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Abstract A finite-volume scheme for a cross-diffusion model arising from the
mean-field limit of an interacting particle system for multiple population species
is studied. The existence of discrete solutions and a discrete entropy production in-
equality is proved. The proof is based on a weighted quadratic entropy that is not
the sum of the entropies of the population species.
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1 Introduction

1.1 Presentation of the model

We consider the following cross-diffusion system:

∂tui +div
(

−δ∇ui −ui∇pi(u)
)

= 0, pi(u) =
n

∑
j=1

ai j u j in Ω , t > 0, (1)

wherei = 1, . . . ,n with n≥ 2, Ω ⊂ R
2 is an open bounded polygonal domain, and

δ > 0, ai j > 0. We impose the initial and no-flux boundary conditions

ui(0) = u0
i ≥ 0 in Ω , ∇ui ·ν = 0 on∂Ω , t > 0, i = 1, . . . ,n, (2)
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whereν is the exterior unit normal vector on∂Ω . We writeu := (u1, . . . ,un) and
u0 := (u0

1, . . . ,u
0
n). Equations (1) are derived from a weakly interacting stochastic

many-particle system in the mean-field limit [7]. It can be seen as a simplification
of the Shigesada-Kawasaki-Teramoto (SKT) population model [12], where the dif-
fusion is reduced toδ∇ui . The two-species system was analyzed first in [3], but up
to now, no analytical or numerical results are available forthen-species system. The
diffusion matrix associated to (1) is neither symmetric norpositive definite but we
show below that system (1) possesses an entropy structure [10] yielding gradient
estimates that are the basis for the numerical analysis.

We assume that(ai j )∈R
n×n is positively stable (i.e., all eigenvalues ofA= (ai j )

have positive real parts) and that the detailed-balance condition holds, i.e., there
exist numbersπ1, . . . ,πn > 0 such that

πiai j = π ja ji for all i, j = 1, . . . ,n. (3)

Note that for the two-species model this condition is alwayssatisfied, just setπ1 =
a21 andπ2 = a12. SinceA1 = diag(π−1

i ) is symmetric, positive definite andA2 =
(πiai j ) is symmetric, by [11, Prop. 6.1], the number of positive eigenvalues ofA=
A1A2 equals that forA2. Thus,A2 has only positive eigenvalues, which together with
the symmetry means thatA2 is symmetric, positive definite.

Our (numerical) analysis is based on the observation that system (1) possesses
an entropy structure with a weighted quadratic entropy thathas not been observed
before in cross-diffusion systems:

H[u] =
∫

Ω
h(u)dx, whereh(u) :=

1
2δ

n

∑
i, j=1

πiai j uiu j .

Interestingly, this entropy is not of the form∑n
i=1hi(ui), but it mixes the species. A

formal computation shows that

dH
dt

+
n

∑
i, j=1

πiai j

∫

Ω
∇ui ·∇u jdx+

1
δ

n

∑
i=1

πi

∫

Ω
ui |∇pi(u)|

2dx= 0.

With λ > 0 being the smallest eigenvalue of(πiai j ), we conclude the following
entropy production inequality:

dH
dt

+λ
n

∑
i=1

∫

Ω
|∇ui |

2dx+
1
δ

n

∑
i=1

πi

∫

Ω
ui |∇pi(u)|

2dx≤ 0.

Our aim is to prove this inequality for the finite-volume solutions.
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1.2 The numerical scheme

A mesh ofΩ is given by a setT of open polygonal control volumes, a setE of
edges, and a setP of points(xK)K∈T . We assume that the mesh is admissible in
the sense of Definition 9.1 in [9]. We distinguish inE the interior edgesσ = K|L
and the exterior edges such thatE = Eint ∪Eext. For a given control volumeK ∈ T ,
we denote byEK the set of its edges. This set splits intoEK = Eint,K ∪Eext,K . For any
σ ∈ E , there exists at least one cellK ∈ T such thatσ ∈ EK and we denote this
cell by Kσ . Whenσ is an interior edge,σ = K|L, Kσ can be eitherK or L. For all
σ ∈ E , we define dσ = d(xK ,xL) if σ = K|L ∈ Eint and dσ = d(xK ,σ) if σ ∈ Eext,K .
Then the transmissibility coefficient is defined byτσ = m(σ)/dσ for all σ ∈ E . We
assume that the mesh satisfies the following regularity constraint:

∃ξ > 0, ∀K ∈ T , ∀σ ∈ EK : d(xK ,σ)≥ ξdσ . (4)

The size of the mesh is denoted by∆x=maxK∈T diam(K). LetNT ∈N be the num-
ber of time steps,∆ t = T/NT be the time step size, andtk = k∆ t for k= 0, . . . ,NT .

Let HT be the linear space of functionsΩ → R which are constant on each
K ∈ T . Forv∈ HT , we introduce

DK,σ v= vK,σ −vK , Dσ v= |DK,σ v| for all K ∈ T , σ ∈ EK ,

wherevK,σ is eithervL (σ =K|L) or vK (σ ∈ Eext,K). Finally, we define the (squared)
discreteH1 norm

‖v‖2
1,2,T = ∑

σ∈E

τσ (Dσ v)2+ ∑
K∈T

m(K)v2
K .

For allK ∈T andi = 1, . . . ,n, u0
i,K denotes the mean value ofu0

i overK. The finite-
volume scheme for (1) reads as

m(K)

∆ t
(uk

i,K −uk−1
i,K )+ ∑

σ∈EK

F
k
i,K,σ = 0, i = 1, . . . ,n, (5)

F
k
i,K,σ =−τσ

(

δDK,σ uk
i +uk

i,σ DK,σ pi(u
k)
)

for all K ∈ T , σ ∈ EK , (6)

with uk = (uk
1, . . . ,u

k
n) anduk

i,σ := min{uk
i,K ,u

k
i,K,σ}. As in [1], this definition ofuk

i,σ
allows us to prove the nonnegativity ofuk

i,K .

1.3 Main result

The main result of this work is the existence of nonnegative solutions to scheme
(5)-(6), which preserve the entropy production inequality.
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Theorem 1 (Existence of discrete solutions).Assume that u0 ∈ L2(Ω)n with u0
i ≥

0, δ > 0, ai j > 0, (ai j ) is positively stable, and(3) holds. Then there exists a solution
(uk

K)K∈T ,k=0,...,NT with uk
K = (uk

1,K , . . . ,u
k
n,K) to scheme(5)-(6) satisfying uki,K ≥ 0 for

all K ∈ T , i = 1, . . . ,n, and k= 0, . . . ,NT . Moreover, the following discrete entropy
production inequality holds:

∑
K∈T

m(K)h(uk
K)+∆ tλ

n

∑
i=1

∑
σ∈E

τσ (Dσ uk
i )

2

+
∆ t
δ

n

∑
i=1

∑
σ∈E

τσ πiu
k
i,σ (Dσ pi(u

k))2 ≤ ∑
K∈T

m(K)h(uk−1
K ), (7)

whereλ denotes the smallest eigenvalue of(πiai j ).

We expect that the detailed-balance condition (3) can be replaced by a weak
cross-diffusion condition as in [6]. The positive stability of (ai j ) implies the parabol-
icity of (1) in the sense of Petrovskii. Indeed,(πiai j ) and diag(ui/πi) are symmetric,
positive definite matrices foru∈ (0,∞)n. Thus, its product(uiai j ) has only positive
eigenvalues [4, Theorem 7] which proves the claim. The assumption that the diffu-
sion coefficientδ is the same for all species is a simplification needed to conclude
that h(u) is coercive,h(u) ≥ (λ/2)|u|2 for u ∈ R

n. It can be removed by exploit-
ing the Shannon entropy to show first thatui is nonnegative, but this requires more
technical effort which will be detailed in a future work.

2 Proof of Theorem 1

We proceed by induction. Fork = 0, we haveu0
i ≥ 0 by assumption. Assume that

there exists a solutionuk−1 for somek ∈ {2, . . . ,NT} such thatuk−1
i ≥ 0 in Ω , i =

1, . . . ,n. The construction of a solutionuk is split in several steps.
Step 1: Definition of a linearized problem.Let R> 0, we set

ZR :=
{

w= (w1, . . . ,wn) ∈ (HT )n : ‖wi‖1,2,T < R for i = 1, . . . ,n
}

,

and letε > 0 be given. We define the mappingFε : ZR → R
θn by Fε(w) = wε , with

θ = #T , wherewε = (wε
1, . . . ,w

ε
n) is the solution to the linear problem

ε

(

∑
σ∈EK

τσ DK,σ (w
ε
i )+m(K)wε

i,K

)

=−

(

m(K)

∆ t
(ui,K −uk−1

i,K )+ ∑
σ∈EK

F
+
i,K,σ

)

, (8)

for K ∈ T , i = 1, . . . ,n, andF
+
i,K,σ is defined in (6) withui,σ replaced by ¯ui,σ =

min{u+i,K ,u
+
i,K,σ}, wherez+ = max{0,z}. Here,ui,K is a function ofw1,K , . . . ,wn,K ,

defined by the entropy variables
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wi,K =
πi

δ
pi(uK) =

n

∑
j=1

πiai j

δ
u j for all K ∈ T , i = 1, . . . ,n. (9)

This is a linear system with the invertible coefficient matrix (πiai j /δ ), and so, the
functionuK = u(wK) is well-defined. The existence of a unique solutionwε

i to the
linear scheme (8)-(9) is now a consequence of [9, Lemma 3.2].

Step 2: Continuity of Fε . We fix i ∈ {1, . . . ,n}. Multiplying (8) by wε
i,K and sum-

ming overK ∈ T , we obtain, after discrete integration by parts,

ε‖wε
i ‖

2
1,2,T =− ∑

K∈T

m(K)

∆ t
(ui,K −uk−1

i,k )wε
i,K + ∑

σ∈Eint
σ=K|L

F
+
i,K,σ DK,σ wε

i =: J1+J2.

By the Cauchy-Schwarz inequality and the definition ofF
+
i,K,σ , we find that

|J1| ≤
1

∆ t

(

∑
K∈T

m(K)(ui,K −uk−1
i,K )2

)1/2(

∑
K∈T

m(K)(wε
i,K)

2
)1/2

|J2| ≤

(

∑
σ∈E

τσ
(

δDσ ui + ūi,σ Dσ pi(u)
)2
)1/2(

∑
σ∈E

τσ (Dσ wε
i )

2
)1/2

.

Hence, sinceui is a linear combination of(w1, . . . ,wn) ∈ ZR, there exists a con-
stantC(R) > 0 which is independent ofwε such that|J1|+ |J2| ≤ C(R)‖wε

i ‖1,2,T .
Inserting these estimations, it follows thatε‖wε

i ‖1,2,T ≤C(R).
We turn to the proof of the continuity ofFε . Let(wm)m∈N ⊂ZR be such thatwm→

w asm→∞. The previous estimate shows thatwε ,m :=Fε(wm) is bounded uniformly
in m∈ N. Thus, there exists a subsequence of(wε ,m), which is not relabeled, such
thatwε ,m → wε asm→ ∞. Passing to the limitm→ ∞ in scheme (8)-(9) and taking
into account the continuity of the nonlinear functions, we see thatwε

i is a solution
to (8)-(9) for i = 1, . . . ,n andwε = Fε(w). Because of the uniqueness of the limit
function, the whole sequence converges, which proves the continuity.

Step 3: Existence of a fixed point.We claim that the mapFε admits a fixed point.
We use a topological degree argument [8], i.e., we prove thatdeg(I −Fε ,ZR,0) = 1,
where deg is the Brouwer topological degree. Since deg is invariant by homotopy, it
is sufficient to prove that any solution(wε ,ρ) ∈ ZR× [0,1] to the fixed-point equa-
tion wε = ρFε(wε) satisfies(wε ,ρ) 6∈ ∂ZR× [0,1] for sufficiently large values of
R> 0. Let (wε ,ρ) be a fixed point andρ 6= 0, the caseρ = 0 being clear. Then
wε

i /ρ solves

ε

(

∑
σ∈EK

τσ DK,σ (w
ε
i )+m(K)wε

i,K

)

=−ρ
(

m(K)

∆ t
(uε

i,K −uk−1
i,K )+ ∑

σ∈EK

F
+,ε
i,K,σ

)

,

(10)
for all K ∈T , i = 1, . . . ,n, andF

+,ε
i,K,σ is defined as in (6) withu replaced byuε . The

following discrete entropy production inequality is the key argument.
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Lemma 1 (Discrete entropy production inequality).Let the assumptions of The-
orem 1 hold. Then, for anyρ ∈ (0,1] andε > 0,

ρ ∑
K∈T

m(K)h(uε
K)+ ε∆ t

n

∑
i=1

‖wε
i ‖

2
1,2,T +ρ∆ tλ

n

∑
i=1

∑
σ∈E

τσ (Dσ uε
i )

2

+ρ
∆ t
δ

n

∑
i=1

∑
σ∈E

τσ πi ū
ε
i,σ (Dσ pi(u

ε))2 ≤ ρ ∑
K∈T

m(K)h(uk−1
K ), (11)

with λ > 0 being the smallest eigenvalue of(πiai j ) and obvious notations for̄uε
i,σ .

Proof. We multiply (10) by∆ twε
i,K and sum overi andK ∈ T . This gives, after

discrete integration by parts,ε∆ t ∑n
i=1‖wε

i ‖
2
1,2,T +J3+J4+J5 = 0, where

J3 = ρ
n

∑
i=1

∑
K∈T

m(K)(uε
i,K −uk−1

i,K )wε
i,K ,

J4 =−ρ∆ t
n

∑
i=1

∑
σ∈Eint
σ=K|L

τσ δDK,σ uε
i wε

i,K ,

J5 = ρ∆ t
n

∑
i=1

∑
σ∈Eint
σ=K|L

τσ ūε
i,σ DK,σ pi(u

ε)DK,σ wε
i,K .

For J3, we use the convexity ofh for its estimation; forJ4, we take into account
the symmetry ofτσ with respect toσ = K|L, definition (9) ofwε

i and the positive
definiteness of(πiai j ); and forJ5, we employ definition (9) ofwε

i :

J3 ≥ ρ ∑
K∈T

m(K)
(

h(uε
K)−h(uk−1

K )
)

,

J4 = ρ∆ t
n

∑
i, j=1

∑
σ∈Eint
σ=K|L

τσ πiai j DK,σ uε
i DK,σ uε

j ≥ ρ∆ tλ
n

∑
i=1

∑
σ∈E

τσ (Dσ uε
i )

2,

J5 = ρ
∆ t
δ

n

∑
i=1

∑
σ∈E

τσ πi ū
ε
i,σ (Dσ pi(u

ε))2.

Putting all the estimations together completes the proof.⊓⊔

We proceed with the topological degree argument. Lemma 1 implies that

ε∆ t
n

∑
i=1

‖wε
i ‖

2
1,2,T ≤ ρ ∑

K∈T

m(K)h(uk−1
K )≤ ∑

K∈T

m(K)h(uk−1
K ).

Then, if we defineR := (ε∆ t)−1/2(∑K∈T m(K)h(uk−1
K ))1/2 + 1, we conclude that

wε 6∈ ∂ZR and deg(I −Fε ,ZR,0) = 1. Thus,Fε admits a fixed point
Step 4: Limitε → 0. Recall thath(uK) ≥ (λ/2)|uK |

2 (note thatui,K ∈ R at this
point). Thus, by Lemma 1, there exists a constantC> 0 depending only on the mesh
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but not onε such that for allK ∈ T andi = 1, . . . ,n,

|uε
i,K | ≤C(λ )

(

∑
K∈T

m(K)h(uk−1
K )

)1/2

.

Thus, up to a subsequence, fori = 1, . . . ,n and for allK ∈T , we infer the existence
of ui,K ∈ R such thatuε

i,K → ui,K asε → 0. We deduce from (11) that there exists
a subsequence (not relabeled) such thatεwε

i,K → 0 for anyK ∈ T andi = 1, . . . ,n.
Hence, the limitε → 0 in (10) yields the existence of a solution to (8) withε = 0.

Let i ∈ {1, . . . ,n} andK ∈ T such thatui,K = minL∈T ui,L. We multiply (8) with
ε = 0 by ∆ tu−i,K with z− = min{0,z} and use the induction hypothesis:

m(K)(u−i,K)
2−∆ t ∑

σ∈EK

τσ (δ +aii ūi,σ )DK,σ (ui)u
−
i,K

−∆ t ∑
j 6=i

∑
σ∈EK

τσ ai j ūi,σ DK,σ (u j)u
−
i,K = 0.

The second term is nonpositive since ¯ui,σ ≥ 0 andDK,σ (ui)≥ 0, by the choice ofK.
The last term vanishes since ¯ui,σ u−i,K = u+i,Ku−i,K = 0, by the definition of ¯ui,σ . This
shows thatui,L ≥ ui,K ≥ 0 for all L ∈ T andi = 1, . . . ,n. Passing to the limitε → 0
in (11) yields inequality (7), which completes the proof of Theorem 1.

3 Convergence analysis and perspectives

In this section, we sketch the proof of the convergence of thescheme and possible
extensions of the method presented in this paper.

• Let us give the main features of the proof of convergence. First, thanks to the
a priori estimates given by (7) and assumption (4), we prove the existence of
a constantC > 0 independent of∆x and ∆ t such that for alli = 1, . . . ,n and
φ ∈C∞

0 (Ω × (0,T)),

NT

∑
k=1

∑
K∈T

m(K)(uk
i,K −uk−1

i,K )φ(xK , tk)≤C‖∇φ‖L∞(Ω×(0,T)). (12)

Next, we consider a sequence of admissible meshes(Tη ,∆ tη)η>0 of Ω × (0,T),
indexed by the sizeη = {∆x,∆ t}, satisfying (4) uniformly inη . For anyη > 0,
we denote byuη = (u1,η , . . . ,un,η) the piecewise constant (in time and space)
finite-volume solution constructed in Theorem 1. We deduce,thanks to [2, The-
orem 3.9] and (12), that there exist nonnegative functionsu1, . . . ,un such that, up
to a subsequence,

ui,η → ui a.e. inΩ × (0,T) asη → 0, i = 1, . . . ,n.
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Moreover, we conclude from (7) thatui,η ∈ L∞(0,T;L2(Ω)) ⊂ L2(Ω × (0,T))
uniformly in η for i = 1, . . . ,n. Hence,(ui,η) is equi-integrable inL2(Ω ×(0,T)).
Thus, applying the Vitali convergence theorem, we deduce that, up to a subse-
quence,ui,η → ui strongly inL2(Ω × (0,T)) asη → 0, i = 1, . . . ,n. The discrete
entropy production inequality yields a uniform bound of thediscrete gradient
∇η of ui,η in L2(Ω × (0,T)); see [5] for a definition of∇η . It follows from [5,
Lemma 4.4] that, up to a subsequence,

∇ηui,η ⇀ ∇ui weakly inL2(Ω × (0,T)) asη → 0, i = 1, . . . ,n.

Finally, following the method developed in [5], we prove that the limit function
u= (u1, . . . ,un) is a weak solution to (1)-(2).

• We already mentioned that system (1) can be interpreted as a simplification of
the SKT model. In a future work, we will analyze a structure-preserving finite-
volume approximation of the full SKT model. Such a discretization was analyzed
in [1], but only for positive definite diffusion matrices associated to (1). We will
extend the analysis of [1] without this assumption.
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9. Eymard, R., Galloüet, T., Herbin, R.: Finite volume methods, pp. 713–1020. In: Handbook of

Numerical Analysis, Vol. VII. North-Holland (2000)
10. J̈ungel, A.: The boundedness-by-entropy method for cross-diffusion systems. Nonlinearity

28, 1963–2001 (2015)
11. Serre, D.: Matrices. Theory and Applications. Second edition. Springer, New York (2010)
12. Shigesada, N., Kawasaki, K., Teramoto, E.: Spatial segregation of interacting species. J. Theor.

Biol. 79, 83–99 (1979)


