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Institut für Analysis und Scientific Computing, Technische Universität Wien, Wiedner

Hauptstr. 8-10, 1040 Wien, Austria; juengel@anum.tuwien.ac.at

Received (Day Month Year)

Revised (Day Month Year)
Communicated by (xxxxxxxxxx)

A coupled model with optoelectronic semiconductor devices in electric circuits is pro-
posed. The circuit is modeled by differential-algebraic equations derived from modified
nodal analysis. The transport of charge carriers in the semiconductor devices (laser diode

and photo diode) is described by the energy-transport equations for the electron density
and temperature, the drift-diffusion equations for the hole density, and the Poisson equa-
tion for the electric potential. The generation of photons in the laser diode is modeled by

spontaneous and stimulated recombination terms appearing in the transport equations.
The devices are coupled to the circuit by the semiconductor current entering the circuit
and by the applied voltage at the device contacts, coming from the circuit. The resulting
time-dependent model is a system of nonlinear partial differential-algebraic equations.

The one-dimensional transient transport equations are numerically discretized in time by
the backward Euler method and in space by a hybridized mixed finite-element method.
Numerical results for a circuit consisting of a single-mode heterostructure laser diode, a

silicon photo diode, and a high-pass filter are presented.

Keywords: Laser diode, photo diode, electric circuits, energy-transport equations, drift-
diffusion equations, partial differential-algebraic equations, mixed finite-element method,
high-pass filter.

AMS Subject Classification: 78A35, 82D37, 65M60, 65L80.

∗The authors acknowledge partial support from the German Federal Ministry of Education and

Research (BMBF), grant 03JUNAVN. The second author has been partially supported by the FWF
Wissenschaftskolleg “Differential equations”. This research is part of the ESF program “Global
and geometrical aspects of nonlinear partial differential equations (GLOBAL)”. The authors thank
Dr. Carlo de Falco and Dr. Uwe Feldmann (Qimonda, Munich) for fruitful discussions.

1



October 10, 2007 16:11 WSPC/INSTRUCTION FILE p07brunk2

2

1. Introduction

Semiconductor lasers are important devices in optoelectronic integrated circuits for

high-speed communication systems. First phenomenological approaches to model

laser diodes consisted in a direct relation between the driving current and the out-

put power.10 Increasingly complex device structures made it necessary to include

semiconductor device equations for better accuracy. In Refs. 4 and 27, for instance,

the drift-diffusion equations are employed to model the charge transport in the

device, coupled with an appropriate model for the optical effects.

Thermal effects play an important role in laser diodes and have to be included

in the mathematical models. By considering an equivalent thermal circuit, a lin-

ear second-order equation for the laser temperature has been derived in Ref. 3.

Temperature-dependent models are also included in the commercial laser diode

simulators LASTIP and PICS3D which are based on the drift-diffusion model.12 A

heat flux equation for the lattice temperature was recently derived in Ref. 5 from a

thermodynamics-based model.

The objective of this paper is the numerical simulation of thermal effects in

laser and photo diodes which are part of an electric circuit. The thermal effects are

modeled by the energy-transport equations for the electron temperature, derived

from the semiconductor Boltzmann equation.7,13 The electric circuit is described

by differential-algebraic equations derived from modified nodal analysis.14,31 We

simulate for the first time a coupled optoelectronic device-circuit model by using

the semiconductor energy-transport equations.

In the following we describe some models for optical effects in photonic devices

used in the literature. The optical effects in the laser diode can be modeled by a rate

equation for the number of photons. In Refs. 1 (§6.2) and 32, the intensity of the

optical field confined to the active region is approximated by the so-called confine-

ment factor. However, this does not allow for a local coupling between the electrical

and optical effects. The model can be improved by replacing the confinement factor

by the local intensity distribution computed from the waveguide equation.4 Fur-

ther improvements are obtained by considering several rate equations for each laser

mode and by including quantum effects.4 Another possibility to increase the accu-

racy of the models is to decompose the optical field inside the laser into forward and

backward propagating waves whose amplitudes are calculated from the travelling

wave equation.6,21 Also in this approach, thermal effects may be included.23

Photo diodes can be described by equivalent circuit models30 or drift-diffusion

equations,20 where the optical effects are taken into account by a generation

term.11,17 Since the drift-diffusion equations cannot capture thermal effects in the

device, we employ in this paper the energy-transport equations for the electron

transport.

The model studied in this paper consists of the energy-transport equations for

the electron density and the particle temperature and the drift-diffusion equations

for the hole density, coupled to the Poisson equation for the electric potential. The
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generation of photons in the laser diode is modeled by spontaneous and stimulated

emission terms in the transport equations. The stimulated emission is assumed to

be proportional to the number of photons, which is balanced by a rate equation,

and to the intensity distribution, which is computed from the eigenvalue problem of

the waveguide equation or from the effective index approximation (see Ref. 1, Chap.

2.5). The generation of electrons in the photo diode is described by a generation term

depending on the power of the irradiation. Finally, the nonlinear partial differential

equations (PDE) resulting from the device model are coupled to the differential-

algebraic equations (DAE) of the electric circuit. The complete model becomes a

system of nonlinear partial differential-algebraic equations. We remark that such

systems have been studied mathematically and numerically only recently.2,28

The one-dimensional transient energy-transport equations are numerically dis-

cretized in time by the implicit Euler method and in space by exponentially fitted

hybrid-mixed finite elements. The use of the Marini-Pietra finite elements24 guaran-

tees the positivity of the electron and hole densities for positive Dirichlet boundary

data. As suggested in Ref. 8, we employ Robin boundary conditions for the parti-

cle and energy densities in order to reduce boundary layers in the bipolar devices.

We are able to show that the positivity property still holds in the case of Robin

boundary conditions. The discrete system of equations is solved by a variant of the

Gummel method combined with a continuation method in the applied voltage. The

nonlinear DAE system of the circuit is solved by Newton’s method, and the coupled

system (PDE and DAE) is solved iteratively.

We present numerical results for a single-mode Al0.7Ga0.3As/GaAs laser diode

and a silicon photo diode. The results obtained from the energy-transport model

are compared with those computed from the drift-diffusion equations. Moreover, a

high-pass filter with a photo diode and a laser diode is simulated. The numerical

results show that thermal effects are significant for large applied bias.

2. Modeling

2.1. Laser diode

As a simplified model of a laser diode we consider a heterostructure p-i-n diode as

displayed in Figure 1. It consists of an intrinsic or lowly doped part of a low band-

gap semiconductor material like GaAs sandwiched by highly doped cladding layers

made from a semiconductor material with a higher band-gap like Al0.7Ga0.3As. The

different band gaps of the heterostructure result in a bending of the energy bands

(see Ref. 27, §3.3, and Ref. 11). Due to the lower band gap the charge carriers

tend to move to the intrinsic region as this corresponds to a state of lower energy,

causing carrier confinement. For a forward biased device the number of free charge

carriers increases and spontaneous and stimulated emission of photons occurs due

to recombination effects. Thus, an optical field represented by photons arises in the

intrinsic region and, as the facets of the device are polished, the intrinsic region

works as a laser cavity or a simple Fabry-Perot laser.4
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Fig. 1. Simplified structure of a laser diode including a schematic illustration of the energy bands
before assembling the different materials. Here, Ec denotes the conduction band energy, Ev the
valence band energy, and EG and Eg the energy gaps of the corresponding materials.

Transport equations. In the device, we assume that the electron flow is described

by the energy-transport equations.18 They consist of the (scaled) conservation laws

for the particle density n and energy density w,

∂tn− divJn = −R(n, p), (2.1)

∂tw − divJw = −Jn · ∇Vn +W (n, T ) −
3

2
TR(n, p), (2.2)

together with (scaled) constitutive relations for the particle current density Jn and

the energy current density Jw,

Jn = µn

(
∇n−

n

T
∇Vn

)
, Jw =

3

2
µn(∇(nT ) − n∇Vn). (2.3)

Here, the electron temperature T is defined by the relation w = 3
2nT , and the

effective potential Vn = V + Un is given as the sum of the electric potential V

and the band potential Un. The band potential is a simple model of the carrier

confinement caused by the difference of the material band gaps. It is positive within

the active intrinsic region and zero outside.

The transport equations are solved in a bounded domain Ω ⊂ R
d (d ≥ 1) and

are coupled self-consistently to the Poisson equation for the electric potential V ,

λ2∆V = n− p− C(x), (2.4)

where C(x) models fixed charged background ions (doping profile) and p denotes

the hole density determined by the drift-diffusion equations,

∂tp+ divJp = −R(n, p), Jp = −µp(∇p+ p∇Vp). (2.5)

The effective potential for the holes is given by Vp = V + Up. The band potential

for holes Up is negative within the active region and zero outside. The physical

parameters are the (scaled) electron and hole mobilities µn and µp, respectively,

and the Debye length λ, given by λ2 = εsUT /qCmL, where εs is the permittivity
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constant, q the elementary charge, Cm the maximal doping value, L the device

diameter, and UT = kBT̃a/q the thermal voltage with the Boltzmann constant kB

and the unscaled ambient (lattice) temperature T̃a. The function

W (n, T ) = −
3

2

n(T − Ta)

τ0

in (2.2) models the energy relaxation to the equilibrium energy, where τ0 is the

energy relaxation time and Ta = 1 the scaled ambient (lattice) temperature.

Recombination-generation terms. The electric and optical effects are coupled

through recombination-generation processes modeled by

R = RSRH +RAu +Rspon +Rstim, (2.6)

where the first two terms denote the Shockley-Read-Hall and Auger recombination

terms,

RSRH(n, p) =
np− n2

i

τp(n+ ni) + τn(p+ ni)
, RAu(n, p) = (Cnn+Cpp)(np−n

2
i ), (2.7)

with the (scaled) intrinsic density ni and the material dependent electron and hole

lifetimes τn and τp, respectively, and the Auger recombination parameters Cn and

Cp. The last two recombination terms in (2.6) model recombination processes that

account for the generation of photons, the spontaneous and stimulated emission1,11

Rspon(n, p) = Bnp, Rstim(n) =
∑

m

vggm(n)|Ξm|2Sm, (2.8)

respectively, where B =
∑

mBm is the material-dependent spontaneous recombi-

nation parameter, given as the sum of the parameters of all laser modes m. In the

stimulated emission term, vg = c/µopt denotes the group velocity of the photons

with the speed of light c and the refractive index of the material µopt. Furthermore,

gm(n) denotes the optical gain, which is the amplification factor for the number

of photons per unit length, |Ξm|2 is the intensity distribution of the optical field,

and Sm is the number of photons in the device. For a one-dimensional and two-

dimensional modeling of the device, the number of photons has to be replaced by

the number of photons in the considered cross-section of the cavity, i.e. Sm/Lcdc in

the one-dimensional and Sm/Lc in the two-dimensional situation, where Lc denotes

the length and dc the width of the laser cavity.

In the following we discuss the modeling of the optical gain and the intensity

distribution. The optical gain gm(n) is approximated by the common approach1

gm(n) = g0,m(n− nth),

where g0,m is the differential gain of the m-th mode and nth is the threshold density.

Assuming an undoped intrinsic region, we may assume local charge neutrality n = p

such that we can write gm(n) = g0,m(p−nth) in the stimulated recombination term

occurring in the hole transport equations (2.5). This allows for a discretization of
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the drift-diffusion equations guaranteeing positivity of the discretized hole density

(see section 3.1).

The optical field intensity |Ξm|2 for the transverse modes is computed from the

solution of the waveguide equation
(
∆ +

ω2

c2
εopt(n)

)
Ξm = β2

mΞm, (2.9)

where β2
m is the corresponding eigenvalue, ω denotes the angular frequency of the

emitted light, and εopt(n) the complex-valued dielectric function of the pumped

laser averaged over one section in a longitudinal direction. It is given by εopt(n) =

(µopt + ic(gm(n)−αbg)/2ω)2 (see Ref. 4). Here, i2 = −1 and αbg is the background

absorption. The solutions of (2.9) describe the transverse modes for which the

corresponding number of photons Sm is balanced by the rate equation

∂tSm = vg(2Im(βm) − αf )Sm +Rspon,m, (2.10)

where Rspon,m =
∫
Ωc

Bmnp ds is the spontaneous emission rate into the mode m,

Ωc the transverse cross-section of the laser cavity, αf the total facet loss by ex-

ternal output, and the modal gain Im(βm) is the imaginary part of the eigenvalue

corresponding to the solution of (2.9).

Finally, the output power of the mode m is computed by5

Pout,m = ~ωvgαf |Ξm|2Sm, (2.11)

where ~ = h/2π is the reduced Planck constant.

Model simplifications. We make three simplifying assumptions. The first as-

sumption is that the optical field is dominated by the fundamental mode so that

we restrict ourselves to a single-mode laser. Thus, we only need to consider a single

rate equation (2.10) and the sum in (2.8) reduces to a single term. In the following,

we omit the index m.

Furthermore, the intensity distribution of the fundamental mode can be com-

puted from the effective index approximation.1 Here, the dielectric function is sim-

plified by εopt(n) = µ2
opt such that the waveguide equation can be solved explicitly

in each material, assuming that the total solution is smooth and vanishes far from

the active region. We will present below a comparison of the solutions obtained

from the complete model including the waveguide equation and from the simplified

model.

Finally, if the simplified model is considered, we approximate the modal gain

Im(β), needed in the rate equation (2.10), by

2Im(β) ≈

∫

Ωc

(g(n) − αbg)|Ξ|
2ds. (2.12)

The approximation (2.12) can be derived from a first-order perturbation analysis

(see Ref. 1 or 25, Chapter 9) and has been also mentioned in Ref. 5.

These simplifications result in a model which is similar to the treatment of the

optical field by the number of photons and the so-called confinement factor.1,11
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However, our model allows for a local coupling of the electrical and optical effects

with only slightly higher computational effort.

Scaling. We specify the scaling which leads to the above dimensionless formulation

of the model equations. The spatial dimensions are scaled by the device length L; the

densities n, p, ni, and C by the maximal doping concentration Cm = max |C(x)|; the

electron temperature T by the ambient (lattice) temperature (usually, 300 K); the

electric potential and the band potentials by the thermal voltage UT ; the mobilities

µn and µp by µ̄ = max{µn, µp}; and the relaxation time τ0 and the lifetimes τn, τp
by t0 = L2/UT µ̄. Furthermore, the recombination parameters Cn, Cp are scaled by

1/C2
mt0; the parameter B by 1/Cmt0; the group velocity vg by L/t0; the differential

gain g0 by 1/LCm; the loss parameters αf and αbg by 1/L; the angular frequency

ω by 1/t0; and the number of photons S by CmL
3. For notational convenience, we

have not renamed the scaled quantities.

Initial and boundary conditions. The initial conditions for the transient trans-

port equations are

n(·, 0) = nI , p(·, 0) = pI , T (·, 0) = TI in Ω, (2.13)

and the initial number of photons is prescribed by S(0) = SI in Ω.

The device boundary is assumed to split into two parts, the union of Ohmic

contacts ΓC and the union of insulating boundary segments ΓI , where ∂Ω = ΓC ∪

ΓI . Although we will present below spatial one-dimensional simulations, we give

the boundary conditions for the more general multi-dimensional situation. On the

insulating parts, we assume that the normal components of the current densities

and the electric field vanish,

Jn · ν = Jp · ν = Jw · ν = ∇V · ν = 0 on ΓI , t > 0, (2.14)

where ν is the exterior unit normal to ∂Ω. At the contacts, the electric potential

equals the sum of the applied voltage U and the so-called built-in potential Vbi,

V = U + Vbi on ΓC , t > 0. (2.15)

The built-in potential is the potential in the device at thermal equilibrium,

Vbi = arsinh(C/2ni). The temperature at the contacts fulfills homogeneous Neu-

mann boundary conditions,

∂T

∂ν
= 0 on ΓC , t > 0. (2.16)

The particle densities are assumed to fulfill boundary conditions of Robin type,

n+ (θnµn)−1Jn · ν = na and p− (θpµp)
−1Jp · ν = pa on ΓC , t > 0, (2.17)

with some parameters θn and θp. The ambient particle densities na and pa are

derived under the assumptions of charge neutrality, na−pa−C(x) = 0, and thermal

equilibrium, napa = n2
i . Solving these equations for na and pa gives

na =
1

2

(
C +

√
C2 + 4n2

i

)
, pa =

1

2

(
− C +

√
C2 + 4n2

i

)
. (2.18)
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The boundary conditions for the energy density w are derived from (2.16) and

(2.17),

∂w

∂ν
− θn(wa − w) =

3

2
θnna(T − Ta) +

3

2
n
∂V

∂ν
on ΓC , t > 0, (2.19)

where Ta is the (scaled) ambient temperature and wa the ambient energy density

wa = 3
2naTa.

Often, (2.18) are employed as Dirichlet boundary values for the particle den-

sities at the contacts. However, strong boundary layers for large applied voltages

indicate that these boundary conditions are physically not appropriate. Therefore,

we prefer to use the above Robin-type conditions which reduce the boundary layers

significantly. We refer to Ref. 8 for a more detailed discussion.

For the waveguide equation (2.9), we impose the boundary condition Ξ = 0

on ∂Ω. This coincides with the assumption that the intensity of the optical field

decreases to zero at the boundary, what seems reasonable as the optical field is

confined to the active region.

The total current density Jtot in the device is given by Jtot = Jn+Jp+Jd, where

Jd = −λ2∂t∇V denotes the displacement current, which guarantees charge conser-

vation. The current leaving the semiconductor device at terminal k, corresponding

to the part Γk of the boundary ΓC , is then defined by jk =
∫
Γk

Jtot · ν ds. Due

to charge conservation, the current through one terminal can be computed by the

negative sum of the currents through all other terminals. Therefore, it is possible

to choose one terminal (usually the bulk terminal) as the reference terminal. For

the one-dimensional examples presented below, with Ω = (0, 1), there remains only

one terminal, and the current through the terminal at x = 0 is given by

jout(t) = Jn(0, t) + Jp(0, t) − λ2∂tVx(0, t). (2.20)

The complete model. For convenience, we summarize the complete model for a

single-mode laser diode. It consists of the energy-transport equations (2.1)-(2.3)

for electrons, coupled to the Poisson equation (2.4), where Vn/p = V + Un/p

(Un/p given), the drift-diffusion model (2.5) for holes, where the recombination-

generation term R is defined by (2.6)-(2.8). The sum in Rstim and in the spontaneous

recombination parameter B reduces to a single term. In Rstim, the field intensity

|Ξ|2 is given by the waveguide equation (2.9) with Ξ = 0 on ∂Ω or it is simplified by

the effective index approximation, and the number of photons S is computed from

(2.10) with S(0) = SI . The initial-boundary conditions for the parabolic equations

are (2.13) and (2.14)-(2.19).

2.2. Photo diode

As a simplified model of a vertical photo diode, we consider a p-i-n-homostructure (a

heterostructure could also be used) with optical irradiation at the p-doped contact

as shown in Figure 2. The supplied light (photons) generates free charge carriers

which causes the photo current.
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Fig. 2. Simplified structure of a silicon photo diode including a schematic illustration of the energy

bands.

The transport of charge carriers is modeled by the energy-transport equations

(2.1)-(2.3) for electrons, the Poisson equation (2.4), and the drift-diffusion equations

(2.5) for holes. The recombination term for the photo diode is given by

R = RSRH +RAu −Gopt, (2.21)

where

Gopt(x) = η(1 − r)
Pin

~ωA
αabe

−αabx (2.22)

denotes the generation rate of free charge carriers at depth x of the device caused by

the optical irradiation power Pin with angular frequency ω.11,17,20 The reflectivity

of the surface of the diode is given by r, the optical absorption of the material by

αab, the quantum efficiency (the fraction of photons that generates charge carriers)

by η, and the area of the surface hit by the irradiation by A. Furthermore, Pin/~ω is

the injected number of photons per second. The current leaving the photo diode is

computed according to (2.20). The boundary and initial conditions are the same as

in the previous subsection. In order to couple (2.22) to the scaled energy-transport

equations, we scale the power input Pin/~ by L3Cm/t
2
0, the area A by L2 and the

absorption parameter αab by 1/L.

2.3. Coupling the optoelectronic devices to electric circuits

The electric circuit is modeled by the well-established modified nodal analysis

(MNA). We assume that the electric circuit can be reduced to a RCL-circuit, only

containing resistors, capacitors, and inductors. The basic tools for the mathematical

description of RCL-circuits are the Kirchhoff laws and the current-voltage character-

istics of the basic elements. In order to accomplish the MNA, the circuit is replaced

by a directed graph with branches and nodes. Then, the circuit can be characterized

by the incidence matrix A describing the node-to-branch relations.31 The Kirchhoff

laws are Ai = 0 and v = A⊤e, where i, v, and e are the vectors of branch currents,

branch voltages, and node potentials, respectively. The current-voltage characteris-

tics read as iR = g(vR), iC = dQ/dt(vC), and vL = dΦ/dt(iL), where g denotes the

conductivity of the resistor, Q the charge of the capacitor, and Φ the flux of the
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inductor. Furthermore, iα and vα are the branch current vectors and branch voltage

vectors, where α = R,C,L, i, v indicates the resistive, capacitive, inductive, current

source, and voltage source branches, respectively. The branches can be numbered

in such a way that the incidence matrix A can be written as block matrices Aα.

The coupling with the semiconductor device, whose position in the circuit is

characterized by the incidence matrix AS , consists of two parts. First, the device is

coupled to the surrounding circuit via the semiconductor current jS = jout defined

in (2.20) and entering the circuit. Denoting by is(t) and vs(t) the input functions for

the current and voltage sources, the Kirchhoff laws lead to the following system for

the coupled circuit-device system in the charge-oriented nodal analysis approach,

AC
dQ

dt
(A⊤

Ce) + ARg(A
⊤

Re) + ALiL + Aviv + ASjS = −Aiis, (2.23)

dΦ

dt
(iL) −A⊤

Le = 0, A⊤

v e = vs,

for the unknowns e(t), iL(t), and iv(t), where the term ASjS entered the left-hand

side of (2.23).

Second, the boundary conditions for the electric potential at the device contacts

are determined by the circuit. At the terminal k connected to the circuit node i,

we have V (t) = ei(t) + Vbi, where ei denotes the potential in the circuit node i and

Vbi is the built-in potential defined in section 2.1.

We notice that the scaling of time in the semiconductor model also changes the

time variable in the above differential-algebraic system, i.e. t = t0ts, with scaling

factor t0 and the scaled time ts. The time derivative d/dt changes into t−1
0 (d/dts).

3. Numerical approximation

3.1. Discretization of the differential equations

The Poisson equation is discretized in space by linear finite elements. Thus the

discrete electric potential is piecewise linear and the approximation of the electric

field −Vx is piecewise constant. Eqs. (2.1)-(2.10) are discretized in time by the

implicit Euler method. (A discretization with the BDF2 method has lead to very

similar results.) The waveguide equation (2.9) is discretized in space by standard

finite elements, and the corresponding discretized eigenvalue problem is solved using

the eig or eigs routine of Matlab.

The energy-transport equations are discretized using the mixed finite-element

method. For this, we define the variables g1 = µnn and g2 = 3
2µnnT and write

(2.1)-(2.3) as

µ−1
n ∂tg1 − divJn = −R(n, p), (3.1)

µ−1
n ∂tg2 − divJw = −Jn · ∇Vn +W (n, T ) −

3

2
TR(n, p), (3.2)

with the current densities

Jn = ∇g1 −
g1
T
∇Vn, Jw = ∇g2 −

g2
T
∇Vn, (3.3)
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where the temperature now is given by T = 2g2/3g1. This corresponds (up to a sign)

to the drift-diffusion equations (2.5), where p is replaced by g1 or g2, T = 1, and

the right-hand sides are different. The advantage of this formulation is that it “di-

agonalizes” the cross-diffusion energy-transport model.13 The initial and boundary

conditions for g1, g2, and V follow directly from (2.14)-(2.19).

In the following, we describe the discretization of the energy-transport equations

for electrons in the laser diode. The corresponding equations for holes and for the

photo diode are discretized analogously. After time discretization with the implicit

Euler scheme for given V , T , p, S, |Ξ|2, g̃1, and J̃n from the previous iteration step,

we can express the continuity equation at time tm+1 = (m+ 1)∆t by

−Jj,x + σjgj = fj , Jj = gj,x −
gj

T
Vx, j = 1, 2, (3.4)

where the current densities J1 = Jn and J2 = Jw are given by (2.3) and

σ1 = σ̃ + (µn△t)
−1,

σ2 =
3

2
T σ̃ + (µn△t)

−1 + (µnτ0)
−1,

f1 = f̃ + (µn△t)
−1gm

1 ,

f2 =
3

2
T f̃ + (µn△t)

−1gm
2 − J̃nVx +

3

2
Ta(µnτ0)

−1g̃1.

Furthermore,

σ̃ = µ−1
n

( p

τp(µ
−1
n g̃1 + ni) + τn(p+ ni)

+ Cnµ
−1
n g̃1p+ Cpp

2 +Bp+ vgg0|Ξ|
2S

)
,

f̃ =
ni

τp(µ
−1
n g̃1 + ni) + τn(p+ ni)

+ Cppn
2
i + Cnµ

−1
n g̃1n

2
i + vgg0nth|Ξ|

2S

and gm
j is the value of gj at time step tm.

If the zeroth-order term σi vanishes, the use of Raviart-Thomas finite elements

in (3.4) provides a numerical scheme with a stiffness matrix which is an M-matrix,

thus providing the positivity of the discrete particle density for positive boundary

conditions. However, this property may not hold if σi > 0. Marini and Pietra24 have

developed finite elements which guarantee the positivity of the particle densities for

positive Dirichlet boundary data. We will show below that this property remains

valid even for the Robin boundary conditions (2.17) with θn/p > 0.

Next, we describe the discretization of (3.4) in the interval (0, 1) with Robin

boundary conditions. For convenience, we omit the index j in (3.4). We introduce

the uniform mesh xi = ih, i = 0, . . . , N , where N ∈ N and h = 1/N . In order to deal

with the convection dominance due to high electric fields, we use exponential fitting.

Assume in the following that the temperature is given by a piecewise constant

function T (see (3.12) for the definition of T ) and that the electric potential V

is a given piecewise linear function. Then we define a local Slotboom variable by

y = exp(−V/T )g in each subinterval Ii = (xi−1, xi). Eq. (3.4) can be written as

e−V/TJ − yx = 0, −Jx + σeV/T y = f (3.5)



October 10, 2007 16:11 WSPC/INSTRUCTION FILE p07brunk2

12

and the boundary conditions (2.17) transform to

∂y

∂ν
− θn(ya − y) = 0 at x = 0, 1, (3.6)

where ya = e−V/T ga, and ga = µnna (see (2.18)).

The ansatz space for the current density J consists of piecewise polynomials of

the form ψi(x) = ai + biPi(x) on each Ii with constants ai, bi and second-order

polynomials Pi(x) which are defined as follows. Let P (x) = 3x2 − 2x. We define

Pi(x) (depending on V ) by

Pi(x) = −P
(xi − x

h

)
for imin = i− 1,

Pi(x) = P
(x− xi−1

h

)
for imin = i,

where imin is the boundary node of Ii at which the potential attains its minimum.

Notice that the minimum is always attained at the boundary since V is linear on

Ii. If V is constant in Ii, we define Pi(x) = P ((x− xi−1)/h).

Now we introduce as in Ref. 13 the finite-dimensional spaces

Vh = {ψ ∈ L2(0, 1) : ψ(x) = ai + biPi(x) in Ii, i = 1, . . . , N},

Wh = {φ ∈ L2(0, 1) : φ is constant in Ii, i = 1, . . . , N},

Γh = {q is defined at the nodes x0, . . . , xN}.

The mixed-hybrid finite-element approximation of (3.5) is as follows: Find Jh ∈ Vh,

yh ∈Wh, and yh ∈ Γh such that

N∑

i=1

( ∫

Ii

QiJhψdx+

∫

Ii

yhψxdx−
[
yhψ

]xi

xi−1

)
= 0, (3.7)

N∑

i=1

(
−

∫

Ii

Jh,xφdx+

∫

Ii

σS−1
i yhφdx

)
=

N∑

i=1

∫

Ii

fφdx, (3.8)

N∑

i=1

[
qJh

]xi

xi−1
+ qθn(Q−1

1 y0 +Q−1
N yN ) = qθnya(Q−1

1 +Q−1
N ), (3.9)

for all ψ ∈ Vh, φ ∈Wh, and q ∈ Γh. The approximations

Qi =
1

h

∫

Ii

e−V (x)/T idx, Si = e−Vmin/T i , i = 1, . . . , N,

are introduced in order to treat accurately large gradients of the potential.24 Here,

Vmin denotes the minimum value of V on Ii. Eq. (3.7) is the weak formulation of

the first equation in (3.5), together with the Slotboom transformation. Eq. (3.8) is

the discrete weak version of the second equation in (3.5). The third equation (3.9)

expresses the weak continuity property of Jh.

The variables Jh and yh can be eliminated by static condensation. For this, we

write the weak formulation in matrix-vector notation for the vectors of nodal values
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similarly as in Ref. 15:


A B⊤ −C⊤

−B D 0

C 0 E






Jh

yh

yh


 =




0

F

GC


 .

The matrices A ∈ R
2N×2N , B ∈ R

N×2N , C ∈ R
(N+1)×2N and D ∈ R

N×N are given

by the corresponding elementary matrices associated with the interval Ii, denoted

by the superscript i:

Ai
jk = Qi

∫

Ii

ψjψkdx, Bi
jk =

∫

Ii

φjψk,xdx,

Ci
jk =

[
qjψk

]xi

xi−1
, Di

jk = S−1
i

∫

Ii

σφjφkdx,

where ψk, φk, and qk are the canonical basis functions of the corresponding

spaces. In the matrix E ∈ R
(N+1)×(N+1), only the values E11 = q1q1θnQ

−1
1 and

EN+1,N+1 = qN+1qN+1θnQ
−1
N are non-zero. The vectors F and GC represent the

corresponding right-hand sides of (3.8) and (3.9), respectively.

Now, static condensation can be applied.15 As the matrix A has a diagonal

structure, it can be easily inverted, which allows to eliminate Jh. A similar argument

for BA−1B⊤ +D allows to eliminate yh. This leads to the system

M̃yh = G, (3.10)

where M and G are given by:

M̃ = CA−1C⊤ + E − CA−1B⊤(BA−1B⊤ +D)−1BA−1C⊤,

G = GC + CA−1B⊤(BA−1B⊤ +D)−1F.

If only Dirichlet boundary conditions are considered, E = 0 and GC = 0. In this

case, Marini and Pietra showed that M̃ is an M-matrix. If Robin boundary condi-

tions are prescribed, we observe that the matrix E does not have any contribution to

internal elements. Thus, the corresponding elementary matrices are, as in the case

of Dirichlet conditions, M-matrices. If θn > 0, the contribution of E to the boundary

elementary matrices consists in nonnegative entries to the diagonal. Thus, also the

boundary elementary matrices have the M-matrix property. Adding all elementary

matrices shows that M̃ is an M-matrix.

In order to go back to the discrete natural unknown gh, we use a discrete inverse

Slotboom transformation. Multiplying M̃ column by column by eVi/T , the final

system for the unknown gh becomes

Mgh = G. (3.11)

Notice that M is an M-matrix since M̃ does so, and thus, the positivity for the

solution of (3.11) is guaranteed for positive right-hand sideG. Actually, G is positive

if the right-hand side f in (3.4) is positive. This is the case for the electron density

equation, since the separation of the recombination terms was done in such a way
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that f1 and the zeroth-order term σ1 are positive. An analogous discretization of

the hole equations (2.5) ensures positivity for the discrete hole density as well.

The eliminated variables Jh, yh, or gh can be computed a posteriori from the

solution of (3.10) or (3.11); we refer to Ref. 16 and Ref. 24 for the corresponding

formulas. In order to complete the scheme, we still have to specify how the piecewise

constant temperature T is defined. The temperature is implicitly defined in terms

of g1 and g2, T = 2g2/3g1. Hence, we set

T i =
1

2
(Ti + Ti−1), where Ti =

2gi
2,h

3gi
1,h

. (3.12)

3.2. Iterative scheme

The discrete system is solved by a variant of the Gummel scheme employed for the

solution of the stationary energy-transport model.15,16 To solve the model equations

for the laser diode at time tm+1 = (m+1)△t, we take as initial values of the iteration

the solution of the previous time step, g
(0)
1 = g̃1, g

(0)
2 = g̃2, p

(0) = p̃, V (0) = Ṽ ,

S(0) = S̃, Ξ(0) = Ξ̃, and β(0) = β̃, here denoted with a tilde. Notice that in the one-

dimensional situation, ∂Ω = ΓC = {0, 1}. We set g1,a = µnna and g2,a = 3
2µnnaTa.

The iterative procedure for the laser diode reads as follows:

(1) Let ℓ ∈ N0 and p⋆ = p(ℓ), g⋆
1 = g

(ℓ)
1 , V = V (ℓ).

(2) Find S such that

S
(
1 −△tvg(2Im(β(ℓ)) − αf )

)
= S̃Bµ−1

n g⋆
1p

⋆△t. (3.13)

(3) Do

(a) Set Vn = V + Un and find g1 such that




−divJ1 + σ1(p
⋆, g⋆

1 ,Ξ
(ℓ), S,△t)g1 = f1(p

⋆, g⋆
1 ,Ξ

(ℓ), S,△t, g̃1) in Ω,

J1 = ∇g1 −∇VnT
−1
g1 in Ω,

g1 + θ−1
n J1 · ν(x) = g1,a on ΓC ;

(3.14)

(b) Set Vp = V + Up and find p such that




−divJp + σp(p
⋆, g⋆

1 ,Ξ
(ℓ), S,△t)g1 = fp(p

⋆, g⋆
1 ,Ξ

(ℓ), S,∆t, p̃) in Ω,

Jp = −∇p−∇Vpp in Ω,

p− (θpµp)
−1Jp · ν(x) = pa on ΓC ;

(3.15)

(c) Set n = µ−1
n g1 and V1 = V + δV , where δV is the solution of

{
λ2∆(δV ) − (p+ n)δV = −λ2∆V + n− p− C in Ω,

δV = 0 on ΓC ;
(3.16)

(d) Set g⋆
1 := g1, p

⋆ := p, and V := V1;

until ‖δV ‖L2 < min(tolint, d1(δT )d2), where δT is defined in step (5).
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(4) Set Vn = V + Un and find g2 such that




−divJ2 + σ2(p
⋆, g⋆

1 ,Ξ
(ℓ), S,△t)g2 = f2(p

⋆, g⋆
1 ,Ξ

(ℓ), S,∆t, g̃2) in Ω,

J2 = ∇g2 −∇VnT
−1
g2 in Ω,

∂g2

∂ν − θn(g2,a − g2) = 3
2θng1,a(T − Ta) + 3

2g1∇V · ν(x) on ΓC ;

(3.17)

(5) Compute T = 2g2/3g1 and δT = ‖T − Ta‖L2 .

(6) Define V (ℓ+1) = V + δV , where δV is the solution of (3.16).

(7) Find Ξ(ℓ+1) and β(ℓ+1) such that
{(

∆ + ω2

c2 εopt

)
Ξ(ℓ+1) = (β(ℓ+1))2Ξ(ℓ+1) in Ω,

Ξ(ℓ+1) = 0 on ΓC .
(3.18)

(8) Set g
(ℓ+1)
1 := g1, g

(ℓ+1)
2 := g2, p

(ℓ+1) := p, and T (ℓ+1) := T .

We stop the iteration procedure if the relative difference of two consecutive it-

erations of (g
(ℓ)
1 , g

(ℓ)
2 , p(ℓ), T (ℓ)), (S(ℓ),Ξ(ℓ)) are smaller in the L2-norm than the

tolerances tolel and tolop, respectively. The described iterative scheme performs

best for tolint = 10−6, d1 = 10−4, and d2 = 0.3. Moreover, we have taken

tolel = tolop = 10−5. The boundary layers can be significantly reduced if we take

θn = θp = 2500.

The discretization (3.13) makes necessary to impose the restriction △t <

1/vg(2Im(β(ℓ)) − αf ) on the time step to ensure the positivity of S. The choice

△t = 10−12 s proved to be appropriate for all presented simulations.

To achieve convergence when the applied voltage between two time steps changes

abruptly (e.g. digital signal) or for stationary computations, the above iterative

scheme is embedded in a continuation method for the applied bias:

Do

(1) Apply the iterative algorithm for the applied voltage Ṽa = Va,old +△V until

the tolerance or the maximum number of iterations is reached. As an initial

guess for all variables, the values from the former voltage step are used;

(2) If the tolerance is achieved, set Va,old = Ṽa, otherwise decrease the voltage

step size △V := △V/2;

until Ṽa = U .

In the simulations, we have taken △V = 0.1 V.

For the simulation of the photo diode, the iterative algorithm changes slightly.

The solution of the rate equation (3.13) and the solution of the waveguide equation

(3.18) become obsolete. The remaining algorithm differs only slightly from that one

proposed in Ref. 15 and 16. For high optical irradiation or strong changes in the

irradiation (in the transient simulation), we applied a continuation method in the

irradiation similar to that for the applied bias.

The output current is used as an input of the electric circuit. Then the DAE

system is solved by the Newton method and the output, the node potentials, are
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employed as an input for the energy-transport system, and the output current is

computed. This procedure is repeated until the difference of two successive iterations

is sufficiently small.

4. Numerical examples

4.1. Characteristics of the laser diode

We consider a GaAs/Al0.7Ga0.3As p-i-n laser diode under various bias conditions.

The one-dimensional diode has the length 1µm consisting of a p-doped part with

length 0.45µm, a low-doped (intrinsic) part with length 0.1µm, and an n-doped re-

gion with length 0.45µm. The doping concentrations are −1024 m−3 in the p-doped,

1018 m−3 in the low-doped region, and 1024 m−3 in the n-doped part. The doping

profile is slightly smoothed by use of the tanh function.19 The band potential, con-

sisting of the constant values Un,0, Up,0, respectively, in the active region and zero

elsewhere, is also slightly smoothed. The values for Un,0 and Up,0 are rough approx-

imations according to the contact potential computations in Ref. 11. The remaining

physical parameters for the diode are collected in Table 1. For the computations we

have employed a uniform spatial grid with 101 nodes and a time step size of 1 ps.

Parameter Physical meaning Numerical value

Ly extension of the device in y-direction 10−6 m

Lz extension in z-direction 10−5 m

q elementary charge 1.6 · 10−19 As
UT thermal voltage at 300K 0.026 V
Un,0/Up,0 band potentials in active region 0.1/ − 0.1 V

Cn/Cp Auger recombination parameters22 10−43/10−42 m6s−1

B spontaneous recombination parameter1 10−16 m3s−1

τn/τp carrier lifetimes22 10−6/10−5 s

τ0 energy relaxation time13 4 · 10−13 s

nth threshold density1 1024 m−3

αbg optical background loss1 4000 m−1

αf facet loss1 5000 m−1

ǫ0 permittivity constant22 8.85 · 10−12 As(Vm)−1

ǫA
s /ǫG

s material permittivity22 12.1 · ǫ0/12.9 · ǫ0
µA

n /µG
n electron mobilities22 2300/8300 cm2(Vs)−1

µA
p /µG

p hole mobilities22 145/400 cm2(Vs)−1

µA
opt/µG

opt refractive index22 3.3/3.15

nA
i /nG

i intrinsic density22 2.1 · 109/2.1 · 1012 m−3

gG
0 differential gain in GaAs (see Refs. 1, 9) 3 · 10−21 m2

ω angular frequency (wave length 870 nm) 2.17 · 10−15 Hz

Table 1. Physical parameters for a laser diode of Al0.7Ga0.3As and GaAs. The parameters with

superscript A denote the values for Al0.7Ga0.3As, and those with superscript G denote the values
for GaAs. The parameters without superscript are valid for both materials.
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First we consider the response of the laser diode to various voltage signals com-

puted with the complete model including the waveguide equation or with the sim-

plified model in which the effective index approximation has been applied. For the

transient simulations, we assume that the device is initially in thermal equilibrium

without any optical field. The initial conditions are thus

g1 = µne
−Veq , g2 =

3

2
µnneq, p = eVeq , V = Veq, T = 1, S = 0

at time t = 0, where Veq is the thermal equilibrium potential given by

λ2Veq,xx = e−Veq − eVeq − C(x) in (0, 1), Veq(0) = Vbi(0), Veq(1) = Vbi(1).

Recall that Vbi is the built-in potential defined in section 2.1.

The laser diode is biased with a sinusoidal signal with amplitudes 2 V and 3 V

and frequency 1 GHz. In Figure 3 the modal gain 2Im(β) computed from (2.9) is

compared with the approximation (2.12) during one oscillation of the input sig-

nal. The signal exceeds the threshold voltage for about 0.4 ps ≤ t ≤ 0.6 ps. We

see that the simplified model well approximates the modal gain, even for larger

applied voltage. Below the threshold voltage, both modal gains coincide with the

background loss. Figure 4 shows the intensity distribution |Ξ|2 of the optical field

at time t = 5 · 10−9 s. The approximated intensity distribution agrees very well

with the intensity distribution computed from the complete model. These results

motivate the use of the simplified model for the following simulations.
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Fig. 3. Laser diode biased with a sinusoidal signal U0 sin(2π109 Hz t). Comparison of the modal
gain 2Imag(β) during one oscillation computed from the complete and the simplified model with
applied bias of U0 = 2V (left) and U0 = 3V (right).

In Figure 5 the output signal is presented for various applied voltages and the

(transient) drift-diffusion (DD) and energy-transport (ET) models. The left figure

shows the optical output power from a sinusoidal signal with 1 GHz. The overshoot

of the energy-transport model at about t = 0.4 ns is caused by the transient response
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Fig. 4. Laser diode biased with a sinusoidal signal U0 sin(2π109 Hz t). Intensity distribution of the

optical field at the maximum bias of U0 = 2 V (left) and U0 = 3 V (right).

of the device. The differences between the drift-diffusion and energy-transport mod-

els become more significant at larger applied voltage as seen in the right figure for a

digital signal. This is expected since the energy-transport equations includes ther-

mal effects.
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Fig. 5. Response of the laser diode to the sinusoidal input signal 3 sin(2π109 Hz t) V (left) and to
the digital input signal with frequency 5GHz and duration 100 ps.

Next, we present the steady characteristics of the laser diode (Figure 6). The

left figure shows a current saturation in case of the energy-transport model. This

behavior cannot be observed for the drift-diffusion model as the mobility µn is

assumed to be constant and hence, the drift −µnVx is unbounded in the electric field.

When the relaxation time becomes smaller, the characteristics seem to converge to

the curve of the drift-diffusion model. This can be understood from the fact that a

vanishing relaxation time forces the particle temperature to relax to the constant

ambient (lattice) temperature. The power-current characteristics are shown in the

right figure. For both models we observe the presence of a threshold current of about
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8 mA and an approximate linear behavior for currents between 0.1 A and 0.3 A. The

output power computed from the drift-diffusion model is linearly increasing even

for larger currents. For the energy-transport model, however, the output power

diminishes for large currents. A similar effect has been observed in Ref. 5 using the

drift-diffusion model for higher lattice temperatures (also see Ref. 1, Chap. 7). This

may indicate the importance of including thermal effects.
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Fig. 6. Characteristics of the laser diode using the drift-diffusion and energy transport models with

different relaxation times. Left: Current-voltage characteristics. Right: Power-current characteris-
tics.

Finally, Figure 7 shows the stationary electron density and temperature in the

device for two different forward bias. We clearly see the carrier confinement in

the active region. Hot electrons are present mainly in the p-doped region and the

temperature becomes minimal at the p-i heterojunction. This minimum is a well

known thermoelectric effect at p-n junctions.26 For larger applied bias, the electron

temperature becomes large also in the n-doped region.

0 0.2 0.4 0.6 0.8 1

10
22

10
24

10
21

10
23

10
25

position [µm]

el
ec

tr
on

 d
en

si
ty

 [m
−

3 ]

 

 

3 V bias
2.5 V bias

0 0.2 0.4 0.6 0.8 1
200

400

600

800

1000

1200

1400

position [µm]

el
ec

tr
on

 te
m

pe
ra

tu
re

 [K
]

 

 

3 V bias
2.5 V bias

Fig. 7. Electron density (left) and electron temperature (right) in the laser diode for different
forward bias.
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Parameter Physical meaning Numerical value

Ly extension of device in y-direction 10−5 m

Lz extension in z-direction 10−4 m

q elementary charge 1.6 · 10−19 As

ǫs permittivity constant22 10−10 As(Vm)−1

UT thermal voltage at 300 K 0.026 V

µn/µp low-field carrier mobilities22 1500/450 cm2(Vs)−1

τn/τp carrier lifetimes22 10−6/10−5 s

ni intrinsic density22 1016 m−3

τ0 energy relaxation time13 4 · 10−13 s
η quantum efficiency 0.5
r surface reflectivity 0.3

αab absorption 5000 m−1

Table 2. Physical parameters for a silicon p-i-n-junction diode.

4.2. Photo diode

The one-dimensional vertical silicon p-i-n photo diode has the length 6µm consisting

of a p-doped part of 2µm length doped with −5·1022 m−3, an intrinsic region of 2µm

length doped with 5 · 1017m−3, and an n-doped region of length 2µm doped with

5 ·1022m−3. Again, the doping profile is slightly smoothed. The physical parameters

for the diode are listed in Table 2. The geometry of the device is similar to that of

Ref. 29. For the following numerical tests we employ a uniform grid with 101 nodes

and the time step 5 ps.

In Figure 8 the dark current (no irradiation) and the photo current (positive

irradiation) under backward bias are presented. The current increases significantly

with increasing irradiation, proving that our model well reflects the typical behavior

of a photo diode.
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Fig. 8. Dark current and photo current in the photo diode for various irradiation intensity.
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In the following numerical tests, the diode is driven by the backward bias of

0.2 V. The response of the device to a sinusoidal irradiation signal with amplitude

60 mW and frequency 1 GHz and to a digital signal with duration 200 ps are shown

in Figure 9. We observe that the stationary energy-transport model does not give

satisfactory results. The numerical results of the drift-diffusion and the energy-

transport models are similar since the photo currents are rather small.
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Fig. 9. Response of the photo diode under backward bias of 0.2V for various irradiation signals.
Left: Sinusoidal signal P (t) = 60 sin(2π109 Hz t) mW. Right: Digital signal with amplitude 60 mW
and duration 200 ps.

The stationary electron energy density and temperature are presented in Figure

10. The energy density (left figure) strongly increases in the p-doped and intrinsic

regions with increasing irradiation. This is mainly caused by the increase of photo

electrons in these regions since the temperature only increases in the intrinsic part

of the device.
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Fig. 10. Electron energy density (left) and temperature (right) in the photo diode under backward
bias of 0.2 V for various irradiation power.
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4.3. High-pass filter including optoelectronic devices

In this subsection we consider the laser and photo diode as part of a small electric

circuit (see Figure 11). The laser diode is biased with a digital input signal with

bias of 2.5 V and 3 V with frequencies 1 GHz and 5 GHz. The photo diode receives

the transmitted signal and is coupled to a high-pass filter only passing frequencies

larger than the cutoff frequency. The filter consists of the photo diode, a capacitor,

and three resistors. The capacitance is 10 pF and the resistances are R1 = 1MΩ

and R2 = 100Ω. For the load resistance, we have chosen RL = 1kΩ. The photo

diode is backward biased with 0.2 V.

Uin

UoutRL

R1

R2

+

−

Fig. 11. Photo diode with a high-pass filter.

The output of the laser diode (which is the input for the photo diode) and the

high-pass filter for a 2.5 V digital signal Uin is shown in Figure 12 (upper row) for

stationary and transient device simulations. The results for the high-pass output

voltage differ significantly as the frequency is too large to be resolved by the sta-

tionary model. On the other hand, the differences between the drift-diffusion and

the energy-transport equations are minor. This behavior changes drastically when

the digital signal becomes larger. Figure 12 (lower row) shows the output of the

laser diode and the high-pass filter for a digital signal of 3 V. The output from the

drift-diffusion model is larger than that from the energy-transport equations.

The effect of a larger frequency is shown in Figure 13. We have employed a

digital signal with a five times larger frequency than that of Figure 12. Again, the

large frequency cannot be resolved by the stationary model.

In order to verify the filter effect, we apply digital signals with 2.5 V bias with

various frequencies using the stationary energy-transport model (Figure 14). The

use of the stationary model is justified by the chosen frequencies and applied voltage.

The numerical results show that only high frequencies provide a significant output

signal showing the high-pass behavior.
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Fig. 12. Output of the laser diode (left) and the high-pass filter (right) computed from the drift-
diffusion and energy-transport models for a 1 GHz digital input signal with bias 2.5 V (upper row)

and 3V (lower row).
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Fig. 13. Output of the laser diode (left) and the high-pass filter (right) computed from the drift-

diffusion and energy-transport models for a 5GHz digital input signal with bias 3 V.

5. Conclusion

In this paper, we have presented a coupled optoelectronic device-circuit model based

on the energy-transport equations. The model becomes a system of nonlinear par-

tial differential-algebraic equations. The mixed finite-element scheme with Marini-
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Fig. 14. Output of the high-pass filter for input signals of various frequencies.

Pietra elements is proven to be positivity-preserving also for Robin boundary con-

ditions.

The numerical results for a single-mode laser diode and a photo diode show

that the basic behavior of the devices can be reproduced by our model. For large

applied voltages, the drift-diffusion and energy-transport model give significantly

different results due to thermal effects. For small frequencies, the stationary energy-

transport model is sufficient but for higher frequencies, the transient model has to

be employed. The photo diode has been coupled to a high-pass filter which takes

the laser diode output as an input for the circuit. The simulations clearly show the

filter effect.

The numerical results indicate that thermal effects play an important role in

circuits with large applied bias. In these situations it is expected that the energy-

transport model gives better results than the drift-diffusion equations. In future

simulations, we intend to include an equation for the device temperature coupled

to the electron temperature.
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