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Abstract. Maxwell-Stefan systems describing the dynamics of the molar concentrations
of a gas mixture with an arbitrary number of components are analyzed in a bounded
domain under isobaric, isothermal conditions. The systems consist of mass balance equa-
tions and equations for the chemical potentials, depending on the relative velocities, sup-
plemented with initial and homogeneous Neumann boundary conditions. Global-in-time
existence of bounded weak solutions to the quasilinear parabolic system and their expo-
nential decay to the homogeneous steady state are proved. The mathematical difficulties
are due to the singular Maxwell-Stefan diffusion matrix, the cross-diffusion coupling, and
the lack of standard maximum principles. Key ideas of the proofs are the Perron-Frobenius
theory for quasi-positive matrices, entropy-dissipation methods, and a new entropy vari-
able formulation allowing for the proof of nonnegative lower and upper bounds for the
concentrations.

1. Introduction

The Maxwell-Stefan equations describe the diffusive transport of multicomponent mix-
tures [22, 24]. Applications include various fields like sedimentation, dialysis, electrolysis,
ion exchange, ultrafiltration, and respiratory airways [5, 27]. The model bases upon inter-
species force balances, relating the velocities of the species of the mixture. It is well-known
that the usual Fickian diffusion model, which states that the flux of a chemical substance
is proportional to its concentration gradient, is not able to describe, e.g., uphill or os-
motic diffusion phenomena in multicomponent mixtures, as demonstrated experimentally
by Duncan and Toor [13]. These phenomena can be modeled by using the theory of non-
equilibrium thermodynamics, in which the fluxes are assumed to be linear combinations
of the thermodynamic forces [11, Chap. 4]. However, this model requires the knowledge of
all binary diffusion coefficients, which are not always easy to determine, and the positive
semi-definiteness of the diffusion matrix. The advantage of the Maxwell-Stefan approach is
that it is capable to describe uphill diffusion effects without assuming particular properties
on the diffusivities (besides symmetry).
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We consider an ideal gaseous mixture consisting of N + 1 components with molar con-
centrations ci(x, t) for i = 1, . . . , N + 1 (see Appendix A). Since we concentrate our study
on cross-diffusion effects, we suppose isothermal and isobaric conditions. Then the total
molar concentration

∑N+1
i=1 ci is constant and we set this constant equal to one. More gen-

eral situations are investigated, e.g., in [15]. The dynamics of the mixture is given by the
mass balance equations

(1) ∂tci + div Ji = ri(c) in Ω, t > 0, i = 1, . . . , N + 1,

where Ji = ciui denotes the molar flux, ui the mean velocity, ri the net production rate of
the i-th component, c = (c1, . . . , cN+1)

⊤, and Ω ⊂ R
d (d ≥ 1) is a bounded domain. We

have assumed above that the averaged mean velocity vanishes,
∑N+1

i=1 ciui = 0. Then the

conservation of the total mass implies that the total production rate vanishes,
∑N+1

i=1 ri(c) =
0. The fluxes are related to the concentration gradients by

(2) ∇ci = −
N+1
∑

j=1, j 6=i

cjJi − ciJj

Dij

, i = 1, . . . , N + 1,

where Dij > 0 for i 6= j are some diffusion coefficients. The derivation of these relations is
sketched in Appendix A.

The aim of this paper is to prove the global-in-time existence of weak solutions to
system (1)-(2) for constant coefficients Dij > 0, supplemented with the boundary and
initial conditions

(3) ∇ci · ν = 0 on ∂Ω, t > 0, ci(·, 0) = c0
i in Ω, i = 1, . . . , N + 1,

where ν is the exterior unit normal vector on ∂Ω. There are several difficulties to overcome
in the analysis of the Maxwell-Stefan system.

First, the molar fluxes are not defined a priori as a linear combination of the concen-
tration gradients, which makes it necessary to invert the flux-gradient relations (2). As
the Maxwell-Stefan equations are linearly dependent, we need to invert the system on a
subspace, yielding the diffusion matrix Ã−1. In the engineering literature, this inversion is
often done in an approximate way. For instance, a numerical solution procedure for N = 3
was developed in [2] and the special case Dij = 1/(fifj) for some constants fi > 0 was
investigated in [3].

Second, equations (1)-(2) are coupled, which translates into the fact that Ã−1 is generally
a full matrix with nonlinear solution-dependent coefficients. Thus, standard tools like the
maximum principle or regularity theory are not available. In particular, it is not clear how
to prove nonnegative lower and upper bounds for the concentrations. Moreover, it is not
clear whether Ã−1 is positive semi-definite or not, such that even the proof of local-in-time
existence of solutions is nontrivial.

Third, it is not standard to find suitable a priori estimates which allow us to conclude
the global-in-time existence of solutions.

In view of these difficulties, it is not surprising that there are only very few analytical
results in the mathematical literature for Maxwell-Stefan systems. Under some general
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assumptions on the nonlinearities, Giovangigli proved that there exists a unique global
solution to the whole-space Maxwell-Stefan system if the initial datum is sufficiently close
to the equilibrium state [15, Theorem 9.4.1]. Bothe [4] showed the existence of a unique
local solution for general initial data. Boudin et al. [7] considered a ternary system (N = 2)
and assumed that two diffusivities are equal. In this situation, the Maxwell-Stefan system
reduces to a heat equation for the first component and a drift-diffusion-type equation for
the second species. Boudin et al. [7] proved the existence of a unique global solution and
investigated its long-time decay to the stationary state. Up to now, there does not exist a
global existence theory for (1)-(2) for general initial data. We provide such a result in this
work.

After inverting the flux-gradient relations (2) on a suitable subspace, the Maxwell-Stefan
equations become a parabolic cross-diffusion system. Amann derived in [1] sufficient condi-
tions for the solutions to such systems to exist globally in time. The question if a given local
solution exists globally is reduced to the problem of finding a priori estimates in suitable
Sobolev spaces. Another approach was developed in [8, 9, 14, 17, 19] for systems arising
in granular material modeling, population dynamics, cell biology, and thermodynamics to
treat cross-diffusion systems whose diffusion matrix may be neither symmetric nor positive
semi-definite. The idea is to exploit the entropy structure of the model by introducing
so-called entropy variables. In these variables, the new diffusion matrix becomes positive
semi-definite and an entropy-dissipation relation can be derived. However, in all of the
mentioned papers (except [9]) systems with two equations only have been considered.

In this paper, we combine and extend the entropy-dissipation technique of [8, 9, 14, 17,
19] as well as ideas of Bothe [4] to overcome the above mathematical difficulties. We are
able to prove the global-in-time existence of weak solutions to (1)-(3) for arbitrary diffusion
matrices and general initial data. This result is obtained under the following assumptions:

• Domain: Ω ⊂ R
d (d ≤ 3) is a bounded domain with ∂Ω ∈ C1,1.

• Initial data: c0
1, . . . , c

0
N (N ≥ 2) are nonnegative measurable functions, c0

N+1 =

1 −∑N
i=1 c0

i , and

(4)
N
∑

i=1

c0
i ≤ 1.

• Diffusion matrix: (Dij) ∈ R
(N+1)×(N+1) is a symmetric matrix with elements Dij > 0

for i 6= j.
• Production rates: The functions ri ∈ C0([0, 1]N+1; R), i = 1, . . . , N + 1, satisfy

(5)
N+1
∑

i=1

ri(c) = 0,
N+1
∑

i=1

ri(c) log ci ≤ 0 for all 0 < c1, . . . , cN+1 ≤ 1.

We stress the fact that, although the diffusion coefficients Dij are constant, the diffusion
matrix of the inverted Maxwell-Stefan system depends on the molar concentrations in a
nonlinear way (see below) and we need to deal with a fully coupled nonlinear parabolic
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system. Our proof also works for diffusion coefficients depending on the concentrations ci

if the coefficients dij are bounded from above and below.
The regularity on the boundary ∂Ω is needed for the a priori estimate ‖w‖H2(Ω) ≤

C‖f‖L2(Ω) of the elliptic problem −∆w + w = f in Ω, ∇w · ν = 0 on ∂Ω.
The inequality imposed on the production rates is needed to prove that the entropy is

nonincreasing in time. It is satisfied if, for instance, N = 4 and r1 = r3 = c2c4 − c1c3,
r2 = r4 = c1c3 − c2c4 [10]. For the existence result, the inequality can be weakened by

(6)
N+1
∑

i=1

ri(c) log ci ≤ Cr for all 0 < c1, . . . , cN+1 ≤ 1,

where Cr > 0 is some constant independent of ci (see (27)). This condition is satisfied, for
instance, for the tumor-growth model in [19].

Our first main result is the global existence of solutions to (1)-(3).

Theorem 1 (Global existence of solutions). Let the above assumptions hold. Then there

exists a weak solution (c1, . . . , cN+1) to (1)-(3) satisfying

ci ∈ L2
loc(0,∞; H1(Ω)), ∂tci ∈ L2

loc(0,∞;V ′),

0 ≤ ci ≤ 1, i = 1, . . . , N, cN+1 = 1 −
N
∑

i=1

ci ≥ 0 in Ω, t > 0,

where V ′ is the dual space of V = {u ∈ H2(Ω) : ∇u · ν = 0 on ∂Ω}.

To be precise, the existence theorem for (1)-(3) has to be understood as an existence
result for a system in N components (see below), which is equivalent to (1)-(3) as long as

ci > 0 for all i = 1, . . . , N and
∑N

i=1 ci < 1 are satisfied.
We explain the key ideas of the proof. For this, we write (2) more compactly as

(7) ∇c = A(c)J,

where A(c) ∈ R
(N+1)×(N+1) and ∇c = (∂ci/∂xj)ij, J = (J1, . . . , JN+1)

⊤ ∈ R
(N+1)×d. Using

the Perron-Frobenius theory for quasi-positive matrices, Bothe [4] characterized the spec-

trum of A(c) in case that ci > 0 for i = 1, . . . , N and
∑N

i=1 ci < 1. Under these conditions,

A(c) can be inverted on its image. Then, denoting its inverse by Ã(c)−1, (1)-(2) can be
formulated as

(8) ∂tc − div(−Ã(c)−1∇c) = r(c) in Ω, t > 0,

where r(c) = (r1(c), . . . , rN+1(c))
⊤.

It turns out that it is more convenient to eliminate the last equation for cN+1, which is
determined by cN+1 = 1 −∑N

i=1 ci, and to work only with the system in N components.
We set c′ = (c1, . . . , cN)⊤, J ′ = (J1, . . . , JN)⊤, and r′(c) = (r1(c), . . . , rN(c))⊤. Using

the facts that cN+1 = 1 −∑N
i=1 ci and

∑N
i=1 Ji = −JN+1, system (7) can be written as

∇c′ = −A0(c
′)J ′. The matrix A0(c

′) defined in Section 2 is generally not symmetric and it
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is not clear if it is positive definite. If A0(c
′) is invertible (and we prove in Section 2 that

this is the case), we can write system (1)-(2) as

(9) ∂tc
′ − div(A0(c

′)−1∇c′) = r′(c) in Ω, t > 0.

Still, A0(c
′)−1 may be not positive (semi-) definite.

Our main idea to handle (9) is to exploit its entropy structure. We associate to this
system the entropy density

(10) h(c′) =
N
∑

i=1

ci(log ci − 1) + cN+1(log cN+1 − 1), c1, . . . , cN ≥ 0,
N
∑

i=1

ci ≤ 1,

where cN+1 = 1−∑N
i=1 ci is interpreted as a function of the other concentrations. Further-

more, we define the entropy variables

(11) wi =
∂h

∂ci

= log
ci

cN+1

, i = 1, . . . , N,

and we denote by H(c′) = ∇2h(c′) the Hessian of h with respect to c′. Then (9) becomes

(12) ∂tc
′ − div(B(w)∇w) = r′(c) in Ω, t > 0,

where w = (w1, . . . , wN)⊤ and B(w) = A0(c)
−1H(c)−1 is symmetric and positive definite

(see Lemma 6). The advantage of the formulation in terms of the entropy variables is
not only that the diffusion matrix B(w) is positive definite (which allows us to apply the
Lax-Milgram lemma to a linearized version of (12)) but it yields also positive lower and
upper bounds for the concentrations. Indeed, inverting (11), we find that

(13) ci =
ewi

1 + ew1 + · · · + ewN

, i = 1, . . . , N.

Therefore, if the functions wi are bounded, the concentrations ci are positive and
∑N

i=1 ci <

1 which implies that cN+1 = 1 −∑N
i=1 ci > 0. This observation is a key novelty of the

paper.
Formulation (8) is needed to derive a priori estimates which are an important ingredient

for the global existence proof. Differentiating the entropy H[c] =
∫

Ω
h(c)dx (now h(c) is

interpreted as a function of all c1, . . . , cN+1) formally with respect to time, a computation
(made rigorous in Lemma 9) shows the entropy-dissipation inequality

(14)
dH
dt

+ K

∫

Ω

N+1
∑

i=1

|∇√
ci|2dx ≤ 0,

where K > 0 is a constant which depends only on (Dij). This estimate yields H1 bounds
for

√
ci.

The existence proof is based on the construction of a problem which approximates (12).
We replace the time derivative by an implicit Euler discretization with time step τ > 0 and
we add the fourth-order operator ε(∆2w + w), which guarantees the uniform coercivity of
the elliptic system in V with respect to w. The existence of approximating weak solutions is
shown by means of the Leray-Schauder fixed-point theorem. The discrete analogon of the
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above entropy-dissipation estimate implies a priori bounds uniform in the approximation
parameters τ and ε, which allows us to pass to the limit (τ, ε) → 0. In particular, the
entropy inequality provides global solutions.

System (1)-(3) with vanishing production rates, r = (r1, . . . , rN+1)
⊤ = 0, admits the

homogeneous steady state (c̄0
1, . . . , c̄

0
N+1), where c̄0

i = meas(Ω)−1
∫

Ω
c0
i dx. We are able to

prove that the solution, constructed in Theorem 1, converges exponentially fast to this
stationary state. For this, we introduce the relative entropy

H∗[c] =
N+1
∑

i=1

∫

Ω

ci log
ci

c̄0
i

dx.

Theorem 2 (Exponential decay). Let the assumptions of Theorem 1 hold. We suppose that

r = 0 and mini=1,...,N+1 ‖c0
i ‖L1(Ω) > 0. Let (c1, . . . , cN+1) be the weak solution constructed in

Theorem 1 and define c0 = (c0
1, . . . , c

0
N+1)

⊤. Then there exist constants C > 0, depending

only on Ω, and λ > 0, depending only on Ω and (Dij), such that

‖ci(·, t) − c̄0
i ‖L1(Ω) ≤ Ce−λt

√

H∗[c0], i = 1, . . . , N + 1.

The proof of this result is based on the entropy-dissipation inequality (14) and the
logarithmic Sobolev inequality [16], which links the entropy dissipation to the relative
entropy, as well as on the Csiszár-Kullback inequality [26], which bounds the squared L1

norm in terms of the relative entropy. The difficulty of the proof is that the approximate
solutions do not conserve the L1-norm because of the presence of the regularizing ε-terms,
and we need to derive appropriate bounds.

The paper is organized as follows. In Section 2, we prove some properties of the diffusion
matrices A(c) and A0(c) and we show how system (1)-(2) of N +1 equations can be reduced
to a system of N equations. Based on these properties, Theorems 1 and 2 are proved in
Sections 3 and 4, respectively. For the convenience of the reader, the derivation of the
Maxwell-Stefan relations (2) is sketched in Appendix A and some definitions and results
from matrix theory needed in Section 2 are summarized in Appendix B.

2. Properties of the diffusion matrices

Let the Maxwell-Stefan diffusion matrix (Dij) ∈ R
(N+1)×(N+1) (N ≥ 2) be symmetric

with Dij > 0 for i 6= j and Dii = 0 for all i and set dij = 1/Dij for i 6= j. Let c = (ci) ∈
R

N+1 be a strictly positive vector satisfying
∑N+1

i=1 ci = 1. We refer to Appendix B for the
definitions and results from matrix analysis used in this section. According to (2) and (7),
the matrix A = A(c) = (aij) ∈ R

(N+1)×(N+1) is given by

aij = dijci for i, j = 1, . . . , N + 1, i 6= j, aii = −
N+1
∑

j=1, j 6=i

dijcj for i = 1, . . . , N + 1.

In [15, Section 7.7.1], the matrix with elements −aijcj is analyzed and it is shown that it
is symmetric, positive semi-definite, irreducible, and a singular M-matrix as well as that a
generalized inverse can be defined. Our approach is to apply the Perron-Frobenius theory
to A, following [4].
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Lemma 3 (Properties of A). Let δ = mini,j=1,...,N+1, i6=j dij > 0 and ∆ = 2
∑N+1

i,j=1, i6=j dij.

Then the spectrum σ(−A) of −A satisfies

σ(−A) ⊂ {0} ∪ [δ, ∆).

The inclusion σ(−A) ⊂ {0} ∪ [δ,∞) is shown in [4, Section 5]. For the convenience of
the reader and since some less known results from matrix analysis are needed, we present
a full proof.

Proof. The matrix A is quasi-positive and irreducible. Therefore, by Theorem 13 of Perron-
Frobenius (see Appendix B), the spectral bound of A, s(A) = max{ℜ(λ) : λ ∈ σ(A)}, is a
simple eigenvalue of A associated with a strictly positive eigenvector and s(A) > ℜ(λ) for
all λ ∈ σ(A), λ 6= s(A). Here, ℜ(z) denotes the real part of the complex number z. Thus,

σ(A) ⊂ {s(A)} ∪ {z ∈ C : ℜ(z) < s(A)}.
An elementary computation shows that c is a (strictly) positive eigenvector to the eigen-
value λ = 0 of A. According to the Perron-Frobenius theory, only the eigenvector to s(A)
is positive. This implies that s(A) = 0 and

σ(A) ⊂ {0} ∪ {z ∈ C : ℜ(z) < 0}.
We can describe the spectrum of σ(A) in more detail. Let C1/2 = diag(

√
c1, . . . ,

√
cN+1)

be a diagonal matrix in R
(N+1)×(N+1) with inverse C−1/2. Then we can introduce the

symmetric matrix AS = C−1/2AC1/2 whose elements are given by

aS
ij =

{

aii if i = 1, . . . , N + 1,
dij

√
cicj if i, j = 1, . . . , N + 1, i 6= j.

The matrix AS is real and symmetric since dij = dji and therefore, it has only real eigen-
values. Since A and AS are similar, their spectra coincide:

σ(AS) = σ(A) ⊂ {0} ∪ {z ∈ R : z < 0} = (−∞, 0].

Now, consider the matrix AS(α) = AS − α
√

c ⊗ √
c, where 0 < α < δ and

√
c =

(
√

c1, . . . ,
√

cN+1)
⊤. Then AS(α) is quasi-positive and irreducible (since α < δ ≤ dij).

Using
∑N+1

i=1 ci = 1, a computation shows that −α is an eigenvalue of AS(α) associated
to the strictly positive eigenvector

√
c. By Theorem 13 of Perron-Frobenius, the spectral

bound of AS(α) equals −α and

σ(AS(α)) ⊂ (−∞,−α].

Since AS(α) and α
√

c ⊗√
c are symmetric, we can apply Theorem 16 of Weyl:

λi(AS) = λi

(

α
√

c ⊗
√

c + AS(α)
)

≤ λi

(

α
√

c ⊗
√

c
)

+ λN+1(AS(α)),

where i = 1, . . . , N + 1 and the eigenvalues λi(·) are arranged in increasing order. Because
of λN+1(AS(α)) = −α and λi(α

√
c ⊗√

c) = 0 for i = 1, . . . , N , λN+1(α
√

c ⊗√
c) = α (see

Proposition 14), we find that λi(AS) ≤ −α for i = 1, . . . , N and λN+1(AS) ≤ 0. Thus, for
all α < δ,

σ(A) = σ(AS) ⊂ {0} ∪ (−∞,−α],
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implying that σ(−A) ⊂ {0} ∪ [δ,∞).
It remains to prove the upper bound of the spectrum. Denoting by ‖ · ‖F the Frobenius

norm, we find for the spectral radius of −A that

r(−A) ≤ ‖ − A‖F =

(

N+1
∑

i,j=1

a2
ij

)1/2

=





N+1
∑

i=1

(

N+1
∑

j=1, j 6=i

dijcj

)2

+
N+1
∑

i,j=1, j 6=i

(dijci)
2





1/2

< 2
N+1
∑

i,j=1, j 6=i

dij = ∆,

since 0 < ci < 1, finishing the proof. �

Lemma 4 (Properties of restrictions of A and AS). Let Ã = A|im(A) and ÃS = AS|im(AS).

Then Ã and ÃS are invertible on the images im(A) and im(AS), respectively, and

(15) σ(−Ã), σ(−ÃS) ⊂ [δ, ∆), σ((−ÃS)−1) ⊂ (1/∆, 1/δ].

Proof. Direct inspection shows that ker(A) = span{c}, im(A) = {1}⊥, where 1 = (1, . . . ,
1)⊤ ∈ R

N+1, and ker(AS) = span{√c}. By the symmetry of AS, it follows that

(16) R
N+1 = ker(AS)⊥ ⊕ ker(AS) = im(A⊤

S ) ⊕ ker(AS) = im(AS) ⊕ ker(AS).

Furthermore, using Theorem 12, since λ = 0 is a semisimple eigenvalue of A,

(17) R
N+1 = im(A) ⊕ ker(A).

We observe that both Ã and ÃS are endomorphisms. Clearly, σ(Ã) ⊂ σ(A) and σ(ÃS) ⊂
σ(AS). We claim that 0 is not contained in σ(Ã) or σ(ÃS). Indeed, otherwise there
exists x ∈ im(A) (or x ∈ im(AS)), x 6= 0, such that Ãx = 0 (or ÃSx = 0). But this
implies that x ∈ ker(A) (or x ∈ ker(AS)) and because of (17) (or (16)), it follows that
x = 0, contradiction. Hence, Ã and ÃS are invertible on their respective domain, and (15)
follows. �

The above lemma shows that the flux-gradient relation (7) can be inverted since
∑N+1

i=1 Ji

= 0 implies that each column of J is an element of {1}⊥ = im(A). In fact, we can write
(7) as ∇c = ÃJ and hence, J = Ã−1∇c. Therefore, we can formulate (1) and (2) as

(18) ∂tc − div(−Ã−1∇c) = r(c) in Ω, t > 0.

The next step is to reduce the Maxwell-Stefan system of N + 1 components to a system
of N components only. Still, we assume that ci > 0 for all i and

∑N+1
i=1 ci = 1. We define

the matrices

X = IN+1 −









0
...
0
1









⊗









1
...
1
0









, X−1 = IN+1 +









0
...
0
1









⊗









1
...
1
0









∈ R
(N+1)×(N+1),
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where X−1 is the inverse of X and IN+1 is the unit matrix of R
(N+1)×(N+1). A computation

shows that

X−1AX =

(

−A0 b
0 0

)

,

where the (N × N)-matrix A0 = (a0
ij) is defined by

(19) a0
ij =

{ −(dij − di,N+1)ci if i 6= j, i, j = 1, . . . , N,
∑N

j=1, j 6=i(dij − di,N+1)cj + di,N+1 if i = j = 1, . . . , N,

and the vector b = (bi) is given by bi = di,N+1ci, i = 1, . . . , N . In Lemma 5 below we show
that A0 is invertible. Then, writing c′ = (c1, . . . , cN)⊤ and J ′ = (J1, . . . , JN)⊤,

(

∇c′

0

)

= X−1∇c = (X−1AX)X−1J =

(

−A0J
′

0

)

.

Thus, applying X−1 to (18), since X−1∂tc = (∂tc
′, 0)⊤ and X−1r(c) = (r′(c), 0)⊤,

(20) ∂tc
′ − div(A−1

0 ∇c′) = r′ in Ω, t > 0.

We note that every solution c′ to this problem defines a solution to (18) and hence to

(1)-(2) by multiplying (20) (augmented via (c′, 0)⊤) by X and setting cN+1 = 1−
∑N

i=1 ci.

Lemma 5 (Properties of A0). The matrix A0 ∈ R
N×N , defined in (19), is invertible with

spectrum

σ(A0) ⊂ [δ, ∆).

Furthermore, the elements of its inverse A−1
0 are uniformly bounded in c1, . . . , cN ∈ [0, 1].

Proof. Since the blockwise upper triangular matrix −X−1AX is similar to −A, their spectra
coincide and

(21) σ(A0) ∪ {0} = σ(−X−1AX) = σ(−A) ⊂ {0} ∪ [δ, ∆).

Observing that 0 is a simple eigenvalue of −A, it follows that σ(A0) ⊂ [δ, ∆) and hence,
A0 is invertible.

It remains to show the uniform bound for the elements αij of A−1
0 . By Cramer’s rule,

A−1
0 = adj(A0)/ det A0, where adj(A0) is the adjugate of A0. The definition of A0 in (19)

implies that

|a0
ij| ≤

N
∑

k=1, k 6=i

|dik − di,N+1| + |di,N+1| = Ki ≤ K, i, j = 1, . . . , N,

where K = maxi=1,...,N Ki. Therefore, the elements of adj(A0) are not larger than (N −
1)!KN−1. By (21), the eigenvalues of A0 are bounded from below by δ. Consequently,
since the determinant of a matrix equals the product of its eigenvalues, det(A0) ≥ δN .
This shows that |αij| ≤ (N − 1)!KN−1δ−N for all i, j. �
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Consider the Hessian ∇2h of the entropy density (10) in the variables c1, . . . , cN . Then
H = (hij) = ∇2h ∈ R

N×N is given by

hij =
1

cN+1

+
δij

ci

, i, j = 1, . . . , N,

where δij denotes the Kronecker delta. The matrix H is symmetric and positive definite
by Sylvester’s criterion, since all principle minors detHk of H are positive:

det Hk = (c1 · · · ckcN+1)
−1

(

k
∑

i=1

ci + cN+1

)

> 0, k = 1, . . . , N.

Lemma 6 (Properties of B). The matrix B = A−1
0 H−1 is symmetric and positive definite.

Furthermore, the elements of B are bounded uniformly in c1, . . . , cN+1 ∈ [0, 1].

Proof. Using dij = dji and
∑N+1

i=1 ci = 1, a calculation shows that the elements βij of
B−1 = HA0 equal

βii = di,N+1

(

1 −
N
∑

k=1, k 6=i

ck

)

(

1

ci

+
1

cN+1

)

+
N
∑

k=1, k 6=i

(

dk,N+1

cN+1

+
dik

ci

)

ck,

βij =
di,N+1

cN+1

(

1 −
N
∑

k=1, k 6=i

ck

)

+
dj,N+1

cN+1

(

1 −
N
∑

k=1, k 6=j

ck

)

+
N
∑

k=1, k 6=i,j

dk,N+1
ck

cN+1

− dij,

where i, j = 1, . . . , N and i 6= j. Hence, B−1 is symmetric. We have proved above that
H−1 is symmetric and positive definite. According to Theorem 15, the number of positive
eigenvalues of A0 = H−1B−1 equals that for B−1. However, by (21), A0 has only positive
eigenvalues. Therefore, also B−1 has only positive eigenvalues. This shows that B−1 and
consequently B are symmetric and positive definite.

It remains to show the uniform boundedness of B. The inverse H−1 = (ηij) can be
computed explicitly:

ηij =

{

(1 − ci)ci if i = j = 1, . . . , N,
−cicj if i 6= j, i, j = 1, . . . , N.

Denoting the elements of A−1
0 by αij, the elements bij of B equal

bii = αii(1 − ci)ci −
N
∑

k=1, k 6=i

αikcick, i = 1, . . . , N,

bij = −αiicicj + αij(1 − cj)cj −
N
∑

k=1, k 6=i,j

αikcjck, i 6= j, i, j = 1, . . . , N.

By Lemma 5, the elements αij are uniformly bounded. Then, since ci ∈ [0, 1], the uniform
bound for bij follows. �
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3. Proof of Theorem 1

The analysis in Section 2 shows that the Maxwell-Stefan system can be reduced to the
problem

∂tc
′ − div(B(w)∇w) = r′(c) in Ω, t > 0,(22)

∇wi · ν = 0 on ∂Ω, wi(·, 0) = w0
i in Ω, i = 1, . . . , N,(23)

where B = B(w) is symmetric and positive definite for c1, . . . , cN+1 > 0 and ci = ci(w)
is given by (13). Furthermore, any solution c′ = c′(w) to this problem defines formally a

solution to the original problem (1)-(3) by setting cN+1 = 1 −∑N
i=1 ci. We assume that

there exists 0 < η < 1 such that c0
i ≥ η for i = 1, . . . , N and c0

N+1 = 1−∑N
i=1 c0

i ≥ η. Then
w0

i = log(c0
i /c

0
N+1) satisfies w0

i ∈ L∞(Ω), i = 1, . . . , N .
Step 1: Existence of an approximate system. Let T > 0, m ∈ N and set τ = T/m,

tk = τk for k = 0, . . . ,m. We prove the existence of weak solutions to the approximate
system

1

τ

∫

Ω

(

c′(wk) − c′(wk−1)
)

· vdx +

∫

Ω

∇v : B(wk)∇wkdx

+ ε

∫

Ω

(∆wk · ∆v + wk · v)dx =

∫

Ω

r′(c(wk)) · vdx, v ∈ VN ,(24)

where wk approximates w(·, tk) and ε > 0. The notation “:” signifies summation over both
matrix indices; in particular,

∫

Ω

∇v : B(wk)∇wkdx =
N
∑

i,j=1

∫

Ω

bij(w
k)∇vi · ∇wk

j dx,

and we recall that V = {u ∈ H2(Ω) : ∇u · ν = 0 on ∂Ω}. The implicit Euler discretization
of the time derivative makes the system elliptic which avoids problems related to the
regularity in time. The additional ε-term guarantees the coercivity of the elliptic system.

Lemma 7. Let the assumptions of Theorem 1 hold and let wk−1 ∈ L∞(Ω)N . Then there

exists a weak solution wk ∈ VN to (24).

Proof. The idea of the proof is to apply the Leray-Schauder fixed-point theorem. Let
w̄ ∈ L∞(Ω)N and σ ∈ [0, 1]. We wish to find w ∈ VN such that

(25) a(w, v) = F (v) for all v ∈ VN ,

where

a(w, v) =

∫

Ω

∇v : B(w̄)∇wdx + ε

∫

Ω

(∆w · ∆v + w · v)dx,

F (v) = −σ

τ

∫

Ω

(

c′(w̄) − c′(wk−1)
)

· vdx + σ

∫

Ω

r′(c(w̄)) · vdx.
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Since B(w̄) is positive definite, by Lemma 6, the bilinear form a is coercive,

a(w,w) =

∫

Ω

N
∑

i,j=1

bij(w̄)∇wi · ∇wjdx + ε

∫

Ω

(

|∆w|2 + |w|2
)

dx ≥ Cε‖w‖2
H2(Ω)N ,

where C > 0 is a constant. The inequality follows from elliptic regularity, using the
assumption ∂Ω ∈ C1,1. By Lemma 6 again, the elements of B(w̄) are bounded uniformly
in c, and thus, a is continuous in VN×VN . Using 0 < ci(w̄), ci(w

k−1) < 1 and the continuity
of ri, we can show that F is bounded in VN . Then the Lax-Milgram lemma provides the
existence of a unique solution w ∈ VN to (25). Since the space dimension is assumed to
be at most three, the embedding H2(Ω) →֒ L∞(Ω) is continuous (and compact) such that
w ∈ L∞(Ω)N . This shows that the fixed-point operator S : L∞(Ω)N × [0, 1] → L∞(Ω)N ,
S(w̄, σ) = w, is well-defined. By construction, S(w̄, 0) = 0 for all w̄ ∈ L∞(Ω)N . Standard
arguments show that S is continuous and compact. It remains to prove a uniform bound
for all fixed points of S(·, σ) in L∞(Ω)N .

Let w ∈ L∞(Ω)N be such a fixed point. Then w solves (25) with w̄ replaced by w.
Taking the test function v = w ∈ VN , it follows that

σ

τ

∫

Ω

(

c′(w) − c′(wk−1)
)

· wdx +

∫

Ω

(

∇w : B(w)∇w + ε(|∆w|2 + |w|2)
)

dx

= σ

∫

Ω

r′(c(w)) · wdx.(26)

In order to estimate the first term on the left-hand side, we consider the entropy density
h, defined in (10). Its Hessian is positive definite if c1, . . . , cN+1 > 0 and hence, h is convex,
i.e.

h(c) − h(ĉ) ≤ ∇h(c) · (c − ĉ) for all c, ĉ ∈ R
N with 0 < ci, ĉi,

N
∑

j=1

cj,

N
∑

j=1

ĉj < 1.

Using w = ∇h(c′), we find that

σ

τ

∫

Ω

(

c′(w) − c′(wk−1)
)

· wdx ≥ σ

τ

∫

Ω

(

h(c′(w)) − h(c′(wk−1))
)

dx.

By Lemma 6, B is positive definite:
∫

Ω

∇w : B(w)∇wdx ≥ 0.

Finally, using the assumptions
∑N

i=1 ri(c) = −rN+1(c) and
∑N+1

i=1 ri(c) log ci ≤ 0,

∫

Ω

r′(c(w)) · wdx =

∫

Ω

(

N
∑

i=1

ri(c(w))(log ci(w) − log cN+1(w))

)

dx

=

∫

Ω

N+1
∑

i=1

ri(c(w)) log ci(w)dx ≤ 0.
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Therefore, (26) becomes

σ

∫

Ω

h(c′(w))dx + ετ

∫

Ω

(

|∆w|2 + |w|2
)

dx ≤ σ

∫

Ω

h(c′(wk−1))dx.

This yields an H2 bound uniform in w and σ (but depending on ε and τ). The embedding
H2(Ω) →֒ L∞(Ω) implies the desired uniform bound in L∞(Ω), and the Leray-Schauder
theorem gives a solution to (24). �

Note that we obtain the uniform bounds also under the weaker condition (6). In this
case, (26) can be estimated as

(27) σ

∫

Ω

h(c′(w))dx + ετ

∫

Ω

(

|∆w|2 + |w|2
)

dx ≤ σ

∫

Ω

h(c′(wk−1))dx + σCrτmeas(Ω).

Step 2: Entropy dissipation. Since the diffusion matrix B(wk) defines a self-adjoint
endomorphism, the entropy-dissipation estimate

∫

Ω

∇wk : B(wk)∇wkdx ≥
∫

Ω

λ|∇wk|2dx

holds, where λ is the smallest eigenvalue of B(wk). Unfortunately, λ depends on c(wk)
and we do not have a positive lower bound independent of wk. However, we are able to
prove an entropy-dissipation inequality in the variables

√

ci(wk) with a uniform positive
lower bound. In the following, we employ the notation f(ck) = (f(ck

1), . . . , f(ck
N+1))

⊤ for
arbitrary functions f .

Lemma 8. Let wk ∈ VN be a weak solution to (24). Then
∫

Ω

∇wk : B(wk)∇wkdx ≥ 4

∆

∫

Ω

|∇
√

ck|2dx,

where ck = c(wk) = (c1(w
k), . . . , cN+1(w

k))⊤ is defined in (13) and cN+1(w
k) = 1 −

∑N
i=1 ci(w

k).

Proof. First, we claim that
∫

Ω

∇wk : B(wk)∇wkdx =

∫

Ω

∇ log ck : (−Ã)−1∇ckdx,

where Ã is defined in Lemma 4. To prove this identity we set z′ = (z1, . . . , zN)⊤ =

B(wk)∇wk ∈ R
N×d and zN+1 = −∑N

i=1 zi ∈ R
d. Then the definitions of wk and zN+1 yield

∇wk : B(wk)∇wk = ∇wk : z′ =
N
∑

i=1

(

∇ log ck
i −∇ log ck

N+1

)

· zi

=
N+1
∑

i=1

∇ log ck
i · zi = ∇ log ck : z,(28)
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where z = (z′, zN+1)
⊤. Using ∇wk = H∇c′(wk) and B = A−1

0 H−1, where H = H(c′(wk))
is the Hessian of h, it follows that z′ = A−1

0 ∇c′(wk) or, equivalently, ∇c′(wk) = A0z
′. A

computation shows that for i = 1, . . . , N ,

∇ck
i = (A0z

′)i =
N
∑

j=1, j 6=i

(dij − di,N+1)(zic
k
j − zjc

k
i ) + di,N+1zi = (−Az)i = (−Ãz)i,

since each column of z is an element of im(A). Because of Ãz ∈ im(A), we have (−Ãz)N+1 =

−∑N
i=1(−Ãz)i = ∇ck

N+1. We infer that ∇ck = −Ãz and consequently, z = (−Ã)−1∇ck.
Inserting this into (28) proves the claim.

We recall from the proof of Lemma 4 that the images of Ã = A|im(A) and ÃS =

AS|im(AS) are given by im(A) = {1}⊥ and im(AS) = span{
√

ck}⊥ = {C−1/2x : x ∈
im(A)}, where C±1/2 = diag((ck

1)
±1/2, . . . , (ck

N+1)
±1/2) ∈ R

(N+1)×(N+1). Then the defini-

tion −A = C1/2(−AS)C−1/2 implies that −Ã = C1/2(−ÃS)C−1/2 and hence, (−ÃS)−1 =
C−1/2(−Ã)−1C1/2. We infer that

∇ log ck : (−Ã)−1∇ck = 4(∇
√

ck) : C−1/2(−Ã)−1C1/2∇
√

ck

= 4∇
√

ck : (−ÃS)−1∇
√

ck ≥ 4

∆
|∇

√
ck|2.

The inequality follows from Lemma 4 since (−ÃS)−1 is a self-adjoint endomorphism whose
smallest eigenvalue is larger than 1/∆. �

Step 3: A priori estimates. Next, we derive some estimates uniform in τ , ε, and η by
means of the entropy-dissipation inequality. The following lemma is a consequence of (26),
the proof of Lemma 7, and Lemma 8.

Lemma 9 (Discrete entropy inequality). Let wk ∈ VN be a weak solution to (24). Then

for k ≥ 1,

H[ck] +
4τ

∆

∫

Ω

|∇
√

ck|2dx + ετ

∫

Ω

(

|∆wk|2 + |wk|2
)

dx ≤ H[ck−1],

where ck = c(wk) and H[ck] =
∫

Ω
h(ck)dx. Solving this estimate recursively, it follows that

H[ck] +
4τ

∆

k
∑

j=1

∫

Ω

|∇
√

cj|2dx + ετ

k
∑

j=1

∫

Ω

(

|∆wj|2 + |wj|2
)

dx ≤ H[c0].

Let wk ∈ VN be a weak solution to (24) and set ck = c(wk). We define the piecewise-
constant-in-time functions w(τ)(x, t) = wk(x) and c(τ)(x, t) = (ck

1, . . . , c
k
N)⊤(x) for x ∈ Ω,

t ∈ ((k − 1)τ, kτ ], k = 1, . . . ,m, c(τ)(·, 0) = (c0
1, . . . , c

0
N)⊤, and we introduce the discrete

time derivative Dτc
(τ) = (c(τ)−στc

(τ))/τ with the shift operator (στc
(τ))(x, t) = c(τ)(x, t−τ)

for x ∈ Ω, t ∈ (τ, T ], (στc
(τ))(x, t) = c0(x) for x ∈ Ω, t ∈ (0, τ ]. The functions (c(τ), w(τ))

solve the following equation in the distributional sense:

(29) Dτc
(τ) − div(A−1

0 (c(τ))∇c(τ)) + ε(∆2w(τ) + w(τ)) = r′(c(τ)), t > 0.
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Lemma 9 implies the following a priori estimates.

Lemma 10. There exists a constant C > 0 independent of ε, τ , and η such that

‖
√

c(τ)‖L2(0,T ;H1(Ω)) +
√

ε‖w(τ)‖L2(0,T ;H2(Ω)) ≤ C,(30)

‖c(τ)‖L2(0,T ;H1(Ω)) + ‖Dτc
(τ)‖L2(0,T ;V ′) ≤ C.(31)

In the following, C > 0 denotes a generic constant independent of ε, τ , and η.

Proof. Estimate (30) is an immediate consequence of the entropy inequality of Lemma 9
and the L∞-bound for c(τ). To prove (31), we employ the Hölder inequality:

‖∇c
(τ)
i ‖2

L2(0,T ;L2(Ω)) = 4

∫ T

0

∥

∥

√

c
(τ)
i ∇

√

c
(τ)
i

∥

∥

2

L2(Ω)
dt

≤ 4

∫ T

0

∥

∥

√

c
(τ)
i

∥

∥

2

L∞(Ω)

∥

∥∇
√

c
(τ)
i

∥

∥

2

L2(Ω)
dt

≤ 4‖c(τ)
i ‖L∞(0,T ;L∞(Ω))

∥

∥∇
√

c
(τ)
i

∥

∥

2

L2(0,T ;L2(Ω))
≤ C,

using (30) and the fact that 0 < c
(τ)
i < 1, i = 1, . . . , N . Here and in the following, C > 0

denotes a generic constant independent of ε, τ , and η. By (29) and L2(Ω) →֒ (H1(Ω))′,

‖Dτc
(τ)‖L2(0,T ;V ′) ≤ C‖A−1

0 ∇c(τ)‖L2(0,T ;L2(Ω))

+ εC‖w(τ)‖L2(0,T ;H2(Ω)) + C‖r′(c(τ))‖L2(0,T ;L2(Ω))

≤ C‖A−1
0 ‖L∞(0,T ;L∞(Ω))‖∇c(τ)‖L2(0,T ;L2(Ω))

+ εC‖w(τ)‖L2(0,T ;H2(Ω)) + C‖r′(c(τ))‖L2(0,T ;L2(Ω)).

The proof of Lemma 5 shows that the elements of A−1
0 are bounded by a constant which

depends only on N and (Dij). Since 0 < c(τ) < 1 and r′ is continuous, (r′(c(τ))) is bounded
in L2(0, T ; L2(Ω)). Therefore, in view of (30) and the bound on c(τ) in L2(0, T ; H1(Ω)),

‖Dτc
(τ)‖L2(0,T ;V ′) ≤ C,

finishing the proof. �

Step 4: Limits ε → 0 and τ → 0. We apply the compactness result of [12, Theorem 1]
to the family (c(τ)). Since the embedding H1(Ω) →֒ Lp(Ω) is compact for 1 < p < 6, (31)
implies the existence of a subsequence, which is not relabeled, such that, as (ε, τ) → 0,

c(τ) → c′ = (c1, . . . , cN) strongly in L2(0, T ; Lp(Ω)), 1 < p < 6.

As a consequence, ci ≥ 0,
∑N

i=1 ci ≤ 1, and cN+1 = 1 −∑N
i=1 ci ≥ 0. Because of the

uniform L∞-bounds for c
(τ)
i , this convergence holds even in the space Lq(Ω× (0, T )) for all
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1 ≤ q < ∞. Furthermore, by (30)-(31), up to subsequences,

∇c(τ) ⇀ ∇c′ weakly in L2(0, T ; L2(Ω)),

Dτc
(τ) ⇀ ∂tc

′ weakly in L2(0, T ;V ′),

εw(τ) → 0 strongly in L2(0, T ; H2(Ω)).

Since the elements of A−1
0 are bounded and 0 < c(τ) < 1,

A0(c
(τ))−1 → A0(c

′)−1 strongly in Lq(0, T ; Lq(Ω)) for all 1 ≤ q < ∞,

r′(c(τ)) → r′(c) strongly in L2(0, T ; L2(Ω)),

setting c = (c1, . . . , cN+1)
⊤. The above convergence results are sufficient to pass to the

limit (ε, τ) → 0 in the weak formulation of (29), showing that c satisfies

∂tc
′ − div(A0(c

′)−1∇c′) = r′(c) in L2(0, T ;V ′).

This proves the existence of a weak solution to (9) and (3) with initial data satisfying

c0
i ≥ η > 0 and

∑N
i=1 c0

i ≤ 1 − η. In view of the uniform bounds and the finiteness of the
initial entropy, we can perform the limit η → 0 to obtain the existence result for general
initial data with c0

i ≥ 0 and
∑N

i=1 c0
i ≤ 1. This proves Theorem 1.

4. Proof of Theorem 2

First, we prove that, if the production rates vanish, the L1 norms of the semi-discrete
molar concentrations are bounded. We assume that there exists 0 < η < 1 such that c0

i ≥ η
for i = 1, . . . , N + 1.

Lemma 11 (Bounded L1 norms). Let r = 0. Then there exists a constant γ0 > 0,
only depending on c0, such that for all 0 < γ ≤ min{1, γ0} and sufficiently small ε > 0,
depending on γ, the semi-discrete concentrations ck = c(wk), where wk ∈ VN solves (24),
satisfy

(1 − γ)‖c0
i ‖L1(Ω) ≤ ‖ck

i ‖L1(Ω) ≤ (1 + γ)‖c0
i ‖L1(Ω), i = 1, . . . , N, k ∈ N,(32)

‖c0
N+1‖L1(Ω) − γ

N
∑

i=1

‖c0
i ‖L1(Ω) ≤ ‖ck

N+1‖L1(Ω) ≤ ‖c0
N+1‖L1(Ω) + γ

N
∑

i=1

‖c0
i ‖L1(Ω).(33)

Furthermore, ‖ck
N+1‖L1(Ω) ≥ 1

2
‖c0

N+1‖L1(Ω) > 0.

Proof. We recall that τ = T/m for T > 0 and m ∈ N. Let k ∈ {1, . . . ,m}. Using the test
function v = ei in (24), where ei is the i-th unit vector of R

N , we find that
∫

Ω

ck
i dx =

∫

Ω

ck−1
i dx − ετ

∫

Ω

wk
i dx, i = 1, . . . , N,

where we abbreviated ck
i = ci(w

k). Solving these recursive equations, we obtain

(34)

∫

Ω

ck
i dx =

∫

Ω

c0
i dx − ετ

k
∑

j=1

∫

Ω

wj
i dx.



MAXWELL-STEFAN SYSTEMS 17

Because of the ε-terms, we do not have discrete mass conservation but we will derive
uniform L1-bounds. The entropy inequality in Lemma 9 shows that

H[ck] + ετ

∫

Ω

(

(∆wk
i )

2 + (wk
i )

2
)

dx ≤ H[ck] + ετ

∫

Ω

(

|∆wk|2 + |wk|2
)

dx

≤ H[ck−1], k ≥ 1.(35)

Solving this inequality recursively, we infer from H[ck] ≥ −meas(Ω)(N + 1) that

ετ
k
∑

j=1

‖wj
i ‖2

L2(Ω) ≤ H[c0] −H[ck] ≤ H[c0] + meas(Ω)(N + 1).

Consequently, using kτ ≤ T ,

ετ
k
∑

j=1

∫

Ω

|wj
i |dx ≤ ετC

k
∑

j=1

‖wj
i ‖L2(Ω) ≤ ετC

√
k

(

k
∑

j=1

‖wj
i ‖2

L2(Ω)

)1/2

≤ C
√

ετk(H[c0] + meas(Ω)(N + 1))

≤ C
√

εT (H[c0] + meas(Ω)(N + 1)).

Let γ > 0 and 0 < ε < 1 satisfy

0 < γ ≤ min







1, γ0 =

(

2
N
∑

i=1

‖c0
i ‖L1(Ω)

)−1

‖c0
N+1‖L1(Ω)







,(36)

0 <
√

ε ≤ γ minℓ=1,...,N ‖c0
ℓ‖L1(Ω)

C
√

T (H[c0] + meas(Ω)(N + 1))
.(37)

Then, in view of (34),

(1 − γ)‖c0
i ‖L1(Ω) ≤ ‖ck

i ‖L1(Ω) = ‖c0
i ‖L1(Ω) − ετ

k
∑

j=1

∫

Ω

wj
i dx ≤ (1 + γ)‖c0

i ‖L1(Ω).

These relations hold for all i = 1, . . . , N . For i = N + 1, we estimate (using (32))
∫

Ω

ck
N+1dx =

∫

Ω

(

1 −
N
∑

i=1

ck
i

)

dx ≥
∫

Ω

(

1 − (1 + γ)
N
∑

i=1

c0
i

)

dx

=

∫

Ω

c0
N+1dx − γ

N
∑

i=1

∫

Ω

c0
i dx ≥ 1

2
‖c0

N+1‖L1(Ω) > 0,

by definition of γ0. A similar computation yields
∫

Ω

ck
N+1dx ≤

∫

Ω

(

1 − (1 − γ)
N
∑

i=1

c0
i

)

dx = ‖c0
N+1‖L1(Ω) + γ

N
∑

i=1

‖c0
i ‖L1(Ω).

This proves the lemma. �
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For the proof of Theorem 2, we introduce the following notations: ck = (ck
1, . . . , c

k
N+1)

⊤,
c̄k = (c̄k

1, . . . , c̄
k
N+1)

⊤, where c̄k
i = meas(Ω)−1

∫

Ω
ck
i dx for i = 1, . . . , N + 1, k ≥ 0. Further-

more, we set wk = (wk
1 , . . . , w

k
N)⊤, and w̄k = (w̄k

1 , . . . , w̄
k
N)⊤, where w̄k

i = log(c̄k
i /c̄

k
N+1) for

i = 1, . . . , N . We recall the definition of the relative entropy

H∗[ck] =
N+1
∑

i=1

∫

Ω

ck
i log

ck
i

c̄0
i

dx.

Employing the test function wk − w̄k in (24), we obtain

1

τ

∫

Ω

(c′(wk) − c′(wk−1)) · (wk − w̄k)dx +

∫

Ω

∇wk : B(wk)∇wkdx

+ ε

∫

Ω

(|∆wk|2 + wk · (wk − w̄k))dx = 0.

We estimate the integrals term by term.
Using the definition ck

N+1 = 1 −
∑N

i=1 ck
i , a computation shows that

(c′(wk) − c′(wk−1)) · wk = (ck − ck−1) · log ck.

Therefore, we find that

∫

Ω

(c′(wk) − c′(wk−1)) · (wk − w̄k)dx =

∫

Ω

(ck − ck−1) · log
ck

c̄k
dx

=

∫

Ω

(ck − ck−1) · log
ck

c̄0
dx +

∫

Ω

(ck − ck−1) · log
c̄0

c̄k
dx.

The first integral on the right-hand side can be estimated by employing the convexity of
h(c) as a function of c1, . . . , cN+1, which implies that

h(c(wk)) − h(c(wk+1)) ≤ ∇h(c(wk)) · (c(wk) − c(wk−1))

= log(ck) · (ck − ck−1).

Thus, because of
∑N+1

i=1 ck
i = 1 and the definition of H∗[ck],

∫

Ω

(ck − ck−1) · log
ck

c̄0
dx ≥ H∗[ck] −H∗[ck−1].

For the second integral, we employ the bounds (32)-(33) as well as γ < 1 and ε > 0
sufficiently small, which yields

1

1 + γ
≤ c̄0

i

c̄k
i

≤ 1

1 − γ
, i = 1, . . . , N,

1

1 + γ̄
≤ c̄0

N+1

c̄k
N+1

≤ 1

1 − γ̄
,
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where γ̄ = γ(1/c̄0
N+1 − 1) > 0. Here, we have used again that

∑N+1
i=1 c̄0

i = 1. Then, with
C1 = meas(Ω),

∫

Ω

(ck − ck−1) · log
c̄0

c̄k
dx ≥ −

∫

Ω

N
∑

i=1

ck
i log(1 + γ)dx −

∫

Ω

ck
N+1 log(1 + γ̄)dx

+

∫

Ω

N
∑

i=1

ck−1
i log(1 − γ)dx +

∫

Ω

ck−1
N+1 log(1 − γ̄)dx

≥ −C1 log
(1 + γ)(1 + γ̄)

(1 − γ)(1 − γ̄)
.

We have already proved that
∫

Ω

∇wk : B(wk)∇wkdx ≥ 4

∆

∫

Ω

|∇
√

ck|2dx.

Applying Young’s inequality to the ε-term, it follows that

H∗[ck] −H∗[ck−1] +
4τ

∆

∫

Ω

|∇
√

ck|2dx ≤ ετ

2

∫

Ω

|w̄k|2dx + C1 log
(1 + γ)(1 + γ̄)

(1 − γ)(1 − γ̄)
.

The logarithmic Sobolev inequality [16] as well as the bounds (32)-(33) show that

H∗[ck] =
N+1
∑

i=1

∫

Ω

ck
i log

ck
i

c̄k
i

dx +
N+1
∑

i=1

∫

Ω

ck
i log

c̄k
i

c̄0
i

dx

≤ C(Ω)
N+1
∑

i=1

∫

Ω

|∇
√

ck
i |2dx +

N
∑

i=1

∫

Ω

ck
i log(1 + γ)dx +

∫

Ω

ck
N+1 log(1 + γ̄)dx

≤ C(Ω)

∫

Ω

|∇
√

ck|2dx + C1 log((1 + γ)(1 + γ̄)),

from which we infer that

(1 + C2τ)H∗[ck] ≤ H∗[ck−1] +
ετ

2

∫

Ω

|w̄k|2dx + Cγ,

where C2 = 4/(C(Ω)∆) and, for τ ≤ 1,

Cγ = C1 log
(1 + γ)(1 + γ̄)

(1 − γ)(1 − γ̄)
+

4C1

C(Ω)∆
log((1 + γ)(1 + γ̄)).

We can estimate w̄k by using the bounds for c̄k of Lemma 11:
∫

Ω

|w̄k|2dx ≤
N
∑

i=1

∫

Ω

(

| log c̄k
i | + | log c̄k

N+1|
)2

dx ≤ C3,

where C3 > 0 depends on the L1-norm of c0 and γ. Hence

H∗[ck] ≤ (1 + C2τ)−1H∗[ck−1] +
ετ

2
C3(1 + C2τ)−1 + Cγ(1 + C2τ)−1.
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Solving these recursive inequalities, we conclude that

H∗[ck] ≤ (1 + C2τ)−kH∗[c0] +
ετ

2
C3

k
∑

j=1

(1 + C2τ)−j + Cγ

k
∑

j=1

(1 + C2τ)−j.

The sum contains the first terms of the geometric series:

k
∑

j=1

(1 + C2τ)−j ≤ 1

1 − (1 + C2τ)−1
− 1 =

1

C2τ
,

yielding

H∗[c(τ)(·, t)] ≤ (1 + C2τ)−t/τH∗[c0] +
εC3

2C2

+
Cγ

C2τ
, t > 0.

Now, we choose sequences for ε, τ , and γ such that γ → 0, Cγ/τ → 0, and (37) is satisfied

(then also ε → 0). This is possible since Cγ → 0 as γ → 0. Then, because of c
(τ)
i → ci in

L2(0, T ; L2(Ω)) for i = 1, . . . , N + 1, the limit (ε, τ, γ) → 0 leads to

H∗[c(·, t)] ≤ e−C2tH∗[c0], t ≥ 0.

Moreover, we can pass to the limit η → 0. Finally, since
∫

Ω
ci(·, t)dx =

∫

Ω
c0
i dx for i =

1, . . . , N + 1 (see Lemma 11), we can apply the Csiszár-Kullback inequality [26] to finish
the proof.

Appendix A. Derivation of the Maxwell-Stefan relations

The Maxwell-Stefan relations (2) for an ideal gas mixture of N+1 components are derived
by assuming that the thermodynamical driving force di of the i-th component balances the
friction force fi. We suppose constant temperature and pressure. Our derivation follows
[4]. For details on the modeling, we refer to the monographs [15, 27].

The driving force di is assumed to be proportional to the gradient of the chemical
potential µi [27, Section 3.3]:

(38) di =
ci

RT
∇µi, i = 1, . . . , N + 1.

Here, R is the gas constant, T the (constant) temperature, and ci = ρi/mi is the molar
concentration of the i-th species with the mass density ρi and the molar mass mi of the
i-th species. For more general expressions of di, we refer to [15, Chapter 7]. The chemical
potential under isothermal, isobaric conditions is defined by µi = ∂G/∂ci, where G is the
Gibbs free energy. In an ideal gas, we have ∇µi = RT∇ log ci implying that di = ∇ci.

The mutual friction force between the i-th and the j-th component is supposed to be
proportional to the relative velocity and the amount of molar mass such that

(39) fi = −
N+1
∑

j=1, j 6=i

cicj(ui − uj)

Dij

,
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where Dij are the binary Maxwell-Stefan diffusivities [21, Formula (16)]. By the Onsager
reciprocal relation, the diffusion matrix (Dij) is symmetric [20]. Then, using (38), (39),
and the definition Jk = ckuk, the balance di = fi becomes

∇ci = −
N+1
∑

j=1, j 6=i

cjJi − ciJj

Dij

, i = 1, . . . , N + 1,

which equals (2).
Another derivation of the Maxwell-Stefan equations (1) and (2) starts from the Boltz-

mann transport equation for an isothermal ideal gas mixture [6]. The main assumptions
are that a diffusion scaling is possible and that the scattering rates are independent of the
microscopic velocities. Then, in the formal limit of vanishing mean-free paths, (1) and (2)
are derived. The diffusivities Dij are determined by

Dij =
T (mi + mj)

mimjSij

,

where Sij are the averaged scattering rates of the collision operator associated to the
components i and j. Since Sij = Sji, the diffusion matrix (Dij) is symmetric. We also
observe that (Dij) does not depend on the concentrations which is consistent with the
assumption made in this paper.

Appendix B. Matrix analysis

We recall some results on the eigenvalues of special matrices such as symmetric, quasi-
positive, or rank-one matrices. Although most of the results in this appendix are valid for
matrices with complex elements, we consider the real case only and refer to the literature
for the general situation [18, 23, 25].

A vector x ∈ R
n (n ∈ N) is called positive if all components are nonnegative and at

least one component is positive. It is called strictly positive if all components are positive
[25]. Let A = (aij) ∈ R

n×n be a square matrix. The unit matrix in R
n×n is denoted by

In. Let σ(A) denote the spectrum of A. The spectral radius of A is defined by r(A) =
max{|λ| : λ ∈ σ(A)}, and the spectral bound of A equals s(A) = max{ℜ(λ) : λ ∈ σ(A)}.
An eigenvalue of A is called semisimple if its algebraic and geometric multiplicities coincide
and simple if its algebraic multiplicity (and hence also its geometric multiplicity) equals
one. The following theorem is proved in [23, Theorem 3.4].

Theorem 12. Let A ∈ R
n×n and let λ ∈ σ(A) be a real eigenvalue. Then λ is semisimple

if and only if

R
n = im(A − λIn) ⊕ ker(A − λIn).

The matrix A is called quasi-positive if A 6= 0 and aij ≥ 0 for all i 6= j and irreducible

if for any proper nonempty subset M ⊂ {1, . . . , n} there exist i ∈ M and j 6∈ M such
that aji 6= 0. If n = 1, A is called irreducible if A 6= 0. For quasi-positive and irreducible
matrices, the following result holds [25, Theorem A.45, Remark A.46].
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Theorem 13 (Perron-Frobenius). Let A be a quasi-positive and irreducible matrix. Then

its spectral bound s(A) is a simple eigenvalue of A associated with a strictly positive eigen-

vector and s(A) > ℜ(λ) for all λ ∈ σ(A), λ 6= s(A). All eigenvalues of A different from

s(A) have no positive eigenvector.

The spectrum of rank-one matrices can be determined explicitly [23, Section 3.8, Lemma
2]. Notice that any rank-one matrix A ∈ R

n×m can be written in the form A = x ⊗ y,
where x ∈ R

n, y ∈ R
m.

Proposition 14 (Spectrum of rank-one matrix). Let x, y ∈ R
n. Then σ(x ⊗ y) =

{0, . . . , 0, x · y}, i.e., x · y is a simple eigenvalue.

We recall two results on eigenvalues of products and sums of symmetric matrices.

Theorem 15. Let A ∈ R
n×n be symmetric and positive definite and let B ∈ R

n×n be

symmetric. Then the number of positive eigenvalues of AB equals that for B.

For a proof, we refer to [23, Prop. 6.1].

Theorem 16 (Weyl). Let A, B ∈ R
n×n be symmetric and let the eigenvalues λi(A) of A

and λi(B) of B be arranged in increasing order. Then, for i = 1, . . . , n,

λi(A) + λ1(B) ≤ λi(A + B) ≤ λi(A) + λn(B).

A proof is given in [18, Theorem 4.3.1].
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