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Abstract. This paper is concerned with the analysis of a sixth-order nonlinear parabolic
equation whose solutions describe the evolution of the particle density in a quantum fluid.
We prove the global-in-time existence of weak nonnegative solutions in two and three space
dimensions under periodic boundary conditions. Moreover, we show that these solutions
are smooth and classical whenever the particle density is strictly positive, and we prove the
long-time convergence to the spatial homogeneous equilibrium at a universal exponential
rate. Our analysis strongly uses the Lyapunov property of the entropy functional.

1. Introduction

Degond et al. derived in [5] a nonlocal quantum diffusion model for charged particles in,
for instance, semiconductors or cold plasmas by applying a moment method to a Wigner–
BGK model. An asymptotic expansion of the nonlocal model in terms of the scaled Planck
constant ~

2 leads to a family of parabolic equations for the particle densities n(t;x). The
first member of this family is the classical heat equation ∂tn = ∆n. The second one is
the fourth-order Derrida–Lebowitz–Speer–Spohn (DLSS) equation, see (3) below, which is
analyzed in [9, 13]. This paper is concerned with the third family member, obtained from
an expansion to order ~

4 (see [3, Appendix]), which reads as

(1) ∂tn = div
(
n∇
(1

2
(∂2

ij log n)2 +
1

n
∂2

ij(n∂
2
ij log n)

))
.

Here and in the following, we employ the notations ∂i = ∂/∂xi, ∂
2
ij = ∂2/∂xi∂xj, etc.

and the summation convention over repeated indices from 1 to d. We study the initial-
value problem for (1) in the d-dimensional torus T

d ∼= [0, 1]d (imposing periodic boundary
conditions) in dimensions d = 2 and d = 3. The one-dimensional problem has recently
been studied in [14].

Specifically, we establish and compare two solution concepts for (1). The first concept
is concerned with weak nonnegative solutions; in this framework we generalize the global
existence result from [14] to the multidimensional situation. The second concept is that
of positive classical solutions; in analogy to the results obtained by Bleher et al. for the
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fourth-order DLSS equation [2], we are able to establish the existence of such regular
solutions for (1) locally in time. Naturally, a classical solution is also a weak solution on
the time interval of its existence. Vice versa, from a given weak solution, one obtains
classical solutions on all time sub-intervals on which the weak solution is strictly positive
and has a uniformly bounded energy (see below for the definition). Since we are not able
to rule out the loss of strict positivity due to the evolution, it thus might happen that
the classical solution concept breaks down on certain, possibly even infinite time intervals
along the globally well-defined weak solution.

We shall provide further motivations to study (1) in Section 2 below. At this point, we
simply want to put equation (1) into the general context of higher-order parabolic equa-
tions. Mainly initiated by the research on pattern formation in Cahn-Hilliard and related
models in the late 1980’s, the literature on the rich mathematical structure of nonlinear
fourth-order and sixth-order equations has grown rapidly over the last two decades. Partic-
ular interest has been devoted to equations that are positivity preserving : such equations
allow for the introduction of a suitable solution concept such that a nonnegative initial
datum leads to a nonnegative global solution. Clearly, this is a core feature for equations
that model the evolution of particle densities etc. On the other hand, positivity preserva-
tion is a rare property, since general parabolic equations of fourth or higher order do not
obey comparison principles. For instance, even the linear equation ∂tn + (−∆)mn = 0 is
not positivity preserving if m > 1.

Among the positivity preserving models, the probably most famous study object is the
fourth-order thin-film equation

∂tn+ div(nβ∇∆n) = 0.(2)

It describes the surface tension-dominated motion of thin viscous films of height n(t;x) ≥ 0
under free slip (β = 2) or no-slip (β = 3) boundary conditions. The available literature on
the existence, (non-)uniqueness and qualitative properties of solutions is huge and steadily
growing; see [1] for a collection of references.

Other models for thin viscous films lead to sixth-order equations. One example is

∂tn = div(nβ∇∆2n),

which models the spreading of a thin viscous fluid under the driving force of an elastic plate
[8]. The model was first introduced in [15, Formula (A8)] in space dimension d = 1 with
β = 3 together with a more general form of this equation arising in the isolation oxidation
of silicon. Another application for such thin-film equations concerns the bonding of Silicon-
Germanium films to silicon substrates [8]. Further examples of sixth-order equations can
be found in [7, 14, 16].

The previously mentioned DLSS (or quantum diffusion) equation

∂tn+ ∂2
ij

(
n ∂2

ij log n
)

= 0,(3)

provides another well-studied example of a fourth-order equation. Originally, the one-
dimensional version of (3) arose in the context of spin systems. Derrida et al. [6] derived
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it in the course of studying fluctuations of the interface between the regions of predomi-
nantly positive and negative particle spins in the Toom model. There are numerous results
concerning the existence of weak solutions and their long-time behavior. We refer to [13]
for some references. Equation (1) can be seen as a sixth-order extension of (3).

In the existence analysis for equations like (2), one of the main difficulties is to establish
non-negativity of the solutions. Typically, sophisticated regularizations are constructed
that lead to smooth and strictly positive approximative solutions. The limit of vanishing
regularizations then provides a nonnegative weak solution.

For our equation (1), the situation is more delicate since—like for the DLSS equation
(3)—the nonlinearity in the equation is not well-defined when n vanishes. This is a problem:
Although nonnegativity of the solution is expected on physical grounds, the possibility that
a vacuum (localized in time and space) is created from an initially strictly positive density
cannot be ruled out. Thus, atop of constructing strictly positive approximations, we need
to define a solution concept that works also for merely nonnegative densities with the
property that the passage to the limit of vanishing regularizations is possible.

The key idea here is to rewrite the nonlinearity in (1) in a way that substitutes the
logarithm by an expression that is still well-defined for n = 0. It turns out that the
following equivalent representation of equation (1),

∂tn = ∆3n+ ∂3
ijkF

(ijk)
1 (n) + ∂2

ijF
(ij)
2 (n),(4)

with the nonlinear operators

F
(ijk)
1 (n) = 4∂i

√
n
(
4∂j

4
√
n∂k

4
√
n− 3∂2

jk

√
n
)
,

F
(ij)
2 (n) = 8

d∑

k=1

(
∂2

ik

√
n− 4∂i

4
√
n∂k

4
√
n
)(
∂2

jk

√
n− 4∂j

4
√
n∂k

4
√
n
)(5)

is appropriate to study both concepts of solutions: weak and classical.
The construction of strictly positive approximative solutions uses yet another transfor-

mation of the nonlinearity. First, (1) is discretized in time with the implicit Euler scheme.
The semi-discrete equation is regularized by an additional term of the form ε(∆3−1) log n.
Each time step then requires the solution of a strictly elliptic problem in terms of y = log n.
Classical elliptic theory provides L∞-bounds on y and thus strict positivity of n = exp(y).

The required compactness to perform the deregularization limit ε ↓ 0 and later the
passage to the time-continuous limit is obtained from the dissipation of a distinguished
Lyapunov functional: The physical entropy

H[u] =

∫

Td

(
u(log u− 1) + 1

)
dx(6)

is nonincreasing along the solutions. In fact, using the entropy construction method of [12],
which is based on systematic integration by parts, we are able to prove that the entropy
dissipation − dH/ dt controls certain spatial derivatives,

− dH[n]

dt
≥ κ

∫

Td

(
‖∇3

√
n‖2 + |∇ 6

√
n|6
)
dx,(7)
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where ∇k denotes the tensor of all partial derivatives of order k. The resulting estimates
are sufficient to pass to the limit.

Our main results about weak solutions are the following two theorems.

Theorem 1 (Global existence of weak solutions). Let n0 ∈ L1(Td) be a nonnegative
function with finite entropy H[n0] < ∞. Then there exists a nonnegative function n ∈
W

1,4/3
loc (0,∞; H−3(Td)), satisfying

√
n ∈ L2

loc(0,∞;H3(Td)) and n(0) = n0, that is a solu-
tion to (4) in the following weak sense:

∫ ∞

0

〈∂tn, ϕ〉 dt+

∫ ∞

0

∫

Td

(
∂3

ijkϕ∂
3
ijkn+ ∂3

ijkϕF
(ijk)
1 (n) − ∂2

ijϕF
(ij)
2 (n)

)
dx dt = 0(8)

for all test functions ϕ ∈ L4(0, T ;H3(Td)).

It is not trivial at all to see that all integrals on the right-hand side of (8) are well-
defined for functions n of the stated regularity. At this point, we just mention that under
these hypotheses, 4

√
n is a well-defined Sobolev function; see Lemma 26 in the Appendix

as well as [17] and [9, Section 3] for a discussion about the regularity of square and fourth
roots of nonnegative functions. The relevant estimates on the pairings inside the integrals
are established in the course of the proof; see, e.g., Lemma 10 below. Since dimension-
dependent Sobolev embeddings are involved, this particular concept of weak solution does
not carry over to space dimensions d ≥ 4.

We recall that Hk(Td) etc. are spaces of functions that are 1-periodic in each spatial
coordinate direction. The derivation of the sixth-order equation (1) in [3] was performed
on R

d and hence, it does not include the derivation of physically relevant boundary condi-
tions. In this work, we have chosen periodic boundary conditions to simplify the analysis.
In particular, integration by parts plays a pivotal role in our derivation of a priori es-
timates, and the boundary integrals vanish for periodic functions. We note that in [3],
radially symmetric solutions for (1) satisfying no-flux-type boundary conditions have been
considered instead.

Theorem 2 (Exponential time decay). Let n0 ∈ L1(Td) be a nonnegative function with
finite entropy H[n0] < ∞ and unit mass

∫
Td n0dx = 1. Let n be the weak solution to (4)

constructed in Theorem 1. Then there exists a constant λ > 0, depending on d, such that
for all t > 0,

‖n(t; ·) − 1‖L1(Td) ≤
√

2H[n0]e
−λt.

Since equation (4) is semi-linear parabolic, it is accessible by methods from the theory
of analytic semigroups. This approach leads to the following result on classical solutions.

Theorem 3 (Existence and uniqueness of a classical solution). Let n0 ∈ H2(Td) be strictly
positive. Then there exist T∗ > 0 and precisely one smooth and strictly positive classical
solution n ∈ C∞((0, T∗);C

∞(Td)) to (4) with n(t) → n0 in H2(Td) as t ↓ 0. Moreover,
either T∗ = +∞, or there exists a limiting profile n∗ ∈ H2(Td) such that n(t) → n∗ in
H2(Td) as t ↑ T∗ and minx∈Td n∗(x) = 0.



A NONLINEAR SIXTH-ORDER EQUATION 5

In other words, the only possibility for a classical solution to break down is the loss of
strict positivity. This result parallels the one of [2] for the fourth-order DLSS equation in
space dimension d = 1. Since stronger Sobolev embeddings are available for the sixth-order
equation (4), our result holds in dimensions d = 2 and d = 3 as well. It is an open problem
if loss of positivity can occur at t > 0 or not.

Naturally, we shall establish a connection between the concept of weak solutions, defined
in (8), and classical solutions. To do so, we need to introduce the energy : For a positive
and smooth function u ∈ C∞(Td), define

E [u] =
1

2

∫

Td

u‖∇2 log u‖2 dx.(9)

This functional is equivalent to the L2-norm of ∇2
√
u in the sense that

c
∥∥∇2

√
u
∥∥2

L2 ≤ E [u] ≤ C
∥∥∇2

√
u
∥∥2

L2(10)

for some constants 0 < c ≤ C [9, 13]. For smooth and positive solutions to (4), one easily
proves that E is a Lyapunov functional, see Lemma 6 below. The functional E [u] extends in
a weakly lower semi-continuous manner to all nonnegative functions u with

√
u ∈ H2(Td);

see [9, Section 3] for details. Hence, if n is a weak solution in the sense of Theorem 1, then
E [n(t)] is well-defined for almost every t > 0. We expect that E is a Lyapunov functional
also for weak solutions, but currently we are not able to prove this conjecture, mainly
because E is not a convex functional.

Theorem 4. Assume that the weak solution n from Theorem 1 has the property that E [n(t)]
is uniformly bounded on some interval (T1, T2), and that it is strictly positive at some time
t0 ∈ [T1, T2); here T1 = 0 and/or T2 = +∞ are admissible. Then there exists T∗ ∈ (T1, T2]
such that n equals to the classical solution from Theorem 3 on (t0, T∗). Moreover, either
T∗ = T2 or n(t) loses strict positivity as t ↑ T∗ in the sense of Theorem 3.

It is well known for the fourth-order equation (3), that weak solutions may not be unique
[13]. We expect the same phenomenon to occur for (1). On the other hand, Theorem 4
asserts that a new weak solution n∗ can branch off from a given classical solution n at some
time T > 0 only if either n loses strict positivity, limt↑T infx∈Td n(t, x) = 0, or if n∗ has
locally unbounded energy, lim supt↓T E [n∗(t)] = +∞. This shows consistency between the
notions of weak and classical solutions. In view of Theorem 2, it is reasonable to conjecture
that all weak solutions become classical eventually as t→ ∞.

The paper is organized as follows. Section 2 provides some background information on
the derivation and properties of (1). In Section 3, we derive the alternative formulation (4)
of (1) and we prove the entropy inequality (7). Sections 4, 5, 6, and 7 are devoted to the
proofs of Theorems 1, 2, 3, and 4, respectively. Finally, in the appendix, we collect some
technical lemmas and recall some known results which are used in the existence analysis.

Notations: All functions u defined on the torus T
d are assumed to be one-periodic in

each coordinate. Specifically, u : [0, 1]d → R is said to belong to the function space Lp(Td),
Wm,p(Td) or C∞(Td), respectively, if its periodic extension Eu : R

d → R, defined by
Eu(x) = u(xmod T

d), belongs to Lp
loc(R

d), Wm,p
loc (Rd) or C∞(Rd). Lebesgue and Sobolev
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norms are calculated by integrating the respective powers of Eu and its weak derivatives
(which are periodic functions on R

d) over the unit cube [0, 1]d.

2. Derivation, motivation, and open problems

In this section, we indicate several motivations to study equation (1) by reviewing its
derivation from the nonlocal quantum model, putting it in the context of gradient flows,
and establishing connections to the heat and DLSS equations.

2.1. On the derivation from the nonlocal quantum model. Degond et al. derived
in [5] the nonlocal and nonlinear quantum diffusion model

(11) ∂tn = div(n∇A) in R
d, t > 0,

where the potential A is defined implicitly as the unique solution to

n(t;x) =

∫

Rd

Exp
(
A(t;x) − |p|2

2

)
dp.

The so-called quantum exponential Exp is defined as the Wigner transformed operator
exponential: Denoting by W the Wigner transformation and by W−1 the corresponding
Weyl quantization, then Exp(f) = W−1 ◦ exp ◦W (f); see [5] for details.

In the semi-classical limit ~ ↓ 0, the expression Exp(A− |p|2/2) converges to eA, so that
A = log n, and we recover from (11) the classical heat equation. For ~ > 0, however,
the quantum exponential is a complicated, genuinely nonlocal operator. An asymptotic
expansion in terms of ~ has been performed in [3, Appendix], leading to the following local
approximation of A in terms of n:

(12) A = A0 +
~

2

12
A1 +

~
4

360
A2 +O(~6)

with the local expressions

A0 = log n, A1 = −2
∆
√
n√
n
, A2 =

1

2
‖∇2 log n‖2 +

1

n
∂2

ij(n∂
2
ij log n).

Replacing A in (11) by A0, A1, or A2 yields, respectively, the heat equation, the DLSS equa-
tion (3), or the sixth-order equation (1). In this sense, (3) and (1) constitute, respectively,
the primary and secondary quantum corrections to the classical diffusion equation.

2.2. Gradient-flow structure. Equation (1) possesses—at least on a formal level—a
variational structure. The divergence form implies that solutions n formally conserve the
total mass, i.e., the integral m =

∫
Td n(t;x) dx is independent of t. By homogeneity, we

can assume m = 1 without loss of generality. Thus, any solution to (1) defines a curve
t 7→ n(t) in the space of probability measures on T

d. Provided that n is regular enough,
this curve realizes a steepest descent in the energy landscape of the energy functional E
from (9) with respect to the L2-Wasserstein metric. Indeed, by a formal calculation, we
obtain the gradient-flow representation

∂tn = div
(
n∇δE [n]

δn

)
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from (11) with A ≡ A2, where A2 = δE [n]/δn is the variational derivative of E .
This variational structure is a remarkable property by itself. Atop of that, it establishes

yet another connection to the heat and DLSS equations. It is well known since the seminal
paper [11] that the heat equation is the gradient flow of the entropy functional H from (6)
with respect to the L2-Wasserstein distance. The dissipation of H along its own gradient
flow amounts to the Fisher information,

F [n] = −1

2

dH[n]

dt
=

1

2

∫

Td

n|∇ log n|2 dx,

while the second-order time derivative produces the energy from (9),

E [n] =
1

4

d2H[n]

dt2
=

1

2

∫

Td

n‖∇2 log n‖2 dx.

The Fisher information, in turn, has been proven to generate the DLSS equation (3) as
a gradient flow with respect to the L2-Wasserstein distance [9]. It is readily checked that
E also equals the first-order time derivative of the entropy along solutions of the DLSS
equation. In this sense, the sixth-order equation (1) is related to the fourth-order equation
(3) in the same way as (3) itself is related to the heat equation.

We mention this point because the intimate relation between the heat and the DLSS
equations (and, more generally, between second-order porous medium and fourth-order
diffusion equations) has been the key tool in obtaining optimal rates for the intermediate
asymptotics of solutions to (3) in [18]. It would be interesting to derive estimates on the
long-time behavior of solutions to (1) by similar means.

2.3. Open problems. Finally, we propose several questions about equation (1) that we
consider of interest:

• With our methods, we are able to prove the dissipation property (7) only in dimen-
sions d ≤ 3. Is H still a Lyapunov functional in higher dimensions d ≥ 4?

• Is the Fisher information F a Lyapunov functional? Our only result in this direction
so far is a formal proof of dissipation of F in dimension d = 1.

• Is the energy E monotone along the weak solutions constructed here? If the answer
is affirmative, then the additional hypotheses on the uniform boundedness of the
energy could be removed from Theorem 4.

• Does (1) admit global weak solutions in dimensions d ≥ 4? Even if we assume
that an inequality of the form (7) continues to hold, it is far from clear how to
rewrite the weak formulation (8) in a form that does not take advantage of Sobolev
embeddings in low dimensions.

• If (1) is posed on R
d instead of T

d, one readily verfies that there exists a family of
self-similar solutions us, namely

us(t;x) = λ(t)−dU
(
λ(t)−1x

)
with λ(t) = (1 + 6t)1/6,
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with the Gaussian profile

U(z) = exp
(
− |z|2

2 3
√

2

)
.

Do these “spreading Gaussians” play the same role for (1) as they do for the heat
equation and for the DLSS equation? In other words, is U an attracting stationary
solution of (1) after the self-similar rescaling with x = λ(t)ξ and t = (e6τ−1)/6, and
do arbitrary solutions converge to U at a universal exponential rate? In dimension
d = 1, there is numerical evidence for an affirmative answer.

3. Alternative formulations and functional inequalities

In this section, we derive two alternative formulations of the sixth-order equation (1) and
prove an energy-dissipation formula and an entropy-dissipation estimate. First, we show
that (1) can be written as the sum of a symmetric sixth-order term and a fourth-order
remainder, and as the sum of a linear sixth-order part and a fifth-order remainder.

Lemma 5. Equation (1) can be written for smooth positive solutions equivalently as

(13) ∂tn = ∂3
ijk

(
n ∂3

ijk log n
)

+ 2∂2
ij

(
n ∂2

ik log n ∂2
jk log n

)
in T

d, t > 0,

and also equivalently as

(14) ∂tn = ∆3n+ ∂3
ijkF

(ijk)
1 (n) + ∂2

ijF
(ij)
2 (n) in T

d, t > 0,

where the nonlinear operators F
(ijk)
1 and F

(ij)
2 are defined in (5).

We recall that we have employed the summation convention in the above formulas.

Proof. For the following formal calculations, we introduce the shorthand notations y =
log n, yi = ∂i log n, yij = ∂2

ij log n etc. Observing that ∂kn = nyk, n∂k(1/n) = −(∂kn)/n =
−yk, we calculate

1

2
n∂k(∂

2
ij log n)2 = n∂2

ijy∂
2
ijyk,

and

n∂k

( 1

n
∂2

ij(n∂
2
ij log n)

)
= ∂3

ijk(nyij) − yk∂
2
ij(nyij)

= ∂2
ij

(
yk(nyij) + nyijk

)
− yk∂

2
ij(nyij)

= ∂i

(
yk∂j(nyij) + yjk(nyij)

)
− yk∂

2
ij(nyij) + ∂2

ij(nyijk)

= yik∂j(nyij) + yijk(nyij) + yjk∂i(nyij) + ∂2
ij(n∂

2
ijyk)

= 2yik∂j(nyij) + n∂2
ijy∂

2
ijyk + ∂2

ij(n∂
2
ijyk)

= 2∂j(nyijyik) − n∂2
ijy∂

2
ijyk + ∂2

ij(n∂
2
ijyk).

Summing these results, we obtain

1

2
n∂k(∂

2
ij log n)2 + n∂k

( 1

n
∂2

ij(n∂
2
ij log n)

)
= ∂2

ij(n∂
2
ijyk) + 2∂j(nyijyik).
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Differentiation with respect to xk yields

∂k

(1

2
n∂k(∂

2
ij log n)2 + n∂k

( 1

n
∂2

ij(n∂
2
ij log n)

))
= ∂3

ijk(n∂
3
ijky) + 2∂2

jk(nyijyik),

which shows (13).
Similarly, introducing u = 4

√
n, ui = ∂iu, uij = ∂2

iju, etc. and observing that ∂kn = 4u3uk,

∂2
ijn = 12u2uiuj + 4u3uij, and uuij = ∂2

ij(u
2)/2 − uiuj, we calculate

n∂3
ijky = ∂3

ijkn− 3

n
∂2

ijn∂kn+
2

n2
∂in∂jn∂kn(15)

= ∂3
ijkn− 48u2uijuk − 16uuiujuk

= ∂3
ijkn− 12∂2

ij(u
2)∂k(u

2) + 16uiuj∂k(u
2)

= ∂3
ijkn+ 4∂k

√
n
(
4∂i

4
√
n∂j

4
√
n− 3∂2

ij

√
n
)

= ∂3
ijkn+ F

(ijk)
1 (n),

2nyikyjk = 32u4
(uik

u
− uiuk

u2

)(ujk

u
− ujuk

u2

)

= 8
(
∂2

ik(u
2) − 4uiuk

)(
∂2

jk(u
2) − 4ujuk

)

= 8
(
∂2

ik

√
n− 4∂i

4
√
n∂k

4
√
n
)(
∂2

jk

√
n− 4∂j

4
√
n∂k

4
√
n
)

= F
(ij)
2 (n).

Differentiating both equations and summing them leads to

(16) ∂3
ijk(n∂

3
ijky) + 2∂2

ij(nyikyjk) = ∆3n+ ∂3
ijkF

(ijk)
1 + ∂2

ijF
(ij)
2 ,

which gives (14). �

In the next lemma, we make our claim about the Lyapunov property of the energy E ,
defined in (9), more precise.

Lemma 6. If n ∈ C∞((t1, t2);C
∞(Td)) is a positive and classical solution to (1), then the

energy E [n(t)] is a smooth and nonincreasing function on the inverval (t1, t2). In fact, the
energy is dissipated according to

(17)
d

dt
E [n(t)] = −

∫

Td

n(t)
∣∣∣∇
(1

2

(
∂2

ij log n(t)
)2

+
1

n(t)
∂2

ij

(
n(t)∂2

ij log n(t)
))∣∣∣

2

dx, t > 0.

Proof. The smoothness of E [n(t)] follows since on the set of positive functions u ∈ C∞(Td),
the operation u 7→ log u is a smooth map from C∞(Td) to itself. Dissipation formula (17)
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follows by using formulation (1) and integration by parts:

d

dt
E [n] =

∫

Td

(
1

2
∂tn(∂2

ij log n)2 + n∂2
ij(log n)∂2

ij

(∂tn

n

))
dx

=

∫

Td

∂tn

(
1

2
(∂2

ij log n)2 +
1

n
∂2

ij(n∂
2
ij log n)

)
dx

= −
∫

Td

n
∣∣∣∇
(1

2
(∂2

ij log n)2 +
1

n
∂2

ij(n∂
2
ij log n)

)∣∣∣
2

dx,

which shows the claim. �

Finally, we prove the entropy-dissipation inequality (7).

Lemma 7. Let d ≤ 3 and let u ∈ H3(Td) be strictly positive on T
d. Then there exists

κ > 0, depending only on d, such that
∫

Td

(
∂3

ijk(log u)∂3
ijku+ ∂3

ijk(log u)F
(ijk)
1 (u) − ∂2

ij(log u)F
(ij)
2 (u)

)
dx(18)

≥ κ

∫

Td

(
|∇3

√
u|2 + |∇ 6

√
u|6
)
dx.

Proof. The proof is based on an extension of the entropy construction method developed
in [12] for one-dimensional equations. A proof for d = 1 is given in [14]. Therefore, we
restrict ourselves to the cases d = 2 and d = 3. By (16), (18) is equivalent to, up to a
factor,
(19)∫

Td

u
(
(∂3

ijk log u)2 − 2∂2
ij log u(∂2

ik log u∂2
jk log u)

)
dx ≥ κ

12

∫

Td

(
26|∇3

√
u|2 + 66|∇ 6

√
u|6
)
dx.

Setting y = log n, yi = ∂i log n, yij = ∂2
ij log n, etc., a computation shows that (19) is

equivalent to

(20)

∫

Td

u
(
12S[u] − κR[u]

)
dx ≥ 0,

where S[u] = y2
ijk − 2yijyjkyki and

R[u] = 2y2
i y

2
j y

2
k + 12y2

i yjyjkyk + 8yiyjykyijk + 24yiyijyjkyk + 12y2
i y

2
jk + 48yiyijkyjk + 16y2

ijk.

The idea of the entropy construction method is to find the “right” integrations by parts
which are necessary to write the integrand of (20) as a sum of squares. To this end, we
define the vector-valued function v = (v1, . . . , vd)⊤ : T

d → R
d by

vk = (2y2
i y

2
j + yiiy

2
j + 5yijyiyj + 5yiijyj)yk

+ (3y2
i yj + 11yiij + 24yiyij)yjk − (5yiyj + 11yij)yijk.

A straight-forward computation shows that the weighted divergence

T [u] =
1

u
div(uv) = e−y∂k(e

yvk)
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can be written as

T [u] = 2y2
i y

2
j y

2
k + 3y2

i y
2
j ykk + 16y2

i yjyjkyk + 9y2
i yjyjkk + y2

i yjjykk + 7yiiyjyjkyk

+ 40yiyijyjkyk + 3y2
i y

2
jk + 5yiyijjykk + 40yiyijyjkk + 3yiyijkyjk + 11yijjyikk

− 11y2
ijk + 24yijyjkyki.

By the divergence theorem, we have
∫

Td

uT [u] dx = 0.

Hence, (20) is equivalent to

(21)

∫

Td

u
(
12S[u] − κR[u] + T [u]

)
dx ≥ 0.

We prove that there exists κ > 0 such that the integrand is nonnegative. The expres-
sion T [u] turns out to be the “right” integration by parts formula allowing us to prove
the nonnegativity of the above integral. At this point, we need to distinguish the space
dimension.

First, consider d = 2. Let x ∈ T
d be fixed. Without loss of generality, we may assume

that ∇u(x) points into the first coordinate direction, i.e. y2 = 0 at x. Then we compute

12S[u] − εR[u] + T [u] = (2 − 2ε)y6
1 + 3y4

1(y11 + y22) + 4(4 − 3ε)y4
1y11 + 9y3

1(y111 + y122)

− 8εy3
1y111 + y2

1(y11 + y22)
2 + 7y2

1y11(y11 + y22) + 8(5 − 3ε)y2
1(y

2
11 + y2

12)

+ 3(1 − 4ε)y2
1(y

2
11 + 2y2

12 + y2
22) + 5y1(y111 + y122)(y11 + y22)

+ 40y1

(
y11(y111 + y122) + y12(y122 + y222)

)

+ 3(1 − 16ε)y1

(
y11y111 + 2y12y112 + y22y122

)

+ 11
(
(y111 + y122)

2 + (y112 + y222)
2
)

+ (1 − 16ε)
(
y2

111 + 3y2
112 + 3y2

122 + y2
222

)

= ξ⊤Aεξ + η⊤Bεη,

where ξ and η are the vectors

ξ = (y3
1, y1y11, y1y22, y111, y122)

⊤, η = (y1y12, y112, y222)
⊤,

and the symmetric matrices Aε and Bε are defined by

Aε =
1

2




4 − 4ε 19 − 12ε 3 9 − 8ε 9
19 − 12ε 102 − 72ε 9 48 − 48ε 45

3 9 8 − 24ε 5 8 − 48ε
9 − 8ε 48 − 48ε 5 24 − 32ε 22

9 45 8 − 48ε 22 28 − 96ε



,

Bε =




46 − 48ε 23 − 48ε 20
23 − 48ε 14 − 48ε 11

20 11 12 − 16ε


 .



12 M. BUKAL, A. JÜNGEL, AND D. MATTHES

Sylvester’s criterion shows that the unperturbed matrices A0 and B0 are positive definite.
Indeed, the principal minors fo A0 are 2, 47/4, 20, 13, and 149/4, and the principal minors
of B0 are 46, 115, and 334. Since the set of (strictly) positive definite matrices is open in
the set of all real symmetric matrices, there exists ε0 > 0 such that for all 0 < ε < ε0, the
matrices Aε and Bε are positive definite, too. This shows that 12S[u] − εR[u] + T [u] ≥ 0
for 0 < ε < ε0, which implies (21).

Next, let d = 3. This case is similar to the previous one, but technically more involved.
Again, we fix some x ∈ T

d and assume that ∇u(x) is parallel to the first coordinate
direction, i.e. y2 = y3 = 0. For easier presentation, we introduce the abbreviations

p+ = y22 + y33, p− = y22 − y33,

qj+ = yj22 + yj33, qj− = yj22 − yj33, j = 1, 2, 3.

Observe that

2(y2
22 + y2

33) = p2
+ + p2

−,

2(y2
j22 + y2

j33) = q2
j+ + q2

j−,

2(y22yj22 + y33yj33) = p+qj+ + p−qj−.

With these notations, we find that

12S[u] − εR[u] + T [u] = (2 − 2ε)y6
1 + 3y4

1(y11 + p+) + 4(4 − 3ε)y4
1y11 + 9y3

1(y111 + q1+)

− 8εy3
1y111 + y2

1(y11 + p+)2 + 7y2
1y11(y11 + p+) + 8(5 − 3ε)y2

1(y
2
11 + y2

12 + y2
13)

+ 3(1 − 4ε)y2
1

(
y2

11 + 1
2
(p2

− + p2
+) + 2(y2

12 + y2
13 + y2

23)
)

+ 5y1(y111 + q1+)(y11 + p+)

+ 40y1

(
y11(y111 + q1+) + y12(y112 + q2+) + y13(y113 + q3+)

)

+ 3(1 − 16ε)y1

(
y111y11 + 1

2
(q1+p+ + q1−p−) + 2(y112y12 + y113y13 + y123y23)

)

+ 11
(
(y111 + q1+)2 + (y112 + q2+)2 + (y113 + q3+)2

)

+ (1 − 16ε)
(
y2

111 + 3(y2
112 + y2

113) + 3
2
(q2

1+ + q2
1− + q2

2+ + q2
2− + q2

3+ + q2
−3) + 6y2

123

)

= ξ⊤Aεξ +
3∑

j=2

η⊤j Bεηj + ζ⊤Cεζ + 2ν⊤Cεν +
1

4
(1 − 16ε)(q2

2+ + q2
2−),

where

ξ = (y3
1, y1y11, y1p+, y111, q1+)⊤, ηj = (y1y1j, y11j, qj+)⊤,

ζ = (y1p−, q1−)⊤, ν = (y1y23, y123)
⊤.
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The matrices Aε and Bε are almost identical to those given above, with minor modifications
in the third and fifth rows and columns:

Aε =
1

2




4 − 4ε 19 − 12ε 3 9 − 8ε 9
19 − 12ε 102 − 72ε 9 48 − 48ε 45

3 9 5 − 12ε 5 13/2 − 24ε
9 − 8ε 48 − 48ε 5 24 − 32ε 22

9 45 13/2 − 24ε 22 25 − 48ε



,

Bε =




46 − 48ε 23 − 48ε 20
23 − 48ε 14 − 48ε 11

20 11 47/4 − 12ε


 .

Furthermore, the matrix Cε is given by

Cε =

(
3 − 12ε 3/2 − 24ε

3/2 − 24ε 3 − 48ε

)
.

Again, the Sylvester criterion shows that A0, B0, and C0 are positive definite. The principal
minors of A0 are 2, 47/4, 19/8, 5/8, and 453/64, while those of B0 are 46, 115, and 1221/4,
and those of C0 are 3 and 27/4. Thus, there exists ε0 > 0 such that for all 0 < ε < ε0, also
Aε, Bε, and Cε are positive definite. �

4. Existence of weak solutions

The proof of Theorem 1 is divided into several steps.

4.1. Solution of the semi-discretized problem. Let T > 0 and τ > 0 be given. We
wish to solve, for a given initial datum n0 ∈ L1(Td), the semi-discrete problem

1

τ
(n− n0) = ∆3n+ ∂3

ijkF
(ijk)
1 (n) + ∂2

ijF
(ij)
2 (n) in T

d,

where F
(ijk)
1 and F

(ij)
2 are defined in (5).

Proposition 8. For a nonnegative function n0 ∈ L1(Td) of unit mass, ‖n0‖L1 = 1, and of
finite entropy, H[n0] <∞, there exists a sequence of solutions nτ

1, n
τ
2, . . . in H3(Td) to the

elliptic problems

(22)
1

τ

∫

Td

(
nτ

k − nτ
k−1

)
φ dx+

∫

Td

(
∂3

ijkφ∂
3
ijkn

τ
k + ∂3

ijkφF
(ijk)
1 (nτ

k) − ∂2
ijφF

(ij)
2 (nτ

k)
)
dx = 0,

holding for all test functions φ ∈ H3(Td), with the initial solution nτ
0 = n0. These solutions

are of unit mass, and the entropy estimate

H[nτ
k] + κτ

∫

Td

(∥∥∇3
√
nτ

k

∥∥2
+
∣∣∇ 6
√
nτ

k

∣∣6) dx ≤ H[nτ
k−1], k ≥ 1,(23)

holds with κ > 0 given in Lemma 7.
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Proof. For simplicity, we only give the argument for the construction of n = nτ
1 from n0.

The passage from nτ
k to nτ

k+1 works precisely in the same way since finiteness of the entropy
is inherited from one step to the next.

Regularized problem. In a first step, we are going to construct strictly positive solutions
nε ∈ H3(Td) to the regularized problem

1

τ
(n− n0) = ∆3n+ ∂3

ijkF
(ijk)
1 (n) + ∂2

ijF
(ij)
2 (n) + ε

(
∆3 log n− log n

)
.(24)

Writing n = ey, it follows from (15) that

∆3n = ∂3
ijk(n∂

3
ijky) − ∂3

ijkF
(ijk)
1 (n).

Thus, assuming strict positivity and H3-regularity of n, we can reformulate (24) as

1

τ
(n− n0) = ∂3

ijk

(
(n+ ε)∂3

ijky
)
− εy + ∂2

ijF
(ij)
2 (n),(25)

which is an equation in H−3(Td).
Fixed point operator. We define the continuous map Sε : X × [0, 1] → W 2,4(Td) on the

set

X =

{
u ∈ W 2,4(Td) : min

x∈Td
u(x) > 0

}

as follows. For given n ∈ X and σ ∈ [0, 1], introduce

a(y, z) =

∫

Td

(
(σn+ ε)∂3

ijky ∂
3
ijkz + εyz

)
dx

f(z) = −σ
τ

∫

Td

(n− n0)z dx+ σ

∫

Td

F
(ij)
2 (n)∂2

ijz dx

for all y, z ∈ H3(Td). Observe that a is a bounded and coercive bilinear form on H3(Td),

a(z, z) ≥ ε

∫

Td

(
|∇z|2 + z2

)
dx ≥ cε‖z‖2

H3

for some constant c > 0, and a varies continuously with (n, σ) ∈ X × [0, 1], since the
embedding W 2,4(Td) →֒ L∞(Td) is continuous.

Next, we claim that f is a bounded linear form on H3(Td). Indeed, due to the con-
tinuity of the Sobolev embedding W 2,4(Td) →֒ W 1,8(Td) in dimensions d ≤ 3 and the

strict positivity and continuity of functions in W 2,4(Td), the mapping F
(ij)
2 allows for the

representation

F
(ij)
2 (n) = 2

∂2
ikn∂

2
kjn

n
− 4

∂2
ikn∂kn∂jn

n2
+ 2

(∂kn)2∂in∂jn

n3
,

from which F
(ij)
2 (n) ∈ L2(Td) follows for all n ∈ W 2,4(Td). In fact, f varies continuously

with (n, σ) ∈ X × [0, 1].
The Lax-Milgram Lemma provides the existence and uniqueness of a solution y ∈ H3(Td)

to the elliptic equation
a(y, z) = f(z) for all z ∈ H3(Td).
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This solution depends H3-continuously on (n, σ) ∈ X× [0, 1]. In particular, y ≡ 0 if σ = 0,
and y solves (25) if σ = 1.

The definition of the fixed point operator Sε is now completed by setting

Sε(n, σ) = ey.

Since y ∈ H3(Td) →֒ L∞(Td), it is clear that Sε(n, σ) ∈ H3(Td) is a strictly positive and
bounded function. In view of the compactness of the embedding H3(Td) →֒ W 2,4(Td), Sε

maps bounded subsets of X × [0, 1] into precompact sets in W 2,4(Td). Finally, notice that
Sε(n, 0) ≡ 1 for all n ∈ X and Sε(n∗, 1) = n∗ for some n∗ ∈ X if and only if n∗ is a solution
to (24). To verify the last statement, observe that n∗ = Sε(n∗, 1) implies the H3-regularity
of n∗, which justifies the passage from (25) to (24), and in particular it allows us to define
∆3 log n∗ as an element of H−3(Td).

A priori bound. Our goal is to obtain a fixed point of Sε(·, 1) by means of the Leray–
Schauder theorem. Having already verified the continuity and relative compactness of Sε

as well as the condition Sε(·, 0) = 1, it remains to find a suitable closed, bounded, convex
subset B ⊂ X such that all solutions n∗ ∈ X of Sε(n∗, σ) = n∗ for some σ ∈ [0, 1] lie in
the interior of B. We shall choose

B =
{
u ∈ W 2,4(Td) : minu ≥ δ, ‖u‖W 2,4 ≤ δ−1

}
(26)

with a suitable δ > 0 determined below.
Let n∗ ∈ W 2,4(Td) be a fixed point of S(·, σ) for some σ ∈ [0, 1]. By construction, we

have n∗ = ey∗ ∈ H3(Td) for y∗ ∈ H3(Td), and n∗ is strictly positive. The convexity of
h(s) = s(log s− 1) + 1 implies that

1

τ
(H[n∗] −H[n0]) =

1

τ

∫

Td

(h(n∗) − h(n0)) dx

≤ 1

τ

∫

Td

(n∗ − n0)h
′(n∗) dx =

1

τ

∫

Td

(n∗ − n0) log n∗ dx

= −
∫

Td

(
∂3

ijky∗ ∂
3
ijkn∗ + ∂3

ijky∗F
(ijk)
1 (n∗) − ∂2

ijy∗F
(ij)
2 (n∗)

)
dx

− ε

σ

∫

Td

(
‖∇3y∗‖2 + y2

∗

)
dx

≤ −κ
∫

Td

(
‖∇3

√
n∗‖2 + |∇ 6

√
n∗|6

)
dx− ε

σ

∫

Td

(
‖∇3y∗‖2 + y2

∗

)
dx.

For the last estimate, the functional inequality (18) has been used. Thus, we have proven

(27) H[n∗] + τκ

∫

Td

(
‖∇3

√
n∗‖2 + |∇ 6

√
n∗|6

)
dx+

τε

σ

∫

Td

(
‖∇3y∗‖2 + y2

∗

)
dx ≤ H[n0].

A consequence of this inequality is that y∗ is bounded in H3(Td),

‖y∗‖H3 ≤ C

∫

Td

(
‖∇3y∗‖2 + y2

∗

)
dx ≤ CH[n0]

τε
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for some constant C > 0 depending on τ and ε (which are fixed positive numbers at this
point), but not on σ ∈ [0, 1]. The continuity of the embedding H3(Td) →֒ W 2,4(Td) yields
the σ-independent bound

‖n∗‖W 2,4 ≤ CH[n0]

τε
,(28)

maybe for another constant C > 0. Furthermore, the continuity of the embedding H3(Td)
→֒ L∞(Td) provides the estimate

ess inf n∗ ≥ exp
(
− ‖y∗‖L∞

)
≥ exp

(
−CH[n0]

τε

)
> 0.(29)

From (28) and (29) follows that there exists a set B of the form (26) which contains all
potential fixed points n∗. The Leray–Schauder fixed point theorem in the version of [20]
(see Theorem 28 in the Appendix) applies to our situation and yields the existence of a
solution nε to n = Sε(n, 1).

Deregularization. From the entropy estimate, it follows that
√
nε is ε-uniformly bounded

in H3(Td), and 6
√
nε is ε-uniformly bounded in W 1,6(Td). Hence, there exists a limit

function n ∈ H3(Td), such that, as ε ↓ 0, up to subsequences,

√
nε ⇀

√
n in H3(Td),(30)

√
nε →

√
n in W 2,4(Td) and in W 1,∞(Td),(31)

4
√
nε → 4

√
n in W 1,4(Td),(32)

4
√
nε ⇀

4
√
n in W 1,12(Td).(33)

Here we take (30) for the definition of n; then (31) follows from the compactness of the
embedding H3(Td) →֒ W 2,4(Td). The strong convergence in (32) is a direct consequence of
Proposition 27, since 4

√
nε is “sandwiched” between

√
nε and 6

√
nε. Concerning (33), observe

that H3(Td) embeds continuously into W 2,6(Td), so that 4
√
nε is bounded in W 1,12(Td)

by Lemma 26. In particular, 4
√
nε converges weakly to some limit in that space—which

necessarily agrees with the strong W 1,4(Td)-limit obtained in (32).
For the various terms in (24), this implies the following. The sequence

∂3
ijknε = 2

√
nε∂

3
ijk

√
nε + 6∂i

√
nε∂

2
jk

√
nε

converges weakly in L2(Td) to ∂3
ijkn, since

√
nε converges strongly in L∞(Td) and ∂3

ijk

√
nε

converges weakly in L2(Td), while ∂i
√
nε and ∂2

jk

√
nε both converge strongly in L4(Td).

Further, the sequence

F
(ijk)
1 (nε) = 4∂i

√
nε

(
4∂j

4
√
nε∂k

4
√
nε − 3∂2

jk

√
nε

)

converges strongly in L2(Td), since ∂i
√
nε converges strongly in L∞(Td), ∂2

jk

√
nε converges

strongly in L2(Td), and ∂j
4
√
nε and ∂k

4
√
nε both converge strongly in L4(Td). Finally, we
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consider

F
(ij)
2 (nε) = 8

(
∂ik

√
nε∂jk

√
nε − 4∂2

jk

√
nε∂k

4
√
nε∂i

4
√
nε

− 4∂2
ik

√
nε∂k

4
√
nε∂j

4
√
nε + 16∂i

4
√
nε∂j

4
√
nε(∂k

4
√
nε)

2
)
.

The first term converges strongly in L2(Td) since it is the product of two second-order
derivatives of

√
nε which converge strongly in L4(Td). The second and third expressions

converge strongly in L4/3(Td) since each of them is the product of three strongly L4-
convergent terms. To obtain weak L6/5-convergence of the last product, we use the strong
L4-convergence of ∂i

4
√
nε to conclude strong convergence of ∂j

4
√
nε(∂k

4
√
nε)

2 in L4/3(Td), and
combine this with the weak convergence of ∂i

4
√
nε in L12(Td). Notice that weak convergence

in L6/5(Td) suffices, since F
(ij)
2 (nε) is tested in (22) against φ ∈ H3(Td) and hence, ∂2

ijφ ∈
L6(Td).

Finally, the entropy estimate (27) shows that (
√
εyε) is bounded in H3(Td) and hence,

εyε → 0 strongly in H3(Td).

The above convergence results allow us to perform the limit ε→ 0 in (24), i.e., both sides
converge in H−3(Td). Hence, n is a nonnegative solution to (22).

Proof of auxiliary properties. It remains to verify that n has unit mass and that the
dissipation inequality (23) holds. Conservation of mass follows directly from (22) by using
φ = 1 as a test function. The entropy estimate (27) shows that nε satisfies

H[nε] + τκ

∫

Td

(
‖∇3√nε‖2 + |∇ 6

√
nε|6

)
dx ≤ H[n0].

Since ∇3√nε ⇀ ∇3
√
n weakly in L2(Td) and ∇ 6

√
nε ⇀ ∇ 6

√
nε weakly in L6(Td), we

conclude by lower semi-continuity that

H[n] + τκ

∫

Td

(
‖∇3

√
n‖2 + |∇ 6

√
n|6
)
dx

≤ lim
ε→0

H[nε] + τκ lim inf
ε→0

∫

Td

(
‖∇3√nε‖2 + |∇ 6

√
nε|6

)
dx ≤ H[n0].

This finishes the proof. �

4.2. Passage to the continuous limit. Proposition 8 guarantees the existence of a
solution sequence (nτ

0, n
τ
1, n

τ
2, . . .) to the semi-discrete implicit Euler scheme (22). Define

accordingly the piecewise constant interpolants nτ ∈ L∞(0,∞;H3(Td)) by

nτ (t) = nτ
k for (k − 1)τ < t ≤ kτ, k ∈ N, nτ (0) = nτ

0,

and introduce the discrete time derivative

δτnτ (t) =
1

τ

(
nτ

k − nτ
k−1

)
for (k − 1)τ < t ≤ kτ, k ∈ N.

Corollary 9. The interpolated function nτ satisfies

(34)

∫ T

0

∫

Td

δτnτϕ dx dt+

∫ T

0

∫

Td

(
∂3

ijkϕ∂
3
ijkn

τ +∂3
ijkϕF

(ijk)
1 (nτ )−∂2

ijϕF
(ij)
2 (nτ )

)
dx dt = 0
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for all test functions ϕ ∈ L4(0, T ;H3(Td)).

Proof. Equation (34) is a direct consequence of (22), and the definitions of nτ and δτnτ .
Simply choose φ = ϕ(t) ∈ H3(Td) as a test function in (22) for (k − 1)τ < t ≤ kτ and
integrate with respect to t ∈ (0, T ). Notice that at this point, the L4-regularity of ϕ with
respect to time is not of importance. In fact, we could replace L4 by L1. �

The following lemma summarizes various consequences of the discrete entropy estimate
(23). Recall that we are working in spatial dimensions d ≤ 3.

Lemma 10. For any finite T > 0,

(nτ ) is bounded in L4/3(0, T ;H3(Td)),(35)

(∇
√
nτ ) is bounded in L12/5(0, T ;L∞(Td)),(36)

(∇2
√
nτ ) is bounded in L3(0, T ;L2(Td)) and in L8/3(0, T ;L12/5(Td)),(37)

(∇ 4
√
nτ ) is bounded in L6(0, T ;L4(Td)) and in L16/3(0, T ;L24/5(Td)),(38)

(∇ 6
√
nτ ) is bounded in L6(0, T ;L6(Td)),(39)

uniformly with respect to τ > 0.

Proof. First notice that the boundedness of
√
nτ in L2(0, T ;H3(Td)) follows from the en-

tropy estimate (23). Indeed, by Lemma 23 from the Appendix and the conservation of
mass, we find that

‖
√
nτ (t)‖H3 ≤ C

(
‖∇3

√
nτ (t)‖L2 + ‖

√
nτ (t)‖L2

)
= C

(
‖∇3

√
nτ (t)‖L2 + 1

)
,

where C > 0 does not depend on τ . Therefore,

‖
√
nτ‖L2(0,T ;H3) ≤ C

(
‖∇3

√
nτ‖L2(0,T ;H3) + T 1/2

)
≤ C(H[n0] + T 1/2).

Estimate (39) follows also from the entropy estimate (23).
To prove the remaining estimates, first notice that, by the Gagliardo-Nirenberg inequality

(see Lemma 25 in the Appendix), for some constants Bi > 0,

‖
√
nτ (t)‖L∞ ≤ B1‖

√
nτ (t)‖d/6

H3 ‖
√
nτ (t)‖1−d/6

L2 ,

‖∇
√
nτ (t)‖L∞ ≤ B2‖

√
nτ (t)‖1/3+d/6

H3 ‖
√
nτ (t)‖2/3−d/6

L2 ,

‖∇2
√
nτ (t)‖L2 ≤ B3‖

√
nτ (t)‖2/3

H3 ‖
√
nτ (t)‖1/3

L2 .

Integrating over (0, T ), we infer that

‖
√
nτ‖L12/d(0,T ;L∞) ≤ B1‖

√
nτ‖d/6

L2(0,T ;H3)‖
√
nτ‖1−d/6

L∞(0,T ;L2) ≤ C,(40)

‖∇
√
nτ‖L12/(d+2)(0,T ;L∞) ≤ B2‖

√
nτ‖(2+d)/6

L2(0,T ;H3)‖
√
nτ‖(4−d)/6

L∞(0,T ;L2) ≤ C,(41)

‖∇2
√
nτ‖L3(0,T ;L2) ≤ B3‖

√
nτ‖2/3

L2(0,T ;H3)‖
√
nτ‖1/3

L∞(0,T ;L2) ≤ C,(42)
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where C > 0 does not depend on τ . Estimate (41) implies the bound (36) since 12/(d+2) ≥
12/5 for d ≤ 3. Taking into account

∂3
ijkn

τ = ∂3
ijk(

√
nτ )2

= 2
√
nτ∂3

ijk

√
nτ + 2

(
∂i

√
nτ ∂2

jk

√
nτ + ∂j

√
nτ ∂2

ik

√
nτ + ∂k

√
nτ ∂2

ij

√
nτ
)
,

Hölder’s inequality and estimates (40)-(42) give

‖∇3nτ‖4/3

L4/3(0,T ;L2)
≤ C

∫ T

0

(
‖
√
nτ‖4/3

L∞‖∇3
√
nτ‖4/3

L2 + ‖∇
√
nτ‖4/3

L∞‖∇2
√
nτ‖4/3

L2

)
dt

≤ C‖
√
nτ‖4/3

L4(0,T ;L∞)‖∇3
√
nτ‖4/3

L2(0,T ;L2)

+ C‖∇
√
nτ‖4/3

L12/5(0,T ;L∞)
‖∇2

√
nτ‖4/3

L3(0,T ;L2) ≤ C,

since 12/d ≥ 4 for d ≤ 3. This proves (35). The first bound in (37) follows from (41),
while

∫ T

0

‖∇2
√
nτ (t)‖8/3

L12/5 dt ≤ B4

∫ T

0

‖
√
nτ (t)‖2(24+d)/27

H3 ‖
√
nτ (t)‖2(12−d)/27

L2 dt,

yields the second bound, since 2(24 + d)/27 ≤ 2. Finally, (38) is a consequence of (37)
in combination with the Lions-Villani estimate [17] on square roots (see Lemma 26 in the
Appendix). �

Lemma 11. For any finite T > 0, the sequence

(δτnτ ) is bounded in L4/3(0, T ;H−3(Td)),(43)

uniformly in τ > 0.

Proof. We need to show that there exists a constant M > 0 such that
∣∣∣∣
∫ T

0

∫

Td

δτnτ (t;x)ϕ(t;x) dx dt

∣∣∣∣ ≤M
∥∥ϕ‖L4(0,T ;H3)

holds for every test function ϕ ∈ L4(0, T ;H3(Td)), independently of τ > 0. Since, according
to (34), the discrete time derivative can be decomposed as

δτnτ = ∆3nτ + ∂3
ijkF

(ijk)
1 (nτ ) + ∂2

ijF
(ij)
2 (nτ )

in the sense of L4/3(0, T ;H−3(Td)), it suffices to discuss the three terms on the right-hand
side separately. For ∆3nτ , using Hölder inequality, it follows that

∣∣∣∣
∫ T

0

∫

Td

∂3
ijkϕ(t;x)∂3

ijkn
τ (t;x) dx dt

∣∣∣∣ ≤
∫ T

0

‖ϕ(t)‖H3‖nτ (t)‖H3 dt

≤ ‖ϕ‖L4(0,T ;H3)‖nτ‖L4/3(0,T ;H3),
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and the last expression is uniformly bounded with respect to τ in view of (35). Concerning

∂3
ijkF

(ijk)
1 , we find that

∣∣∣∣∣

∫ T

0

∫

Td

∂3
ijkϕ(t;x)F

(ijk)
1 (nτ (t;x)) dx dt

∣∣∣∣∣

≤ 4

∫ T

0

‖ϕ(t)‖H3‖∇
√
nτ (t)‖L∞

(
3‖∇2

√
nτ (t)‖L2 + 4‖∇ 4

√
nτ (t)‖2

L4

)
dt

≤ 4‖ϕ‖L4(0,T ;H3)‖∇
√
nτ‖L12/5(0,T ;L∞)

(
3‖∇2

√
nτ‖L3(0,T ;L2) + 4‖∇ 4

√
nτ‖2

L6(0,T ;L4)

)
,

which is bounded, in view of (36), (37), and (38). Finally,

∣∣∣∣∣

∫ T

0

∫

Td

∂2
ijϕ(t;x)F

(ij)
2 (nτ (t;x)) dx dt

∣∣∣∣∣ ≤
∫ T

0

‖∇2ϕ(t)‖L6

∥∥F2(nτ (t))
∥∥

L6/5 dt

≤ C

∫ T

0

‖ϕ(t)‖H3

(∥∥∇2
√
nτ (t)

∥∥
L12/5 + 8

∥∥∇ 4
√
nτ (t)

∥∥2

L24/5

)2
dt

≤ 2C‖ϕ‖L4(0,T ;H3)

(∥∥∇2
√
nτ
∥∥2

L8/3(0,T ;L12/5)
+ 16

∥∥∇ 4
√
nτ
∥∥4

L16/3(0,T ;L24/5)

)

shows that also ∂2
ijF

(ij)
2 is uniformly bounded with respect to τ in L4/3(0, T ;H−3(Td)), see

(37) and (38). �

Lemma 12. There exists a nonnegative function n ∈ L4/3(0, T ;H3(Td)) such that along a
suitable sequence τ ↓ 0,

nτ ⇀ n in L4/3(0, T ;H3(Td)),(44)

δτnτ ⇀ ∂tn in L4/3(0, T ;H−3(Td)),(45)
√
nτ →

√
n in L2(0, T ;H2(Td)),(46)

4
√
nτ → 4

√
n in L4(0, T ;W 1,4(Td)).(47)

Proof. Estimate (35) immediately implies (44), i.e., (a subsequence of) nτ converges weakly
to some limit n in L4/3(0, T ;H3(Td)). This convergence is even stronger: The τ -uniform
bound (43) on δτnτ allows us to apply Aubin’s compactness lemma [21] to nτ (using Lemma
A.2 of [4]). It follows that nτ converges strongly to the same limit n in L4/3(0, T ;H2(Td))
and that δτnτ converges to ∂tn weakly in L4/3(0, T ;H−3(Td)), proving (45).

Of course, nτ also converges strongly to n in L1(0, T ;L1(Td)). Therefore,

∫ T

0

∫

Td

∣∣√nτ (t;x) −
√
n(t;x)

∣∣2 dx dt ≤
∫ T

0

∫

Td

∣∣nτ (t;x) − n(t;x)
∣∣ dx dt→ 0,



A NONLINEAR SIXTH-ORDER EQUATION 21

since |√a −
√
b|2 ≤ |a − b| for a, b ≥ 0. It follows that

√
nτ converges strongly to

√
n in

L2(0, T ;L2(Td)). Invoking the Gagliardo-Nirenberg inequality, we obtain
∫ T

0

‖∇2
√
nτ (t) −∇2

√
n(t)‖2

L2 dt ≤ B

∫ T

0

‖
√
nτ (t) −

√
n(t)‖4/3

H3 ‖
√
nτ (t) −

√
n(t)‖2/3

L2 dt

≤ B

(∫ T

0

(
‖
√
nτ (t)‖2

H3 + ‖
√
n(t)‖2

H3

)
dt

)2/3(∫ T

0

‖
√
nτ (t) −

√
n(t)‖2

L2 dt

)2/3

,

which tends to zero since
√
nτ is uniformly bounded with respect to τ in L2(0, T ;H3(Td)),

by (35), and it converges strongly to
√
n in L2(0, T ;L2(Td)). This proves (46).

Finally, (47) is a consequence of Proposition 27 (see the Appendix), applied with α =
1/2, β = 1/6, γ = 1/4, and p = 2, q = 6, r = 4. Indeed, a simple combination of

the strong convergence of
√
nτ in L2(0, T ;H2(Td)) with the boundedness of (

6
√
nτ ) in

L6(0, T ;W 1,6(Td)) (see (39)) gives the conclusion. �

Proof of Theorem 1. It remains to prove that the limit function n ∈ L4/3(0, T ;H3(Td))
from Lemma 12 is the sought weak solution for (8). In other words, we need to identify
the limit ∂tn with the right-hand side of (4). We recall that, by the weak convergence of
δτnτ to ∂tn in L4/3(0, T ;H−3(Td)),

∫ T

0

〈∂tn, ϕ〉 dt = lim
τ↓0

∫ T

0

〈δτnτ , ϕ〉 dt

holds for all ϕ ∈ L4(0, T ;H3(Td)). In view of (34), the goal is thus to prove that

lim
τ↓0

∫ T

0

∫

Td

(
∂3

ijkϕ∂
3
ijkn

τ + ∂3
ijkϕF

(ijk)
1 (nτ ) − ∂2

ijϕF
(ij)
2 (nτ )

)
dx dt

=

∫ T

0

∫

Td

(
∂3

ijkϕ∂
3
ijkn+ ∂3

ijkϕF
(ijk)
1 (n) − ∂2

ijϕF
(ij)
2 (n)

)
dx dt

for all test functions ϕ from some dense set of L4(0, T ;H3(Td)). Since the C∞ functions

are dense in that set, it suffices to prove the weak convergence of ∂3
ijkn

τ , F
(ijk)
1 (nτ ), and

F
(ij)
2 (nτ ) to their respective limits ∂3

ijkn, F
(ijk)
1 (n), and F

(ij)
2 (n) in L1(0, T ;L1(Td)).

First term of the integrand. From (44), it follows in particular that ∂3
ijkn

τ converges

weakly to ∂3
ijkn in L4/3(0, T ;L2(Td)) for any combination of the indices i, j, and k, and

thus, as τ ↓ 0, ∫ T

0

∫

Td

∂3
ijkϕ∂

3
ijkn

τ dx dt→
∫ T

0

∫

Td

∂3
ijkϕ∂

3
ijkn dx dt.

Second term of the integrand. We recall the definition of F
(ij)
1 from (5). As a consequence

of (47), the first-order derivatives ∂j
4
√
nτ converge strongly to ∂j

4
√
n in L4(0, T ;L4(Td))

for all j. As a product of strongly convergent sequences, each ∂j
4
√
nτ ∂k

4
√
nτ converges

strongly in L2(0, T ;L2(Td)) to the respective product ∂j
4
√
n ∂k

4
√
n. Clearly, all second-

order derivatives ∂2
jk

√
nτ tend strongly to their respective limits ∂2

jk

√
n in L2(0, T ;L2(Td))
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as well, taking into account (46). In combination with the strong convergence of ∂i

√
nτ

to ∂i

√
n in L2(0, T ;L2(Td)), by (46), it follows that each F

(ijk)
1 (nτ ) is the sum of products

of two strongly convergent sequences in L2(0, T ;L2(Td)) and consequently, the product
converges strongly in L1(0, T ;L1(Td)) to the product of the limits:

∫ T

0

∫

Td

∂3
ijkϕF

(ijk)
1 (nτ ) dx dt→

∫ T

0

∫

Td

∂3
ijkϕF

(ijk)
1 (n) dx dt.

Third term of the integrand. Arguing as above, it follows from (46) and (47) that both

summands in F
(ij)
2 (nτ ) converge strongly in L2(0, T ;L2(Td)) to their respective limits, and

so the sequence of the product converges strongly in L1(0, T ;L1(Td)) to the product of the
limit. This means that

∫ T

0

∫

Td

∂2
ijϕF

(ij)
2 (nτ ) dx dt→

∫ T

0

∫

Td

∂2
ijϕF

(ij)
2 (n) dx dt.

finishing the proof. �

5. Exponential time decay of weak solutions

Proof of Theorem 2. Let τ > 0 and let nτ
1, n

τ
2, . . . be the sequence of solutions to the

semi-discretized problem constructed in Proposition 8. The discrete entropy estimate (23)
implies that

H[nτ
k] + τκ

∫

Td

|∇3
√
nτ

k|2 dx ≤ H[nτ
k−1], k ∈ N.

with a positive constant κ > 0 independent of k and τ . Employing the generalized loga-
rithmic Sobolev inequality,

∫

Td

nτ
k log

( nτ
k

‖nτ
k‖L1(Td)

)
dx ≤ 1

32π6

∫

Td

‖∇3
√
nτ

k‖2 dx,

which is proven as in [13], and observing that ‖nτ
k‖L1(Td) = ‖n0‖L1(Td) = 1, we infer that

H[nτ
k] ≤

1

32π6

∫

Td

‖∇3
√
nτ

k‖2 dx.

Then the above entropy inequality yields

H[nτ
k] + 32π6τκH[nτ

k] ≤ H[nτ
k−1], k ∈ N,

which in turn implies for all t ∈ ((k − 1)τ, kτ ] that

H[nτ (t)] ≤
(
1 + 32π6τκ

)−t/τH[n0],

since k ≥ t/τ . Recall that nτ (t) converges a.e. to n(t) as τ → 0, and observe that
(1 + 32π6τκ)−t/τ converges to exp(−32π6κt). Thus the limit τ → 0 gives

H[n(t)] ≤ H[n0]e
−32π6κt, t ≥ 0.

An application of the Csiszár-Kullback-Pinsker inequality (see, e.g., [22, Section 2]) con-
cludes the proof. �
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6. Existence and uniqueness of classical solutions

In this section, we invoke the machinery of analytic semigroups to prove Theorem 3.
Our approach follows closely the strategy developed in [2] by Bleher at al. for the fourth-
order DLSS equation. However, the more complicated structure of the nonlinearities in
our sixth-order equation induces a variety of additional technical difficulties.

6.1. Definitions. We collect some standard results on the operator ∆3. By abuse of nota-
tion, we use the symbol ∆3 for the L1(Td)-closure of the operator ∆3ϕ =

∑d
i,j,k=1 ∂

2
i ∂

2
j ∂

2
kϕ,

defined for ϕ ∈ C∞(Td). Define the auxiliary function H ∈ C∞(Rd) by

H(z) = (2π)−d

∫

Rd

e−|ζ|6eiζ·z dζ,

and introduce for each t > 0 the so-called solution kernel G(t) ∈ C∞(Td) by

G(t; y) = t−d/6
∑

Λ∈Zd

H
(
t−1/6(y + Λ)

)
.

The series converges since H(z) decays exponentially for |z| → ∞. Classical parabolic
theory provides the following result.

Lemma 13. Let m ∈ N0, p ∈ [1,∞), and α ∈ (0, 1). If u ∈ Wm,p(Td), then the convolution
U(t) = G(t) ⋆ u defines a smooth curve, satisfying

U ∈ C∞((0,∞);C∞(Td)) ∩ C0([0,∞);Wm,p(Td)),
d

dt
U(t) = ∆3U(t), U(0) = u.(48)

If w ∈ Cα([t1, t2];W
m,p(Td)) is a Hölder continuous curve on [t1, t2], then the function

W (t) =

∫ t

t1

G(t− s) ⋆ w(s) ds

defines a Hölder continuously differentiable curve, satisfying

W ∈ C1,α([t1, t2];W
m+6,p(Td)),

d

dt
W (t) = ∆3W (t) + w(t), W (t1) = 0.(49)

Proof. The proof of (48) and (49) is technical but standard. One possible approach, which
would be most similar to [2], is to observe that −∆3 is the generator of the analytic
semigroup defined by t 7→ G(t) ⋆ f for all f ∈ L1(Td). We refer to [10, Chapter 3] or to
[19, Chapter 4] for further details on the semigroup approach. �

Apart from Lemma 13, we shall not need classical results on parabolic equations. Instead,
we derive our core estimates with the help of the following lemma.

Lemma 14. For given α ∈ N
d
0, p ≥ 1, and t > 0, the kernel G satisfies the estimate
∥∥DαG(t)

∥∥
Lp ≤ Γt−(|α|+d(1−1/p))/6,(50)

where Γ > 0 is independent of t > 0.

Here and in the following, Dα denotes a partial derivative of order |α|.



24 M. BUKAL, A. JÜNGEL, AND D. MATTHES

Proof. For t > 0, define the half-open cube Q(t) = [0, t−1/6)d ⊂ R
d. Using the change of

variables z(t) = t−1/6y, we obtain

‖DαG(t)‖Lp(Td) = t−d/6

(∫

[0,1)d

∑

Λ∈Zd

∣∣Dα
y H
(
t−1/6(y + Λ)

)∣∣p dy

)1/p

≤ t−d/6
∑

Λ∈Zd

(∫

Q(t)

∣∣t−|α|/6 Dα
z H(z + t−1/6Λ)

∣∣ptd/6 dz

)1/p

= t−(d+|α|−d/p)/6

(∫

Rd

∣∣Dα
z H(z)

∣∣p dz

)1/p

.

Here we used the Minkowski inequality and the fact that, for each t > 0, the space R
d is

the disjoint union of the cubes Q(t) + t−1/6Λ, where Λ ∈ Z
d. So Γ = ‖DαH̃‖Lp(Rd) is the

required constant. �

6.2. Existence and uniqueness of a mild solution. Our main result of this subsection
is contained in the following proposition.

Proposition 15. Let n0 ∈ H2(Td) be strictly positive. Then there exist T > 0 and precisely
one continuous curve n : [0, T ] → H2(Td) with n(0) = n0 that satisfies the following “very
mild” formulation of (4):

n(t) = G(t) ⋆ n0 + ∂3
ijk

∫ t

0

G(t− s) ⋆ F
(ijk)
1 (n(s)) ds+ ∂2

ij

∫ t

0

G(t− s) ⋆ F
(ij)
2 (n(s)) ds

(51)

for every t ∈ (0, T ). This solution is differentiable with respect to t ∈ (0, T ) with a Hölder
continuous derivative, i.e. n ∈ C1,1/12([τ, T ];H2(Td)) for every τ ∈ (0, T ).

To prove Proposition 15, we adapt the proof of Theorem 4.2 (a) in [2] to the situation
at hand. That means, we are going to obtain the solution n to (51) as the unique fixed
point of the map u 7→ Φ[u], defined by

Φ[u](t) = G(t) ⋆ n0 + Ψ[u](t)(52)

on a suitable set VT ⊂ C0([0, T ];H2(Td)), where Ψ = ∂3
ijkψ

(ijk)
1 + ∂2

ijψ
(ij)
2 and

ψ
(ijk)
1 [u](t) =

∫ t

0

G(s) ⋆ F
(ijk)
1 (u(t− s)) ds, ψ

(ij)
2 [u](t) =

∫ t

0

G(s) ⋆ F
(ij)
2 (u(t− s)) ds.

(53)

The core ingredient of the proof of Proposition 15 is the following Lipschitz estimate on

the nonlinearities F
(ijk)
1 and F

(ij)
2 .

Lemma 16. For any 0 < δ < 1, F
(ijk)
1 and F

(ij)
2 are Lipschitz continuous as mappings

from any bounded subset of

Uδ =
{
u ∈ H2(Td) : min

x
u(x) ≥ δ, ‖u‖H2 ≤ δ−1

}
(54)
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into L3/2(Td) and into L1(Td), respectively, satisfying

‖F (ijk)
1 (u)‖L3/2 ≤M1δ

−5, ‖F (ijk)
1 (u1) − F

(ijk)
1 (u2)‖L3/2 ≤M1δ

−4‖u1 − u2‖H2 ,(55)

‖F (ij)
2 (u)‖L1 ≤M2δ

−7, ‖F (ij)
2 (u1) − F

(ij)
2 (u2)‖L1 ≤M2δ

−6‖u1 − u2‖H2 ,(56)

for all u, u1, u2 ∈ Uδ, where M1 and M2 are universal constants. Moreover, F
(ijk)
1 and F

(ij)
2

map

U ′
δ =

{
u ∈ Uδ ∩W 3,3/2(Td) : ‖u‖W 3,3/2 ≤ δ−1

}

into L2(Td) and L3/2(Td), respectively, satisfying

‖F (ijk)
1 (u)‖L2 ≤M1δ

−5, ‖F (ijk)
1 (u1) − F

(ijk)
1 (u2)‖L2 ≤M1δ

−4‖u1 − u2‖H2 ,(57)

‖F (ij)
2 (u)‖L3/2 ≤M2δ

−7, ‖F (ij)
2 (u1) − F

(ij)
2 (u2)‖L3/2 ≤M2δ

−6‖u1 − u2‖H2 ,(58)

for all u, u1, u2 ∈ U ′
δ.

Proof. Since we are working in dimensions d ≤ 3, every u ∈ Uδ is a strictly positive and
continuous function on T

d, with ∂2
iju ∈ L2(Td) and ∂iu ∈ L6(Td). It follows that we can

write

F
(ijk)
1 (u) = 2

∂iu∂ju∂ku

u2
− 3

∂iu∂
2
jku

u
,(59)

F
(ij)
2 (u) = 2

∂2
iku∂

2
kju

u
− 4

∂2
iku∂ku∂ju

u2
+ 2

(∂ku)
2∂iu∂ju

u3
.(60)

Thus, F
(ijk)
1 and F

(ij)
2 are sums of products of derivatives (of order one or two) of u, divided

by a power of u. By application of Hölder’s inequality and the continuity of the Sobolev
embedding H2(Td) →֒ W 1,6(Td), one readily verifies the first inequalities in (55) and (56).
The Lipschitz continuity is straightforward to verify from the representations (59) and
(60) by repeated application of the triangle inequality. For proving (57) and (58), we use
additionally the continuous embedding W 3,3/2(Td) →֒ W 2,3(Td). �

A consequence of the above lemma is that Ψ maps bounded curves u into Hölder con-
tinuous curves.

Lemma 17. Assume that there exists a δ > 0 such that u ∈ C([0, T );H2(Td)) satisfies

(1) either u(t) ≥ δ and ‖u(t)‖H2 ≤ δ−1,
(2) or u(t) > 0 and E [u(t)] ≤ δ−1

for all 0 ≤ t ≤ T . Then Ψ[u] ∈ C1/12([0, T ];H2(Td)), i.e.,

‖Ψ[u](t′) − Ψ[u](t)‖H2 ≤ L|t′ − t|1/12 for all t, t′ ∈ [0, T ],(61)

where L > 0 depends on δ, but not on u.

Proof. To begin with, we remark that

‖F (ijk)
1 (u(t))‖L3/2 ≤ Z1 and ‖F (ij)

2 (u(t))‖L1 ≤ Z2(62)
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holds for all t ∈ [0, T ], where the positive constants Z1 and Z2 depend on δ > 0 only. Indeed,
if the first set of assumptions on u is satisfied, then (62) is an immediate consequence of
Lemma 16. If instead the second set of assumptions is satisfied, then Hölder’s inequality
implies

‖F (ijk)
1 (u(t))‖L3/2 ≤ 4‖∇

√
u(t)‖L6

(
4‖∇ 4

√
u(t)‖2

L4 + 3‖∇2
√
u(t)‖L2

)
,

‖F (ij)
2 (u(t))‖L1 ≤ 8

(
‖∇2

√
u(t)‖L2 + 4‖∇ 4

√
u(t)‖2

L4

)2
.

In view of (10) and Lemma 26 (see the Appendix), these right-hand sides are controlled
in terms of E [u(t)] ≤ δ−1 only.

Now, let t, t′ ∈ [0, T ] be given with τ = t′ − t > 0. For a given α ∈ N
d
0 with |α| = 2,

introduce

Θα(t; τ) =
∥∥Dα

(
Ψ[u](t+ τ) − Ψ[u](t)

)∥∥
L2 .

By definition of Ψ and a change of variables under the integrals, we find that

Θα(t; τ) ≤
∫ t

0

(∥∥Dα∂3
ijk(G(s+ τ) −G(s)) ⋆ F

(ijk)
1 (u(t− s))

∥∥
L2

+
∥∥Dα ∂2

ij(G(s+ τ) −G(s)) ⋆ F
(ij)
2 (u(t− s))

∥∥
L2

)
ds

+

∫ τ

0

(∥∥Dα∂3
ijkG(s) ⋆ F

(ijk)
1 (u(t+ τ − s))

∥∥
L2

+
∥∥Dα∂2

ijG(s) ⋆ F
(ij)
2 (u(t+ τ − s))

∥∥
L2

)
ds.

Using (62) and Young’s inequality for convolutions,

‖φ ⋆ ψ‖Lp ≤ Υ‖φ‖Lq‖ψ‖Lr ,

for φ ∈ Lp(Rd), ψ ∈ Lr(Rd), and 1 + 1/p = 1/q + 1/r, where Υ > 0, the term under the
last integral above can be estimated for 0 < s < τ as follows:

∥∥Dα∂3
ijkG(s) ⋆ F

(ijk)
1 (u(t+ τ − s))

∥∥
L2 ≤ Υ1‖∇5G(s)‖L6/5‖F1(u(t+ τ − s))‖L3/2

≤ Υ1Z1Γ1

sϑ1
,

∥∥Dα ∂2
ijG(s) ⋆ F

(ij)
2 (u(t+ τ − s))

∥∥
L2 ≤ Υ2‖∇4G(s)‖L2‖F2(u(t+ τ − s))‖L1

≤ Υ2Z2Γ2

sϑ2
,

where, according to (50), the exponents are given by

ϑ1 = (5 + d/6)/6 < 1 and ϑ2 = (4 + d/2)/6 < 1.
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We apply the analogous estimate to the expression under the first integral, and estimate
further by employing relation (48). For 0 < s < t, we have

∥∥∇5(G(τ + s) −G(s))
∥∥

L6/5 ≤
∥∥∥∥∇

5

∫ s+τ

s

∆3G(σ) dσ

∥∥∥∥
L6/5

≤
∫ s+τ

s

∥∥∇5(∆3G(σ))
∥∥

L6/5 dσ ≤ Γ′
1

∫ s+τ

s

dσ

σ1+ϑ1
=

Γ′
1

ϑ1

(
s−ϑ1 − (s+ τ)−ϑ1

)
.

In a similar fashion, we obtain

∥∥∇4(G(s+ τ) −G(s))
∥∥

L2 ≤
Γ′

2

ϑ2

(
s−ϑ2 − (s+ τ)−ϑ2

)
.

In summary, this leads to

Θα(t; τ) ≤ Υ1Z1Γ
′
1

ϑ1

∫ t

0

(
s−ϑ1 − (s+ τ)−ϑ1

)
ds+

Υ2Z2Γ
′
2

ϑ2

∫ t

0

(
s−ϑ2 − (s+ τ)−ϑ2

)
ds

+ Υ1Z1Γ1

∫ τ

0

s−ϑ1 ds+ Υ2Z2Γ2

∫ τ

0

s−ϑ2 ds

≤ Υ1Z1Γ
′
1

(1 − ϑ1)ϑ1

(
(t+ τ)1−ϑ1 − t1−ϑ1

)
+

Υ2Z2Γ
′
2

(1 − ϑ2)ϑ2

(
(t+ τ)1−ϑ2 − t1−ϑ2

)

+
Υ1Z1Γ1

1 − ϑ1

τ 1−ϑ1 +
Υ2Z2Γ2

1 − ϑ2

τ 1−ϑ2 .

To finish the proof, we observe that, since 0 < ϑi < 1, we have (t+ τ)1−ϑi ≤ t1−ϑi + τ 1−ϑi ,
and ϑi ≤ 11/12 in dimensions d ≤ 3. This proves the Hölder continuity of Θα(t; τ) with
exponent 1/12 for |α| = 2. The cases |α| = 1 and α = 0 are similar. �

Proof of Proposition 15. As indicated above, we are going to show that Φ, given by (52), is
a well-defined contraction on a suitable subset VT ⊂ C([0, T ];H2(Td)) for some sufficiently
small T > 0.

Recall the definition of Uδ from (54). Since n0 ∈ H2(Td) is strictly positive by assump-
tion, we can choose δ > 0 such that n0 ∈ U2δ. Accordingly, for a given T > 0, define

VT =
{
u ∈ C0([0, T ];H2(Td)) : u(t) ∈ Uδ for all t ∈ [0, T ]}.

Fix a curve u ∈ VT . In view of Lemma 16, F
(ijk)
1 (u) and F

(ij)
2 (u) are continuous curves on

[0, T ] with values in L3/2(Td) and L1(Td), respectively.
Since Φ[u](0) = n0 for every u ∈ VT , the H2-distance of Φ[u](t) to n0 becomes small as

t ↓ 0, uniformly in u ∈ VT . Moreover, since the infimum of Φ[u](t) is controlled in terms
of this distance, one may choose T > 0 sufficiently small to achieve Φ[u](t) ∈ Uδ for all
t ∈ [0, T ] and u ∈ VT . Hence, Φ : VT → VT is well-defined.

Next, we verify the contraction property of Φ. The calculations follow the same pattern
as above, now using the Lipschitz estimates in (55) and (56). Let u1, u2 ∈ VT be given.
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Then, for |α| = 2,

∥∥Dα
(
Φ[u1](t) − Φ[u2](t)

)∥∥
L2 ≤

∫ t

0

(∥∥∇5G(t− s) ⋆ (F
(ijk)
1 (u1(s)) − F

(ijk)
1 (u2(s)))

∥∥
L2

+
∥∥∇4G(t− s) ⋆ (F

(ij)
2 (u1(s)) − F

(ij)
2 (u2(s)))

∥∥
L2

)
ds

≤ Υ1M1δ
−4

∫ t

0

(t− s)−ϑ1‖u1(s) − u2(s)‖H2 ds

+ Υ2M2δ
−6

∫ t

0

(t− s)−ϑ2‖u1(s) − u2(s)‖H2 ds

≤
(

Υ1M1

δ4(1 − ϑ1)
+

Υ2M2

δ6(1 − ϑ2)

)
T 1/12

× sup
0≤s′≤T

‖u1(s
′) − u2(s

′)‖H2 .

Similar estimates are obtained for |α| ≤ 1. Diminishing T further if necessary, it follows
that Φ is contractive on VT . The claim about the Hölder continuity is a consequence of
(61) in combination with (48). �

6.3. Bootstrapping. We prove that the very mild solution to (4) is actually smooth for
t > 0. To this end, we need the following lemma.

Lemma 18. Let δ > 0 be given. For each m ≥ 1, there exist continuous and increasing

functions Q
(m)
1 , Q

(m)
2 : R+ → R+ such that

‖F (ijk)
1 (u1) − F

(ijk)
1 (u2)‖Hm ≤ Q

(m)
1

(
‖u1‖Hm+1 + ‖u2‖Hm+1

)
‖u1 − u2‖Hm+2 ,(63)

‖F (ij)
2 (u1) − F

(ij)
2 (u2)‖W m,3/2 ≤ Q

(m)
2

(
‖u1‖Hm+1 + ‖u2‖Hm+1

)
‖u1 − u2‖Hm+2(64)

holds (componentwise) for all u ∈ Uδ ∩Hm+2(Td).

Observe that this Lemma does not apply for m = 0, in which case one has to resort to
the estimates provided in Lemma 16.

Proof. Basically, we follow the ideas of the proof of Lemma 16, namely we apply several
times the triangle inequality, the Hölder inequality, and continuous Sobolev embeddings.
However, due to the higher-order derivatives, the proof is technically more involved. Rep-

resentations (59) and (60) show that F
(ijk)
1 and F

(ij)
2 are sums of products of derivatives of

u divided by a power of u, i.e. sums of monomials of the form

(65)
Dα1

u . . .Dαk
u

uk−1
,

where αℓ ∈ N
d
0, ℓ = 1, . . . , k, 1 ≤ |αℓ| ≤ 2, and

∑k
ℓ=1 |αl| = K equals 3 and 4 for F

(ijk)
1 and

F
(ij)
2 , respectively. A partial derivative of such a monomial is again a sum of monomials of
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the form (65):

Dα
(Dα1

u . . .Dαk
u

uk−1

)
=
∑ Dβ1

u Dβ2
u . . .Dβr

u

ur−1
,

for α ∈ N
d
0, |α| ≤ m, 1 ≤ |βℓ| ≤ m+2, k ≤ r ≤ k+ |α|, and

∑r
ℓ=1 |βℓ| = K+ |α|. In view of

the continuous Sobolev embeddings Hm+2(Td) →֒ Wm+1,6(Td) and Hm+2(Td) →֒ Cm(Td),

it follows from the above representation of DαF
(ijk)
1 (u) and DαF

(ij)
2 (u) that for every u ∈

Hm+2(Td), it holds that DαF
(ijk)
1 (u) ∈ L2(Td) and DαF

(ij)
2 (u) ∈ L3/2(Td) for each |α| ≤ m

and m ≥ 1. Then, by the repeated application of the triangle and Hölder inequalities, we

obtain functions Q
(m)
1 and Q

(m)
2 as well as the estimates (63) and (64). �

Proposition 19. The very mild solution from Proposition 15 is a continuously differen-
tiable curve from (0, T ] to C∞(Td).

Proof. Let τ ∈ (0, T ) be fixed. We are going to prove, inductively on m, that

n ∈ C1,1/12([τ, T ];Hm+2(Td))(66)

for every integer m ∈ N0. For m = 0, the claim (66) is part of the conclusion of Proposition
15 above. The compositions of the Hölder continuous curve n with the locally Lipschitz

continuous nonlinearities F
(ijk)
1 and F

(ij)
2 (see Lemma 16) are Hölder continuous with the

same exponent, F
(ijk)
1 (n) ∈ C1/12([τ, T ];L3/2(Td)) and F

(ij)
2 (n) ∈ C1/12([τ, T ];L1(Td)). For

ψ
(ijk)
1 and ψ

(ij)
2 , defined in (53), the second part of Lemma 13 implies that ψ

(ijk)
1 [n] ∈

C1,1/12([τ, T ];W 6,3/2(Td)) and ψ
(ij)
2 [n] ∈ C1,1/12([τ, T ];W 6,1(Td)). In combination with

(48), it thus follows directly from (51) that n ∈ C1/12([τ, T ];W 3,3/2(Td)). An iteration

leads, via (57), to the improved regularity F
(ijk)
1 (n) ∈ C1/12([τ, T ];L2(Td)), and thus

to ψ
(ijk)
1 [n] ∈ C1,1/12([τ, T ];H6(Td)). Furthermore, by (58), we infer that F

(ij)
2 (n) ∈

C1/12([τ, T ];L3/2(Td)) and hence, ψ
(ij)
2 [n] ∈ C1,1/12([τ, T ];W 6,3/2(Td)). By the continuity

of the embedding W 6,3/2(Td) →֒ H5(Td), it follows that ψ
(ij)
2 [n] ∈ C1,1/12([τ, T ];H5(Td)).

Then the representation (51) proves (66) with m = 1.

Assuming (66) for some m ≥ 1, it follows from Lemma 18 that F
(ijk)
1 (n) ∈ C1/12([τ, T ];

Hm(Td)) and F
(ij)
2 (n) ∈ C1/12([τ, T ];Wm,3/2(Td)). By property (49) of the kernel G and

since the Sobolev embedding Wm+6,3/2(Td) →֒ Hm+5(Td) is continuous, we infer that

ψ
(ijk)
1 ∈ C1,1/12([τ, T ];Hm+6(Td)) and ψ

(ij)
2 ∈ C1/12([τ, T ];Hm+5(Td)). Using this inside

the representation (51) and combining it with the smoothness property (48), we arrive at
n ∈ C1,1/12([τ, T ];Hm+3(Td)), which implies (66) with m replaced by m+ 1. �

Proof of Theorem 3. First, we extend the local solution n ∈ C([0, T ];H2(Td)) obtained
from Proposition 15 to the respective maximal solution nmax by the usual procedure: Pro-
vided that n(T ) ∈ H2(Td) is strictly positive, we can invoke Proposition 15 with the new
initial datum ñ0 := n(T ), thus obtaining another very mild solution ñ : [0, T̃ ] → H2(Td)
to (4). Using the semigroup property G(τ) ⋆ G(σ) = G(τ + σ) for arbitrary σ, τ > 0, it
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can be easily checked that the concatenation n+ : [0, T + T̃ ] → H2(Td), given by

n+(t) =

{
n(t) for 0 ≤ t ≤ T ,

ñ(t− T ) for T ≤ t ≤ T + T̃
,

is another continuous curve satisfying (51).
The maximal solution nmax : [0, T∗) → H2(Td) is the uniquely determined curve that

satisfies (51) on every subinterval [0, T ] ⊂ [0, T∗), but it cannot be extended to a solution
on [0, T∗]. In view of our solution concept, this means that

(1) either T∗ = +∞, i.e., the solution is global,
(2) or nmax(t) → n∗ in H2(Td) as t ↑ T∗, but the limiting profile n∗ is not strictly

positive,
(3) or nmax(t) does not converge in H2(Td) as t ↑ T∗.

We are going to exclude the last option. First notice that Proposition 19 guarantees
that n is a classical and positive solution on every subinterval (0, T ] ⊂ (0, T∗), so nmax ∈
C∞((0, T∗);C

∞(Td)), as desired. This means that, in turn, the formal calculation (17) is
rigorous. Combining this with the continuity of nmax(t) in H2(Td) at t = 0, it follows that
E [nmax(t)] ≤ E [n0] < ∞ is uniformly bounded on [0, T∗). If T∗ < ∞, then nmax satisfies
hypothesis (2) of Lemma 17. Since nmax(t) = G(t) ⋆ n0 + Ψ[nmax](t) by definition, it is a
Hölder continuous curve with exponent 1/12 in H2(Td) on, say, [T∗/2, T∗) with a uniform
Hölder constant L. This implies, in particular, that nmax(t) converges in H2(Td) to a limit
n∗. �

7. From weak to classical solutions

In this brief last section, we prove Theorem 4 about the passage from weak to classical
solutions. In preparation of the proof of Theorem 4, we first show that any weak solution
satisfies the very mild formulation (51), but in a weaker sense.

Lemma 20. Any weak solution n in the sense of Theorem 1 is a Hölder continuous curve
in H−3(Td), satisfying, for t > 0,

n(t) = G(t) ⋆ n0 + ∂3
ijk

∫ t

0

G(t− s) ⋆ F
(ijk)
1 (n(s)) ds+ ∂2

ij

∫ t

0

G(t− s) ⋆ F
(ij)
2 (n(s)) ds.

(67)

Proof. By our definition of a weak solution, n lies in W
1,4/3
loc (0,∞;H−3(Td)). As a conse-

quence, n is a Hölder continuous curve with exponent 1/3 in H−3(Td) and, in particular, n
is absolutely continuous in H−3(Td). Hence, its time derivative ∂tn(t) is defined in H−3(Td)

for almost every t > 0. Moreover, n ∈ L
4/3
loc (0,∞;H3(Td)), thus, n(t) ∈ H3(Td) for almost

every t > 0 and ∆3n ∈ L
4/3
loc (0,∞;H−3(Td)). It follows that

g := ∂tn− ∆3n ∈ L
4/3
loc (0,∞;H−3(Td)).
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For fixed t > 0, consider the continuous curve u : (0, t) → C∞(Td), defined by u(s) =
G(t− s) ⋆ n(s). Recalling (48), it follows for arbitrary 0 < s < t that

∂su(s) = −∆3G(t− s) ⋆ n(s) +G(t− s) ⋆ ∂sn(s)

= G(t− s) ⋆ (∂sn(s) − ∆3n(s)) = G(t− s) ⋆ g(s).

Therefore, u ∈W
1,4/3
loc (0,∞;H−3(Td)), and

lim
t′↑t

u(t′) = u(0) +

∫ t

0

G(t− s) ⋆ g(s) ds.

Since u(0) = G(t) ⋆ n0 and u(t′) → n(t) in H−3(Td) as t′ ↑ t, formula (67) follows. �

Lemma 21. Let n be a weak solution to (51) whose energy is uniformly bounded on (T1, T2).

Then F
(ijk)
1 (n(t)) is bounded in L3/2(Td) and F

(ij)
2 (n(t)) is bounded in L1(Td), uniformly

in (T1, T2).

Proof. By the Hölder and the Sobolev inequalities and Lemma 26 (see the Appendix), it
follows that

‖F (ijk)
1 (n(t))‖L3/2 ≤ 4‖∇

√
n(t)‖L6

(
4‖∇ 4

√
n(t)‖2

L4 + 3‖∇2
√
n(t)‖L2

)

≤ 4C‖
√
n(t)‖H2(4C2

LV‖
√
n(t)‖H2 + 3)‖

√
n(t)‖H2 ,

‖F (ij)
2 (n(t))‖L1 ≤ 8

(
‖∇2

√
n(t)‖L2 + 4‖∇ 4

√
n(t)‖2

L4

)2

≤ 8
(
1 + 4C2

LV‖
√
n(t)‖H2

)2‖
√
n(t)‖2

H2 .

The last terms are uniformly controlled in terms of E [n(t)] which concludes the proof. �

In the following, let n be a weak solution satisfying the hypotheses of Theorem 4. With-
out loss of generality we may take t0 = 0. Then n0 ∈ H2(Td) and minn0(x) > 0. Since we
are working with a solution of uniformly bounded energy, it is a priori clear that n(t) is
bounded in H2(Td). Actually, more is true.

Lemma 22. A weak solution n is a Hölder continuous curve in H2(Td) on any time
interval on which its energy is uniformly bounded.

Proof. Let t > 0 and τ > 0 be fixed. SinceG(t−s) ∈ C∞(Td) and f(n(s)) = ∂3
ijkF

(ijk)
1 (n(s))

+∂2
ijF

(ij)
2 (n(s)) ∈ H−3(Td) for all s ∈ (0, t), we have G(t−s)⋆f(n(s)) ∈ C∞(Td). It follows

that

∇2G(t− s) ⋆ f(n(s)) = ∇2∂3
ijkG(t− s) ⋆ F

(ijk)
1 (n(s)) + ∇2∂2

ijG(t− s) ⋆ F
(ij)
2 (n(s)).

By Young’s inequality, it follows further that

‖∇2G(t− s) ⋆ f(n(s))‖L2 ≤ C
(
‖∇5G(t− s)‖L6/5‖F (ijk)

1 (n(s))‖L3/2

+ ‖∇4G(t− s)‖L2‖F (ij)
2 (n(s))‖L1

)

≤ C
(
(t− s)−(5+d/6)/6 + (t− s)−(4+d/2)/6

)

≤ C(t− s)−11/12,
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where C > 0 is a generic constant and recalling that d ≤ 3. This implies that, for all
t ∈ (0, T ) and τ > 0,

∥∥∥∥∇
2

∫ t+τ

t

G(t+ τ − s) ⋆ f(n(s)) ds

∥∥∥∥
L2

≤ C
(
(t+ τ)1/12 − t1/12

)
≤ Cτ 1/12.

Similarly, we find that
∥∥∇2

(
G(t+ τ − s) −G(t− s) ⋆ f(n(s))

)∥∥
L2

≤ C
(∥∥∇5(G(t+ τ − s) −G(t− s))‖L6/5‖F (ijk)

1 (n(s))‖L3/2

+
∥∥∇4

(
G(t+ τ − s) −G(t− s)

)
‖L2‖F (ij)

2 (n(s))‖L1

)
.

By relation (48), for m = 4, 5,

∥∥∇m
(
G(t+ τ − s) −G(t− s)

)
‖Lp ≤

∥∥∥∥∇
m

∫ t+τ−s

t−s

dG

dθ
(ϑ) dϑ

∥∥∥∥
Lp

≤
∫ t+τ−s

t−s

‖∇m∆3G(ϑ)‖Lp dϑ ≤ Γ

∫ t+τ−s

t−s

ϑ−1−(m+d(1−1/p))/6 dϑ.

As in the proof of Lemma 17, this proves the continuity with the Hölder exponent 1/12. �

The above results, together with Theorem 3, provide the proof of Theorem 4.

Appendix

We provide a collection of functional inequalities used throughout the calculations.

Lemma 23. Let m ∈ N be given. Then there exists a constant C > 0 such that for all
u ∈ Hm(Td),

‖u‖Hm ≤ C
(
‖∇mu‖L2 + ‖u‖L2

)
.

Lemma 24. Let m,n ∈ N and 1 ≤ p, r ≤ ∞ be given and assume that n−d/r < m−d/p.
Then the Sobolev space Wm,p(Td) embeds compactly into W n,r(Td). In the borderline case,
if n− d/r = m− d/p is not an integer, the embedding is still continuous.

The following result is from [23, p.1034]).

Lemma 25 (Gagliardo–Nirenberg inequality). Let m, n ∈ N0 with m > n and let 1 ≤
p, q, r ≤ ∞. Assume that there exists θ ∈ (0, 1) such that

n− d

r
= θ
(
m− d

p

)
− (1 − θ)

d

q
.

There exists a constant B > 0 such that for all u ∈ Wm,p(Td),

‖∇nu‖Lr(Ω) ≤ B‖u‖θ
W m,p‖u‖1−θ

Lq(68)

Estimates on square roots play a key role in the proofs of our results. The following
result is a consequence of Théorème 1 (ii) in [17].
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Lemma 26. Let 1 < p ≤ ∞. Then there exists a constant CLV > 0 such that for all
nonnegative functions u ∈W 2,p(Td),

(69) ‖
√
u‖2

W 1,2p(Td) ≤ CLV‖u‖W 2,p(Td).

Proof. Let φ ∈ C2(R) be a nonnegative cut-off function satisfying φ(x) = 1 for 0 ≤ x ≤ 1,
and φ(x) = 0 for x ≥ 2 and for x ≤ −1. Define accordingly φd ∈ C2(Rd) by

φd(x1, x2, . . . , xd) = φ(x1)φ(x2) · · ·φ(xd).(70)

Given u ∈ W 2,p(Td), consider w ∈ W 2,p(Rd) with w(x) = φd(x) Eu(x); recall that Eu is
the periodic extension of u to R

d. By definition of φd, we have w(x) = Eu(x) for x ∈ [0, 1]d

and suppw ⊂ [−1, 2]d. On one hand,

‖D
√
u‖2p

L2p(Td)
=

d∑

j=1

∫

[0,1]d
|∂j

√
Eu(x)|2p dx

≤
d∑

j=1

∫

Rd

|∂j

√
w(x)|2p dx = ‖D

√
w‖2p

L2p(Rd)
.(71)

On the other hand, with constants Ap, Bd > 0,

‖D2w‖p
Lp(Rd)

=
∑

1≤j≤k≤d

∫

Rd

|∂2
jkw(x)|p dx

=
∑

1≤j≤k≤d

∫

Rd

∣∣∂2
jkφd Eu+ ∂jφd∂k E u+ ∂kφd∂j Eu+ φd ∂

2
jk E u

∣∣p dx

≤ Ap‖φd‖p
C2(Rd)

∑

1≤j≤k≤d

∫

[−1,2]d

(
|E u|p + |∂j E u|p + |∂j Eu|p + |∂2

jk Eu|p
)
dx

≤ ApBd‖φd‖p
C2(Rd)

‖u‖p
W 2,p(Td)

.(72)

By Théorème 1 (ii) in [17],

‖D
√
w‖2p

L2p(Rd)
≤ K‖D2w‖p

Lp(Rd)
,(73)

where K > 0 only depends on d and p. Then, combining (71) with (72) via (73), it follows
that

‖D
√
u‖2p

L2p(Td)
≤ ApBdK‖φd‖d

C2(Rd)‖u‖
p
W 2,p(Td)

.

Finally, observe that, trivially,

‖
√
u‖2p

L2p(Td)
= ‖u‖p

Lp(Td)
≤ ‖u‖p

W 2,p(Td)
.

Hence, (69) holds with the constant

CLV =
(
1 + ApBdK‖φd‖p

C2(Rd)

)1/p
,

ending the proof. �
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The following result is proved in [14, Appendix]. It is needed to obtain strong convergence
of the sequences (

√
un) or ( 4

√
un), given strong convergence of the sequence (un) and a

uniform bound on ( 4
√
un) or ( 6

√
un), respectively.

Proposition 27. Let 0 < β < γ < α < ∞, 1 < p, q, r < ∞ be given, where αp = βq =
γr. Assume that (un) is a sequence of strictly positive functions on T

d with the following
properties:

(1) uα
n converges strongly to uα in W 1,p(Td), and

(2) uβ
n is bounded in W 1,q(Td).

Then uγ
n converges strongly to uγ in W 1,r(Td).

The respective result holds for sequences of nonnegative functions un : (0, T ) × T
d → R

upon replacing W 1,s(Td) by Ls(0, T ;W 1,s(Td)) for, respectively, s = p, q, r.

Finally, we recall a particular variant of the Leray–Schauder theorem that has been
proven in [20].

Theorem 28 (Leray–Schauder). Let X be a Banach space and let B ⊂ X be a closed and
convex set such that the zero element of X is contained in the interior of B. Furthermore,
let S : B × [0, 1] → X be a continuous map such that its range S(B × [0, 1]) is relatively
compact in X. Assume that S(x, σ) 6= x for all x ∈ ∂B and σ ∈ [0, 1] and that S(∂B ×
{0}) ⊂ B. Then there exists x0 ∈ B such that S(x0, 1) = x0.
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