Uniform L* estimates for approximate solutions
of the bipolar drift-diffusion system
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Abstract We establish unifornL® bounds for approximate solutions of the drift-
diffusion system for electrons and holes in semiconductviags, computed with
the Scharfetter-Gummel finite-volume scheme. The proo&getd on a Moser iter-
ation technique adapted to the discrete case.
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1 Introduction

We consider the Van Roosbroeck’s bipolar drift-diffusigrstem onQ x (0,T),
whereQ is a domain ofR9 (d = 2, 3):

&N +div(—ON +NOW) = —R(N, P), (1a)
&P+ div(—0OP— POW) = —R(N, P), (1b)
—A2A¥Y =P_N+C. (1c)

The unknowns are the electron denditythe hole density? and the electrostatic
potential’. The doping profil€c(x) is given andh is the scaled Debye length. This
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system is supplemented with initial densitég Py, Dirichlet boundary conditions
onl P (NP, PP, wP) and homogeneous Neumann boundary conditionsh(with
0Q =rPurN,renrN =g, and nfr ) > 0). The recombination-generation rate
is written under the following form which includes Shocki®ead—Hall and Auger
terms:

R(N,P) = Ry(N,P)(NP—1). 2)

In what follows, we consider the following (standard) asptions:

(H1) Cel®(Q),

(H2) NP PP cLnHY(Q), WP cH(Q),

(H3) NPPP =1,

(H4) 3M > 0 such that < No, Py, NP, PP <M a.e. onQ,

(H5) 3R> 0such that &< Ry(N,P) < R(1+|N|+|P|) V¥N,PcR.

Hypothesis (H3) means that the boundary data are in thempdllium. Existence
and uniqueness of weak solutions to system (1) have beeegin\9]. Nonneg-
ativity of the densities and uniform-in-time upper boundsénalso been shown in
[9]. The proof is based on an approach proposed by Alikakhz[dsely related to
the Moser iteration technique [12].

Let At > O be the time step and let consider an admissible mesh ¢ffis given
by a family 7 of control volumes, a family§’ of edges (or faces) and a family
of points (X« )ke# Which satisfy Definition 9.1 in [7]. In the set of edgés we
distinguish the set of interior edgéip; from the set of boundary edgés.:. We split
Sext INLO Sext = ELU EN,, where&2, and &Y, is the set of Dirichlet and Neumann
boundary edges, respectively. For a control voluthe 7, we denote byk =
Eintk Ubguk Ubaxk- Forallo € &, we definer; = |o|/dg, wheredy = d(xi, )
for 0 = K|L € &nt, andds = d(Xk, 0) for 0 € &ex- We also need the following
assumptions on the mesh:

3¢ > 0suchthatd(xx,0) > éds, VKe€ I, Vo € ék, (3a)
dcg > O such thaty; > ¢y, Voeé&. (3b)

A finite volume discretization for (1) provides an approxtmaolutionu’, =
(ug )kez for all n > 0 and approximate boundary valuago = (ua)oegeDX[ for
u=N, P, ¥. For any vectou_, = (Uz,Usp ), we define

Duk ¢ = Uk,o — UK, Dgu= |Duk |, VK € 7,V0O € &k,

whereuk ¢ is eitheru, (0 =K|L), Us (0 € £, Or Uk (0 € &,). We also define
the discreteH*-seminorm| - |y _, by

uslis=Y (Do)’ Vus =(uz,Ue).
oges
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We define the initial conditions?, P? as the mean values bf andP, overK € 7.
The boundary conditions are also approximated by takingrtban values oRP,
PP and¥P over each Dirichlet boundary edgec &5,

We are now in the position to define the scheme for (1), baseal lmackward
Euler in time discretization. For al € .7 andn >0,

Nn+1_Nn
|K‘ K i K+ z <gﬁh-&-l |K|R(N n+1 Pn+1) (4a)
geék
PRt — PR
KIF g+ Y R = —IKIRINGL R, (4b)
geék
—A2 ; ToDW 5 = |K|(P — NR +Ck), (4c)
gcoK

where.Z¢ " and%? " are the Scharfetter-Gummel fluxes
i3 =10 [B(-DHI ) NRH - B (DY NI (5a)
gnJrl =14 |:B (DwnJrl) Pn+1 B( DL,Un+1) Pn+1:| , (5b)

andB is the Bernoulli functiorB(x) = x/(e*— 1) for x # 0, B(0) = 1.

In [2], the existence of a solution to scheme (4)-(5) and thendedness of the
approximate densities are shown, but the bounds depentheratid blow up when
time goes to infinity. The only case where the result is unifar time is that of zero
doping profile. The purpose of this paper is to adapt the ideasloped in [9, 10] to
the discrete framework to obtain uniform-in-tirh& estimates for the approximate
densities obtained with scheme (4)—(5) for general dopiojlips. Our main result
reads as follows.

Theorem 1. Let (H1)—(H5) hold and let# = (7, &, &) be an admissible mesh of
Q satisfying(3). Any solution(N,, P%., W7 )n>0 to (4)(5) satisfies

3K >0,Vn>0, [ING|L=@) <k and|[P|| =) <K. (6)

The constank depends only on the initial and boundary data,)C,R, Q and d,
and on the constant§ and g given in(3), but not on n.

The proof of (6) applies a Nash-Moser type iteration methasel orL" bounds
[1, 12]. Let us mention that this method has already beeriexpful a discrete setting
in [8]. As we deal here with equations on a bounded domain, ave lto take care
about the boundary conditions. Therefore, as in [11], waldisth (6) forNy =
(N—M)* andRy = (P—M)™, whereM is given in (H4), instead oN and P.
The proof is detailed in Section 3. The uniform-in-titnebounds for the densities
necessary to initialize the Moser iteration method areinbththanks to an entropy-
entropy production estimate, recalled in Section 2.
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2 Discrete entropy-entropy production inequality

The thermal equilibrium is a steady state for which the etecaind hole current
densities and the recombination-generation term vanigii3d) is satisfied, there
existsa € R such that the thermal equilibrium is defined by

N =gl ™% pr=ga ¥ (78)
A2AWF e Y etV o (7b)
W =wPonrP [y .y=0o0onrN. (7c)

An approximation of the thermal equilibriugN%,, P%, W) is given by

)2 ; DY 5 = K| (e*a*“x* gt +CK) VK e T, 8)
o

€6K

N =e®*% Pi=e 9% vKeg. 9)

LetH(x) = xlogx— x+ 1. The discrete relative entropy is defined by

A2 . . . .
En:?‘gj/l_q{%\i%+ S |K|(H(NE)—H(NK)—|09NK(N|Q—NK)
KeJ
+H(P,'g)—H(P;)—IogPé(F’E—F’é))- (10)

We also define the discrete entropy production:

= 5 o [mi”(N27N27U)(Dg(Iog(N")7qJn))2
oeé K=Kg
+ m|n(P|r<1, PIQ,O’) (Da(log(Pn) 4 Wn))z

+ 3 IKIRo(Ng. P2)(NZPE — 1)log(NZFR),  (11)
Ke7

We recall the discrete entropy-entropy production ineityuptoved in [5].
Proposition 1. For alln > 0,
0< E™ 4 At <EN (12)

Summing (12) oven, we haveE" < E°, which gives a uniform-in-time estimate
for E". Then, if.# satisfies (3b), and since there exiStssuch that¥”,|, , <C*
(see [4, Lemma 3.3]), we hayB,¥"*| < D, whereD > 0 only depends oR°, A,

Co andC*. The properties of the Bernoulli function ensure that

Jye (0,1, B(DoW™) >y, Voe&,¥n>0. (13)
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3 Proof of Theorem 1

We set
N,\r}hK:(NQ—M)Jr7 ,\r}hK:(PIQ—M)Jr, VK e 7, ¥n>0,

andVy' = 27|K| (NG %+ (R, vn>0,vg>1
Ke.J

We start by establishing the following result about the stioh ofV, q+1

Proposition 2. Let g> 1. There exist positive constarisand v only depending on
ICllw: A, M, R andy € (0, 1] such that

1 /ne1 n+1 2, 1y 9522
At (V(Hl q+1) VU%D [ Do (NI 1) )2+ (Do (R )
<paQvgrt+viQl. (14)
Proof. Multiplying (4a) (resp. (4b)) byNy"¢)? (resp.(PiK)%) , summing oveK
and adding the two equations, we obt&ir- S = S, whereS, contains the discrete
time derivativesS, the numerical fluxes ang; the recombination-generation term.
Using the elementary identitx — y)x4 > (x4+1 —y4+1) /(q+ 1) for all x,y > 0 and
g> 1, we find that
S 1 1 yma_y 15

> g (%) (19)
By a discrete integration by parts &, combined with some properties of the
Bernoulli function, we have

5> (qquz S 1oB(ID™ ) (Do (N5 7+ (Do (R )5
ages
a1 2 ToPHG DN ko — DIRT™ T ko))
oe("

MY DU DING k.o — D(RG™k.0)] -

ges

We perform a discrete integration by parts of the two lastsom the right-hand
side, use scheme (4c) and the monotonicity of the functiors((x —M)™)9 and
X ((x—M)*)a+1, Combined with (13), this yields

q+1

S22y S o [Da Y+ o (P Y

oes&

g ICl|e 1 IC]le 1
~ga1 a2 VIt =M 2 Ve (19)

Thanks to (H5) and the nonnegativity of the approximate tiesswe have
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Ro(N™, PE ) (1~ N 2R ) [ (NGd) "+ (R |

< R(L+2M) [N+ (R + R (NG + (R
+R|(NGIPRR + (BRG] . a7)

Then, applying the Young’s inequality, we obtain

an+1 < 1 (qV”+1+m(Q)),

— q+1 g+1
S KT [N + (PR NGR] < Vi
KeT7

Combining this with (15), (16) and (17) finishes the proofl

Now, our aim is to control the terwg‘jll appearing on the right-hand side of (14).
The discrete Nash inequality [3, Corollary 4.5] reads fordtions x - that vanish
on a part of the boundary as

+5 4
C
K 2 < — To DO’ 2 K ,
(Kg7| XK) K3 (agé’ (Dax) ) <Kgyl |XK|>

whereé is given in (3a) andC only depends o2 andd. Thanks to Young's in-
equality, it follows fore > 0 that, up to a change of the value@f

~ 2
C
S [KIxZ < IS (Kezg“(HXK) +e ( )3 Ta(DaX)2> .

KeT geé

q+1 q+1
Applying this inequality toy = (N§j™*) 2 andx = (P}"™) 2, we have

é 2 g+l q+1
vil< — (il Do(NI) 2 )2+ (Dg (PR 2 )?|. (18
le—(,_:f)d/Z(%&) +5J§J( o(Nw™) 2 )"+ (Do (Ry"™) )} (18)

Arguing similarly as in [6] and using the fact thate (0,1], we can findA > 0
depending only o and hence only ofiC||., A, M andR such that

yA ( VA> 4yq

q Ha q q+1 q

Therefore, multiplying (18) byiq+ £(q) with £(q) = yA/q and adding the resulting
equation to (14), we infer that

Vc;]ill—vl?_,_l n+1 C n+1 ?
- <—&(a)Vgi1 +V|Q\+W (Hg+£(q)) <Vl+§ > . (19)
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Let us now defing\j' =V for all n> 0 andk € N. The definitions oM and the
initial condition ensure thanj0 = 0 for all k € N. Moreover, the discrete entropy-
entropy production inequality (12) ensures that< E° for all n > 0 and applying
the inequalities

X,y >0 xlogg—xﬂtyz (VX=V¥)? > g—y,

we deduce a uniform bound 9§ for all n > 0. With q = 2K_1=¢andg =
yA/{k, we infer from (19) that

Wn+1 —_\Wn
S < aWr B (G ao W2 +1)  (@0)

with B=y 92max{vm(Q), Ed%zA*d/z, EdL/ZA*d/Zu}. Therefore, if\]? ; is bounded
for all n by E, we conclude from (20) that

B
W< — (ZE/Z(Zk+£k)E2+1) . ¥n>0.
k

Setdy = BZE/Z(Zk + &)/ & As Zf/z(fk + &) > 1, it follows that
W < &(E2+1), ¥n>D0. (21)

We prove by induction (see [1, 11]) that for &l> 0,

k-1

W < 26¢(25c1)%--- (281)% "%, wn=>0,

where.#” = max(1,sup,-oWy'). This is a direct consequence of (21), remarking

that With E = 25 (28 1)2- - (28,)%~1.#% for all k > 0, we have K E2 (thanks
to the definition of%").
To conclude, we first remark tha < D2(2t4/2k with D = B/A. Hence

k—1 . .
I_L(Z(Sk*j)zj < (2D)2k*1~2<2+d/2) z'j‘;é(kfj)ZJ < (ZD)zk,2(2+d/2)-2kz;°:142*f7
J:

and sincey®_, 2~ = 2, we find thatj" < (25+9D_%)%. Taking the power 12
of W' we obtain

ING 2k ) < 277D, IRk o) < 2°79DF, ¥n>0, VkeN,

)

and passing to the limk — o gives

INGIL=(@) < 227D, [|R}llie() < 2°79D#, Wn>o0.
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