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Abstract A finite-volume scheme for a cross-diffusion model arisimgni the
mean-field limit of an interacting particle system for mplé population species
is studied. The existence of discrete solutions and a desergropy production in-
equality is proved. The proof is based on a weighted quadeatiropy that is not
the sum of the entropies of the population species.
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1 Introduction
1.1 Presentation of the model
We consider the following cross-diffusion system:

Al +div (—o0u —uOpi(u) =0, pi(u) =Y aju; INQ, t>0, (1)

NS

J

wherei = 1,...,nwith n> 2, Q ¢ R? is an open bounded polygonal domain, and
0 > 0, aj > 0. We impose the initial and no-flux boundary conditions

GO =uw>0 iNnQ, Ou-v=0 ondQ,t>0i=1,..n, (2)
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wherev is the exterior unit normal vector Q. We writeu := (ug,...,uUy) and
w0 = (uf,...,ud). Equations (1) are derived from a weakly interacting stetiba
many-particle system in the mean-field limit [7]. It can bersas a simplification
of the Shigesada-Kawasaki-Teramoto (SKT) population md@3, where the dif-
fusion is reduced téu;. The two-species system was analyzed first in [3], but up
to now, no analytical or numerical results are availabldtien-species system. The
diffusion matrix associated to (1) is neither symmetric positive definite but we
show below that system (1) possesses an entropy structojeiflding gradient
estimates that are the basis for the numerical analysis.

We assume thdtj) € R™"is positively stable (i.e., all eigenvaluesAt= (a;j)
have positive real parts) and that the detailed-balancéition holds, i.e., there
exist numbersg, ..., T, > 0 such that

g = ma; foralli,j=1,...,n. (3)

Note that for the two-species model this condition is alwssfésfied, just setr =
a1 and e = ajo. SinceA; = diag(m‘l) is symmetric, positive definite and, =
(15&;) is symmetric, by [11, Prop. 6.1], the number of positive aigdues ofA =
A1A; equals that foA,. Thus,A, has only positive eigenvalues, which together with
the symmetry means thap is symmetric, positive definite.

Our (numerical) analysis is based on the observation theiesy (1) possesses
an entropy structure with a weighted quadratic entropy hlaatnot been observed
before in cross-diffusion systems:

1 n
H [yl :/Qh(u)d& whereh(u) := 5i.;1ﬂajuiuj-

Interestingly, this entropy is not of the for[._; hi(u;), but it mixes the species. A
formal computation shows that

d—HJr S / Oui - Ouydx-+ S / u|Opi(u)[2dx=0
dt i,;zzlma”'g | j 5i;m'9 i|LPi =0

With A > 0 being the smallest eigenvalue @fa;;), we conclude the following
entropy production inequality:

dH xS / O 2dxs =S n;/ U Opi (W) [2dx < 0
gt A3 Joouax 5 3 [ ulon(laxs o

Our aim is to prove this inequality for the finite-volume stns.
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1.2 The numerical scheme

A mesh ofQ is given by a set7 of open polygonal control volumes, a sgtof
edges, and a se¥ of points (xk )kes. We assume that the mesh is admissible in
the sense of Definition 9.1 in [9]. We distinguishdhthe interior edges = K|L
and the exterior edges such tlfat &t U &ext. FOr a given control volumK € .7,

we denote byk the set of its edges. This set splits o = &int k U Sextk . FOr any

o € &, there exists at least one c#lle .7 such thato € & and we denote this
cell by Ks. Whena is an interior edgeg = K|L, K can be eitheK or L. For all

o € &, we define d =d(xk,x ) if 0 =K|L € &n and ¢; = d(xk, 0) if 0 € Eexik-
Then the transmissibility coefficient is defined hy= m(0)/d, for all o € &. We
assume that the mesh satisfies the following regularitytcains.

& >0,VK e 7,Vo € &k : dxk,0) > &dg. 4)

The size of the mesh is denoted &y = maxcc 7 diam(K). LetNr € N be the num-
ber of time stepsAt = T /Ny be the time step size, atigd= kAt fork=0,...,Nr.

Let 2#5 be the linear space of functiod® — R which are constant on each
K e 7. Forv e 77, we introduce

Dk,oV=Vko—Vk, Dgv=|DkoV| forallKe .7, o e é,

wherevk ¢ is eithernv, (o =K]|L) or vk (0 € &exk)- Finally, we define the (squared)
discreteH! norm

MBor =S To(Dov)®+ T mKM.
oes Ke7

ForallK € 7 andi =1,...,n, u’, denotes the mean valueutoverK. The finite-
volume scheme for (1) reads as
m(K)
At

(UF,K - Uhﬁl) + % ‘%I,(K,U = 07 = 17 ooy (5)
g

€oK

Fi.o = —To(0Dk oU + U Dk opi(UX)) forallKe 7, 0€ék, (6)

with uk = (uk,...,uk) andu; := min{uf, € ,}. As in [1], this definition ofuf
allows us to prove the nonnegativity de.
1.3 Main result

The main result of this work is the existence of nonnegatolatons to scheme
(5)-(6), which preserve the entropy production inequality
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Theorem 1 (Existence of discrete solutionsssume thate L2(Q)" with & >
0,6 >0, aj >0, (aj) is positively stable anB) holds. Then there eX|sts a solution
(U ke 7 k=0....ny With U = (UK ..., UK ) to schemé5)-(6) satisfying & > Ofor
alKe 7,i=1,...,n,and k=0,... NT Moreover, the following discrete entropy
production inequality holds:

Z m(K)h(u ) + AtA Z Z T5(Douk)?

KEr oges
A Y 3 tamdo@op()? < § mEonk. ()

whereA denotes the smallest eigenvalug agyj ).

We expect that the detailed-balance condition (3) can blceg by a weak
cross-diffusion condition as in [6]. The positive stalyilif (a;;) implies the parabol-
icity of (1) in the sense of Petrovskii. Inde€dga;; ) and diagu; /75) are symmetric,
positive definite matrices far € (0,)". Thus, its productu;a;j) has only positive
eigenvalues [4, Theorem 7] which proves the claim. The aptomthat the diffu-
sion coefficient is the same for all species is a simplification needed to calec!
thath(u) is coercive h(u) > (A /2)|ul? for u € R". It can be removed by exploit-
ing the Shannon entropy to show first tliafs nonnegative, but this requires more
technical effort which will be detailed in a future work.

2 Proof of Theorem 1

We proceed by induction. Fér= 0, we haveu® > 0 by assumption. Assume that
there exists a solution“* for somek € {2,...,Nr} such thatl"* > 0in Q, i =
1,...,n. The construction of a solutiauf is split in several steps.

Step 1: Definition of a linearized problefnet R > 0, we set

Zg:={W=(Wi,...,Wn) € (#7)" 1 [Wi[l127 <R fori=1,...,n},

and lets > 0 be given. We define the mappiftg : Zr — R by F¢(w) = w¢, with
0 =#7, wherew® = (Wj,...,w;) is the solution to the linear problem

5( > TJDK,o(vvf)er(K)Wf,K) (mA(If) (Uik — ‘-':(Kl)+ > |Ka>a (8)

geék geék

for K € 9‘ i=1,...,n, andﬁﬁ;< o 1s defined in (6) withu; ; replaced bwfo =
min{u;’y. ,K oh wherez+ = max{O z}. Here,u; k is a function ofwy k..., Wnk,

defined by the entropy variables
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T - Thaj o
W|,K—gp|(UK) nguJ foralKe .7, i=1,...,n 9)

This is a linear system with the invertible coefficient maiiita;/5), and so, the
functionukx = u(wg ) is well-defined. The existence of a unique solutignto the
linear scheme (8)-(9) is now a consequence of [9, Lemma 3.2].

Step 2: Continuity of £ We fixi € {1,...,n}. Multiplying (8) by wf and sum-
ming overK € .7, we obtain, after discrete integration by parts,
el = 5 "0 -t S FikoDowt = At b

Ke7 OE&int
o=K|L

By the Cauchy-Schwarz inequality and the definition?f‘}ﬁ(’o, we find that

1/2 1/2
4= g (3 M- ?) (5 mikomeo?)

At Ke7 Ke7

2/ (3 7(800u+5.0Dan(w)?) 1/2( 3 100w 7

ges ges

Hence, sincey; is a linear combination ofwy,...,w,) € Zg, there exists a con-
stantC(R) > 0 which is independent o&* such thatJ;|+ [J2| < C(R)|[|WE (|12 7.
Inserting these estimations, it follows tr&w||1 2 7 < C(R).

We turn to the proof of the continuity . Let (W")men C Zg be such thaw™ —
wasm—; . The previous estimate shows thét™ := F¢ (w™) is bounded uniformly
in me N. Thus, there exists a subsequencévat™), which is not relabeled, such
thatw®™ — wé asm — . Passing to the limitn — o in scheme (8)-(9) and taking
into account the continuity of the nonlinear functions, e shatw is a solution
to (8)-(9) fori = 1,...,n andw® = F.(w). Because of the uniqueness of the limit
function, the whole sequence converges, which proves thigncty.

Step 3: Existence of a fixed poilite claim that the map, admits a fixed point.
We use a topological degree argument [8], i.e., we proveddgt — F¢,Zg,0) =1,
where deg is the Brouwer topological degree. Since deg &iit by homotopy, it
is sufficient to prove that any solutidm?, p) € Zgr x [0, 1] to the fixed-point equa-
tion wé¢ = pF, (W) satisfies(wWé, p) & dZg x [0,1] for sufficiently large values of
R> 0. Let (w?,p) be a fixed point angh # 0, the casep = 0 being clear. Then
wf /p solves

m(K) k—1 4.8
e 3 TaDolu) +mikty ) = -p( g ik -+ T ),
(a;K i i At 1, i,K o;‘k i,K,o
(10)
forallKe .7,i=1,...,n, and%}’fa is defined as in (6) withi replaced by€. The

following discrete entropy production inequality is theykeegument.
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Lemma 1 (Discrete entropy production inequality). Let the assumptions of The-
orem 1 hold. Then, for ang € (0,1] ande > 0,

n n
by m<K>h<u&>+sAt_ziuwf||iz,y+pAm 3 3 TolDot)’

Ke7 =loeé&

+p 5 Z\UggTUTEUm Do pi(Uf))? SpK;qm(K)h(u',‘(l), (11)

with A > 0 being the smallest eigenvalue(@fajj) and obvious notations far .

Proof. We multiply (10) byAtvvﬁK and sum over andK € 7. This gives, after
discrete integration by partsAt 31y [WE[|, > + 3+ Ja+ Js = 0, where

Jg—piKz?mm fy — U

= —pAt ZGZW TgODk gUf WS

o=K|L

J5—pAtZ Z ToUf Dk o Pi (U) Dk oW -
0Eoint

o=K|L

For J3, we use the convexity df for its estimation; forJs, we take into account
the symmetry offy with respect tao = K|L, definition (9) ofwf and the positive
definiteness ofrga;j ); and forJs, we employ definition (9) of:

%>p 3 mK)(h(ug)—hiu D),
Ke7
n n
Jy = pAt z % ram\ijDK,gufDK,UuJ$ > pAtA Z z rU(Dqu)z’
i,]=1l o€ i=1lge&
o=K|L

At D
J5 = Pg Ziagg Torﬂﬂﬁa(Da pi(ug>)2-

Putting all the estimations together completes the proaof.

We proceed with the topological degree argument. Lemma liesmfhat

EAIZ||W|\12y<P > mKh(ugh < 5 mK)h(ug™).

Ke7 Ke7

Then, if we defineR := (¢At)"Y2(T ke m(K)h(uS1))Y2 + 1, we conclude that
We ¢ 9Zr and degl — F¢,Zg,0) = 1. Thus,F; admits a fixed point

Step 4: Limite — 0. Recall thath(uk ) > (A /2)|uk |? (note thatujk € R at this
point). Thus, by Lemma 1, there exists a cons@mnt0 depending only on the mesh
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but not one such that foralk € . andi=1,....n,

1/2
U scm( 3 m(K)h(uH) .

Ke7

Thus, up to a subsequence, fer 1,...,nand for allK € .77, we infer the existence
of Uik € R such that? k — Uik as€ — 0. We deduce from (11) that there eX|sts
a subsequence (not relabeled) such ﬂv@k — 0 foranyK € 7 andi =1,.
Hence, the limie — 0 in (10) yields the existence of a solution to (8) wsth: O

Leti € {1,....n} andK € 7 such thau; k = min_c # u; . We multiply (8) with
€ =0byAty; With z- =min{0,z} and use the induction hypothesis:

m(K) (U )? — At > To(d+ailio)Dr.o(Ui)Uik
oeék

JFI OESK

The second term is nonpositive singg > 0 andDk ¢ (u;) > 0, by the choice oK.

The last term vanishes sincgqUu; K= uI KUk = = 0, by the definition ol 5. This
shows thati >uix >0forallL € .7 andi = 1,...,n. Passing to the limig — 0
in (11) yields inequality (7), which completes the proof dfebrem 1.

3 Convergence analysis and perspectives

In this section, we sketch the proof of the convergence oktiieme and possible
extensions of the method presented in this paper.

e Let us give the main features of the proof of convergencestRinanks to the
a priori estimates given by (7) and assumption (4), we prbeeexistence of
a constantC > 0 independent ofAx and At such that for alli = 1,...,n and
peCy(Qx(0,T)),

Nt

> m(K) (U — U 00 t) < ClIO@llL=(0x (0.1))- (12)
k=1Ke7

Next, we consider a sequence of admissible meghgsAt, ) -0 0f Q x (0,T),
indexed by the sizg = {Ax, At}, satisfying (4) uniformly inn. For anyn > 0,

we denote byu, = (Urp,...,Unn) the piecewise constant (in time and space)
finite-volume solution constructed in Theorem 1. We dedtltanks to [2, The-
orem 3.9] and (12), that there exist nonnegative functigns ., u, such that, up

to a subsequence,

Un—U ae. inQx(0T)asn—0, i=1...,n
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Moreover, we conclude from (7) that,, € L*(0,T;L?(Q)) C L3(Q x (0,T))
uniformly inn fori=1,...,n. Hence(ui ;) is equi-integrable im?(Q x (0, T)).
Thus, applying the Vitali convergence theorem, we deduag tip to a subse-
quencey , — U strongly inL?(Q x (0,T)) asn — 0,i=1,...,n. The discrete
entropy production inequality yields a uniform bound of tiiscrete gradient
07 of ui p in L2(Q x (0,T)); see [5] for a definition of1". It follows from [5,
Lemma 4.4] that, up to a subsequence,

0N, — Ou weakly inL?(Q x (0,T))asn —0,i=1,....n.

Finally, following the method developed in [5], we provetttize limit function
u=(uy,...,Un) is a weak solution to (1)-(2).

We already mentioned that system (1) can be interpreted aspification of
the SKT model. In a future work, we will analyze a structuregerving finite-
volume approximation of the full SKT model. Such a discratian was analyzed
in [1], but only for positive definite diffusion matrices assated to (1). We will
extend the analysis of [1] without this assumption.
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