
PIPELINED ITERATIVE SOLVERS WITH KERNEL FUSION
FOR GRAPHICS PROCESSING UNITS

K. RUPP∗† , J. WEINBUB∗, A. JÜNGEL† , AND T. GRASSER∗

Abstract. We revisit the implementation of iterative solvers on discrete graphics processing
units and demonstrate the benefit of implementations using extensive kernel fusion for pipelined
formulations over conventional implementations of classical formulations. The proposed implemen-
tations with both CUDA and OpenCL are freely available in ViennaCL and achieve up to three-fold
performance gains when compared to other solver packages for graphics processing units. Highest
performance gains are obtained for small to medium-sized systems, while our implementations remain
competitive with vendor-tuned implementations for very large systems. Our results are especially
beneficial for transient problems, where many small to medium-sized systems instead of a single big
system need to be solved. 1

Key words. Iterative Solvers, Conjugate Gradient Method, BiCGStab Method, GMRES
Method, GPU, OpenCL, CUDA

AMS subject classifications. 65F10, 65F50, 65Y05, 65Y10

1. Introduction. The need for the solution of a linear system of equations de-
scribed by a sparse matrix A and a right hand side vector b is ubiquitous in compu-
tational science and engineering. Most prominently, discretizations of linear partial
differential equations by means of the finite element or the finite volume method di-
rectly lead to such systems. Smaller-sized systems may be solved using sparse direct
solvers, whereas iterative solvers are preferred or even necessary for large systems,
eventually supplemented by preconditioning techniques of various degrees of sophis-
tication.

The fine-grained parallelism of iterative solvers from the family of Krylov methods
is particularly attractive for massively parallel hardware such as graphics processing
units (GPUs), whereas much more effort is required to expose the parallelism in sparse
direct solvers appropriately [19, 41]. Sparse matrix-vector products - essential parts
of Krylov methods - have been studied in detail for GPUs [5, 7] and for INTEL’s
many-integrated core (MIC) architecture [24, 39], based on which a unified format
also well-suited for multi-core processors has been proposed recently [21]. Similarly,
vendor-tuned implementations of the vector operations required in addition to the
sparse matrix-vector products for implementing sparse iterative solvers from the fam-
ily of Krylov methods are available. A disadvantage of current accelerators is their
connection to the host system via the PCI-Express bus, which is often a bottleneck
both in terms of latency as well as bandwidth. This mandates a certain minimum
system size to amortize the overhead of data transfer through the PCI-Express bus
in order to obtain any performance gains over an execution on the host.

Two programming models are currently in widespread use for general purpose
computations on GPUs: CUDA is a proprietary programming model for NVIDIA
GPUs [31] providing its own compiler wrapper, whereas OpenCL is a royalty-free

∗Institute for Microelectronics, TU Wien, Gußhausstraße 27-29/E360, A-1040 Wien, Austria
†Institute for Analysis and Scientific Computing, TU Wien, Wiedner Hauptstraße 8-10/E101,

A-1040 Wien, Austria
1Editorial Policy Note: A preliminary investigation of a pipelined conjugate gradient formulation

for graphics processing units was presented at the GAMM meeting in Erlangen, Germany, earlier
this year and is about to appear as a two-page proceedings entry; this paper builds on top of these
initial ideas and presents them in full depth.

1

2 K. Rupp, J. Weinbub, A. Jüngel, T. Grasser

open standard maintained by the Khronos Group [32] and is typically provided as
a shared library. Although OpenCL can also be used for NVIDIA GPUs, the richer
CUDA toolchain has resulted in a higher share of research on general purpose com-
putations on GPUs using CUDA. Also, slight performance differences of CUDA and
OpenCL, caused by different degrees of compiler optimizations or differences in the
implementation rather than through differences in the programming model, have been
reported [11, 18]. Automated translators such as Swan [15] or CU2CL [27] have been
developed to reduce the maintenance effort of CUDA and OpenCL branches. How-
ever, only a subset of CUDA and OpenCL is supported by these translators, limiting
their applicability particularly for highly optimized implementations. Consequently,
portable software libraries targeting GPUs are currently driven into providing sup-
port for both CUDA and OpenCL, for example Paralution [33], VexCL [44], or Vien-
naCL [45].

A substantial amount of research has been conducted on various preconditioning
techniques for iterative solvers on GPUs including algebraic multigrid [6, 13, 34, 46],
incomplete factorizations [23, 30], or sparse approximate inverses [10, 25, 40]. Nev-
ertheless, hardware-efficient and scalable black-box preconditioners for GPUs are not
available, but instead the use of problem-specific information is required [50]. Taking
preconditioner setup costs into account, iterative solvers using simple diagonal precon-
ditioners or no preconditioner at all are often observed to be competitive in terms of
time-to-solution for small to mid-sized systems, where e.g. the asymptotic optimality
of multigrid preconditioners is not yet dominant [46]. Similarly, matrix-free methods
cannot be used with complicated black-box preconditioners in general.

In this work we consider three popular iterative solvers: The conjugate gradient
(CG) method for symmetric positive definite systems [16], the stabilized bi-conjugate
gradient (BiCGStab) method for non-symmetric positive definite systems [43], and
the generalized minimum residual (GMRES) method for general systems [38]. In
contrast to previous work with a focus on the optimization of sparse matrix-vector
products [5, 7, 21, 24, 39], we consider the optimization potential of the full solvers
rather than restricting the optimization to a single kernel. After a careful evaluation
of the limiting resources for different system sizes and different densities of nonzeros in
the system matrix, pipelining and kernel fusion techniques are presented in Section 2
to resolve these bottlenecks to the extent possible. The key principle in pipelined
techniques is to apply not only a single operation to a data word loaded from main
memory, but to chain multiple operations together to reduce the overall number of
loads and stores to global memory. Pipelining is typically achieved by fusing multiple
compute kernels, but compute kernels may also be fused only to reduce the overall
number of kernel launches, not exhibiting any pipelining effect. Pipelining and kernel
fusion are then applied to the CG method, the BiCGStab method, and the GMRES
method in Section 3, leading to more efficient solver implementations than those
using a sequence of calls to the basic linear algebra subprograms (BLAS) in vendor-
tuned libraries. Section 4 then compares the proposed solver implementations with
existing solver implementations for GPUs available in the software libraries CUSP [9],
MAGMA [26], and Paralution [33], demonstrating a substantial performance gain for
small systems without sacrificing performance for large systems. Our benchmark
results clearly show the benefit of kernel fusion and pipelining techniques and that
these techniques have not been rigorously applied to the implementation of the CG
method, the BiCGStab method, and the GMRES method in the context of GPU
computing before.

Pipelined Iterative Solvers with Kernel Fusion 3

PCI−Express

10 GB/s
1−10 us

Workgroup Workgroup Workgroup

Workgroup Workgroup Workgroup

GPU

Host

10 ns
200 GB/s

GPU Main Memory

Shared Memory

Shared Memory

Shared Memory Shared Memory

Shared MemoryShared Memory

Fig. 1. Schematic view of a GPU board connected to the host via PCI-Express at a bandwidth of
about 10 GB/sec and a latency on the order of 10 microseconds. Each workgroup of threads can be
synchronized through shared memory, but global synchronization is available only through separate
kernel launches.

The obtained execution times are also compared with those obtained from CPU-
based implementations in the PETSc library [2, 3] to demonstrate that CPU-based
implementations are superior for typical sparse systems below about 5 000 unknowns.
Our results, similar to previous investigations [22], also falsify wide-spread misconcep-
tions of extreme performance gains using GPUs. We show that performance gains of
GPUs over power-equivalent dual-socket CPU machines are below an order of mag-
nitude on average. This holds true also for large problem sizes and when initial data
setup costs on GPUs are not taken into account. Finally, Section 5 discusses the im-
plications of our findings to software design and the need for more tightly integrated
future hardware generations.

2. Implementation Techniques for Fast Iterative Solvers. The purpose
of this section is to identify the general bottlenecks of the typical building blocks of
iterative solvers and to present techniques for mitigating their detrimental effects on
performance. A schematic view of a machine (host) equipped with a discrete GPU
connected via PCI-Express is given in Fig. 1, where the following key features are
schematically depicted using a terminology similar to OpenCL:

• Threads are collected in workgroups, where each workgroup provides dedi-
cated memory shared across threads in the workgroup. Thread synchroniza-
tions within a workgroup are possible inside a compute kernel, but a global
synchronization of all workgroups is typically only possible by launching a new
kernel. Although global synchronization primitives and spin locks through
atomic operations are used occasionally, these techniques are not sufficiently
portable across different hardware and thus not further considered.

• If a kernel launch is initiated on the host, it takes at least a few microseconds
until the kernel will launch on a GPU. This is because a kernel launch on
the GPU requires a message from the host to trigger the execution, entailing
high latency for communication across PCI-Express. This latency of kernel
launches can be hidden if another kernel is currently active on the GPU, in
which case the PCI-Express message for launching the new kernel is received
asynchronously.

• Memory access latency of GPU main memory is around three orders of mag-

4 K. Rupp, J. Weinbub, A. Jüngel, T. Grasser

nitude smaller than the latency of messages across the PCI-Express bus.
• The memory bandwidth between GPU main memory and the GPU compute
units can be more than ten times higher than the bandwidth of the PCI-
Express bus connecting host and GPU. Current high-end GPUs offer over
200 GB/sec memory bandwidth, whereas the current PCI-Express 3.0 offers
up to 15.75 GB/sec for a 16-lane slot.

The remainder of this section quantifies the overhead of PCI-Express latency and
presents techniques for reducing the number of kernel launches to reduce the detri-
mental latency effect.

2.1. PCI-Express Latency. At the very least, iterative solvers executed on
the GPU need to communicate information about the current residual norm to the
host. In the typical case of a communication of the residual norm in each iteration
for convergence checks, the time required for a data transfer from the device to the
host represents a lower bound for the time required for an iterative solver iteration.
An OpenCL benchmark for PCI-Express data communication shown for an NVIDIA
Tesla C2050 in Fig. 2 exhibits a latency-dominated regime for message sizes below ten
kilobytes, where the transfer time is around eight microseconds. Latency-dominated
data transfer from the device to the host takes almost twice as long, because a transfer
initiation from the host is required first. Similar timings and bandwidths are obtained
on other GPUs both with PCI-Express 2.0 and 3.0. Our overall observation in Sec-
tion 4 is that NVIDIA GPUs show slightly lower latency than AMD GPUs on the
Linux-based machines used for the comparison.

To better understand the latency induced by PCI-Express transfer, consider a
high-end GPU with 200 GB/s memory bandwidth. Within the PCI-Express latency
of 8 microseconds, the GPU can load or store 1.6 megabytes of data from main
memory assuming full saturation of the memory channel, which amounts to 200 000
values in double precision and which we will refer to as latency barrier. Consequently,
GPUs suffer from inherent performance constraints for any kernel limited by memory
bandwidth whenever the total amount of data processed in a kernel is significantly
below the latency barrier. On the other hand, many practical applications induce
systems with storage requirements for the unknowns close to or even below the latency
barrier. In such case, iterative solver implementations for GPUs need to keep the
latency-induced overhead as small as possible by packing multiple operations into
each kernel.

2.2. Kernel Fusion. As a prototypical example for many iterative solvers, con-
sider the sequence of operations

q = Ap(2.1)

α = 〈p, q〉(2.2)

for a scalar value α, vectors p and q, and a sparse square matrix A. Conventional
implementations based on BLAS routines involve the following steps:

1. Call the sparse matrix-vector product kernel for computing (2.1). For a stan-
dard compressed sparse row (CSR) representation of the sparse matrix, a
typical OpenCL kernel body is as follows (cf. [5, 7]):

for (u int i = g e t g l o b a l i d (0) ; i < s i z e ; i += g e t g l o b a l s i z e (0)) {
2 double q a t i = 0 ;

for (u int j = A row [i] ; j < A row [i +1] ; ++j)
4 q a t i += A values [j] ∗ p [A col [j]] ;

q [i] = q a t i ;
6 }

Pipelined Iterative Solvers with Kernel Fusion 5

10
-6

10
-5

10
-4

10
-3

10
-2

10
1

10
2

10
3

10
4

10
5

10
6

10
7

T
im

e
 (

s
e
c
)

Message Size (Bytes)

Host to Device
Device to Host

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
1

10
2

10
3

10
4

10
5

10
6

10
7

B
a
n
d
w

id
th

 (
G

B
/s

e
c
)

Message Size (Bytes)

Host to Device
Device to Host

Fig. 2. Plot of median values for execution time (left) and obtained bandwidth (right) from 100
host-device data transfers over PCI-Express 2.0 using an NVIDIA Tesla C2050. The benchmark
uses the OpenCL functions clEnqueueWriteBuffer() and clEnqueueReadBuffer() in a blocking manner
so that the respective function only returns after the data is sent or received. Message sizes below
104 bytes are limited by latency, not PCI-Express bandwidth.

where A row and A col are the arrays holding the row and column indices in
the CSR storage format, and A values holds the nonzero entries.

2. Compute the partial results of 〈p, q〉 for the subvectors assigned to each of
the thread workgroups.

3. If α is stored on the GPU, launch another kernel using a single thread work-
group to sum the partial results. If α is stored on the host, transfer the partial
results to the host and perform the summation there.

Although this conventional implementation can reuse vendor-tuned routines, the mul-
tiple kernel launches are detrimental to performance for data sizes below the PCI-
Express latency barrier.

On closer inspection, the operations (2.1) and (2.2) can be computed more effi-
ciently by fusing compute kernels: Since the respective values in q and p are already
available in the GPU processing elements when computing the matrix-vector product,
they can be reused to compute the partial results for each thread workgroup of the
inner product. The fused kernel body for the CSR format is as follows:

// Part 1: Matrix−vector product
2 double p in q = 0 ;

for (u int i = g e t g l o b a l i d (0) ; i < s i z e ; i += g e t g l o b a l s i z e (0)) {
4 double q a t i = 0 ;

for (u int j = A row [i] ; j < A row [i +1] ; ++j)
6 q a t i += A values [j] ∗ p [A col [j]] ;

q [i] = q a t i ;
8 p in q += q a t i ∗ p [i] ; // extra operation for <p , q>

}
10

// Part 2: Reduction to obtain contr ibu t ion from thread workgroups :
12 l o c a l double shared buf [BUFFER SIZE] ;

s h a r ed bu f f e r [g e t l o c a l i d (0)] = p in q ;
14 for (u int s t r i d e=g e t l o c a l s i z e (0) /2 ; s t r i d e > 0 ; s t r i d e /= 2) {

ba r r i e r (CLK LOCAL MEM FENCE) ;
16 i f (g e t l o c a l i d (0) < s t r i d e)

shared buf [g e t l o c a l i d (0)] += shared buf [g e t l o c a l i d (0) + s t r i d e] ;
18 }

20 i f (g e t l o c a l i d (0) == 0)
p a r t i a l r e s u l t [g e t g r oup id (0)] = shared buf [0] ;

First, the matrix-vector kernel from the previous snippet is only slightly augmented
to accumulate the partial results for each thread in p in q. Then, a reduction using
a shared buffer (local memory in OpenCL terminology) shared buf of appropriate size

6 K. Rupp, J. Weinbub, A. Jüngel, T. Grasser

10
-6

10
-5

10
-4

10
-3

10
-2

10
2

10
3

10
4

10
5

10
6

T
im

e
 (

s
e
c
)

Vector Length

BLAS-based, 4 nz/Row
Fused, 4 nz/Row
BLAS-based, 28 nz/Row
Fused, 28 nz/Row

0

5

10

15

20

25

30

10
2

10
3

10
4

10
5

10
6

P
e
rf

o
rm

a
n
c
e
 G

a
in

 (
p
e
rc

e
n
t)

Vector Length

 4 Nonzeros/Row
28 Nonzeros/Row

Fig. 3. Total time required to run the operations (2.1) and (2.2) for different matrix and
vector sizes on an NVIDIA Tesla C2050. If the vector size is below 10 000 entries, the total time is
dominated by the latency for enqueuing the kernel, not the kernel execution time.

BUFFER SIZE is applied to obtain the sum over all threads within a thread workgroup.
Finally, the first thread in each thread workgroup writes the partial result of the work-
group to a temporary buffer partial result . The summation of the values in partial result

is carried out on the host as outlined in the third step above.

A comparison of execution times of the conventional implementation with the
implementation using the fused kernel is given in Fig. 3. In both cases the final
reduction step for the partial results from 128 thread workgroups has been computed
on the host and is included in the timings. Two types of matrices have been compared:
The first family of matrices with four randomly (with a uniform distribution over all
column indices) distributed nonzeros per row is limited by latency for systems with
up to 104 unknowns. A performance gain of about 20 percent is obtained from the
use of a fused kernel, which reduces the number of kernels required from two to
just one. At system sizes above 105 unknowns, a performance gain of a few percent
is still obtained because the vector q does not need to be reloaded from memory
again when computing the inner product (2.2). The second matrix type with 28
randomly distributed nonzeros per row is limited by the kernel execution time for
system sizes below 103 unknowns. This is because each thread needs to process 28
nonzeros per row in A, which results in a larger execution time than the pure PCI-
Express latency. Nevertheless, a performance gain of up to ten percent is obtained for
smaller systems, yet there is no notable performance gain or loss at larger system sizes
due to diminishing savings from reusing values q for computing the inner product.

It is not only possible to fuse the first stage in the inner product computation
with the matrix-vector product, but one can also fuse the second stage (summation
of partial results) with subsequent operations. Since the summation result is usually
needed in each thread workgroup, the final summation has to be computed in each
thread workgroup in such case. These redundant computations are usually well below
the PCI-Express latency barrier and thus faster than the use of a separate host-device
transfer or a dedicated summation kernel. While kernel fusion can in principle be
applied to an arbitrary number of vector updates, the global synchronization points
induced by matrix-vector products as well as inner products are natural boundaries
for fusing compute kernels. However, not every inner product induces a separate
synchronization point: The partial summation stage of several inner products may
also be computed within the same kernel, which is then followed by a second kernel
computing the final results of the inner products and possibly other vector operations.

Pipelined Iterative Solvers with Kernel Fusion 7

3. Pipelined Iterative Methods for Graphics Processing Units. The im-
plementation of the CG method, the BiCGStab method, and the GMRES method
are investigated in depth in the following. Each of these solvers is analyzed for the
number of kernel launches to evaluate latency. The kernel fusion techniques outlined
in Section 2 are applied to reduce the number of kernel launches whenever appro-
priate. We restrict our investigations to the execution on a single GPU, as this is
the most frequent use case, and leave optimizations for multi-GPU implementations
for future work. Nevertheless, certain optimizations applied in this section can also
be transferred to a multi-GPU setting, even though additional logic is required to
exchange data between GPUs via the PCI-Express bus.

3.1. Conjugate Gradient Method. Several variations of the classical CG
method [16] have been proposed in the past, cf. [4, 8, 14]. Also, techniques for merging
multiple solver iterations have been proposed, but they do not find broad acceptance
in practice because of numerical instabilities [36]. In the following, the classical CG
method and a pipelined version are compared, where the latter has already been
developed for vector machines [8], revisited for extreme-scale scalability [14], and im-
plemented in field-programmable gate arrays [42]:

Algorithm 1: Classical CG

Choose x01

p0 = r0 = b−Ax02

3

4

5

for i = 0 to convergence do6

Compute and store Api7

Compute 〈pi, Api〉8

αi = 〈ri, ri〉/〈pi, Api〉9

xi+1 = xi + αipi10

ri+1 = ri − αiApi11

12

13

14

Compute 〈ri+1, ri+1〉15

16

βi = 〈ri+1, ri+1〉/〈ri, ri〉17

pi+1 = ri+1 + βipi18

end19

Algorithm 2: Pipelined CG

Choose x01

p0 = r0 = b−Ax02

Compute and store Ap03

α0 = 〈r0, r0〉/〈p0, Ap0〉4

β0 = α2
0〈Ap0, Ap0〉/〈r0, r0〉 − 15

for i = 1 to convergence do6

7

8

9

xi = xi−1 + αi−1pi−110

ri = ri−1 − αi−1Api−111

pi = ri + βi−1pi−112

Compute and store Api13

Compute 〈Api, Api〉, 〈pi, Api〉14

Compute 〈ri, ri〉15

αi = (ri, ri〉/(pi, Api〉16

βi = α2
i 〈Api, Api〉/〈ri, ri〉 − 117

18

end19

A direct implementation of Algorithm 1 using one call to a matrix-vector product
routine and five calls to BLAS routines per solver iteration is straightforward. Opti-
mizations of the matrix-vector products on lines 2 and 7 in Algorithm 1 and lines 2,
3 and 13 in Algorithm 2 have been investigated in detail for different matrix formats
on GPUs in the past [5, 7]. The inner products in lines 8 and 15 in the classical CG
formulation impose synchronization by either splitting the operation into two kernels
or by requiring a host-device transfer. In particular, the residual norm computed in
line 15 is typically required on the host for convergence checks. The vectors r and p
are loaded in lines 10 and 11, but have to be reloaded for the search vector update
operation in line 18.

8 K. Rupp, J. Weinbub, A. Jüngel, T. Grasser

The pipelined version in Algorithm 2 is based on the relation

〈ri+1, ri+1〉 =
α2
i 〈Api, Api〉 − 〈ri, ri〉

〈ri, ri〉
= α2

i 〈Api, Api〉/〈ri, ri〉 − 1(3.1)

to compute pi in line 18 of Algorithm 1 without having computed 〈ri+1, ri+1〉 yet.
We note that it has been stated in the literature that precomputing inner products
involving the vectors pi and ri by using recursion formulas based only on inner prod-
ucts of pj and rj with j < i may lead to unstable algorithms [8, 36]. However, the
computation of βi involves Api, resulting in a stable algorithm based on experiences
from multiple groups in different application contexts [4, 8, 42].

Relation (3.1) allows for a rearrangement of Algorithm 1 such that all vector
updates can be computed right after each other (lines 10, 11, and 12 in Algorithm 2).
An application of kernel fusion not only allows for computing all three vector updates
within a single kernel instead of three, but also for avoiding a reload of pi−1 and ri
(line 12) when using registers for intermediate values. Furthermore, all three inner
products in Algorithm 2 can be computed simultaneously, allowing all intermediate
results to be communicated to the host with a single data transfer. More precisely,
the first reduction stage for the inner products 〈Api, Api〉, 〈pi, Api〉, and 〈ri, ri〉 can
be computed within the same kernel sharing the same buffer for intermediate results.
Then, the second reduction stage for obtaining the final results is either computed by
only a single additional kernel launch, or by communicating all partial results with
a single transfer to the host, which performs the summation. The data size of a
single partial result is about one kilobyte, hence the data transfer time remains in the
latency-dominated regime even if three of them are packed together, cf. Fig. 2.

To further enhance data reuse, we fuse the matrix-vector product in line 13 with
the inner products in line 14, so that the result values of the matrix vector product
can be processed right before they are written to GPU RAM. Thus, the computation
of 〈Api, Api〉, 〈pi, Api〉 comes at reduced data transfer cost, because the j-entry of
Api has just been computed, and the j-th entry of pi may still be available in cache.
Similarly, the inner product 〈ri, ri〉 in line 15 is fused with the vector update kernel
for lines 10, 11, and 12.

In summary, we propose the following implementation of Algorithm 2:
• Compute lines 10, 11, and 12 in one kernel and store the reduction results
of each workgroup for the computation of 〈ri, ri〉 in line 15 in a temporary
buffer.

• Compute lines 13 and 14 in one kernel and append the reduction results of
each workgroup for the computation of the inner products in line 14 to the
same temporary buffer.

• Communicate the temporary buffer to the host, where the final reduction is
computed to obtain 〈ri, ri〉, αi, and βi from lines 15, 16 and 17.

Since 〈ri, ri〉 is available for monitoring the residual norm on the host, a convergence
check can be applied in each iteration with no extra effort. The proposed imple-
mentation requires only two kernel launches per iteration and one host-device data
transfer. In contrast, a direct translation of the classical CG algorithm into BLAS-
routines requires at least six kernel launches (lines 7, 8, 10, 11, 15, and 18) and may
involve a second host-device data transfer for 〈pi, Api〉. Consequently, we expect an
up to three-fold performance gain for small systems in the latency-dominated regime.
Because pi and ri do not need to be loaded from memory twice per iteration, a per-
formance gain of a few percent may also be obtained for large systems with very few
nonzeros per row.

Pipelined Iterative Solvers with Kernel Fusion 9

3.2. BiCGStab. BiCGStab is an attractive solver for systems described by non-
symmetric matrices, because the transposed operator AT is not required. Based on
the initial derivation [43], a pipelined method with only two global synchronizations
has been proposed [17]. Later, a variant with only a single global synchronization has
been proposed at the cost of an application of the transposed operator in the setup
stage [49]. Also, a preconditioned BiCGStab method overlapping global communica-
tion with the application of the preconditioner has been developed [20]. A preliminary
optimization study of the classical BiCGStab for GPUs is also available [1], for which
we postpone a comparison to Section 4.

Similar to the classical BiCGStab algorithm, the pipelined BiCGStab implemen-
tation considered in this work does not require the transposed operator AT to be
available and is similar to the one proposed with two global synchronizations [17]. A
comparison with the classical BiCGStab algorithm [37] is as follows:

Algorithm 3: Classical BiCGStab

Choose x01

p0 = r0 = b−Ax02

Choose r∗0 arbitrary3

Compute 〈r0, r
∗
0〉4

for i = 0 to convergence do5

Compute and store Api6

Compute 〈Api, r
∗
0〉7

αi = 〈ri, r
∗
0〉/〈Api, r

∗
0〉8

si = ri − αiApi9

Compute and store Asi10

Compute 〈Asi, si〉, 〈Asi, Asi〉11

12

13

ωi = 〈Asi, si〉/〈Asi, Asi〉14

xi+1 = xi + αipi + ωisi15

ri+1 = si − ωiAsi16

Compute 〈ri+1, r
∗
0〉17

βi =
〈ri+1,r

∗

0 〉
〈ri,r∗0 〉

× αi

ωi
18

pi+1 = ri+1 + βi(pi − ωiAi)19

20

end21

Algorithm 4: Pipelined BiCGStab

Choose x01

p0 = r0 = b−Ax02

Choose r∗0 arbitrary3

Compute 〈r0, r
∗
0〉4

for i = 0 to convergence do5

Compute and store Api6

Compute 〈Api, r
∗
0〉7

αi = 〈ri, r
∗
0〉/〈Api, r

∗
0〉8

si = ri − αiApi9

Compute and store Asi10

Compute 〈Asi, si〉, 〈Asi, Asi〉11

Compute 〈Asi, r
∗
0〉12

βi = −
(Asi,r

∗

0 〉
〈Api,r

∗

0
〉13

ωi = 〈Asi, si〉/〈Asi, Asi〉14

xi+1 = xi + αipi + ωisi15

ri+1 = si − ωiAsi16

17

18

pi+1 = ri+1 + βi(pi − ωiAi)19

Compute 〈ri+1, r
∗
0〉20

end21

The classical BiCGStab method in Algorithm 3 requires a global synchronization
after line 7 to compute αi for use in line 8. Similarly, synchronizations are also required
after line 11 to compute ωi for use in line 14 and after line 17 to compute β for use
in line 18. In analogy to the classical CG method, the search direction vector pi+1

(line 19) cannot be updated together with the approximated solution xi+1 (line 15)
and the residual vector ri+1 (line 16). Consequently, additional loads from GPU
main memory are required. Overall, two calls to routines for sparse matrix-vector
products and at least eight calls to BLAS level 1 routines are needed in a conventional
implementation of the classical BiCGStab method. Four host-device data transfers
are required if each inner product induces a data transfer between host and device.
An additional call to a BLAS level 1 routine and a host-device transfer are necessary
if the residual norm is recomputed explicitly in each iteration.

10 K. Rupp, J. Weinbub, A. Jüngel, T. Grasser

The pipelined BiCGStab version in Algorithm 4 allows for improved data reuse
by shifting the calculation of βi to line 13 through

βi =
〈ri+1, r

∗
0〉

〈ri, r∗0〉
×

αi

ωi

=
〈si − ωiAsi, r

∗
0〉

〈ri, r∗0〉
×
〈ri, r

∗
0〉

ωi〈Api, r∗0〉

=
〈si, r

∗
0〉

ωi〈Api, r∗0〉
−
〈Asi, r

∗
0〉

〈Api, r∗0〉
.

Using the orthogonality

〈si, r
∗
0〉 = 〈ri − αiApi, r

∗
0〉 = 0 .

one arrives at

βi = −
〈Asi, r

∗
0〉

〈Api, r∗0〉
,

which we found to be numerically stable based on our experiments. This derivation
of a pipelined BiCGStab version is similar to the modification of the classical CG
method in Algorithm 1 to obtain the pipelined Algorithm 2. The minor price to pay
for this rearrangement is the calculation of 〈Asi, r

∗
0〉 in line 12.

The next step is to apply kernel fusion extensively to the pipelined BiCGStab
version in Algorithm 4. The calculation of 〈Asi, r

∗
0〉 can be fused with the sparse

matrix product in line 10 together with the calculation of 〈Asi, si〉 and 〈Asi, Asi〉 in
line 11. Similarly, lines 6 and 7 are fused to a single kernel computing a matrix-vector
product and the first reduction stage of the inner product. The vector update in line
9 is fused with the second reduction stages for the inner products needed to compute
αi in line 8. Since the residual norm is obtained via

〈ri+1, ri+1〉 = 〈si, si〉 − 2ωi〈si, Asi〉+ ω2
i 〈Asi, Asi〉

for which 〈si, Asi〉 and 〈Asi, Asi〉 are computed in line 11 and needed for the calcula-
tion of ωi in line 14, we augment the update kernel for the computation of si in line 9
with the first reduction stage for 〈si, si〉. The partial results are transferred to the
host together with the partial results for all other inner products after line 12, where
βi and ωi are computed. Finally, the vector updates in lines 15, 16 and 19 as well as
the first reduction stage for the inner product in line 20 are fused into another kernel.

Overall, the proposed pipelined BiCGStab implementation of Algorithm 4 consists
of four kernel launches and one host-device transfer of the partial results from the four
inner products 〈Asi, si〉, 〈Asi, Asi〉, 〈Asi, r

∗
0〉, and 〈si, si〉:

• Compute the matrix-vector product in line 6 and the partial results for the
two inner products required for αi in line 8.

• Compute si in line 9 by redundantly computing αi in each thread workgroup
from the partial results of the inner products 〈ri, r

∗
0〉 and 〈Api, r

∗
0〉.

• Compute and store Asi (line 10) and the partial results for the inner products
in lines 11 and 12.

• Communicate all partial results for the inner products to the host, sum them
there and perform a convergence check.

• Compute the vector updates in lines 15, 16, and 19 as well as the partial
results for the inner product in line 20.

Pipelined Iterative Solvers with Kernel Fusion 11

In comparison, the BiCGStab implementation proposed in [1] requires five kernel
launches and three reductions, while a BLAS-based implementation of the classical
method requires at least eight kernel launches and four additional kernel launches
or host-device transfers for the second reduction stage in the computation of the
inner products. Therefore, a roughly 60 percent performance improvement over the
implementation in [1] and a two- to three-fold performance gain over purely BLAS-
based implementations in the latency-dominated regime is expected, assuming that
kernel launches and host-device transfers entail comparable latency.

3.3. GMRES. In contrast to the CG and BiCGStab methods, the GMRES
method requires to store the full Krylov basis rather than only the current search
direction vector, leading to an increase in the number of operations with each it-
eration [38]. To limit the computational expense, the GMRES method is typically
restarted after m iterations, which is denoted by GMRES(m). Typical values for m
are in the range of 20 to 50. Smaller values tend to slow down the overall conver-
gence, whereas higher values increase the computational cost and may lead to more
time spent in the orthogonalization rather than the matrix-vector product, making
GMRES less attractive when compared to other methods.

In the following we consider the simpler GMRES method [47], which allows for
a simpler solution of the minimization problem than the original formulation, but
is otherwise comparable in terms of computational expense. Three methods for the
computation of an orthonormal Krylov basis from a set of linearly independent vectors
{vk}

m
k=1 are common [37]:

• Classical Gram-Schmidt : The k-th vector of the basis is obtained as

vk ← vk − wk , where wk ←

k−1∑

i=1

〈vi, vk〉vi

followed by a normalization of vk.
• Modified Gram-Schmidt : An accumulation of round-off errors in the basis
vectors vk may lead to a loss of orthogonality. Better robustness has been
observed when computing

vk ← vk − 〈vi, vk〉vi

for i from 1 to k−1 rather than forming a single update vector wk. Although
equivalent to the modified Gram-Schmidt method in exact arithmetic, the re-
peated computation of inner products 〈vi, vk〉 reduces the influence of round-
off errors in finite precision arithmetic. The disadvantage of the modified
Gram-Schmidt method is the reduced parallelism: Rather than computing
all inner products 〈vi, vk〉 concurrently, only one inner product can be com-
puted at a time, followed by a vector update.

• Householder reflections : The Krylov basis may also be obtained through
Householder reflections Pk = (I − βkuku

T
k) with identity matrix I, suitably

chosen scalars βk, and Householder vectors uk. Similar to the modified Gram-
Schmidt method, the Householder reflections have to be applied sequentially
to obtain the Krylov basis. Although the method allows for the computation
of an orthonormal basis up to machine precision, the method is less regularly
used in practice due its sequential nature and higher computational expense
when compared to the Gram-Schmidt method.

12 K. Rupp, J. Weinbub, A. Jüngel, T. Grasser

Further algorithms employed for the orthogonalization in a multi-GPU setting with
significantly different constraints in terms of communication can be found in [48].

A comparison of the classical restarted GMRES(m) method in simplified form [47]
and a pipelined formulation is as follows:

Algorithm 5: Classical GMRES(m)

Choose x01

r0 = b−Ax02

ρ0 = ‖r0‖23

v0 = r0 = r0/ρ04

Ri,j = 0 for i, j ∈ {1, . . . ,m}5

for i = 1 to m do6

vi = Avi−17

for j = 1 to i− 1 do8

Rj,i = 〈vj , vi〉9

end10

for j = 1 to i− 1 do11

vi = vi −Rj,ivj12

end13

vi = vi/‖vi‖14

ξi = 〈r, vi〉15

r = r − ξivi16

end17

18

19

20

Solve Rη = (ξ1, . . . , ξm)21

Update xm = η1r +
∑m

i=2 η̃ivi−122

Algorithm 6: Pipelined GMRES(m)

Choose x01

r0 = b−Ax02

ρ0 = ‖r0‖23

v0 = r0 = r0/ρ04

Ri,j = 0 for i, j ∈ {1, . . . ,m}5

for i = 1 to m do6

vi = Avi−17

for j = 1 to i− 1 do8

Rj,i = 〈vj , vi〉9

end10

for j = 1 to i− 1 do11

vi = vi −Rj,ivj12

end13

vi = vi/‖vi‖14

ξi = 〈r, vi〉 (first stage)15

16

end17

for i = 1 to m do18

ξi = 〈r, vi〉 (second stage)19

end20

Solve Rη = (ξ1, . . . , ξm)21

Update xm = η1r +
∑m

i=2 ηivi−122

with η̃i = ηi + η1ξi−1 to account for the updates of the residual r.

Both formulations use the classical Gram-Schmidt method for higher efficiency
on massively parallel architectures such as GPUs. The main difference between the
classical formulation in Algorithm 5 and the pipelined formulation in Algorithm 6
involves the update of the residual vector in line 16 of Algorithm 5. Because of the
orthonormality of {vk}

m
k=1, the inner product in line 15 remains unchanged when using

exact arithmetic. Similarly, since the values ξi do not enter the Gram-Schmidt process,
the values in the matrix R remain unchanged so that round-off errors only affect the
right hand side vector in line 21. Our numerical experiments indicate that round-off
errors in ξi are dominated by round-off errors in the classical Gram-Schmidt process
and therefore do not affect the overall numerical stability of the solver. Also, the
convergence monitors proposed in [47] do not require updates of the residual and are
based on the values ξi only. Therefore, the full convergence history is still accessible
before solving the minimization problem in line 21 and premature breakdown of the
solver can be detected. Nevertheless, m − 1 unnecessary steps of the Gram-Schmidt
process will be carried out if convergence is obtained right at the first iteration.

The benefit of removing the residual update from the Gram-Schmidt orthogonal-
ization is that extensive kernel fusion can be applied to obtain an implementation
of Algorithm 6 with almost no host-device communication. To begin, the reduction
stage of the inner products in line 9 can be computed in two ways: The first option is
a specialized matrix-vector routine for tall matrices if all Krylov vectors are stored as

Pipelined Iterative Solvers with Kernel Fusion 13

either the rows or the columns of a matrix. The second option is to fuse multiple inner
products into the same kernel if all Krylov vectors reside in distinct buffers [35]. With
both options the second reduction stage for computing Rj,i in line 9 is fused with the
vector updates in line 12 and also with the first reduction stage for computing ‖vi‖
needed in line 14. The normalization of vi in line 14 is carried out by a kernel first
computing the second reduction stage for ‖vi‖, then scaling vi and directly computing
the first reduction stage for the obtaining ξi in line 15. Consequently, no data transfer
between host and device is required during the Gram-Schmidt orthogonalization. If
desired, an asynchronous transfer of the intermediate values for ξi at the end of each
orthogonalization step enables a better monitoring of the convergence process.

After the Gram-Schmidt process, the intermediate results for computing ξi are
transferred to the host if not already transferred asynchronously, where the final
values ξi are computed. Similarly, the triangular matrix R is transferred to the host.
After the triangular system R is inverted, the result vector containing the values ηi is
transferred to the device and the update of the result vector xm is computed in line
22 using in a single kernel similar to the vector update in line 12.

Overall, the proposed implementation of the pipelined GMRES(m) method in
Algorithm 6 requires two kernel launches in the first iteration and four kernel launches
in subsequent iterations:

• Compute the matrix-vector product in line 7 and the first reduction stage for
〈vi−1, vi〉.

• Compute the first reduction stage for the inner products 〈vj , vi〉 in line 9 with
j ranging from 1 to i− 2.

• Compute the second reduction stage for the inner products 〈vj , vi〉 in line 9
for j from 1 to i− 1, use the results directly for computing the vector update
in 12, and compute the first reduction stage for |vi‖.

• Compute the second reduction stage for |vi‖. Use the result to normalize vi
and compute ξi.

A conventional implementation of the classical GMRES(m) method in Algorithm 5
requires at least seven kernel launches and may involve several host-device data ex-
changes per iteration. Thus, an up to two-fold performance gain in the latency-
dominated regime is expected.

4. Benchmark Results. The implementations proposed in this work are im-
plemented in the upcoming 1.6.0 release of the free open-source linear algebra library
ViennaCL [45] and are compared in the following with the implementations in the free
open-source libraries CUSP 0.4.0 [9], MAGMA 1.5.0 [26] with INTEL MKL 11.0, and
Paralution 0.7.0 [33]. Since both CUSP and MAGMA are based on CUDA, bench-
mark data for AMD GPUs could only be obtained with ViennaCL and Paralution. All
four libraries are used in an out-of-the-box manner without additional target-specific
tuning in order to reflect typical use cases.

All tests were carried out on Linux-based machines running the CUDA 6.0 SDK
on NVIDIA GPUs with GPU driver version 331.20 and the AMD APP SDK 2.9
with GPU driver version 13.352.1014 on AMD GPUs. An NVIDIA Tesla C2050, an
NVIDIA Tesla K20m, an AMD FirePro W9000, and an AMD FirePro W9100 were
used for a comparison, representing the latest two generations of high-end workstation
models from each vendor. Since all operations are limited by the available memory
bandwidth, the obtained results are also representative for a broader range of high-
end consumer GPUs with comparable memory bandwidth, yet with less main memory
and at a fraction of the price.

14 K. Rupp, J. Weinbub, A. Jüngel, T. Grasser

In addition to GPU-benchmarks, we also compare with the execution times ob-
tained with the CPU-based PETSc library [2, 3] on a dual-socket system equipped
with INTEL Xeon E5-2620 CPUs, where parallel execution is based on the Message
Passing Interface (MPI) [28] using MPICH 3.1 [29]. The fastest execution time from
runs with 1, 2, 4, and 8 MPI ranks for each system size are taken for comparison.
However, it should be noted that a comparison with a CPU-based library needs to be
interpreted with care, because our benchmarks only compare the time taken per solver
iteration, not the time required for copying the data to the GPU or for obtaining the
result vector.

Execution times per iterative solver iteration are computed from the median value
of ten solver runs with a fixed number of 30 iterations for each solver. In our ex-
periments we have not observed any significant differences in the number of solver
iterations required for convergence of the classical implementation and the pipelined
implementation, hence the execution time per solver iteration is a suitable metric for
comparison.

4.1. Finite Elements. We consider the execution time obtained with linear fi-
nite elements applied to the solution of the Poisson equation on the unit rectangle on
a hierarchy of uniformly refined unstructured triangular meshes as a first benchmark.
The resulting systems consist of 225, 961, 3 969, 16 129, 65 025 and 261 121 equations,
respectively, and cover a broad range of typical system sizes solved on a single work-
station. Results for CG, BiCGStab and GMRES using the ELLPACK sparse matrix
format (cf. [7] for a description) are given in Fig. 4 for the four GPUs considered in
our comparison. Similar results are obtained for other matrix formats, because the
execution times are primarily dominated by latency effects. The case of large sys-
tem matrices, where the various matrix formats become important, is considered in
Section 4.2.

The performance gain of the proposed implementations is about three-fold for
small systems for the CG and BiCGStab and therefore as projected based on the
reduced number of kernels called. The pipelined GMRES method allows for up to
two-fold performance gains on NVIDIA GPUs. The six-fold performance increase over
Paralution for the GMRES method on AMD GPUs is not only due to pipelining and
kernel fusion, but also an indication that there is potential for further optimizations
of the implementation in Paralution.

Execution times for each solver iteration at system sizes below 104 are practically
constant for both NVIDIA and AMD GPUs. Because this constant is about a factor
of two larger for AMD GPUs and because AMD GPUs offer higher memory band-
width, essentially constant execution times are obtained for systems with up to 105

unknowns for AMD GPUs. Only at system sizes above 105 unknowns, PCI-Express
communication becomes negligible compared to kernel execution times, hence the
performance of all libraries becomes similar and varies only mildly.

When comparing the execution times of GPU-based solvers with the execution
times obtained with the CPU-based PETSc implementations, it is observed that the
proposed pipelined implementations on GPUs are faster if systems carry more than
about 3 000 unknowns on average. In contrast, at least 10 000 unknowns are needed
with the conventional implementations in Paralution, MAGMA, and CUSP to out-
perform the CPU-based implementations in PETSc. Consequently, the roughly three-
fold performance gains due to pipelining and kernel fusion are also reflected in the
minimum system sizes required for better performance than the CPU-based imple-
mentations in each solver cycle.

Pipelined Iterative Solvers with Kernel Fusion 15

10
-5

10
-4

10
-3

10
-2

10
-1

10
2

10
3

10
4

10
5

10
6

T
im

e
 p

e
r

It
e

ra
ti
o

n
 (

s
e

c
)

Unknowns

ViennaCL (this work)
Paralution
MAGMA
CUSP
PETSc (CPU)

(a) Tesla C2050, CG

10
-5

10
-4

10
-3

10
-2

10
-1

10
2

10
3

10
4

10
5

10
6

T
im

e
 p

e
r

It
e

ra
ti
o

n
 (

s
e

c
)

Unknowns

ViennaCL (this work)
Paralution
MAGMA
CUSP
PETSc (CPU)

(b) Tesla C2050, BiCGStab

10
-5

10
-4

10
-3

10
-2

10
-1

10
2

10
3

10
4

10
5

10
6

T
im

e
 p

e
r

It
e

ra
ti
o

n
 (

s
e

c
)

Unknowns

ViennaCL (this work)
Paralution
MAGMA
CUSP
PETSc (CPU)

(c) Tesla C2050, GMRES

10
-5

10
-4

10
-3

10
-2

10
-1

10
2

10
3

10
4

10
5

10
6

T
im

e
 p

e
r

It
e

ra
ti
o

n
 (

s
e

c
)

Unknowns

ViennaCL (this work)
Paralution
MAGMA
CUSP
PETSc (CPU)

(d) Tesla K20m, CG

10
-5

10
-4

10
-3

10
-2

10
-1

10
2

10
3

10
4

10
5

10
6

T
im

e
 p

e
r

It
e

ra
ti
o

n
 (

s
e

c
)

Unknowns

ViennaCL (this work)
Paralution
MAGMA
CUSP
PETSc (CPU)

(e) Tesla K20m, BiCGStab

10
-5

10
-4

10
-3

10
-2

10
-1

10
2

10
3

10
4

10
5

10
6

T
im

e
 p

e
r

It
e

ra
ti
o

n
 (

s
e

c
)

Unknowns

ViennaCL (this work)
Paralution
MAGMA
CUSP
PETSc (CPU)

(f) Tesla K20m, GMRES

10
-5

10
-4

10
-3

10
-2

10
-1

10
2

10
3

10
4

10
5

10
6

T
im

e
 p

e
r

It
e

ra
ti
o

n
 (

s
e

c
)

Unknowns

ViennaCL (this work)
Paralution
PETSc (CPU)

(g) FirePro W9000, CG

10
-5

10
-4

10
-3

10
-2

10
-1

10
2

10
3

10
4

10
5

10
6

T
im

e
 p

e
r

It
e

ra
ti
o

n
 (

s
e

c
)

Unknowns

ViennaCL (this work)
Paralution
PETSc (CPU)

(h) FirePro W9000, BiCGStab

10
-5

10
-4

10
-3

10
-2

10
-1

10
2

10
3

10
4

10
5

10
6

T
im

e
 p

e
r

It
e

ra
ti
o

n
 (

s
e

c
)

Unknowns

ViennaCL (this work)
Paralution
PETSc (CPU)

(i) FirePro W9000, GMRES

10
-5

10
-4

10
-3

10
-2

10
-1

10
2

10
3

10
4

10
5

10
6

T
im

e
 p

e
r

It
e

ra
ti
o

n
 (

s
e

c
)

Unknowns

ViennaCL (this work)
Paralution
PETSc (CPU)

(j) FirePro W9100, CG

10
-5

10
-4

10
-3

10
-2

10
-1

10
2

10
3

10
4

10
5

10
6

T
im

e
 p

e
r

It
e

ra
ti
o

n
 (

s
e

c
)

Unknowns

ViennaCL (this work)
Paralution
PETSc (CPU)

(k) FirePro W9100, BiCGStab

10
-5

10
-4

10
-3

10
-2

10
-1

10
2

10
3

10
4

10
5

10
6

T
im

e
 p

e
r

It
e

ra
ti
o

n
 (

s
e

c
)

Unknowns

ViennaCL (this work)
Paralution
PETSc (CPU)

(l) FirePro W9100, GMRES

Fig. 4. Comparison of the solver time required per iteration for solving the Poisson equation
using finite elements on triangular grids in two spatial dimensions. The proposed pipelined imple-
mentations in ViennaCL significantly outperform other GPU-accelerated solver libraries for system
sizes below 105 thanks to a smaller number of kernel launches and better data reuse.

The second benchmark compares the execution time obtained with linear finite
elements for numerical solutions of the linear elasticity model in three spatial dimen-
sions. A hierarchy of uniformly refined tetrahedral meshes of the unit cube was used,
resulting in system sizes of 693, 5 265, 40 725, and 319 725, respectively. Compared to
the first benchmark, the average number of unknowns per row increases from about

16 K. Rupp, J. Weinbub, A. Jüngel, T. Grasser

10
-5

10
-4

10
-3

10
-2

10
-1

10
2

10
3

10
4

10
5

10
6

T
im

e
 p

e
r

It
e

ra
ti
o

n
 (

s
e

c
)

Unknowns

ViennaCL (this work)
Paralution
MAGMA
CUSP
PETSc (CPU)

(a) Tesla C2050, CG

10
-5

10
-4

10
-3

10
-2

10
-1

10
2

10
3

10
4

10
5

10
6

T
im

e
 p

e
r

It
e

ra
ti
o

n
 (

s
e

c
)

Unknowns

ViennaCL (this work)
Paralution
MAGMA
CUSP
PETSc (CPU)

(b) Tesla C2050, BiCGStab

10
-5

10
-4

10
-3

10
-2

10
-1

10
2

10
3

10
4

10
5

10
6

T
im

e
 p

e
r

It
e

ra
ti
o

n
 (

s
e

c
)

Unknowns

ViennaCL (this work)
Paralution
MAGMA
CUSP
PETSc (CPU)

(c) Tesla C2050, GMRES

10
-5

10
-4

10
-3

10
-2

10
-1

10
2

10
3

10
4

10
5

10
6

T
im

e
 p

e
r

It
e

ra
ti
o

n
 (

s
e

c
)

Unknowns

ViennaCL (this work)
Paralution
MAGMA
CUSP
PETSc (CPU)

(d) Tesla K20m, CG

10
-5

10
-4

10
-3

10
-2

10
-1

10
2

10
3

10
4

10
5

10
6

T
im

e
 p

e
r

It
e

ra
ti
o

n
 (

s
e

c
)

Unknowns

ViennaCL (this work)
Paralution
MAGMA
CUSP
PETSc (CPU)

(e) Tesla K20m, BiCGStab

10
-5

10
-4

10
-3

10
-2

10
-1

10
2

10
3

10
4

10
5

10
6

T
im

e
 p

e
r

It
e

ra
ti
o

n
 (

s
e

c
)

Unknowns

ViennaCL (this work)
Paralution
MAGMA
CUSP
PETSc (CPU)

(f) Tesla K20m, GMRES

10
-5

10
-4

10
-3

10
-2

10
-1

10
2

10
3

10
4

10
5

10
6

T
im

e
 p

e
r

It
e

ra
ti
o

n
 (

s
e

c
)

Unknowns

ViennaCL (this work)
Paralution
PETSc (CPU)

(g) FirePro W9000, CG

10
-5

10
-4

10
-3

10
-2

10
-1

10
2

10
3

10
4

10
5

10
6

T
im

e
 p

e
r

It
e

ra
ti
o

n
 (

s
e

c
)

Unknowns

ViennaCL (this work)
Paralution
PETSc (CPU)

(h) FirePro W9000, BiCGStab

10
-5

10
-4

10
-3

10
-2

10
-1

10
2

10
3

10
4

10
5

10
6

T
im

e
 p

e
r

It
e

ra
ti
o

n
 (

s
e

c
)

Unknowns

ViennaCL (this work)
Paralution
PETSc (CPU)

(i) FirePro W9000, GMRES

10
-5

10
-4

10
-3

10
-2

10
-1

10
2

10
3

10
4

10
5

10
6

T
im

e
 p

e
r

It
e

ra
ti
o

n
 (

s
e

c
)

Unknowns

ViennaCL (this work)
Paralution
PETSc (CPU)

(j) FirePro W9100, CG

10
-5

10
-4

10
-3

10
-2

10
-1

10
2

10
3

10
4

10
5

10
6

T
im

e
 p

e
r

It
e

ra
ti
o

n
 (

s
e

c
)

Unknowns

ViennaCL (this work)
Paralution
PETSc (CPU)

(k) FirePro W9100, BiCGStab

10
-5

10
-4

10
-3

10
-2

10
-1

10
2

10
3

10
4

10
5

10
6

T
im

e
 p

e
r

It
e

ra
ti
o

n
 (

s
e

c
)

Unknowns

ViennaCL (this work)
Paralution
PETSc (CPU)

(l) FirePro W9100, GMRES

Fig. 5. Comparison of the solver time required per iteration for solving the linear elasticity
model using finite elements in three spatial dimensions. The proposed pipelined implementations
in ViennaCL outperform other libraries for system sizes beyond 105 thanks to a smaller number of
kernel launches and better data reuse.

7 to 60 for the largest system, resulting in a higher share of the execution time being
spent on the sparse matrix-vector product. Nevertheless, the results in Fig. 5 show
a similar trend as the results in Fig. 4: For small matrix sizes, two- to three-fold
performance gains of the pipelined implementations are obtained. Although the sys-
tem matrix carries more nonzeros than in the first benchmark, about 104 unknowns

Pipelined Iterative Solvers with Kernel Fusion 17

Name Rows Nonzeros Nonzeros/Row Symmetric

pdb1HYS 36 417 4 344 765 119.31 yes
cant 62 451 4 007 383 64.17 yes
consph 83 334 6 010 480 72.13 yes
shipsec1 140 874 7 813 404 55.46 yes
pwtk 217 918 11 643 424 53.39 yes

rma10 46 835 2 374 001 50.69 no
cop20k A 121 192 2 624 331 21.65 no
scircuit 170 998 958 936 5.61 no
mac econ fwd500 206 500 1 273 389 6.17 no
RM07R 381 689 37 464 962 98.16 no
Hamrle3 1 447 360 5 514 242 3.81 no
kkt power 2 063 494 13 612 663 7.08 no

Table 1

Summary of symmetric and non-symmetric matrices taken from the Florida Sparse Matrix
Collection [12] for comparison. These matrices represent the set of real-valued, floating point square
matrices used in earlier contributions on optimizing sparse matrix-vector products [7, 21].

on NVIDIA GPUs and 105 unknowns on AMD GPUs are required such that kernel
execution times hide performance penalties due to PCI-Express communication. Per-
formance differences for CG and BiCGStab between ViennaCL and Paralution on the
AMD GPUs are less pronounced than for the first benchmark, but still significant.

4.2. Florida Sparse Matrix Collection. The performance of the proposed
pipelined implementations is compared in the following for matrices from the Florida
Sparse Matrix Collection [12] used for the evaluation of sparse matrix-vector prod-
ucts in the past [7, 21]. While the focus in the previous section was on demonstrating
the benefit of the proposed implementations for small to medium-sized systems, the
purpose of this section is the show that the proposed implementations are also com-
petitive for large systems. Thus, Paralution and MAGMA are a-priori expected to
provide the best performance, since they use the vendor-tuned sparse matrix-vector
product kernels from NVIDIA’s CUSPARSE library. In contrast, our implementa-
tions in ViennaCL rely fused kernels, while CUSP implements its own set of sparse
matrix-vector product kernels [7].

Since OpenCL does not support complex arithmetic natively, we restrict our
benchmark to real-valued matrices listed in Tab. 1. The symmetric, positive def-
inite matrices are used for benchmarking the implementations of the CG method,
while the non-symmetric matrices are used for benchmarking the implementations
of the BiCGStab and GMRES methods. All sparse matrix formats available in the
respective library are compared using implementations in CUDA and, if available,
OpenCL. The fastest combination is then taken for the comparison, since such a pro-
cedure resembles the typical user who picks the fastest sparse matrix format and the
programming model with best performance for a particular application.

The benchmark results for the CG method in Fig. 6 show that the proposed solver
implementation outperforms all other solver libraries for three out of five matrices.
The difference is particularly pronounced on the AMD GPUs, where the performance
of our proposed implementation is up to twice as high as the performance of Para-
lution. A comparison of absolute execution times also shows that the AMD GPUs
provide a better overall performance due to their higher memory bandwidth.

18 K. Rupp, J. Weinbub, A. Jüngel, T. Grasser

0 50 100 150 200

0 50 100 150 200

Rel. Execution Time (%)

pwtk

shipsec1

consph

cant

pdb1HYS

3.32

2.98

2.56

2.25

2.33

1.11

1.93

1.90

1.66

1.35

1.39

1.24

1.36

1.10

1.05

0.96

1.45

0.98

0.99

1.08

Tesla C2050

0 50 100 150 200

0 50 100 150 200

Rel. Execution Time (%)

2.52

2.15

1.90

1.63

1.88

0.86

1.46

1.34

1.49

0.92

0.93

0.85

1.26

0.82

0.80

0.69

1.41

0.67

0.70

0.79

Tesla K20m

0 50 100 150 200

0 50 100 150 200

Rel. Execution Time (%)

 NA

 NA

2.28

1.22

 NA

 NA

1.44

1.00

 NA

 NA

1.15

0.69

 NA

 NA

0.92

0.46

 NA

 NA

0.88

0.79

FirePro W9000

0 50 100 150 200

0 50 100 150 200

Rel. Execution Time (%)

 NA

 NA

2.07

1.13

 NA

 NA

1.33

0.96

 NA

 NA

1.11

0.67

 NA

 NA

0.86

0.45

 NA

 NA

0.88

0.79

FirePro W9100

ViennaCL (this work)

Paralution

MAGMA

CUSP

Fig. 6. Comparison of execution times per CG solver iteration for different systems from
the Florida Sparse Matrix Collection relative to the proposed pipelined implementations. Absolute
execution times in milliseconds are given inside each bar.

The comparison of execution times for the BiCGStab method in Fig. 7 shows
similar performance of ViennaCL, Paralution, and MAGMA on average: Depending
on the device and the matrix considered, either of the three is the best choice. Since
the proposed implementations do not contain any device-specific optimizations, fur-
ther tuning may provide further performance gains, whereas implementations using
vendor-tuned kernels do not have this option. In contrast, the custom sparse matrix-
vector product kernels in CUSP result in about 50 percent higher execution times on
average, hence we conclude that the higher performance of our custom implementa-
tions stems from the extensive use of kernel fusion and pipelining. On AMD GPUs,
the performance gain over Paralution is again up to two-fold. Similar to the results
of the benchmark of the CG method, AMD GPUs provide slightly higher overall
performacne than the NVIDIA GPUs because of to their higher memory bandwidth.

The benchmark results obtained for the GMRES method are depicted in Fig. 8
and show the same trend as the results obtained when comparing the implementations
of the BiCGStab method. Paralution exceeds the available memory for the matrices
cop20k A and kkt power. MAGMA, on the other hand, fails for the matrix RM07R

because a check for positive definiteness of the system matrix fails. The OpenCL-
based implementation in Paralution for AMD GPUs is not yet optimized.

Finally, execution times for the proposed implementations of the three iterative
solvers using CUDA and OpenCL are compared in Fig. 9. In most cases, the obtained
execution times of CUDA and OpenCL are within ten percent. Only in the case of
BiCGStab on the Tesla K20m, the OpenCL implementation shows better performance
than the CUDA implementation. We explain this with better device-specific optimiza-
tions of the OpenCL just-in-time compiler on the Tesla K20m, while the CUDA code
- even though compiled with with the sm 35 architecture flag - was not taking full
potential of the newer Kepler architecture in the Tesla K20m.

Pipelined Iterative Solvers with Kernel Fusion 19

0 50 100 150 200

0 50 100 150 200

Rel. Execution Time (%)

kkt_power

Hamrle3

RM07R

mac_econ_fwd500

scircuit

cop20k_A

rma10

32.89

13.64

 NA

30.74

 7.76

 7.10

 5.78

 5.85

21.57

 NA

15.77

30.99

 2.92

 1.49

 1.30

 1.68

 2.48

 1.23

 1.07

 1.42

 3.96

 1.94

 NA

 2.41

 2.50

 1.37

 1.33

 1.55

Tesla C2050

0 50 100 150 200

0 50 100 150 200

Rel. Execution Time (%)

16.66

 9.50

 NA

15.14

 5.46

 5.16

 4.04

 3.44

12.35

 NA

 9.44

16.85

 2.68

 1.41

 1.24

 1.16

 2.50

 1.12

 0.98

 1.12

 3.03

 1.49

 NA

 1.34

 2.41

 1.14

 1.10

 1.13

Tesla K20m

0 50 100 150 200

0 50 100 150 200

Rel. Execution Time (%)

 NA

 NA

 NA

12.15

 NA

 NA

 3.66

 2.64

 NA

 NA

12.74

10.51

 NA

 NA

 1.65

 0.92

 NA

 NA

 2.33

 1.12

 NA

 NA

 NA

 1.16

 NA

 NA

 1.40

 0.96

FirePro W9000

0 50 100 150 200

0 50 100 150 200

Rel. Execution Time (%)

 NA

 NA

 NA

11.18

 NA

 NA

 3.31

 2.23

 NA

 NA

11.72

 8.61

 NA

 NA

 1.58

 0.86

 NA

 NA

 2.29

 1.06

 NA

 NA

 NA

 1.15

 NA

 NA

 1.38

 0.92

FirePro W9100

ViennaCL (this work)

Paralution

MAGMA

CUSP

Fig. 7. Comparison of execution times per BiCGStab solver iteration for different systems from
the Florida Sparse Matrix Collection relative to the proposed pipelined implementations. Absolute
execution times in milliseconds are given inside each bar. The cop20k A and the kkt power matrices
could not be tested with Paralution due to segmentation faults. The RM07R matrix could not be run
with MAGMA since it did not pass a check for positive definiteness.

5. Conclusion. The proposed pipelined implementations of the CG, BiCGStab
and GMRES methods address the latency-induced performance penalties of GPU-
accelerated implementations for sparse systems with less than about 105 unknowns.
Our comparison with other solver packages shows up to three-fold performance gains
for practically relevant problem sizes between 104 and 105 unknowns. A comparison
for larger systems shows that the proposed implementations using fused kernels shows
also performance competitive with implementations built on top of vendor-tuned ker-
nels. As a consequence, our results suggest that future efforts on the optimization
of compute kernels should not be restricted to standard BLAS-like kernels, but ad-
ditional performance can be obtained when taking fused kernels into account. For
example, not only the sparse matrix-vector product kernel, but also a kernel comput-
ing the sparse matrix-vector product plus the first reduction stage of inner products
involving the result vector may offer superior performance for iterative solvers from
the family of Krylov methods.

While an extensive use of pipelining and kernel fusion addresses latency issues and
limited memory bandwidth, it also brings new challenges for the design of scientific
software. To leverage the full potential of modern hardware, it is no longer sufficient to
only use a fairly small set of vendor-tuned BLAS-kernels, but instead provide modular
building blocks for minimizing communication of data.

20 K. Rupp, J. Weinbub, A. Jüngel, T. Grasser

0 50 100 150 200

0 50 100 150 200

Rel. Execution Time (%)

kkt_power

Hamrle3

RM07R

mac_econ_fwd500

scircuit

cop20k_A

rma10

31.89

11.66

 NA

25.92

13.39

 6.04

 9.81

10.31

13.70

15.23

 9.38

17.57

 2.90

 1.31

 1.91

 2.12

 2.40

 1.09

 1.64

 1.73

 2.77

 1.83

 NA

 1.90

 1.44

 1.35

 1.09

 1.12

Tesla C2050

0 50 100 150 200

0 50 100 150 200

Rel. Execution Time (%)

17.57

 7.98

 NA

13.94

 9.05

 4.21

 7.01

 6.20

 8.02

 9.20

 6.05

 9.40

 2.31

 1.30

 1.76

 1.30

 2.06

 1.06

 1.47

 1.14

 2.08

 1.46

 NA

 1.14

 1.36

 1.17

 1.06

 0.86

Tesla K20m

0 50 100 150 200

0 50 100 150 200

Rel. Execution Time (%)

 NA

 NA

 NA

7.90

 NA

 NA

6.33

2.63

 NA

 NA

8.37

7.29

 NA

 NA

2.88

0.82

 NA

 NA

3.11

0.79

 NA

 NA

 NA

0.72

 NA

 NA

2.43

0.65

FirePro W9000

0 50 100 150 200

0 50 100 150 200

Rel. Execution Time (%)

 NA

 NA

 NA

7.39

 NA

 NA

5.83

2.46

 NA

 NA

7.91

7.30

 NA

 NA

2.96

0.76

 NA

 NA

3.30

0.75

 NA

 NA

 NA

0.70

 NA

 NA

2.59

0.65

FirePro W9100

ViennaCL (this work)

Paralution

MAGMA

CUSP

Fig. 8. Comparison of execution times per GMRES solver iteration for different systems from
the Florida Sparse Matrix Collection relative to the proposed pipelined implementations. Absolute
execution times in milliseconds are given inside each bar. The cop20k A and the kkt power matrices
could not be tested with Paralution due to segmentation faults.

Future GPUs as well as CPUs will see gains in memory bandwidth, but the
latency induced by the PCI-Express bus will not change substantially. Therefore, the
minimum system size required to get any performance gains on GPUs over CPUs
will continue to grow. As a consequence, the replacement of the PCI-Express bus
with a interconnect technology of lower latency is essential for making accelerators
more attractive. Integrations of GPU units on the CPU die are one possible path to
achieve lower latency. However, no benefit over a well-optimized, purely CPU-based
implementations can be expected for the memory-bandwidth limited operations in
iterative solvers, if both the accelerator and the CPU core share the same memory
link.

The techniques applied in this work can also be extended to preconditioned it-
erative solvers. Not only can the application of the preconditioner be possibly fused
with vector updates, but also the setup stage can benefit from fusing as many oper-
ations as possible into the same kernel. A rigorous application of these techniques to
preconditioners is left for future work.

Acknowledgment. This work has been supported by the Austrian Science Fund
(FWF) through the grants P23296 and P23598. The authors also thank AMD and
NVIDIA for hardware donations and Joachim Schöberl for providing access to a sys-
tem equipped with two NVIDIA K20m for benchmarking purposes.

Pipelined Iterative Solvers with Kernel Fusion 21

0

50

100

150

R
e
l.
 E

xe
c
u
ti
o
n
 T

im
e
 (

%
)

pwtk shipsec1 consph cant pdb1HYS

2.25 2.50 1.90 2.30 1.24 1.37 0.96 1.08 1.08 1.19

CG, Tesla C2050

0

50

100

150

R
e
l.
 E

xe
c
u
ti
o
n
 T

im
e
 (

%
)

pwtk shipsec1 consph cant pdb1HYS

1.63 1.73 1.34 1.39 0.85 0.96 0.70 0.69 0.80 0.79

CG, Tesla K20m

OpenCL CUDA

0 50 100 150

0 50 100 150

Rel. Execution Time (%)

kkt_power

Hamrle3

RM07R

mac_econ_fwd500

scircuit

cop20k_A

rma10

kkt_power

30.74
31.02

 5.85
 5.99

 9.34
 9.64

30.99
32.36

 1.68
 1.99

 1.42
 1.60

 2.41
 2.43

 1.55
 1.59

BiCGStab, Tesla C2050

0 50 100 150

0 50 100 150

Rel. Execution Time (%)

BiCGStab, Tesla K20m

15.14
17.14

 3.44
 4.40

 8.75
 8.00

16.85
25.04

 1.16
 1.56

 1.12
 1.34

 1.34
 1.61

 1.13
 1.65

0 50 100 150

0 50 100 150

Rel. Execution Time (%)

25.92
26.04

10.31
10.38

10.45
 9.90

17.57
18.08

 2.12
 2.12

 1.73
 1.73

 1.90
 1.90

 1.12
 1.13

GMRES, Tesla C2050

0 50 100 150

0 50 100 150

Rel. Execution Time (%)

kkt_power

Hamrle3

RM07R

mac_econ_fwd500

scircuit

cop20k_A

rma10

kkt_power

GMRES, Tesla K20m

13.94
14.48

 6.20
 6.51

 7.52
 7.43

 9.40
 9.62

 1.30
 1.36

 1.14
 1.21

 1.14
 1.19

 0.86
 0.89

Fig. 9. Comparison of execution times obtained with CUDA and OpenCL for the CG method
(top), the BiCGStab method (left), and the GMRES method (right). Relative execution times are
with respect to the faster framework. Absolute execution times in milliseconds are given inside each
bar. Overall, the performance differences of CUDA and OpenCL are negligible in practice, even
though OpenCL shows slightly better performance overall.

REFERENCES

[1] H. Anzt, S. Tomov, P Luszczek, I. Yamazaki, J. Dongarra, and W. Sawyer, Optimizing
Krylov Subspace Solvers on Graphics Processing Units, Tech. Report 583, University of
Tennessee, 2014. http://www.eecs.utk.edu/resources/library/583.

[2] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, V. Eijkhout,

W. D. Gropp, D. Kaushik, M. G. Knepley, L. Curfman-McInnes, K. Rupp, B. F.

Smith, and H. Zhang, PETSc Users Manual, Tech. Report ANL-95/11 - Revision 3.5,
Argonne National Laboratory, 2014.

[3] , PETSc Web page. http://www.mcs.anl.gov/petsc, 2014.
[4] D. Barkai, K. J. M. Moriarty, and C. Rebbi, A Modified Conjugate Gradient Solver for

Very Large Systems, Comp. Phys. Comm., 36 (1985), pp. 1 – 8.
[5] M. M. Baskaran and R. Bordawekar, Optimizing Sparse Matrix-Vector Multiplication on

GPUs, IBM RC24704, (2008).
[6] N. Bell, S. Dalton, and L. Olson, Exposing Fine-Grained Parallelism in Algebraic Multigrid

Methods, SIAM J. Sci. Comp., 34 (2012), pp. C123–C152.
[7] N. Bell and M. Garland, Implementing Sparse Matrix-Vector Multiplication on Throughput-

Oriented Processors, in Proc. HPC Netw., Stor. Anal., SC ’09, ACM, 2009, pp. 18:1–18:11.
[8] A.T. Chronopoulos and C.W. Gear, s-step Iterative Methods for Symmetric Linear Systems,

Journal Comp. Appl. Math., 25 (1989), pp. 153–168.
[9] CUSP Library. http://cusplibrary.github.io/.

[10] M.M. Dehnavi, D.M. Fernandez, J. Gaudiot, and D.D. Giannacopoulos, Paral-
lel Sparse Approximate Inverse Preconditioning on Graphic Processing Units, IEEE
Trans. Par. Dist. Sys., 24 (2013), pp. 1852–1862.

http://www.eecs.utk.edu/resources/library/583
http://www.mcs.anl.gov/petsc
http://cusplibrary.github.io/

22 K. Rupp, J. Weinbub, A. Jüngel, T. Grasser

[11] J. Fang, A. L. Varbanescu, and H. Sips, A Comprehensive Performance Comparison of
CUDA and OpenCL, in Proc. Intl. Conf. Par. Proc., 2011, pp. 216–225.

[12] Florida Sparse Matrix Collection. http://www.cise.ufl.edu/research/sparse/matrices/.
[13] R. Gandham, K. Esler, and Y. Zhang, A GPU Accelerated Aggregation Algebraic Multigrid

Method, arXiv e-Print 1403.1649, (2014).
[14] P. Ghysels and W. Vanroose, Hiding Global Synchronization Latency in the Preconditioned

Conjugate Gradient Algorithm, Par. Comp., 40 (2014), pp. 224–238.
[15] M. J. Harvey and G. De Fabritiis, Swan: A Tool for Porting CUDA Programs to OpenCL,

Comp. Phys. Comm., 182 (2011), pp. 1093–1099.
[16] M. R. Hestenes and E. Stiefel, Methods of Conjugate Gradients for Solving Linear Systems,

J. Res. Natl. Bureau of Standards, 49 (1952), pp. 409–436.
[17] T. Jacques, L. Nicolas, and C. Vollaire, Electromagnetic Scattering with the Boundary

Integral Method on MIMD Systems, in High-Performance Computing and Networking,
vol. 1593 of LNCS, Springer, 1999, pp. 1025–1031.

[18] K. Karimi, N. G. Dickson, and F. Hamze, A Performance Comparison of CUDA and
OpenCL, arXiv e-Print 1005.2581, (2010).

[19] K. Kim and V. Eijkhout, Scheduling a Parallel Sparse Direct Solver to Multiple GPUs, in
Proc. IEEE IPDPS, 2013, pp. 1401–1408.

[20] B. Krasnopolsky, The Reordered BiCGStab Method for Distributed Memory Computer Sys-
tems, Procedia Comp. Sci., 1 (2010), pp. 213–218.

[21] M. Kreutzer, G. Hager, G. Wellein, H. Fehske, and A. R. Bishop, A Unified Sparse
Matrix Data Format for Efficient General Sparse Matrix-Vector Multiply on Modern Pro-
cessors with Wide SIMD Units, arXiv e-Print 1307.6209, (2013).

[22] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen, N. Satish,

M. Smelyanskiy, S. Chennupaty, P. Hammarlund, R. Singhal, and P. Dubey, De-
bunking the 100X GPU vs. CPU Myth: An Evaluation of Throughput Computing on CPU
and GPU, in Proc. Intl Symp. Comp. Arch., ACM, 2010, pp. 451–460.

[23] R. Li and Y. Saad, GPU-Accelerated Preconditioned Iterative Linear Solvers, J. Supercomp.,
63 (2013), pp. 443–466.

[24] X. Liu, M. Smelyanskiy, E. Chow, and P. Dubey, Efficient Sparse Matrix-vector Multiplica-
tion on x86-based Many-core Processors, in Proc. Supercomp., ACM, 2013, pp. 273–282.

[25] M. Lukash, K. Rupp, and S. Selberherr, Sparse Approximate Inverse Preconditioners for
Iterative Solvers on GPUs, in Proc. HPC Symp., SCS, 2012, pp. 13:1–13:8.

[26] MAGMA Library. http://icl.cs.utk.edu/magma/.
[27] G. Martinez, M. Gardner, and Wu chun Feng, CU2CL: A CUDA-to-OpenCL Translator

for Multi- and Many-Core Architectures, in IEEE Intl. Conf. Par. Dist. Sys., 2011, pp. 300–
307.

[28] MPI Forum, Message Passing Interface Forum. http://www.mpi-forum.org/.
[29] MPICH Library. http://www.mpich.org/.
[30] M. Naumov, Preconditioned Block-Iterative Methods on GPUs, PAMM, 12 (2012), pp. 11–14.
[31] J. Nickolls, I. Buck, M. Garland, and K. Skadron, Scalable Parallel Programming with

CUDA, Queue, 6 (2008), pp. 40–53.
[32] OpenCL. http://www.khronos.org/opencl/.
[33] Paralution Library. http://www.paralution.com/.
[34] C. Richter, S. Schops, and M. Clemens, GPU Acceleration of Algebraic Multigrid Precondi-

tioners for Discrete Elliptic Field Problems, IEEE Trans. Magn., 50 (2014), pp. 461–464.
[35] K. Rupp, Ph. Tillet, B. Smith, K.-T. Grasser, and A. Jüngel, A Note on the GPU

Acceleration of Eigenvalue Computations, in AIP Proc., volume 1558, 2013, pp. 1536–
1539.

[36] Y. Saad, Practical Use of Polynomial Preconditionings for the Conjugate Gradient Method,
SIAM J. Sci. Stat. Comp., 6 (1985), pp. 865–881.

[37] , Iterative Methods for Sparse Linear Systems, Second Edition, SIAM, 2003.
[38] Y. Saad and M. H. Schultz, GMRES: A Generalized Minimal Residual Algorithm for Solving

Nonsymmetric Linear Systems, SIAM J. Sci. Stat. Comp., 7 (1986), pp. 856–869.
[39] E. Saule, K. Kaya, and Ü. Catalyürek, Performance Evaluation of Sparse Matrix Multipli-

cation Kernels on Intel Xeon Phi, in Parallel Processing and Applied Mathematics, LNCS,
Springer Berlin Heidelberg, 2014, pp. 559–570.

[40] W. Sawyer, C. Vanini, G. Fourestey, and R. Popescu, SPAI Preconditioners for HPC
Applications, Proc. Appl. Math. Mech., 12 (2012), pp. 651–652.

[41] O. Schenk, M. Christen, and H. Burkhart, Algorithmic Performance Studies on Graphics
Processing Units, J. Par. Dist. Comp., 68 (2008), pp. 1360–1369.

[42] R. Strzodka and D. Göddeke, Pipelined Mixed Precision Algorithms on FPGAs for Fast

http://www.cise.ufl.edu/research/sparse/matrices/
http://icl.cs.utk.edu/magma/
http://www.mpich.org/
http://www.khronos.org/opencl/
http://www.paralution.com/

Pipelined Iterative Solvers with Kernel Fusion 23

and Accurate PDE Solvers from Low Precision Components, in Proc. IEEE FCCM, IEEE
Computer Society, 2006, pp. 259–270.

[43] H. van der Vorst, Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the
Solution of Nonsymmetric Linear Systems, SIAM J. Sci. Stat. Comp., 13 (1992), pp. 631–
644.

[44] VexCL Library. https://github.com/ddemidov/vexcl/.
[45] Vienna Computing Library (ViennaCL). http://viennacl.sourceforge.net/.
[46] M. Wagner, K. Rupp, and J. Weinbub, A Comparison of Algebraic Multigrid Preconditioners

Using Graphics Processing Units and Multi-core Central Processing Units, in Proc. HPC
Symp., SCS, 2012, pp. 2:1–2:8.

[47] H. F. Walker and L. Zhou, A Simpler GMRES, Num. Lin. Alg. Appl., 1 (1994), pp. 571–581.
[48] I. Yamazaki, H. Anzt, S. Tomov, M. Hoemmen, and J. Dongarra, Improving the Perfor-

mance of CA-GMRES on Multicores with Multiple GPUs, in Proc. IEEE IPDPS, IEEE
Computer Society, 2014, pp. 382–391.

[49] L.T. Yang and Richard P. Brent, The Improved BiCGStab Method for Large and
Sparse Unsymmetric Linear Systems on Parallel Distributed Memory Architectures, in
Proc. Alg. Arch. Par. Proc., 2002, pp. 324–328.

[50] R. Yokota, J. P. Bardhan, M. G. Knepley, L. A. Barba, and T. Hamada, Biomolecular
Electrostatics using a Fast Multipole BEM on up to 512 GPUs and a Billion Unknowns,
Comp. Phys. Comm., 182 (2011), pp. 1272 – 1283.

https://github.com/ddemidov/vexcl/
http://viennacl.sourceforge.net/

