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Abstract We establish uniformL∞ bounds for approximate solutions of the drift-
diffusion system for electrons and holes in semiconductor devices, computed with
the Scharfetter-Gummel finite-volume scheme. The proof is based on a Moser iter-
ation technique adapted to the discrete case.
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1 Introduction

We consider the Van Roosbroeck’s bipolar drift-diffusion system onΩ × (0,T),
whereΩ is a domain ofRd (d = 2, 3):

∂tN+div(−∇N+N∇Ψ) =−R(N,P), (1a)

∂tP+div(−∇P−P∇Ψ) =−R(N,P), (1b)

−λ 2∆Ψ = P−N+C. (1c)

The unknowns are the electron densityN, the hole densityP and the electrostatic
potentialΨ . The doping profileC(x) is given andλ is the scaled Debye length. This
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system is supplemented with initial densitiesN0, P0, Dirichlet boundary conditions
onΓ D (ND, PD,ΨD) and homogeneous Neumann boundary conditions onΓ N (with
∂Ω =Γ D∪Γ N, Γ D∩Γ N = /0, and m(Γ D)> 0). The recombination-generation rate
is written under the following form which includes Shockley–Read–Hall and Auger
terms:

R(N,P) = R0(N,P)(NP−1). (2)

In what follows, we consider the following (standard) assumptions:

(H1) C∈ L∞(Ω),
(H2) ND, PD ∈ L∞ ∩H1(Ω), ΨD ∈ H1(Ω),
(H3) ND PD = 1,
(H4) ∃M > 0 such that 0≤ N0, P0, ND, PD ≤ M a.e. onΩ ,
(H5) ∃R̄> 0 such that 0≤ R0(N,P)≤ R̄(1+ |N|+ |P|) ∀N, P∈ R.

Hypothesis (H3) means that the boundary data are in thermal equilibrium. Existence
and uniqueness of weak solutions to system (1) have been proved in [9]. Nonneg-
ativity of the densities and uniform-in-time upper bounds have also been shown in
[9]. The proof is based on an approach proposed by Alikakos [1], closely related to
the Moser iteration technique [12].

Let ∆ t > 0 be the time step and let consider an admissible mesh ofΩ . It is given
by a family T of control volumes, a familyE of edges (or faces) and a family
of points (xK)K∈T which satisfy Definition 9.1 in [7]. In the set of edgesE , we
distinguish the set of interior edgesEint from the set of boundary edgesEext. We split
Eext into Eext = E D

ext∪E N
ext, whereE D

ext andE N
ext is the set of Dirichlet and Neumann

boundary edges, respectively. For a control volumeK ∈ T , we denote byEK =
Eint,K ∪E D

ext,K ∪E N
ext,K . For allσ ∈ E , we defineτσ = |σ |/dσ , wheredσ = d(xK ,xL)

for σ = K|L ∈ Eint , anddσ = d(xK ,σ) for σ ∈ Eext. We also need the following
assumptions on the mesh:

∃ξ > 0 such thatd(xK ,σ)≥ ξ dσ , ∀K ∈ T , ∀σ ∈ EK , (3a)

∃c0 > 0 such thatτσ ≥ c0, ∀σ ∈ E . (3b)

A finite volume discretization for (1) provides an approximate solution un
T

=
(un

K)K∈T for all n ≥ 0 and approximate boundary valuesuE D = (uσ )σ∈E D
ext

for
u= N, P,Ψ . For any vectoruM = (uT ,uE D), we define

DuK,σ = uK,σ −uK , Dσ u= |DuK,σ |, ∀K ∈ T ,∀σ ∈ EK ,

whereuK,σ is eitheruL (σ =K|L), uσ (σ ∈ E D
K,ext) or uK (σ ∈ E N

K,ext). We also define
the discreteH1-seminorm| · |1,M by

|uM |21,M = ∑
σ∈E

τσ (Dσ u)2, ∀uM = (uT ,uE D).
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We define the initial conditionsN0
K , P0

K as the mean values ofN0 andP0 overK ∈T .
The boundary conditions are also approximated by taking themean values ofND,
PD andΨD over each Dirichlet boundary edgeσ ∈ E D

ext.
We are now in the position to define the scheme for (1), based ona backward

Euler in time discretization. For allK ∈ T andn≥ 0,

|K|N
n+1
K −Nn

K

∆ t
+ ∑

σ∈EK

F
n+1
K,σ =−|K|R(Nn+1

K ,Pn+1
K ), (4a)

|K|P
n+1
K −Pn

K

∆ t
+ ∑

σ∈EK

G
n+1
K,σ =−|K|R(Nn+1

K ,Pn+1
K ), (4b)

−λ 2 ∑
σ∈EK

τσ DΨ n
K,σ = |K|(Pn

K −Nn
K +CK), (4c)

whereF
n+1
K,σ andG

n+1
K,σ are the Scharfetter-Gummel fluxes

F
n+1
K,σ = τσ

[

B
(

−DΨn+1
K,σ

)

Nn+1
K −B

(

DΨn+1
K,σ

)

Nn+1
K,σ

]

, (5a)

G
n+1
K,σ = τσ

[

B
(

DΨ n+1
K,σ

)

Pn+1
K −B

(

−DΨn+1
K,σ

)

Pn+1
K,σ

]

, (5b)

andB is the Bernoulli functionB(x) = x/(ex−1) for x 6= 0, B(0) = 1.
In [2], the existence of a solution to scheme (4)-(5) and the boundedness of the

approximate densities are shown, but the bounds depend on time and blow up when
time goes to infinity. The only case where the result is uniform in time is that of zero
doping profile. The purpose of this paper is to adapt the ideasdeveloped in [9, 10] to
the discrete framework to obtain uniform-in-timeL∞ estimates for the approximate
densities obtained with scheme (4)–(5) for general doping profiles. Our main result
reads as follows.

Theorem 1. Let (H1)–(H5) hold and letM = (T ,E ,P) be an admissible mesh of
Ω satisfying(3). Any solution(Nn

T
,Pn

T
,Ψn

T
)n≥0 to (4)–(5) satisfies

∃κ > 0, ∀n≥ 0, ‖Nn
T ‖L∞(Ω) ≤ κ and‖Pn

T ‖L∞(Ω) ≤ κ . (6)

The constantκ depends only on the initial and boundary data, C,λ , R̄, Ω and d,
and on the constantsξ and c0 given in(3), but not on n.

The proof of (6) applies a Nash-Moser type iteration method based onLr bounds
[1, 12]. Let us mention that this method has already been applied to a discrete setting
in [8]. As we deal here with equations on a bounded domain, we have to take care
about the boundary conditions. Therefore, as in [11], we establish (6) forNM =
(N −M)+ and PM = (P−M)+, whereM is given in (H4), instead ofN and P.
The proof is detailed in Section 3. The uniform-in-timeL1 bounds for the densities
necessary to initialize the Moser iteration method are obtained thanks to an entropy-
entropy production estimate, recalled in Section 2.
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2 Discrete entropy-entropy production inequality

The thermal equilibrium is a steady state for which the electron and hole current
densities and the recombination-generation term vanish. If (H3) is satisfied, there
existsα ∈ R such that the thermal equilibrium is defined by

N∗ = eα+Ψ∗
, P∗ = e−α−Ψ∗

, (7a)

−λ 2∆Ψ ∗ = e−α−Ψ∗ −eα+Ψ∗
+C, (7b)

Ψ ∗ =ΨD onΓ D, ∇Ψ ∗ ·ν = 0 onΓ N. (7c)

An approximation of the thermal equilibrium(N∗
T
,P∗

T
,Ψ ∗

T
) is given by

−λ 2 ∑
σ∈EK

τσ DΨ ∗
K,σ = |K|

(

e−α−Ψ∗
K −eα+Ψ∗

K +CK

)

, ∀K ∈ T , (8)

N∗
K = eα+Ψ∗

K , P∗
K = e−α−Ψ∗

K , ∀K ∈ T . (9)

Let H(x) = xlogx−x+1. The discrete relative entropy is defined by

E
n =

λ 2

2
|Ψn

M −Ψ ∗
M |21,M + ∑

K∈T

|K|
(

H(Nn
K)−H(N∗

K)− logN∗
K(N

n
K −N∗

K)

+H(Pn
K)−H(P∗

K)− logP∗
K(P

n
K −P∗

K)
)

. (10)

We also define the discrete entropy production:

I
n = ∑

σ∈E ;K=Kσ

τσ

[

min(Nn
K ,N

n
K,σ )(Dσ (log(Nn)−Ψn))2

+ min(Pn
K ,P

n
K,σ )(Dσ (log(Pn)+Ψn))2

]

+ ∑
K∈T

|K|R0(N
n
K ,P

n
K)(N

n
KPn

K −1) log(Nn
KPn

K), (11)

We recall the discrete entropy-entropy production inequality proved in [5].

Proposition 1. For all n ≥ 0,

0≤ E
n+1+∆ tIn+1 ≤ E

n. (12)

Summing (12) overn, we haveEn ≤ E
0, which gives a uniform-in-time estimate

for En. Then, ifM satisfies (3b), and since there existsC∗ such that|Ψ ∗
M
|1,M ≤C∗

(see [4, Lemma 3.3]), we have|DσΨn+1| ≤ D, whereD > 0 only depends onE0, λ ,
c0 andC∗. The properties of the Bernoulli function ensure that

∃γ ∈ (0,1], B(|DσΨn+1|)≥ γ , ∀σ ∈ E ,∀n≥ 0. (13)
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3 Proof of Theorem 1

We set

Nn
M,K = (Nn

K −M)+, Pn
M,K = (Pn

K −M)+, ∀K ∈ T , ∀n≥ 0,

andVn
q = ∑

K∈T

|K|
[

(Nn
M,K)

q+(Pn
M,K)

q] , ∀n≥ 0, ∀q≥ 1.

We start by establishing the following result about the evolution ofVn
q+1.

Proposition 2. Let q≥ 1. There exist positive constantsµ andν only depending on
‖C‖∞, λ , M, R̄ andγ ∈ (0,1] such that

1
∆ t

(

Vn+1
q+1 −Vn

q+1

)

+
4q

q+1
γ ∑

σ∈E

[

(Dσ (N
n+1
M )

q+1
2 )2+(Dσ (P

n+1
M )

q+1
2 )2

]

≤ µqVn+1
q+1 +ν |Ω |. (14)

Proof. Multiplying (4a) (resp. (4b)) by(Nn+1
M,K)

q (resp.(Pn+1
M,K )

q) , summing overK
and adding the two equations, we obtainS1+S2 =S3, whereS1 contains the discrete
time derivatives,S2 the numerical fluxes andS3 the recombination-generation term.
Using the elementary identity(x−y)xq ≥ (xq+1−yq+1)/(q+1) for all x,y≥ 0 and
q≥ 1, we find that

S1 ≥
1

q+1
1

∆ t

(

Vn+1
q+1 −Vn

q+1

)

. (15)

By a discrete integration by parts onS2, combined with some properties of the
Bernoulli function, we have

S2 ≥
4q

(q+1)2 ∑
σ∈E

τσ B(|DσΨn+1|)
[

(Dσ (N
n+1
M )

q+1
2 )2+(Dσ (P

n+1
M )

q+1
2 )2

]

− q
q+1 ∑

σ∈E

τσ DΨ n+1
K,σ

[

D((Nn+1
M )q+1)K,σ −D((Pn+1

M )q+1)K,σ )
]

−M ∑
σ∈E

τσ DΨn+1
K,σ

[

D((Nn+1
M )q)K,σ −D((Pn+1

M )q)K,σ )
]

.

We perform a discrete integration by parts of the two last sums on the right-hand
side, use scheme (4c) and the monotonicity of the functionsx 7→ ((x−M)+)q and
x 7→ ((x−M)+)q+1. Combined with (13), this yields

S2 ≥
4q

(q+1)2 γ ∑
σ∈E

τσ

[

(Dσ (N
n+1
M )

q+1
2 )2+(Dσ (P

n+1
M )

q+1
2 )2

]

− q
q+1

‖C‖∞

λ 2 Vn+1
q+1 −M

‖C‖∞

λ 2 Vn+1
q . (16)

Thanks to (H5) and the nonnegativity of the approximate densities, we have
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R0(N
n+1
K ,Pn+1

K )(1−Nn+1
K Pn+1

K )
[(

Nn+1
M,K

)q
+
(

Pn+1
M,K

)q]

≤ R̄(1+2M)
[

(Nn+1
M,K)

q+(Pn+1
M,K )

q
]

+ R̄
[

(Nn+1
M,K)

q+1+(Pn+1
M,K )

q+1
]

+ R̄
[

(Nn+1
M,K)

qPn+1
M,K +(Pn+1

M,K )
qNn+1

M,K

]

. (17)

Then, applying the Young’s inequality, we obtain

Vn+1
q ≤ 1

q+1

(

qVn+1
q+1 +m(Ω)

)

,

∑
K∈T

|K|
[

(Nn+1
M,K)

qPn+1
M,K +(Pn+1

M,K )
qNn+1

M,K

]

≤Vn+1
q+1 .

Combining this with (15), (16) and (17) finishes the proof.⊓⊔

Now, our aim is to control the termVn+1
q+1 appearing on the right-hand side of (14).

The discrete Nash inequality [3, Corollary 4.5] reads for functionsχT that vanish
on a part of the boundary as

(

∑
K∈T

|K|χ2
K

)1+ 2
d

≤ C̃
ξ

(

∑
σ∈E

τσ (Dσ χ)2

)(

∑
K∈T

|K||χK |
)

4
d

,

whereξ is given in (3a) andC̃ only depends onΩ andd. Thanks to Young’s in-
equality, it follows forε > 0 that, up to a change of the value ofC̃,

∑
K∈T

|K|χ2
K ≤ C̃

εd/2ξ d/2

(

∑
K∈T

|K||χK |
)2

+ ε

(

∑
σ∈E

τσ (Dσ χ)2

)

.

Applying this inequality toχ =
(

Nn+1
M

)

q+1
2 andχ =

(

Pn+1
M

)

q+1
2 , we have

Vn+1
q+1 ≤ C̃

(εξ )d/2

(

Vn+1
q+1

2

)2

+ ε ∑
σ∈E

[

(Dσ (N
n+1
M )

q+1
2 )2+(Dσ (P

n+1
M )

q+1
2 )2

]

. (18)

Arguing similarly as in [6] and using the fact thatγ ∈ (0,1], we can findA > 0
depending only onµ and hence only on‖C‖∞, λ , M andR̄such that

γA
q

(

µq+
γA
q

)

≤ 4γq
q+1

, ∀q≥ 1.

Therefore, multiplying (18) byµq+ε(q) with ε(q) = γA/q and adding the resulting
equation to (14), we infer that

Vn+1
q+1 −Vn

q+1

∆ t
≤−ε(q)Vn+1

q+1 +ν |Ω |+ C̃

ε(q)d/2ξ d/2
(µq+ ε(q))

(

Vn+1
q+1

2

)2

. (19)
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Let us now defineWn
k =Vn

2k for all n≥ 0 andk∈N. The definitions ofM and the
initial condition ensure thatW0

k = 0 for all k ∈ N. Moreover, the discrete entropy-
entropy production inequality (12) ensures thatE

n ≤ E
0 for all n≥ 0 and applying

the inequalities

∀x,y> 0 xlog
x
y
−x+y≥ (

√
x−√

y)2 ≥ x
2
−y,

we deduce a uniform bound ofWn
0 for all n ≥ 0. With q = 2k − 1 = ζk andεk =

γA/ζk, we infer from (19) that

Wn+1
k −Wn

k

∆ t
≤−εkW

n+1
k +B

(

ζ d/2
k (ζk+ εk)(W

n+1
k−1 )

2+1
)

(20)

with B= γ−d/2max{νm(Ω), C̃
ξ d/2 A−d/2, C̃

ξ d/2 A−d/2µ}. Therefore, ifWn
k−1 is bounded

for all n by E, we conclude from (20) that

Wn
k ≤ B

εk

(

ζ d/2
k (ζk+ εk)E

2+1
)

, ∀n≥ 0.

Setδk = Bζ d/2
k (ζk+ εk)/εk. As ζ d/2

k (ζk+ εk)≥ 1, it follows that

Wn
k ≤ δk(E

2+1), ∀n≥ 0. (21)

We prove by induction (see [1, 11]) that for allk≥ 0,

Wn
k ≤ 2δk(2δk−1)

2 · · ·(2δ1)
2k−1

K
2k
, ∀n≥ 0,

whereK = max(1,supn≥0Wn
0 ). This is a direct consequence of (21), remarking

that withE = 2δk(2δk−1)
2 · · ·(2δ1)

2k−1K 2k
for all k ≥ 0, we have 1≤ E2 (thanks

to the definition ofK ).
To conclude, we first remark thatδk ≤ D2(2+d/2)k with D = B/A. Hence

k−1

∏
j=0

(2δk− j)
2 j ≤ (2D)2k−1 ·2(2+d/2)∑k−1

j=0(k− j)2 j
≤ (2D)2k ·2(2+d/2)·2k ∑∞

ℓ=1 ℓ2
−ℓ
,

and since∑∞
ℓ=1ℓ2

−ℓ = 2, we find thatWn
k ≤ (25+dDK )2k

. Taking the power 1/2k

of Wn
k we obtain

‖Nn
M‖

L2k
(Ω)

≤ 25+dDK , ‖Pn
M‖

L2k
(Ω)

≤ 25+dDK , ∀n≥ 0, ∀k∈ N,

and passing to the limitk→ ∞ gives

‖Nn
M‖L∞(Ω) ≤ 25+dDK , ‖Pn

M‖L∞(Ω) ≤ 25+dDK , ∀n≥ 0.



8 M. Bessemoulin-Chatard, C. Chainais-Hillairet, and A. Jüngel
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