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Abstract. The global-in-time existence of nonnegative solutions to a parabolic strongly
coupled system with mixed Dirichlet-Neumann boundary conditions is shown. The system
describes the time evolution of the electron and hole densities in a semiconductor when
electron-hole scattering is taken into account. The parabolic equations are coupled to
the Poisson equation for the electrostatic potential. Written in the quasi-Fermi potential
variables, the diffusion matrix of the parabolic system contains strong cross-diffusion terms
and is only positive semi-definite such that the problem is formally of degenerate type.
The existence proof is based on the study of a fully discretized version of the system, using
a backward Euler scheme and a Galerkin method, on estimates for the free energy, and
careful weak compactness arguments.
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1. Introduction

This work is a continuation of a series of papers [4, 5, 6, 7, 8] in which the authors study
analytical properties of global-in-time solutions u : Ω × [0,∞) → R

n of specific parabolic
systems of the form

(1) ∂tu − div(A(u)∇u) = f(u) in QT = Ω × (0, T ),

where Ω ⊂ R
d (d ≥ 1) is a bounded domain and T > 0, together with appropriate boundary

and initial conditions. The divergence operator has to be applied to each row of the matrix
A(u)∇u, where A(u) ∈ R

n×n and ∇u ∈ R
n×d. In the papers [4, 5, 7, 8] the case n = 2 has

been studied, whereas in [6], n ∈ N is arbitrary.
The main feature of (1) is that the diffusion matrix A(u) is not symmetric and not

positive definite and may have “large” non-diagonal elements (strong cross-diffusion case).
Moreover, (some of) the components of the solution u represent nonnegative physical quan-
tities, like a particle density or a temperature. Therefore, one is interested in solutions
whose components are nonnegative. However, due to the strong coupling in (1), usually no

The authors acknowledge partial support from the Project “Hyperbolic and Kinetic Equations” of
the European Union, grant HPRN-CT-2002-00282, and from the Gerhard-Hess Award of the Deutsche
Forschungsgemeinschaft, grant JU 359/3. The first author has been supported by the National Young
Natural Science Foundation of China, grant 10401019.

1



2 LI CHEN AND ANSGAR JÜNGEL

maximum principle can be applied, and the nonnegativity property has to be derived by
other techniques.

We assume that the system (1) has the property that there exists a transformation of
variables u = ρ(w) such that the transformed diffusion matrix B(w) = A(ρ(w))ρ′(w) is
symmetric and positive (semi-)definite:

(2) ∂tρ(w) − div(B(w)∇w) = f(ρ(w)).

Such systems have been first studied by Alt and Luckhaus in [2], but only for positive
definite B(w) and for solutions w which may change sign.

In this paper we consider a system of the form (1) arising in semiconductor device
modeling. Compared to our previous work, the system has the additional difficulties that

• the transformed system (2) is of degenerate type,
• the coefficients of the matrix B(w) are unbounded, and
• the regularity of the solutions w is very weak (i.e. ∇w 6∈ L1).

More precisely, we study the (scaled) equations

(3) ∂tn − divJn = R(n, p), ∂tp − divJp = R(n, p),

where n and p are the electron and hole densities of the semiconductor crystal, respectively,
and the electron and hole current densities are given by

Jn = µnn(n, p)(∇n − n∇ψ) + µnp(n, p)(∇p + p∇ψ),(4)

Jp = µpn(n, p)(∇n − n∇ψ) + µpp(n, p)(∇p + p∇ψ),(5)

where the mobilities are defined as

µnn(n, p) =
µn(1 + µpn)

1 + µpn + µnp
, µnp(n, p) =

µnµpn

1 + µpn + µnp
,

µpp(n, p) =
µp(1 + µnp)

1 + µpn + µnp
, µpn(n, p) =

µpµnp

1 + µpn + µnp
,

and µn and µp are positive constants. The function ψ in (4)-(5) is the electrostatic potential,
coupled to the particle densities via the Poisson equation,

(6) λ2∆ψ = n − p − C(x),

where λ > 0 is the Debye length and C(x) is the so-called doping profile which models
fixed background charges in the semiconductor crystal. Finally, the Shockley-Read-Hall
term R(n, p) models generation-recombination processes,

R(n, p) =
n2

i − np

τ0 + τnn + τpp
,

where τ0, τn, and τp are the (positive) Shockley-Read-Hall constants, and ni > 0 is the
intrinsic density.

Equations (3)-(6) are solved in the bounded semiconductor domain Ω ⊂ R
d (d ≥ 1).

The boundary ∂Ω consists of two disjoint subsets ΓD and ΓN . At the Ohmic contacts ΓD
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we prescribe the particle densities and the electrostatic potential, whereas ΓN models the
union of insulating boundary segments:

n = nD, p = pD, ψ = ψD on ΓD, t > 0,(7)

Jn · ν = Jp · ν = ∇ψ · ν = 0 on ΓN , t > 0,(8)

where ν denotes the exterior unit normal of ∂Ω which is assumed to exist a.e. Finally, the
initial conditions are

(9) n(·, 0) = n0, p(·, 0) = p0 in Ω.

We refer to [3, 11, 16] for the physical background and the mathematical modeling of
semiconductors.

The system (3)-(6) models the carrier transport through a semiconductor device which is
strongly affected by electron-hole scattering. This happens, for instance, in high-injection
situations [13, 17]. The model (3)-(6) can be formally derived from the semiconductor
Boltzmann equation with a collision operator taking into account electron-hole scattering
[18]. Notice that, setting µnn(n, p) = µn, µpp(n, p) = µp and µnp(n, p) = µpn(n, p) = 0, the
above system reduces to the standard drift-diffusion equations [16]. In the following, we
set the physical constants equal to one, i.e. µn = µp = ni = τ0 = τn = τp = λ = 1, since
they do not affect our analysis.

The diffusion matrix A(u) with u = (n, p)>,

A(u) =

(
µnn(n, p) µnp(n, p)
µpn(n, p) µpp(n, p)

)
,

is not symmetric and generally not positive definite. It is well known in the case of the
standard drift-diffusion equations that the system becomes “symmetric” in the quasi-Fermi
potentials

φn = ln n − ψ, φp = ln p + ψ.

Also here, in the variables w = (φn, φp)
>, the transformed diffusion matrix (see (2))

B(n, p) =

(
nµnn(n, p) pµnp(n, p)
nµpn(n, p) pµpp(n, p)

)

becomes symmetric and positive (semi-)definite:

x>Bx =
nx2

1 + px2
2 + (nx1 + px2)

2

1 + n + p
≥ min{n, p}

1 + n + p
‖x‖

for all x = (x1, x2)
> ∈ R

2. Clearly, the system degenerates when n = 0 or p = 0. In the
new variables, we rewrite the system (3)-(5) in the compact form

(10) ∂t

(
n

p

)
− div

(
B(n, p)∇

(
φn

φp

))
=

(
R(n, p)

R(n, p)

)
, x ∈ Ω, t > 0.

The existence of weak solutions to the stationary version of (10) with boundary condi-
tions (7)-(8) close to the thermal equilibrium state Jn = Jp = 0 has been proved in [10].
In [14] the existence of global-in-time weak solutions of the transient model is shown. The
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proof relies on quite involved approximations of the cross-diffusion terms by finite differ-
ences and L1 compactness arguments. The advantage of the finite-difference approximation
is that the diffusion matrix of the approximate system becomes diagonal (also see [4]). In
this paper we show that it is possible to treat the full system directly which simplifies
the proof significantly. Moreover, we give a much simpler argument to obtain strong L1

convergence of the approximate solutions. More precisely, we show the following result.

Theorem 1. Let Ω ⊂ R
d (d ≥ 1) with ∂Ω = ΓD ∪ ΓN ∈ Cs−1,1 (s ≥ d/2 + 1) such that

ΓD ∩ ΓN = ∅, meas(ΓD) > 0, and ΓN is open and closed in ∂Ω. Furthermore, let T > 0,
c > 0, C ∈ L1(Ω), and

nD, pD ≥ c > 0 in QT = Ω × (0, T ), nD, pD, ψD ∈ W 1,∞(Ω),

n0, p0 ≥ c > 0 in Ω, n0, p0 ∈ L∞(Ω).

Then there exists a solution (n, p, ψ) of (3)-(9) satisfying

n, p ≥ 0 in QT , ψ − ψD ∈ L∞(0, T ; H1
D(Ω)),

n, p ∈ W 1,σ(0, T ; (Hs
D(Ω))′) ∩ L∞(0, T ; L1(Ω)) for all 1 < σ < 2,√

n −√
nD,

√
p −√

pD ∈ L2(0, T ; W 1,1
D (Ω)).

The initial conditions (9) are satisfied in the sense of C0([0, T ]; (Hs
D(Ω))′), and the func-

tions n, p, and ψ solve (3)-(6) in the following sense:
∫ T

0

〈∂tn, ξ〉dt +

∫

QT

2(1 + n)
√

n∇√
n + 2n

√
p∇√

p − n(1 + n − p)∇ψ

1 + n + p
· ∇ξdxdt(11)

=

∫

QT

1 − np

1 + n + p
ξdxdt,

∫ T

0

〈∂tp, ξ〉dt +

∫

QT

2(1 + p)
√

p∇√
p + 2p

√
n∇√

n − p(1 + n − p)∇ψ

1 + n + p
· ∇ξdxdt(12)

=

∫

QT

1 − np

1 + n + p
ξdxdt,

∫

Ω

∇ψ · ∇χdx =

∫

Ω

(n − p − C(x))χdx,(13)

for all ξ ∈ Lσ′

(0, T ; Hs
D(Ω)) and χ ∈ H1(Ω), where σ′ = σ/(σ − 1).

Here, 〈·, ·〉 is the dual product between (Hs
D(Ω))′ and Hs

D(Ω), and the space W 1,p
D (Ω)

(resp. Hs
D(Ω)) with 1 ≤ p ≤ ∞ consists of all functions u ∈ W 1,p(Ω) (resp. Hs(Ω))

satisfying u = 0 on ΓD. We have assumed time-independent boundary data for simplicity
only (see [9, Lemma 5.2.5] for the treatment of time-dependent boundary functions). Notice
that the condition “ΓN open and closed in ∂Ω” implies that the Dirichlet boundary is
separated from the Neumann boundary. This assumption is needed in our approximation
argument in order to obtain smooth solutions of the Laplace equation (see section 2). The
parameter s ≥ d/2 + 1 is chosen in such a way that Hs(Ω) ↪→ W 1,∞(Ω) holds.
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For the proof of Theorem 1 we discretize the equations both in time and space. More
precisely, we employ an implicit Euler discretization in time and a Galerkin method in
space. Since the diffusion matrix is of degenerate type, we approximate B(n, p) by εI +
B(n, p) in (10) for ε > 0, where I is the unit matrix of R

2×2, and perform the limit
ε → 0. This approximation simplifies considerably the arguments of [14]. Moreover, it is
of numerical interest. Indeed, since we use a Galerkin space for the variables φn and φp

containing L∞(Ω), the particle densities, defined by n = exp(φn +ψ) and p = exp(φp −ψ),
are strictly positive. Thus, our approximation provides a positivity-preserving numerical
scheme. We refer to [7, 12] for related numerical schemes which preserve the positivity of
the solutions.

In order to derive uniform a priori estimates, we employ the free energy (or “relative
entropy”) of the system,

E(t) =

∫

Ω

(
n(ln n − 1 − ln nD) + nD + p(ln p − 1 − ln pD) + pD +

1

2
|∇(ψ − ψD)|2

)
dx.

Formally, it holds (see Lemma 2 for a rigorous proof in the discrete setting):

(14) E(t) +

∫ t

0

∫

Ω

n|∇φn|2 + p|∇φp|2 + |n∇φn + p∇φp|2
1 + n + p

dxdt ≤ c(E(0) + 1),

where the constant c > 0 depends on the boundary data and on t. This estimate provides
uniform W 1,1(Ω) bounds for

√
n and

√
p. Then the weak solution is defined for

√
n and√

p instead for φn and φp by observing that n∇φn = 2
√

n∇√
n − n∇ψ (and similarly for

p∇φp). Notice that we do not obtain any gradient regularity for the Fermi potentials φn

and φp.
In order to obtain strong convergence (in the Lebesgue sense) of the approximating

sequences for
√

n and
√

p, called here
√

nε and
√

pε, we also need uniform bounds for its
time derivatives. Our new idea is to consider the function

yε =
√

nε + γpε + 1, where γ = 1, 2.

The L2(0, T ; W 1,1(Ω)) bounds for
√

nε and
√

pε show that yε is bounded in the same space.
Furthermore, the (discrete) time derivative ∂ε

t yε is uniformly bounded in Lσ(0, T ; (Hs(Ω))′)
for 1 < σ < 2. Thus, by Aubin’s lemma, we infer strong convergence in L1(0, T ; L1(Ω)) for
nε and pε.

Finally, the limits of the nonlinear terms can be identified by using the special structure
of the equations. In particular, the boundedness of the energy production term in (14) is
heavily employed.

The originality of the paper consists in the facts that

• the system (10) is of degenerate type,
• the nonnegativity of the solutions is obtained without use of a maximum principle,

and
• the approximation provides a positivity-preserving numerical scheme.

This paper is organized as follows. In section 2 we show the existence of weak solutions
to a fully discrete problem corresponding to (10). Two technical lemmas about weak and
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strong convergence are recalled in section 3. The existence proof of section 2 provides
a priori estimates allowing to perform the limit ε → 0 and N → ∞, where N is the
dimension of the Galerkin space. This is shown in section 4. The limit of the vanishing
time parameter then is proved in section 5.

2. Existence of solutions to an approximated problem

We show Theorem 1 by first studying a fully discrete problem. For this, we approximate
the problem (7)-(10) by employing an implicit Euler scheme and a Galerkin approximation.

Let (vj) be a dense subset of Hs(Ω) for s ≥ d/2+1 such that vj = 0 on ΓD (j ∈ N). This
subset can be obtained as follows. Since Hs(Ω) is separable and the operator −∆ with
homogeneous Dirichlet boundary conditions on ΓD and homogeneous Neumann boundary
conditions on ΓN is self-adjoint and compact, there exists a Hilbert base of eigenfunctions
vj in Hs(Ω). The operator is well defined due to our assumption on ∂Ω in Theorem 1
(see, e.g., [21, p. 196]). Notice that the condition s ≥ d/2 + 1 implies that the embedding
Hs(Ω) ↪→ W 1,∞(Ω) is continuous.

Next we introduce the finite-dimensional space VN = span{v1, . . . , vN} ⊂ L∞(Ω). Since
we are looking for solutions φn − φn,D, φp − φp,D, ψ − ψD ∈ VN ⊂ L∞(Ω), where φn,D =
ln nD − ψD and φp,D = ln pD + ψD, the definitions n = exp(φn + ψ) and p = exp(φp − ψ)
are well defined. This provides the positivity of n and p.

We define now the approximated problem. Let T > 0, let ε > 0 be a regularization
parameter, and let τ > 0 be the time discretization parameter such that T = τK with

K ∈ N. Let φ
(N)
n,0 − φn,D, φ

(N)
p,0 − φp,D ∈ VN be such that φ

(N)
n,0 → ln n0 − ψ(·, 0) and

φ
(N)
p,0 → ln p0 + ψ(·, 0) in L2(Ω), where ψ(·, 0) is the unique solution of

∆ψ(·, 0) = n0 − p0 − C(x) in Ω, ψ(·, 0) = ψD on ΓD, ∇ψ(·, 0) · ν = 0 on ΓN .

Furthermore, let φ
(N)
n,k−1 − φn,D, φ

(N)
p,k−1 − φp,D, ψ

(N)
k−1 − ψD ∈ VN for k ≥ 1 be given. We set

n
(N)
k−1 = exp(φ

(N)
n,k−1 + ψ

(N)
k−1) > 0 and p

(N)
k−1 = exp(φ

(N)
p,k−1 − ψ

(N)
k−1) > 0 and we wish to find

ψ
(N)
k − ψD ∈ VN such that

(15)

∫

Ω

∇ψ
(N)
k · ∇χdx =

∫

Ω

(n
(N)
k − p

(N)
k − C(x))χdx

for all χ ∈ VN and (φ
(N)
n,k − φn,D, φ

(N)
p,k − φp,D) ∈ V 2

N such that

1

τ

∫

Ω

(
n

(N)
k − n

(N)
k−1

p
(N)
k − p

(N)
k−1

)
·
(

ξn

ξp

)
dx +

∫

Ω

[
(εI + B(n

(N)
k , p

(N)
k ))

(∇φ
(N)
n,k

∇φ
(N)
p,k

)]
:

(∇ξn

∇ξp

)
dx

=

∫

Ω

(
R(n

(N)
k , p

(N)
k )

R(n
(N)
k , p

(N)
k )

)
·
(

ξn

ξp

)
dx.(16)

for all ξn, ξp ∈ VN , where n
(N)
k = exp(φ

(N)
n,k +ψ

(N)
k ) and p

(N)
k = exp(φ

(N)
p,k −ψ

(N)
k ) in Ω. Here,

the gradient is a row vector in R
1×d, the dot “·” between vectors is the scalar product, and
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the product “:” between matrices is defined by

A : B =
m∑

i=1

n∑

j=1

aijbij for all A = (aij), B = (bij) ∈ R
m×n.

The proof of existence of solutions of the above discrete system is based on a priori
estimates for the discrete free energy (or entropy) of the system:

E
(N)
k =

∫

Ω

(
n

(N)
k (ln n

(N)
k − 1 − ln nD) + nD + p

(N)
k (ln p

(N)
k − 1 − ln pD) + pD

+
1

2
|∇(ψ

(N)
k − ψD)|2

)
dx.

We show that the free energy is bounded uniformly in the discretization parameters N and
τ and also in ε:

Lemma 2. For given (φ
(N)
n,k−1 − φn,D, φ

(N)
p,k−1 − φp,D, ψ

(N)
k−1 − ψD) ∈ V 3

N , there exists τ0 > 0

such that for all 0 < τ ≤ τ0, there is a solution (φ
(N)
n,k − φn,D, φ

(N)
p,k − φp,D, ψ

(N)
k − ψD) ∈ V 3

N

to (15)-(16) satisfying

E
(N)
k +

τ

2

k∑

j=0

∫

Ω

n
(N)
j |∇φ

(N)
n,j |2 + p

(N)
j |∇φ

(N)
p,j |2 + |n(N)

j ∇φ
(N)
n,j + p

(N)
j ∇φ

(N)
p,j |2

1 + n
(N)
j + p

(N)
j

dx

+
ετ

2

k∑

j=0

∫

Ω

(|∇φ
(N)
n,j |2 + |∇φ

(N)
p,j |2)dx ≤ c(E

(N)
0 + 1),(17)

where the constant c > 0 depends on the boundary data and T but is independent of k, N ,
τ , and ε.

Proof. In order to simplify the presentation, we omit the indices k and N . The proof is
based on the Leray-Schauder fixed-point theorem. For this, we define a fixed-point operator

S : V 3
N × [0, 1] → V 3

N in the following way. Let σ ∈ [0, 1] and (φ̃n−φn,D, φ̃p−φp,D, ψ̃−ψD) ∈
V 3

N be given and set ñ = exp(φ̃n + ψ̃) > 0, p̃ = exp(φ̃p − ψ̃) > 0. First, let ψ − ψD ∈ VN

be the unique solution of

∫

Ω

∇φ · ∇χdx = σ

∫

Ω

(ñ − p̃ − C(x))χdx, χ ∈ VN .

Next, consider the linear problem

(18) a((φn,k − φn,D, φp,k − φp,D), (ξn, ξp)) = σF ((ξn, ξp)) for all (ξn, ξp) ∈ V 2
N ,
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where

a((ηn, ηp), (ξn, ξp)) =

∫

Ω

[
(εI + B(ñ, p̃))

(∇ηn

∇ηp

)]
:

(∇ξn

∇ξp

)
dx,

F ((ξn, ξp)) = −1

τ

∫

Ω

(
ñ − nk−1

p̃ − pk−1

)
·
(

ξn

ξp

)
dx +

∫

Ω

(
R(ñ, p̃)

R(ñ, p̃)

)
·
(

ξn

ξp

)
dx

−
∫

Ω

[
(εI + B(ñ, p̃))

(∇φn,D

∇φp,D

)]
:

(∇ξn

∇ξp

)
dx,

for all (ηn, ηp), (ξn, ξp) ∈ V 2
N . Since the matrix εI + B(ñ, p̃) is positive definite, the Lax-

Milgram lemma shows the existence of a (unique) solution of (18) in V 2
N . Finally, we

set S(φ̃n − φn,D, φ̃p − φp,D, ψ̃ − ψD, σ) = (φn − φn,D, φp − φp,D, ψ − ψD) which defines the

fixed-point operator. It holds S(φ̃n − φn,D, φ̃p − φp,D, ψ̃ − ψD, 0) = (0, 0, 0). By standard
arguments, S(·, σ) is continuous and also compact since dim(VN) < ∞.

Now let (φn − φn,D, φp − φp,D, ψ − ψD) ∈ V 3
N be a fixed point of S(·, σ). In order to

derive uniform estimates we use (φn − φn,D, φp − φp,D) ∈ V 2
N as a test function in the weak

formulation (18), where ñ = n = exp(φn + ψ), p̃ = p = exp(φp − ψ). Since
[
B(n, p)

(∇φn

∇φp

)]
:

(∇φn

∇φp

)
= B11|∇φn|2 + 2B12∇φn · ∇φp + B22|∇φp|2

=
n|∇φn|2
1 + n + p

+
p|∇φp|2

1 + n + p
+

|n∇φn + p∇φp|2
1 + n + p

,

we obtain for σ > 0

1

σ

∫

Ω

[
ε(|∇φn|2 + |∇φp|2) +

1

1 + n + p

(
n|∇φn|2 + p|∇φp|2 + |n∇φn + p∇φp|2

)]
dx

= −1

τ

∫

Ω

((n − nk−1)(φn − φn,D) + (p − pk−1)(φp − φp,D)) dx

+

∫

Ω

(B11∇φn · ∇φn,D + B12∇φp · ∇φn,D + B12∇φn · ∇φp,D

+ B22∇φp · ∇φp,D)dx + ε

∫

Ω

(∇φn · ∇φn,D + ∇φp · ∇φp,D)dx(19)

+

∫

Ω

R(n, p)(φn − φn,D + φp − φp,D)dx

= I1 + · · · + I4.

We first rewrite the integral I1, using the definition of φn and φp:

I1 = −1

τ

∫

Ω

[
n(ln n − 1 − ln nD) − nk−1(ln nk−1 − 1 − ln nD) + nk−1(ln nk−1 − ln n)

+ n − nk−1 + p(ln p − 1 − ln pD) − pk−1(ln pk−1 − 1 − ln pD)

+ pk−1(ln pk−1 − ln p) + p − pk−1

]
dx(20)



ANALYSIS OF A PARABOLIC CROSS-DIFFUSION SEMICONDUCTOR MODEL 9

+
1

τ

∫

Ω

(
(n − p) − (nk−1 − pk−1)

)
(ψ − ψD)dx.

For the last integral in the above equation we use the Poisson equation (15) and Young’s
inequality:

∫

Ω

(
(n − p − C) − (nk−1 − pk−1 − C)

)
(ψ − ψD)dx

= −
∫

Ω

∇(ψ − ψk−1) · ∇(ψ − ψD)dx

≤ −1

2

∫

Ω

|∇(ψ − ψD)|2dx +
1

2

∫

Ω

|∇(ψk−1 − ψD)|2dx.

For the first integral in (20) we employ the elementary inequality x(ln x− ln y) ≥ x− y for
x, y > 0. This yields, after a short calculation,

I1 ≤ −1

τ
(Ek − Ek−1).

We turn to the second integral I2 which can be written, by Young’s inequality, as

I2 =

∫

Ω

n∇φn + p∇φp

1 + n + p
· (n∇φn,D + p∇φp,D)dx +

∫

Ω

n∇φn

1 + n + p
· ∇φn,Ddx

+

∫

Ω

p∇φp

1 + n + p
· ∇φp,Ddx

≤
∫

Ω

1

2(1 + n + p)
(n|∇φn|2 + p|∇φp|2 + |n∇φn + p∇φp|2)dx

+

∫

Ω

1

1 + n + p
(n(1 + n)|∇φn,D|2 + p(1 + p)|∇φp,D|2)dx

≤
∫

Ω

1

2(1 + n + p)
(n|∇φn|2 + p|∇φp|2 + |n∇φn + p∇φp|2)dx + c

∫

Ω

(n + p)dx

≤
∫

Ω

1

2(1 + n + p)
(n|∇φn|2 + p|∇φp|2 + |n∇φn + p∇φp|2)dx + c(Ek + 1),

where c > 0 denotes here and in the following a constant independent of k, N , τ , and ε
with values varying from occurence to occurence. In the above estimate we have used that
φα,D ∈ W 1,∞(Ω), α = n, p.

For the fourth integral I4 we use the monotonicity of x 7→ ln x:

I4 = −
∫

Ω

(ln(np) − ln(nDpD))(np − nDpD)

1 + n + p
dx

+

∫

Ω

(ln(np) − ln(nDpD))(1 − nDpD)

1 + n + p
dx

≤
∫

Ω

(
ln(np)

1 + n + p
(1 − nDpD) + | ln(nDpD)(1 − nDpD)|

)
dx ≤ c.



10 LI CHEN AND ANSGAR JÜNGEL

Finally, the third integral I3 is estimated by Young’s inequality, and the terms (ε/2) |∇φn|2
and (ε/2)|∇φp|2 are absorbed by the left-hand side of (19).

Putting together the above estimates gives

1

τ
(Ek − Ek−1) +

1

2

∫

Ω

n|∇φn|2 + p|∇φp|2 + |n∇φn + p∇φp|2
1 + n + p

dx

+
ε

2

∫

Ω

(|∇φn|2 + |∇φp|2)dx ≤ c(Ek + 1).

Then the discrete Gronwall lemma yields (17) if we choose τ sufficiently small. This also
gives an estimate for (φn − φn,D, φp − φp,D, ψ − ψD) in (H1(Ω))3, and hence in V 3

N since
all norms in VN are equivalent. Therefore, we can apply the Leray-Schauder fixed-point
theorem to conclude the existence of a fixed point of S(·, 1), i.e. a solution to (15)-(16). ¤

3. Two technical lemmas

We recall two convergence results. The first one is well known.

Lemma 3. Let Ω ⊂ R
d be a bounded open set and let (fm) ⊂ L∞(Ω), (gm) ⊂ Lp(Ω) for

some 1 ≤ p < ∞ be sequences such that (fm) is bounded in L∞(Ω), fm(x) → f(x) a.e. in
Ω, and gm ⇀ g weakly in Lp(Ω) as m → ∞. Then fmgm ⇀ fg weakly in Lp(Ω).

Let LΨ(Ω) be the Orlicz space corresponding to Ψ(x) = (1 + x) log(1 + x) − x, x > 0.
We refer to [1] for its definition and properties (also see the appendix of [4]).

Lemma 4. Let Ω ⊂ R
d be a bounded open set.

(i) If (fm) is bounded in Lp(Ω) with p > 1 and fm(x) → f(x) a.e. in Ω, then fm → f
strongly in Lq(Ω) for all 1 ≤ q < p.

(ii) If (fm) is bounded in LΨ(Ω) and fm(x) → f(x) a.e. in Ω, then fm → f strongly in
L1(Ω).

The proof of (i) can be found in [15, Ch. 1.3 and p. 144]. The proof of (ii) is essentially
contained in [1]. Indeed, Theorem 8.22 in [1] states that, given two Young functions Ψ1

and Ψ2 satisfying, for any k > 0,

lim
t→∞

Ψ1(kt)

Ψ2(t)
= 0

and a sequence (fm) which is bounded in LΨ1
(Ω) and convergent in measure, then (fm) is

convergent in LΨ2
(Ω). Notice that Ψ1(t) = Ψ(t) is a Young function, but Ψ2(t) = t is not.

However, the proof of [1] can be extended also to this case. Since a.e. convergence implies
convergence in measure, Lemma 4 (ii) follows.

4. The limit ε → 0 and N → ∞
In this section we perform the limit ε → 0 and N → ∞ for fixed τ > 0. At this stage,

the limit τ → 0 cannot be performed since we need some (discrete) regularity in time. The
corresponding estimates, however, can only be achieved using a test function in a larger
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space than VN . Therefore, the limiting procedure has to be divided into the two parts
ε → 0, N → ∞ and τ → 0.

Lemma 5. Let (n
(N)
k , p

(N)
k , ψ

(N)
k ) be a solution to (15)-(16). Then there exists a constant

c > 0, independent of ε, N , and τ , such that

‖n(N)
k ‖LΨ(Ω) + ‖p(N)

k ‖LΨ(Ω) + ‖ψ(N)
k ‖H1(Ω) ≤ c,(21)

K∑

k=0

τ




∫

Ω

|∇
√

n
(N)
k |2

1 + n
(N)
k + p

(N)
k

dx +

∫

Ω

|∇
√

p
(N)
k |2

1 + n
(N)
k + p

(N)
k

dx


 ≤ c,(22)

K∑

k=0

τ

(
‖
√

n
(N)
k ‖2

W 1,1(Ω) + ‖
√

p
(N)
k ‖2

W 1,1(Ω)

)
≤ c,(23)

K∑

k=0

τ

∫

Ω

|2
√

n
(N)
k ∇

√
n

(N)
k + 2

√
n

(N)
k ∇

√
n

(N)
k − (n

(N)
k − p

(N)
k )∇ψ

(N)
k |2

1 + n
(N)
k + p

(N)
k

dx ≤ c,(24)

where LΨ(Ω) is the Orlicz space with Ψ(x) = (1 + x) ln(1 + x) − x, x > 0.

Proof. The convexity of the mapping x 7→ x ln x implies that

1 + x

2
ln

1 + x

2
≤ 1

2
(1 ln 1 + x ln x) for all x > 0,

which is equivalent to
Ψ(x) ≤ x(ln x − 1) + (1 − x) ln 2.

Thus, the estimate (21) follows from (17) and the above inequality. The elementary in-
equality (x − y)2 ≥ x2/2 − y2 for all x, y ∈ R and (17) imply that

c ≥
K∑

k=0

τ

∫

Ω

n
(N)
k |∇φ

(N)
k |2

1 + n
(N)
k + p

(N)
k

dx =
K∑

k=0

τ

∫

Ω

|2∇
√

n
(N)
k −

√
n

(N)
k ∇ψ

(N)
k |2

1 + n
(N)
k + p

(N)
k

dx

≥ 2
K∑

k=0

τ
|∇

√
n

(N)
k |2

1 + n
(N)
k + p

(N)
k

dx −
K∑

k=0

τ |∇ψ
(N)
k |2dx

and a corresponding estimate for p
(N)
k . Hence, (22) follows from the uniform bound for

∇ψ
(N)
k in L2(Ω). Young’s inequality yields

K∑

k=0

τ

(∫

Ω

|∇
√

n
(N)
k |dx

)2

≤
K∑

k=0

τ

∫

Ω

|∇
√

n
(N)
k |2

1 + n
(N)
k + p

(N)
k

dx

∫

Ω

(1 + n
(N)
k + p

(N)
k )dx ≤ c,

using (21) and (22). This proves (23). Finally, the estimate (24) is a consequence from the
formulation

n
(N)
k ∇φ

(N)
n,k = 2

√
n

(N)
k ∇

√
n

(N)
k − n

(N)
k ∇ψ

(N)
k .

and the uniform estimate (17). ¤
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Lemma 6. Let τ > 0 be fixed and let k ∈ {1, . . . , K}. Then, as ε → 0, N → ∞,

(n
(N)
k , p

(N)
k ) → (nk, pk) strongly in L1(Ω), ∇ψ

(N)
k ⇀ ∇ψk weakly in L2(Ω), and the limit

satisfies

(25)

∫

Ω

∇ψk · ∇χdx =

∫

Ω

(nk − pk − C(x))χdx

for all χ ∈ Hs
D(Ω) and

1

τ

∫

Ω

(nk − nk−1)ξndx +

∫

Ω

2
√

nk∇
√

nk − nk∇ψk

1 + nk + pk

· ∇ξndx

+

∫

Ω

nk(2
√

nk∇
√

nk − nk∇ψk + 2
√

pk∇
√

pk + pk∇ψk)

1 + nk + pk

· ∇ξndx(26)

=

∫

Ω

R(nk, pk)ξndx,

1

τ

∫

Ω

(pk − pk−1)ξpdx +

∫

Ω

2
√

pk∇
√

pk + pk∇ψk

1 + nk + pk

· ∇ξpdx

+

∫

Ω

pk(2
√

nk∇
√

nk − nk∇ψk + 2
√

pk∇
√

pk + pk∇ψk)

1 + nk + pk

· ∇ξpdx(27)

=

∫

Ω

R(nk, pk)ξpdx

for all ξn, ξp ∈ Hs
D(Ω). Furthermore, the following a priori estimates hold:

‖nk‖LΨ(Ω) + ‖pk‖LΨ(Ω) + ‖ψk‖H1(Ω) ≤ c,(28)

K∑

k=0

τ

(∥∥∥∥
∇√

nk√
1 + nk + pk

∥∥∥∥
2

L2(Ω)

+

∥∥∥∥
∇√

pk√
1 + nk + pk

∥∥∥∥
2

L2(Ω)

)
≤ c,(29)

K∑

k=0

τ
(
‖√nk‖2

W 1,1(Ω) + ‖√pk‖2
W 1,1(Ω)

)
≤ c,(30)

K∑

k=0

τ

∥∥∥∥
2
√

nk∇
√

nk + 2
√

pk∇
√

pk − (nk − pk)∇ψk√
1 + nk + pk

∥∥∥∥
2

L2(Ω)

≤ c,(31)

where LΨ(Ω) is the Orlicz space with Ψ(x) = (1 + x) ln(1 + x) − x, x > 0.

Proof. We show first that the terms in the discrete problem (16) converge. Clearly, by the
free energy estimate (17), as ε → 0 and N → ∞,

ε∇φ
(N)
n,k → 0, ε∇φ

(N)
p,k → 0 strongly in L2(Ω).

Since W 1,1(Ω) embeddes compactly into Lq(Ω) for 1 ≤ q < d/(d − 1), we obtain for a
subsequence which is not relabeled,

√
n

(N)
k → √

nk,

√
p

(N)
k → √

pk strongly in Lq(Ω).
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In particular, these sequences converge a.e. (up to a asubsequence). Thus, in view of the

uniform bound (21) for n
(N)
k and p

(N)
k , an application of Lemma 4 yields

(32) n
(N)
k → nk, p

(N)
k → pk strongly in L1(Ω).

The W 1,1(Ω) bound for

√
n

(N)
k does not imply weak compactness in W 1,1(Ω). However,

this compactness follows from the uniform bounds for

∇
√

n
(N)
k√

1 + n
(N)
k + p

(N)
k

and

√
1 + n

(N)
k + p

(N)
k

in L2(Ω) (see (21) and (22)) since the product of both sequences converges (up to a sub-
sequence) weakly in L1(Ω),

(33) ∇
√

n
(N)
k =

∇
√

n
(N)
k

1 + n
(N)
k + p

(N)
k

√
1 + n

(N)
k + p

(N)
k ⇀ u weakly in L1(Ω).

Clearly, u = ∇√
nk. In a similar way, ∇

√
p

(N)
k converges to ∇√

pk weakly in L1(Ω).

The sequence (

√
n

(N)
k /(1+n

(N)
k +p

(N)
k )) is bounded in L∞(Ω) and converges a.e. Taking

into account (33), we can apply Lemma 3 to conclude that

(34)

√
n

(N)
k ∇

√
n

(N)
k

1 + n
(N)
k + p

(N)
k

⇀

√
nk∇

√
nk

1 + nk + pk

weakly in L1(Ω).

By (21), we infer that, up to the extraction of a subsequence, ∇ψ
(N)
k ⇀ ∇ψk in L2(Ω).

Furthermore, the sequence (n
(N)
k /(1 + n

(N)
k + p

(N)
k )) is bounded in L∞(Ω) and converges

a.e. Thus, again applying Lemma 3,

(35)
n

(N)
k ∇ψ

(N)
k

1 + n
(N)
k + p

(N)
k

⇀
nk∇ψk

1 + nk + pk

weakly in L2(Ω).

The convergence results (34)-(35) and the bound in (17) imply that

(36)
n

(N)
k ∇φ

(N)
n,k

1 + n
(N)
k + p

(N)
k

⇀
2
√

nk∇
√

nk − nk∇ψk

1 + nk + pk

weakly in L2(Ω).

Analogously, we obtain

(37)
p

(N)
k ∇φ

(N)
p,k

1 + n
(N)
k + p

(N)
k

⇀
2
√

pk∇
√

pk + pk∇ψk

1 + nk + pk

weakly in L2(Ω).
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The strong convergence of (

√
n

(N)
k ) in L2(Ω) and (36)-(37) show that

√
n

(N)
k (n

(N)
k ∇φ

(N)
n,k + p

(N)
k ∇φ

(N)
p,k )

1 + n
(N)
k + p

(N)
k

⇀
2
√

nk(
√

nk∇
√

nk +
√

pk∇
√

pk) −
√

nk(nk − pk)∇ψk

1 + nk + pk

weakly in L1(Ω).

Actually, by (31), this convergence holds true in L2(Ω). Using again (31) and the strong

convergence of (

√
n

(N)
k ) in L2(Ω), we arrive at

n
(N)
k (n

(N)
k ∇φ

(N)
n,k + p

(N)
k ∇φ

(N)
p,k )

1 + n
(N)
k + p

(N)
k

⇀
2nk(

√
nk∇

√
nk +

√
pk∇

√
pk) − nk(nk − pk)∇ψk

1 + nk + pk

weakly in L1(Ω).

Finally, the source terms converge,

1 − n
(N)
k p

(N)
k

1 + n
(N)
k + p

(N)
k

→ 1 − nkpk

1 + nk + pk

strongly in L1(Ω).

Now, let ξn, ξp, χ ∈ Hs
D(Ω) and ξ

(M)
n , ξ

(M)
p , χ(M) ∈ VM such that ξ

(M)
n → ξn, ξ

(M)
p → ξp,

and χ(M) → χ strongly in Hs(Ω) and hence also in W 1,∞(Ω), as M → ∞. (Here we
need that Hs(Ω) is embedded continuously into W 1,∞(Ω).) We choose the test functions

(ξ
(M)
n , ξ

(M)
p , χ(M)) in (15)-(16). The above convergence results allow to perform the limit

ε → 0 and N → ∞. This shows that the limit (nk, pk, ψk) solves the equations (25)-(27) for

χ = χ(M), ξn = ξ
(M)
n , and ξp = ξ

(M)
p . Then M → ∞ gives the conclusion of the lemma. ¤

5. The limit τ → 0

Let (nk, pk, ψk) ∈ (Hs(Ω))3 be a solution of (25)-(27). We introduce the piecewise
constant functions

n(τ)(x, t) = nk(x), p(τ)(x, t) = pk(x), ψ(τ)(x, t) = ψk(x)

for x ∈ Ω, t ∈ (tk−1, tk], k = 1, . . . , K. The following uniform bounds are a direct conse-
quence of (28)-(31).
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Lemma 7. There exists a positive constant c independent of τ such that

‖n(τ)‖L∞(0,T ;L1(Ω)) + ‖p(τ)‖L∞(0,T ;L1(Ω)) + ‖ψ(τ)‖L∞(0,T ;H1(Ω)) ≤ c,(38) ∥∥∥∥∥
∇
√

n(τ)

√
1 + n(τ) + p(τ)

∥∥∥∥∥
L2(0,T ;L2(Ω))

+

∥∥∥∥∥
∇

√
p(τ)

√
1 + n(τ) + p(τ)

∥∥∥∥∥
L2(0,T ;L2(Ω))

≤ c,(39)

‖
√

n(τ)‖L2(0,T ;W 1,1(Ω)) + ‖
√

p(τ)‖L2(0,T ;W 1,1(Ω)) ≤ c,(40) ∥∥∥∥∥
2
√

n(τ)∇
√

n(τ) − n(τ)∇ψ(τ) + 2
√

p(τ)∇
√

p(τ) + p(τ)∇ψ(τ)

√
1 + n(τ) + p(τ)

∥∥∥∥∥
L2(0,T ;L2(Ω))

≤ c.(41)

Furthermore, we introduce the shift operator σK , defined by (σKn(τ))(x, t) = nk−1(x) for
x ∈ Ω, t ∈ (tk−1, tk], k = 1, . . . , K (and similarly for σKp(τ)).

For the compactness argument, we need estimates for the functions

y(τ)
γ =

√
n(τ) + γp(τ) + 1 for γ = 1, 2.

Lemma 8. There exists a positive constant c independent of τ such that

‖y(τ)
γ ‖L2(0,T ;W 1,1(Ω)) ≤ c,(42)

‖y(τ)
γ − σKy(τ)

γ ‖L1(0,T ;(Hs
D

(Ω))′) ≤ c.(43)

Proof. The bound (42) follows directly from (40). In order to prove (43), we introduce

yγ,k =
√

nk + γpk + 1 and y
(N)
γ,k =

√
n

(N)
k + γp

(N)
k + 1. Let ξ ∈ Hs

D(Ω), ξ 6= 0. We employ

the test function ξ/(y
(N)
γ,k + y

(N)
γ,k−1) ∈ Hs

D(Ω) in (26) to obtain

K∑

k=0

τ

∥∥∥∥
yγ,k − yγ,k−1

τ

∥∥∥∥
(Hs

D
(Ω))′

=
K∑

k=0

τ sup
ξ 6=0

∣∣∣∣
∫

Ω

(nk − nk−1) + γ(pk − pk−1)

τ

ξ

yγ,k + yγ,k−1

dx

∣∣∣∣

≤
K∑

k=0

τ sup
ξ 6=0

lim
N→∞, ε→0

∣∣∣∣∣

∫

Ω

(nk − nk−1) + γ(pk − pk−1)

τ

ξ

y
(N)
γ,k + y

(N)
γ,k−1

dx

∣∣∣∣∣

=
K∑

k=0

τ sup
ξ 6=0

lim
N→∞, ε→0

∫

Ω

∣∣∣
2
√

nk∇
√

nk + 2γ
√

pk∇
√

pk − (nk − γpk)∇ψk

1 + nk + pk

· ∇ ξ

y
(N)
γ,k + y

(N)
γ,k−1

+
(nk + γpk)(2

√
nk∇

√
nk + 2

√
pk∇

√
pk − (nk − pk)∇ψk)

1 + nk + pk

· ∇ ξ

y
(N)
γ,k + y

(N)
γ,k−1

+ (1 + γ)R(nk, pk)
ξ

y
(N)
γ,k + y

(N)
γ,k−1

∣∣∣dx.(44)

Notice that the above test function is not an element of VN (even if ξ ∈ VN) and therefore,
it cannot be used in (16). We need to perform the limit ε → 0, N → ∞ in (16) first in
order to employ this test function in (26).
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We claim that the right-hand side of (44) can be uniformly bounded. For this we first

estimate the gradient of the test function ξ/(y
(N)
γ,k + y

(N)
γ,k−1). Since

K∑

k=1

τ

∥∥∥∥∥
∇y

(N)
γ,k

y
(N)
γ,k + y

(N)
γ,k−1

∥∥∥∥∥

2

L2(Ω)

≤
K∑

k=0

τ

∥∥∥∥∥
∇y

(N)
γ,k

y
(N)
k

∥∥∥∥∥

2

L2(Ω)

=
K∑

k=0

τ

∥∥∥∥∥
∇(n

(N)
k + γp

(N)
k )

2(n
(N)
k + γp

(N)
k + 1)

∥∥∥∥∥

2

L2(Ω)

≤
K∑

k=0

τ




∥∥∥∥∥∥

∇
√

n
(N)
k√

n
(N)
k + γp

(N)
k + 1

∥∥∥∥∥∥

2

L2(Ω)

+

∥∥∥∥∥∥

γ∇
√

p
(N)
k√

n
(N)
k + γp

(N)
k + 1

∥∥∥∥∥∥

2

L2(Ω)


 ≤ c,

by (22), and similarly,
K∑

k=1

τ

∥∥∥∥∥
∇y

(N)
γ,k−1

y
(N)
γ,k + y

(N)
γ,k−1

∥∥∥∥∥

2

L2(Ω)

≤ c,

we infer that

K∑

k=0

τ

∥∥∥∥∥∇
ξ

y
(N)
γ,k + y

(N)
γ,k−1

∥∥∥∥∥

2

L2(Ω)

=
K∑

k=0

τ

∥∥∥∥∥
∇ξ

y
(N)
γ,k + y

(N)
γ,k−1

−
∇(y

(N)
γ,k + y

(N)
γ,k−1)

(y
(N)
γ,k + y

(N)
γ,k−1)

2
ξ

∥∥∥∥∥

2

L2(Ω)

≤ c‖ξ‖2
Hs(Ω).

Thus, employing (29), the first term on the right-hand side of (44) including nk can be
estimated as follows:

K∑

k=0

τ

∫

Ω

2
√

nk∇
√

nk − nk∇ψk

1 + nk + pk

· ∇ ξ

y
(N)
γ,k + y

(N)
γ,k−1

dx

≤
K∑

k=0

τ

(∥∥∥∥
∇√

nk√
1 + nk + pk

∥∥∥∥
L2(Ω)

+ ‖∇ψk‖L2(Ω)

)
‖ξ‖Hs(Ω) ≤ c‖ξ‖Hs(Ω).

Clearly, the corresponding integral including pk can be treated similarly. For the second

term on the right-hand side of (44) we use the fact that the strong convergence of n
(N)
k

and p
(N)
k in L1(Ω) implies that

(45)

∥∥∥∥∥∥

√
nk + γpk√

n
(N)
k + γp

(N)
k + 1

∥∥∥∥∥∥
L∞(Ω)

≤ c.

Thus, by Young’s inequality and (31),

K∑

k=0

τ

∫

Ω

(nk + γpk)(2
√

nk∇
√

nk + 2
√

pk∇
√

pk − (nk − pk)∇ψk)

1 + nk + pk

· ∇ ξ

y
(N)
γ,k + y

(N)
γ,k−1

dx

≤ c

K∑

k=0

τ

∥∥∥∥∥
nk + γpk√
1 + nk + pk

∇ ξ

y
(N)
γ,k + y

(N)
γ,k−1

∥∥∥∥∥
L2(Ω)
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≤ c

K∑

k=0

τ




∥∥∥∥∥
√

nk + γpk

∇ξ

y
(N)
γ,k + y

(N)
γ,k−1

∥∥∥∥∥
L2(Ω)

+

∥∥∥∥∥
√

nk + γpk

∇(y
(N)
γ,k + y

(N)
γ,k−1)

(y
(N)
γ,k + y

(N)
γ,k−1)

2
ξ

∥∥∥∥∥
L2(Ω)




≤ c
K∑

k=0

τ

∥∥∥∥∥

√
nk + γpk

y
(N)
γ,k

∥∥∥∥∥
L∞(Ω)


‖∇ξ‖L2(Ω) +

∥∥∥∥∥
∇(y

(N)
γ,k + y

(N)
γ,k−1)

y
(N)
γ,k + y

(N)
γ,k−1

∥∥∥∥∥
L2(Ω)

‖ξ‖L∞(Ω)




≤ c‖ξ‖Hs(Ω),

employing (45).
Finally, the last term on the right-hand side of (44) can be bounded by

K∑

k=0

τ(1 + γ)

∫

Ω

R(nk, pk)
ξ

y
(N)
γ,k + y

(N)
γ,k−1

dx ≤ (‖nk‖L1(Ω) + ‖pk‖L1(Ω))‖ξ‖L∞(Ω) ≤ c‖ξ‖Hs(Ω).

The above inequalities show that (44) can be uniformly bounded. This proves (43). ¤

Lemma 8 allows to apply Aubin’s lemma and hence to conclude strong convergence.
More precisely, the following result holds.

Lemma 9. There exist subsequences of (n(τ)) and (p(τ)) (not relabelled) such that for all
r < ∞, as τ → 0,

n(τ) → n, p(τ) → p strongly in Lr(0, T ; L1(Ω)),(46)

∇
√

n(τ) ⇀ ∇√
n, ∇

√
p(τ) ⇀ ∇√

p weakly in L1(QT ),(47)

where we recall that QT = Ω × (0, T ).

Proof. Thanks to the estimates (42) and (43) and the compact embedding W 1,1(Ω) ↪→
Lq(Ω) for 1 ≤ q < d/(d − 1), we can apply Aubin’s lemma [20] to obtain the existence of
a subsequence (not relabeled) such that, as τ → 0,

y(τ)
γ → yγ strongly in L2(0, T ; Lq(Ω)).

In particular, up to the extraction of a subsequence, the sequence is converging a.e. in QT .
Therefore,

n(τ) + γp(τ) = (y(τ)
γ )2 − 1 → y2

γ − 1 a.e. in QT .

Therefore, for γ = 1, 2, we have

n(τ) → n := 2y1 − y2, p(τ) → p := y2 − y1 a.e. in QT .

With the help of the a.e. convergence and the uniform L∞(0, T ; LΨ(Ω)) bounds for n(k)

and p(k), Lemma 4 gives (46).
In order to prove the second result, we argue as in the proof of Lemma 6. The estimates

(38) and (39) show that (a subsequence of) the sequence (∇
√

n(τ)/
√

n(τ) + p(τ) + 1) con-

verges weakly in L2(QT ) and (
√

n(τ) + p(τ) + 1) converges strongly in L2(QT ); therefore,
the product converges weakly in L1(QT ). ¤
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Lemma 10. There exist subsequences (not relabeled) such that, as τ → 0,

2
√

n(τ)∇
√

n(τ) − n(τ)∇ψ(τ)

1 + n(τ) + p(τ)
⇀

2
√

n∇√
n − n∇ψ

1 + n + p
,(48)

2
√

p(τ)∇
√

p(τ) + p(τ)∇ψ(τ)

1 + n(τ) + p(τ)
⇀

2
√

p∇√
p + p∇ψ

1 + n + p
(49)

weakly in L2(QT ) and

2n(τ)(
√

n(τ)∇
√

n(τ) +
√

p(τ)∇
√

p(τ)) − n(τ)(n(τ) − p(τ))∇ψ(τ)

1 + n(τ) + p(τ)

⇀
2n(

√
n∇√

n +
√

p∇√
p) − n(n − p)∇ψ

1 + n + p
,(50)

2p(τ)(
√

n(τ)∇
√

n(τ) +
√

p(τ)∇
√

p(τ)) − p(τ)(n(τ) − p(τ))∇ψ(τ)

1 + n(τ) + p(τ)

⇀
2p(

√
p∇√

p +
√

n∇√
n) − p(n − p)∇ψ

1 + n + p
(51)

weakly in Lσ(0, T ; L1(Ω)) for all 1 ≤ σ < 2.

Proof. The sequence (
√

n(τ)/(1 + n(τ) + p(τ))) is bounded in L∞(QT ) and converges (up to
a subsequence) a.e. to

√
n/(1 + n + p), by (46). In view of (47), we can apply Lemma 3 to

obtain, as τ → 0,

2
√

n(τ)∇
√

n(τ)

1 + n(τ) + p(τ)
⇀

2
√

n∇√
n

1 + n + p
weakly in L1(QT ).

Now we argue similarly as in the proof of Lemma 6. The estimate (38) provides the weak
convergence of (a subsequence of) (∇ψ(τ)) to ∇ψ in L2(QT ), and thus, again by Lemma 3,

n(τ)∇ψ(τ)

1 + n(τ) + p(τ)
⇀

n∇ψ

1 + n + p
weakly in L2(QT ).

This shows that

(52)
2
√

n(τ)∇
√

n(τ) − n(τ)∇ψ(τ)

1 + n(τ) + p(τ)

converges to (2
√

n∇√
n−n∇ψ)/(1+n+p) weakly in L1(QT ). In fact, the weak convergence

holds true in L2(QT ) since (52) is uniformly bounded in L2(QT ) by (38)-(39). This shows
(48). The proof of (49) is similar.

Next, we show (50) and (51). By (46) and (17), up to the extraction of subsequences,√
n(τ) → √

n strongly in L2(QT ) and ∇ψ(τ) ⇀ ∇ψ weakly in L2(QT ) and therefore,√
n(τ)∇ψ(τ) ⇀

√
n∇ψ weakly in L1(QT ). Then Lemma 3 implies

n(τ)∇ψ(τ)

√
1 + n(τ) + p(τ)

=

√
n(τ)

√
1 + n(τ) + p(τ)

·
√

n(τ)∇ψ(τ) → n∇ψ√
1 + n + p

weakly in L1(QT ).
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Lemma 3 implies further

(53)
2
√

n(τ)∇
√

n(τ)

√
1 + n(τ) + p(τ)

⇀
2
√

n∇√
n√

1 + n + p
weakly in L1(QT ).

This shows that

2
√

n(τ)∇
√

n(τ) − n(τ)∇ψ(τ)

√
1 + n(τ) + p(τ)

⇀
2
√

n∇√
n − n∇ψ√

1 + n + p
weakly in L1(QT ).

In a similar way, we deduce that

2
√

p(τ)∇
√

p(τ) + p(τ)∇ψ(τ)

√
1 + n(τ) + p(τ)

⇀
2
√

p∇√
p + p∇ψ√

1 + n + p
weakly in L1(QT ).

The sum of both sequences also converges weakly in L1(QT ). In fact, in view of (41), the
sum is uniformly bounded in L2(QT ) and hence,

2
√

n(τ)∇
√

n(τ) − n(τ)∇ψ(τ) + 2
√

p(τ)∇
√

p(τ) + p(τ)∇ψ(τ)

√
1 + n(τ) + p(τ)

⇀
2
√

n∇√
n − n∇ψ + 2

√
p∇√

p + p∇ψ√
1 + n + p

weakly in L2(QT ).

By Lemma 3, we deduce that
√

n(τ)

√
1 + n(τ) + p(τ)

2
√

n(τ)∇
√

n(τ) − n(τ)∇ψ(τ) + 2
√

p(τ)∇
√

p(τ) + p(τ)∇ψ(τ)

√
1 + n(τ) + p(τ)

⇀

√
n(2

√
n∇√

n − n∇ψ + 2
√

p∇√
p + p∇ψ)

1 + n + p
weakly in L2(QT ).(54)

Since
√

n(τ) → √
n strongly in Lr(0, T ; L2(Ω)) for all r < ∞, the product of this sequence

and (54) converges weakly in Lσ(0, T ; L1(Ω)) for all σ < 2:

n(τ)(2
√

n(τ)∇
√

n(τ) − n(τ)∇ψ(τ) + 2
√

p(τ)∇
√

p(τ) + p(τ)∇ψ(τ))

1 + n(τ) + p(τ)

⇀
n(2

√
n∇√

n − n∇ψ + 2
√

p∇√
p + p∇ψ)

1 + n + p
weakly in Lσ(0, T ; L1(Ω)).

This proves (50). The proof of (51) is analogous. ¤

Lemma 11. There exist subsequences (not relabeled) such that, as τ → 0,

1 − n(τ)p(τ)

1 + n(τ) + p(τ)
→ 1 − np

1 + n + p
strongly in Lr(0, T ; L1(Ω)) for all r < ∞,(55)

1

τ
(n(τ) − σNn(τ)) ⇀ ∂tn weakly in Lσ(0, T ; (Hs

D(Ω))′),(56)

1

τ
(p(τ) − σNp(τ)) ⇀ ∂tp weakly in Lσ(0, T ; (Hs

D(Ω))′),(57)
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where 1 < σ < 2.

Proof. For the result (55) we observe that the sequences

n(τ)

√
1 + n(τ) + p(τ)

and
p(τ)

√
1 + n(τ) + p(τ)

converge strongly in L2r(0, T ; L2(Ω)), by (46), and therefore, the product converges strongly
in Lr(0, T ; L1(Ω)) for all r < ∞, which implies (55).

Lemma 10 shows that

A(τ) =
2
√

n(τ)∇
√

n(τ) − n(τ)∇ψ(τ)

1 + n(τ) + p(τ)

+
n(τ)(2

√
n(τ)∇

√
n(τ) − n(τ)∇ψ(τ) + 2

√
p(τ)∇

√
p(τ) + p(τ)∇ψ(τ))

1 + n(τ) + p(τ)

is uniformly bounded in Lσ(0, T ; L1(Ω)) for all σ < 2 and moreover,

A(τ) ⇀
2
√

n∇√
n − n∇ψ

1 + n + p
+

n(2
√

n∇√
n − n∇ψ + 2

√
p∇√

p + p∇ψ)

1 + n + p
.

weakly in Lσ(0, T ; L1(Ω)). By the weak formulation of the approximation problem, we
conclude the estimate ∥∥∥

1

τ
(n(τ) − σKn(τ))

∥∥∥
Lσ(0,T ;(Hs

D
(Ω))′)

≤ c,

which shows (56) and, similarly, (57). ¤

The proof of Theorem 1 follows from Lemmas 10 and 11. It only remains to show that
√

n and
√

p satisfy the boundary data. In fact,

√
n

(N)
k − √

nD,

√
p

(N)
k − √

pD ∈ H1
D(Ω)

and thus, in view of (33),
√

n(τ) −√
nD,

√
p(τ) −√

pD ∈ L2(0, T ; W 1,1
D (Ω)). Then, the limit

(47) implies that
√

n −√
nD,

√
p −√

pD ∈ L2(0, T ; W 1,1
D (Ω)).
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