + div(ciui) = 0, i = 1, . . . , 3,(73)

∇(ciPi) + ci∇p = −
3∑

j=1

kijcicj(ui − uj), i = 1, 2,(74)

c3∇p = −
3∑

j=1

kijcicj(ui − uj),(75)

where kij = kji > 0 for i, j = 1, 2, 3, the partial pressures P1, P2 and the phase pressure p
are given by

P1 = c1, P2 = βc2(1 + θc1), p = −c1P1 − c2P2,

β > 0, θ > 0 are suitable parameters, and it holds that
∑3

i=1 ci = 1.
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We claim that (73)–(75) can be formulated as a generalized Maxwell–Stefan system. We
define the entropy densities as in the previous example, hi(ci) = ci(log ci − 1), i = 1, 2, 3.
With the matrix

W (c) =




2c1(1− c1)− βθc1c
2
2 −2βc1c2(1 + θc1) 0

−2c1c2 + βθ(1− c2)c
2
2 2βc2(1− c2)(1 + θc1) 0

−2c1c3 − βθc3c
2
2 −2βc3c2(1 + θc1) 0


 ,

the left-hand side of (74)–(75) can be written in a more concise form:


∇(c1P1) + c1∇p
∇(c2P2) + c2∇p

c3∇p


 = W (c)



∇c1
∇c2
∇c3


 .

Let the matrix A(c) be given by (10) with Dij = 1/kij . Then the right-hand side of
(74)–(75) equals (also see (12))

−
3∑

j=1, j 6=i

cicj
Dij

(ui − uj) = −
3∑

j=1

√
ciAij(c)

√
cjuj.

Thus, inverting

n∑

j=1

Wij(c)∇cj = −
3∑

j=1

√
ciAij(c)

√
cjuj, i = 1, 2, 3,

(which is the same as (74)–(75)) yields

√
ciui = −

3∑

j,k=1

ABD
ij (c)

1
√
cj
Wjk(c)∇ck, i = 1, 2, 3,

and system (73)–(75) can be written for i = 1, 2, 3 as

∂tci = div

( 3∑

j,k=1

√
ciA

BD
ij (c)

1
√
cj
Wjk(c)∇ck

)

= div

( 3∑

j,k,ℓ=1

√
ciA

BD
ij (c)

1
√
cj
Wjk(c)

√
ck(PL)kℓ

√
cℓ∇ log cℓ

)
,

recalling definition (22) of PL. Thus,

∂tci = div

( n∑

ℓ=1

√
ciRiℓ(c)

√
cℓ∇ log cℓ

)
, where

Riℓ(c) :=
3∑

j,k=1

ABD
ij (c)

1
√
cj
Wjk(c)

√
ck(PL)kℓ, i, ℓ = 1, 2, 3.

Also in this case, it is more convenient to check the statements of Lemma 11 instead of
Assumptions (B1)–(B4). Notice that W (c) is not symmetric, so R(c) is not symmetric
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either. The elements Rij(c) are bounded and Lipschitz continuous, since ABD
ij (c) and

Wij(c) have these properties. The second statement of Lemma 11, namely property (44),
is verified only for a special example that was considered in [27].

Lemma 15. Let kij = 1 for i, j = 1, 2, 3 and 0 ≤ θ < 4/
√
β. Then, withm = mini=1,2,3 ci >

0, there exists λ(m) > 0 such that

zTR(c)z ≥ λ(m)|PLz|2 for all z ∈ R
3.

Proof. The assumption kij = 1 implies that A(c) = PL and hence ABD(c) = PL(A(c)PL +
PL⊥)−1 = PL. Suppose that for any y ∈ R

3 satisfying y ∈ L (i.e.
√
c · y = 0), we have

(76)
3∑

i,j=1

1√
ci
Wij(c)

√
cjyiyj ≥ λ(m)|y|2.

Then, for z ∈ R
3 and y = PLz ∈ L,

zTR(c)z =
3∑

i,j=1

(PLz)i
1√
ci
Wij(c)

√
cj(PLz)j ≥ λ(m)|PLz|2,

which proves the lemma.
It remains to verify (76). Using y3 = −(

√
c1y1 +

√
c2y2)/

√
c3, we calculate

3∑

i,j=1

1√
ci
Wij(c)

√
cjyiyj = 2β(1 + θc1)(

√
c2y2)

2 + βθc2(
√
c1y1)(

√
c2y2) + 2(

√
c1y1)

2.

Since 0 ≤ θ < 4/
√
β, the discriminant of the quadratic form is negative and there exists

κ > 0 such that
3∑

i,j=1

1√
ci
Wij(c)

√
cjyiyj ≥ κ(c1y

2
1 + c2y

2
2) ≥

κ

3

(
c1y

2
1 + c2y

2
2 + (

√
c1y1 +

√
c2y2)

2
)

=
κ

3
(c1y

2
1 + c2y

2
2 + c3y

2
3) ≥

κ

3

(
min
i=1,2,3

ci

)
(y21 + y22 + y23),

proving the claim with λ(m) = κm/3. �

We deduce from the previous lemma that the weak-strong uniqueness property holds
for the tumor-growth model if kij = 1 for i, j = 1, 2, 3 and 0 ≤ θ < 4/

√
β. The latter

condition is necessary to achieve the global existence of weak solutions, since it guarantees
the positive semidefiniteness of the mobility matrix; see [27] for details.

5.3. A multi-species porous-medium-type model. Another model is a generalization
of the first example to illustrate that also non-logarithmic entropies may be considered. We
choose hi(ci) = cγi /(γ − 1) with γ > 1 and A(c) as in (10). The partial pressure becomes
pi = cih

′
i(ci)− hi(ci) = cγi , and equation (72) reads here as

∂tci = div

( n∑

j=1

√
ciAij(c)

√
cj∇h′j(cj)

)
=

γ

γ − 1
div

( n∑

j=1

1

Dij

(cj∇cγ−1
i − ci∇cγ−1

j )

)
.
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Hence, the weak-strong property holds for this model.

5.4. Maxwell-Stefan system with different molar masses. In equations (1), we have
implicitly assumed that all molar masses of the species are the same. We show that the
weak-strong uniqueness property also holds for the model proposed in [3, 5] without this
assumption. In the case of different molar masses Mi, we need to distinguish between the
mass densities ρi and the molar concentrations ci = ρi/Mi. The Maxwell–Stefan equations
read for i = 1, . . . , n as

(77) ∂tρi + div(ρiui) = 0, −
n∑

j=1

cicj
c2Dij

(ui − uj) = ρi∇
δH

δρi
(ρ)− ρi

n∑

j=1

ρj∇
δH

δρj
(ρ),

where c =
∑n

i=1 ci. As before, the restriction
∑n

j=1 ρj = 1 inherited from the initial data
is imposed. The second equation can be rewritten as

−
n∑

j=1

ρiρj

D̃ij(ρ)
(ui − uj) = ρi∇

δH

δρi
(ρ)− ρi

n∑

j=1

ρj∇
δH

δρj
(ρ),

where D̃ij(ρ) = c2MiMj = (
∑n

k=1 ρk/Mk)
2MiMj. Due to

n∑

k=1

ρk
Mk

≥
n∑

k=1

ρk
maxℓ=1,...,nMℓ

=
1

maxℓ=1,...,nMℓ

,

the coefficients D̃ij(ρ) are uniformly bounded from below. Since the proof of Lemma 4
only relies on the uniform boundness of Dij, Lemma 4 also holds for the following matrix

Ã(c), defined similarly as in (10):

Ãij(ρ) =

{ ∑n
k=1, k 6=i ρk/D̃ik(ρ) if i = j,

−√
ρiρj/D̃ij(ρ) if i 6= j.

Therefore, the weak-strong uniqueness holds if H(c) satisfies the assumptions of Theorem
3.
Recalling that H(ρ) =

∑n
i=1

∫
Ω
hi(ρi)dx, we may formulate the entropy in terms of the

concentrations c as η(c) =
∑n

i=1

∫
Ω
ηi(ci)dx, where ηi(ci) = hi(ρi/Mi). Then we can rewrite

the second equation in (77) as

−
n∑

j=1

cicj
c2Dij

(ui − uj) = ci∇µi − ciMi

n∑

j=1

cj∇µj,

where µi = η′i(ci) is the molar-based chemical potential. Using the Gibbs–Duhem equation
∇p = ∑n

i=1 cj∇µj, where p is the pressure, the above equation can be put into the form

−
n∑

j=1

cicj
c2Dij

(ui − uj) = ci∇µi − ρi∇p,
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which is [5, Formula (203)]. Yet another formulation in terms of the molar fractions
Xi = ci/c is

−
n∑

j=1

cicj
c2Dij

(ui − uj) = ci∇pµ̃i + (φi − ρi)∇p,

where µ̃i is given by µ̃i(p,X1, . . . , Xn) = µi(ci), ∇pµ̃i :=
∑n

j=1(∂µ̃i/∂Xj)∇Xj, and φi :=

∂µ̃i/∂p is the volume fraction.
A simple choice is the entropy

ηi(ci) = ci log ci − ci, i = 1, . . . , n,

corresponding to hi(ρi) = (ρi/Mi)(log(ρi/Mi) − 1). It leads to µi = log ci, p = c, and the
model

−
n∑

j=1

cicj
c2Dij

(ui − uj) = ∇ci − ρi∇c.

The existence of local strong solutions to this model can be proved as in [4], while the
existence of global weak solutions was shown in [9].

Appendix A. The Bott–Duffin inverse

For the convenience of the reader, we recall the definition and some properties of the
Bott–Duffin inverse. Let A ∈ R

n×n be an arbitrary matrix and L ⊂ R
n be a subspace. The

Bott–Duffin inverse is introduced in connection to the solution of the constrained inversion
problem (see [7], [2, Ch 2.10])

(78) Ax+ y = b, x ∈ L, y ∈ L⊥.

Let PL and PL⊥ be the projection operators onto L and L⊥, respectively. The set of
solutions of (78) is the same as the set of solutions to (APL + PL⊥)z = b, and (x, y) solves
(78) if and only if x = PLz and y = PL⊥z = b− APLz. Then, if the matrix APL + PL⊥ is
invertible, we define the Bott–Duffin inverse of A with respect to L by

(79) ABD := PL(APL + PL⊥)−1.

and the solution to (78) is expressed in the form

(80) x = ABDb , y = b− Ax.

If L = ran(A) and A is symmetric, the Bott–Duffin inverse is the same as the group inverse,
which was investigated in the context of Maxwell–Stefan systems in [6].
Let A be symmetric. We call A L-positive definite if zTAz > 0 for all z ∈ L \ {0}. For

this class of matrices, a generalized Bott–Duffin inverse is defined in [35], which coincides
with the classical Bott–Duffin inverse when APL + PL⊥ is invertible. The following result
is proved in [35, Lemma 2c and 1b].

Lemma 16. Let A be symmetric and L-positive definite. Then

(i) ABDPL⊥ = 0,

(ii) ran(APL + PL⊥) = PL ran(A)⊗ L⊥, ker(APL + PL⊥) = ker(APL) ∩ L.
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It follows from property (i) that ABD can be formulated as

(81) ABD = PL(APL + PL⊥)−1(PL + PL⊥) = PL(APL + PL⊥)−1PL = ABDPL.

Lemma 17. Let A be symmetric and L = ranA, L⊥ = kerA. Then APL = A, PLA = A,
ABD is well defined and symmetric.

Proof. The identities APL = A and PLA = A follow immediately from L = ranA, We infer
from property (ii) that

ker(APL + PL⊥) = ker(APL) ∩ L = ker(A) ∩ L = L⊥ ∩ L = {0},
showing that APL + PL⊥ is invertible. The matrix APL = PLAPL is symmetric, since PL

and A are symmetric. Also PL⊥ is symmetric, so APL +PL⊥ and its inverse are symmetric
too. Taking into account (81), this implies that ABD = PL(APL + PL⊥)−1PL is also
symmetric. �

In our context, we are interested in the constrained inversion

Ax = b, x ∈ L,

where A is a symmetric positive semidefinite matrix, with L = ran(A) and thus L⊥ =
ker(A), and b ∈ L. Lemma 17 implies that APL+PL⊥ is invertible and ABD is well defined
by (79). Because of (80), we can express the inverse as x = ABDb if b ∈ L.

Appendix B. Pointwise estimates for entropy functions

For the convenience of the reader, we recall the following lower bounds.

Lemma 18. The following estimates hold for any c, c̄ ∈ [0, 1]:

c log
c

c̄
− (c− c̄) ≥ 1

2
(c− c̄)2, c log

c

c̄
− (c− c̄) ≥ (

√
c−

√
c̄)2.

Proof. Let f(c) = c log c. Then

f(c)− f(c̄) = f(θ(c− c̄) + c̄)
∣∣1
θ=0

= (c− c̄)

∫ 1

0

f ′(θ(c− c̄) + c̄)dθ

and

c log
c

c̄
− (c− c̄) = f(c)− f(c̄)− f ′(c̄)(c− c̄)

= (c− c̄)

∫ 1

0

(
f ′(θ(c− c̄) + c̄)− f ′(c̄)

)
dθ

= (c− c̄)

∫ 1

0

f ′(s(c− c̄) + c̄)
∣∣θ
s=0

dθ = (c− c̄)2
∫ 1

0

∫ θ

0

f ′′(s(c− c̄) + c̄)dsdθ.

The first inequality follows after observing that f ′′(s(c− c̄) + c̄) = 1/(s(c− c̄) + c̄) ≥ 1.
For the second inequality, we define g(c) = (c log c − c + 1)/(

√
c − 1)2 for c 6= 1 and

g(1) = 2. Then g is continuous and increasing, which implies that g(c) ≥ g(0) = 1 and
proves the statement. �
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Lemma 19. Let c, c̄ ∈ R
n
+ satisfy 0 ≤ ci ≤ 1, m ≤ c̄i ≤ 1, for i = 1, . . . , n, and suppose

that hi ∈ C([0, 1]) ∩ C2((0, 1]) satisfies

h′′i (ci) > 0 for 0 < ci ≤ 1.

Then, for some κm > 0,

(82) hi(ci|c̄i) = hi(ci)− hi(c̄i)− h′i(c̄i)(ci − c̄i) ≥ κm(ci − c̄i)
2.

Proof. By Taylor expansion, the relative entropy density satisfies

lim
ci→c̄i

hi(ci|c̄i)
(ci − c̄i)2

= lim
ci→c̄i

∫ 1

0

∫ θ

0

h′′i (s(ci − c̄i) + c̄i)dsdθ =
1

2
h′′i (c̄i) > 0.

Therefore, hi(ci|c̄i)/(ci − c̄i)
2 is a continuous function with a positive minimum:

κm := min
i=1,...,n

min
ci∈[0,1], c̄i∈[m,1]

hi(ci|c̄i)
(ci − c̄i)2

> 0.

This shows that hi(ci|c̄i) ≥ κm(ci − c̄i)
2 for ci ∈ [0, 1], c̄i ∈ [m, 1] and proves (82). �

Appendix C. Thermodynamic derivation of the generalized
Maxwell–Stefan system

The aim of this section is to derive (16)–(17) from elementary thermodynamic principles.
We assume that the evolution of the gaseous mixture is given by the conservation of mass
and energy (without chemical reactions),

∂t(ρci) + div(ρciv + Ji) = 0,

∂t(ρU) + div(ρUv + q) = 0,(83)

∂tρ+ div(ρv) = 0, i = 1, . . . , n,

where ρi is the partial density of the ith species, ρ =
∑n

i=1 ρi the total density, ci = ρi/ρ
the concentration of the ith species, v the barycentric velocity, Ji the ith flux, q the heat
flux, and the internal energy U is given by the first law of thermodynamics in differential
form by

(84) dU = TdS − pdV +
n∑

i=1

µidci,

where S is the entropy, V = 1/ρ the volume, and µi = ∂U/∂ci the ith chemical potential.
By definition, it holds that

∑n
i=1 ci = 1. Adding the first and last equation in (83), we see

that div
∑n

i=1 Ji = 0, which motivates us to assume that
∑n

i=1 Ji = 0.
The sum of the fluxes should vanish,

∑n
i=1 Ji = 0, to be consistent with the conservation

laws.
With the material derivative Dtf = ∂tf +v ·∇f , the conservation laws can be simplified

to

ρDtci + div Ji = 0, ρDtU + div q = 0, Dtρ+ ρ div v = 0.
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Inserting these equations into equation (84), formulated as DtU = TDtS − pDtV +∑n
i=1 µiDtci, yields the entropy balance

ρDtS =
ρ

T
DtU +

ρ

T
pDt

(
1

ρ

)
−

n∑

i=1

µi

T
Dtci

= − 1

T
div q +

p

T
div v +

n∑

i=1

µi

T
div Ji = − div JS + rS,

where

JS =
q

T
−

n∑

i=1

µi

T
Ji, rS = q · ∇ 1

T
+ p div v +

n∑

i=1

Ji · ∇
µi

T

are the entropy flux and entropy production, respectively.
In our Maxwell–Stefan model, we assume that v = 0 and T = 1. Then the entropy

production simplifies to rS =
∑n

i=1 Ji · ∇µi. It can be reformulated by taking into account
that

∑n
i=1 Ji = 0 and hence Ji/

√
ci ∈ L = {x ∈ R

n :
√
c · x = 0}:

rS = −
n∑

i=1

Ji√
ci

· √ci∇µi = −
n∑

i,j=1

Ji√
ci

· (PL)ij
√
cj∇µj = −

n∑

i=1

Ji√
ci

·
n∑

j=1

(PL)ij
√
cj∇µj,

where the projection PL on L is defined in (22). By the second law of thermodynamics, it
should hold that rS ≥ 0. To guarantee this property, we introduce a positive semidefinite
matrix B(c) such that

(85)
n∑

j=1

(PL)ij
√
cj∇µj = −

n∑

j=1

Bij(c)
Jj√
cj
, i = 1, . . . , n.

We claim that these equations correspond to the generalized Maxwell–Stefan equations
(17) after setting Ji = ciui and Kij(c) =

√
ciBij(c)/

√
cj (see (18)). Indeed, the left-hand

side of (85), multiplied by
√
ci, becomes

√
ci

n∑

j=1

(PL)ij
√
cj∇µj = ci∇µi − ci

n∑

j=1

cj∇µj,

and the right-hand side of (85), multiplied by
√
ci, equals

−√
ci

n∑

j=1

Bij(c)
Jj√
cj

= −
n∑

j=1

Kij(c)Jj = −
n∑

j=1

Kij(c)cjuj .

Hence, observing that µj = ∂U/∂cj corresponds to δH/δcj, (85) equals (17).

References

[1] A. Bakhta and V. Ehrlacher. Cross-diffusion systems with non-zero flux and moving boundary con-
ditions. ESAIM Math. Model. Numer. Anal. 52 (2018), 1385–1415.

[2] A. Ben-Israel and T. Greville. Generalized Inverses: Theory and Applications. Wiley, New York, 1974.
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