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Abstract. In this paper, we answer the question under which conditions the porous-
medium equation with convection and with periodic boundary conditions possesses gra-
dient-type Lyapunov functionals (first-order entropies). It is shown that the weighted
sum of first-order and zeroth-order entropies are Lyapunov functionals if the weight for
the zeroth-order entropy is sufficiently large, depending on the strength of the convection.
This provides new a priori estimates for the convective porous-medium equation. The
proof is based on an extension of the algorithmic entropy construction method which is
based on systematic integration by parts, formulated as a polynomial decision problem.

1. Introduction

In recent years, entropy–entropy dissipation methods proved to be very successful tools
for the understanding of the structure of nonlinear diffusive equations. In particular, the
methods allow for the derivation of a priori estimates and the study of the qualitative
behavior of the solutions. In this paper, we apply and extend entropy methods to derive
new a priori estimates for the porous-medium (and fast-diffusion) equation with convection:

(1) ut = div(uα∇u + quβ+1), t > 0, u(·, 0) = u0 ≥ 0 in T
d,

where α ≥ −1, β > −1, q ∈ R
d, and T

d is the d-dimensional torus with unit volume.
This equation with α > 0 arises in a model for the flow of moisture in a porous material
under the influence of gravity, where u denotes the moisture content, and it is also used to
describe nonlinear heat transfer or groundwater flow [18].

The existence and uniqueness of solutions to the Cauchy problem for (1) with α > 1 and
β ≥ α/2 was shown by Gilding and Peletier in [11]. Dı́az and Kersner [4] and Gilbert [10]
developed an existence theory for more general equations of the type ut = a(u)xx + b(u)x,
including the functions a(u) = uα+1 and b(u) = uβ+1 with α ≥ 0 and β > −1. Watanabe
proved the existence and uniqueness of solutions to the multi-dimensional version ut =
div(∇a(u)+b(u)), including a(u) = uα+1 and b(u) = uβ+1 with β ≥ α [19]. Several authors
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analyzed the qualitative behavior of the solutions to (1). The influence of the gravity term
on the free boundary between the regions in which u = 0 and u > 0 is investigated in
[9]. In [1, 3, 6, 15, 17], the long-time behavior for the solutions in the whole space was
studied, and it was proved that the solutions behave, as t → ∞, like certain similarity
solutions. Traveling wave solutions were shown to exist in [5]. Symmetry reductions and
exact solutions to (1) were derived in [8, 16]. Finally, the work [2] is concerned with a
priori pointwise estimates.

In this paper, we answer the question under which conditions functionals of the type

(2) E0(t) =

∫

Td

(
uγ − ūγ

)
dx, γ > 1,

where ū =
∫

Td udx, and

(3) E1(t) =

∫

Td

|∇u(x, t)γ/2|2dx, γ > 1,

allow for so-called entropy–entropy dissipation estimates. We call the inequality

dE

dt
+ P ≤ 0

an entropy–entropy dissipation inequality if E(t) is a Lyapunov functional and if P ≥ 0
provides estimates on the derivative of the solution u. In this situation, we refer to E as
an entropy and to P as an entropy dissipation (or entropy production). An entropy of the
type (3) is called to be of first order since it contains first-order derivatives of u, whereas
entropy functionals of the form (2) are termed zeroth-order entropies. Entropy–entropy
dissipation inequalities are very useful for the qualitative behavior of solutions such as their
regularity and long-time behavior.

Entropy estimates are usually derived by suitable integrations by parts. An algorithmic
entropy construction method was proposed in [12] which is based on systematic integration
by parts. More precisely, all possible integrations by parts are formulated as manipulations
of certain polynomials, and the task of finding entropy estimates can be reduced to prove
the nonnegativity of a polynomial involving some coefficients coming from the integrations
by parts. The problem to show the nonnegativity of the polynomial is formulated as a
decision problem which can be solved, in principle, in an algorithmic way. This technique
was applied in [12] to the one-dimensional porous-medium equation

(4) ut = (uαux)x in T,

and it turned out that for smooth solutions and for all γ > 1, functionals (2) are zeroth-
order entropies with

dE0

dt
+

4γ(γ − 1)

(α + γ)2

∫

Td

∣∣(u(α+γ)/2)x

∣∣2dx = 0.

Furthermore, it is not difficult to see that the functionals (3) are first-order entropies for
(4) if

(5) 0 < γ − 2α < 3.
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Actually, the boundary values γ − 2α = 0 and γ − 2α = 3 also allow for entropies, i.e.
dE1/dt ≤ 0 but no information on the entropy dissipation is available in these cases; see [12]
for details. We show in Remark 6 that there are no first-order entropies (3) for parameters
outside of the interval 0 ≤ γ − 2α ≤ 3.

The entropy construction method cannot be immediately applied to the convective part
of (1) since the technique was developed for homogeneous equations only. By standard
integration by parts, it is easy to check that zeroth-order entropies (2) are entropies for
all γ > 1 even in the presence of convection. On the other hand, it is less clear for which
parameter range of γ, the first-order entropies (3) allow for entropy–entropy dissipation
estimates. In this paper, we answer this question by extending the entropy construction
method of [12] to the inhomogeneous equation (1). Our answer is based on two ideas.

The first idea is to consider, instead of the first-order entropies (3), the mixed-order
entropies

E(t) =
1

2

∫

Td

(
|∇u(x, t)γ/2|2 + c(u(x, t)γ+2(β−α) − ūγ+2(β−α))

)
dx.

For a nonnegative constant c, Jensen’s inequality shows that E(t) ≥ 0. It turns out that,
for suitable (α, β, γ), this functional is an entropy for (1) if the constant c > 0 is chosen
sufficiently large. This means that the sum of an entropy and a functional, which may
be not a Lyapunov functional, is an entropy. This fact (but with different entropies) was
exploited in [7] for a population dynamics cross-diffusion model to prove the numerical
convergence of semi-discrete solutions.

Our second idea concerns the treatment of the inhomogeneities in (1). In the entropy
construction method of [12], the derivatives of u are identified with polynomial variables.
For instance, in the one-dimensional case, the variables are ξ1 = ux/u, ξ2 = uxx/u etc.
Clearly, this is only possible if all powers of u are of the same order, α = β. We introduce
the additional variables η1 = uβ−α−1ux and η2 = u2(β−α)−1uxx and work with polynomials in
the variables ξ1, ξ2, η1, η2 etc. In the multi-dimensional situation, we employ the gradient,
Laplacian, and Hesse matrix as “vector” variables (as in [13]). We need to show that
a certain polynomial in these variables is nonnegative. Due to the inhomogeneities, the
reductions of [12] do not work. We solve the problem by writing the polynomial under
question as a sum of squares, mixing the variables ξi and ηj.

The originality of the paper consists of two facts. First, we prove new estimates for
the porous-medium equation with convection (1) for smooth positive solutions. These
estimates are the first step of a study of the qualitative behavior of the solutions. We refer
to Remark 4 for some comments about an extension of the results to weak nonnegative
solutions. Second, we extend the entropy construction method of [12] to an inhomogeneous
equation. By this extension, the entropy method may be applied to a much larger class of
equations than originally described in [12].

Our main results are as follows.
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Theorem 1 (Multi-dimensional case). Let d > 1 and let u be a smooth positive solution
to (1) with q ∈ R

d. Let Ad ∈ R
2 be the open domain bounded by the four line segments

α =
1

4

(
− d ±

√
d(d + 8)

)
(γ − 3) and α =

1

4d

(
d(γ − 6) ±

√
d(d + 8)(γ − 2)

)

(see Figure 1). Furthermore, let (α, γ) ∈ Ad and let β > −1 satisfy

(6) γ − 2α < −2β or γ − 2α > −2β + 1.

Then there exist constants µ > 0 (depending on α, β, γ, and d) and c∗ > 0 (depending on
α, β, γ, d, and µ) such that for all c ≥ c∗|q|2, it holds

dE

dt
+ µ

( γ

α + γ

)2
∫

Td

∣∣∆(u(α+γ)/2)
∣∣2dx ≤ 0.

−1 0 1 2

2

4

6

α

γ

d = 10

d = 2

d = 3

d = 100

Figure 1. Case d > 1. The sets illustrate Ad in the convection-dominated
case δ = β − α ≥ 0. The dashed lines γ − 2α = 0 and γ − 2α = 3 are the
boundaries of the set of admissible parameters in the one-dimensional case
(see below).

The parameter µ may play an important role for the long-time behavior of the solutions
since it measures the decay rate. In this paper, however, we are only concerned with a
priori estimates and we do not prove any time decay of the solutions.

Depending of the choice of α, β, γ, and d, the parameters µ and c∗ can be explicitly
computed. Since the formulas are quite involved (see the proof below), we only illustrate
the sets of all (α, γ) in the convection-dominated case β ≥ α (in which (6) is satisfied)
for various values of µ in Figure 2. The set of admissible (α, γ) becomes smaller if the
dissipation constant µ increases. There is an upper limit for µ, i.e., for µ larger than this
bound, there are no values (α, γ) for which the entropy inequality holds.

In the one-dimensional case, we can make c∗ explicit.

Theorem 2 (One-dimensional case). Let d = 1 and let u be a smooth positive solution to
(1) with q ∈ R. Let α ≥ −1 and γ > 1 be such that 0 < γ − 2α < 3, and let β > −1 satisfy
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Figure 2. Case d > 1. Sets of admissible (α, γ) for µ = 0, 0.1, 0.2, . . . in the
convection-dominated case. The dashed lines γ − 2α = 0 and γ − 2α = 3 are
the boundaries of the set of admissible parameters in the one-dimensional
case (see below).

(6). Finally, choose c ≥ c∗|q|2, where

c∗ =
9β2(β + 1)2γ2

−16(γ + 2β − 2α)(γ + 2β − 2α − 1)(γ − 2α)(γ − 2α − 3)
> 0.

Then there exists 0 < µ ≤ 1 such that

(7)
dE

dt
+ µ

( γ

α + γ

)2
∫

T

∣∣(u(α+γ)/2
)

xx

∣∣2dx ≤ 0.

The region of admissible (α, γ) is illustrated in Figure 3 (a) and (b) for cases in which
the difference δ = β−α is given; δ > 0 corresponds to the convection-dominated case. The
choice of µ can also be made precise; see Proposition 5 for details. For instance, Figure
3 (c) illustrates the region of admissible (α, γ) for which µ = 1. For (α, γ) outside of this
region, it holds µ < 1.

The paper is organized as follows. In the next section, we explain the systematic in-
tegration by parts and derive the polynomial formulation. Section 3 is concerned with
multi-dimensional entropy estimates, whereas the one-dimensional situation is considered
in Section 4.
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Figure 3. Case d = 1. (a)–(b) The gray region illustrates admissible pairs
(α, γ) with 0 < γ−2α < 3 for given δ = β−α. (c) The gray region illustrates
pairs (α, γ) for which µ = 1 can be chosen.

2. Formulation as a polynomial decision problem

Let u be a smooth positive solution to (1). To simplify the notation, we set δ = β − α.
A computation shows that the derivative of E can be written as

dE

dt
=

1

2

∫

Td

(
− γuγ/2−1∆(uγ/2) + c(γ + 2δ)uγ+2δ−1

)
div(uα∇u + quβ+1)dx

= −
γ2

4

∫

Td

uα+γ
[(∆u

u

)2

+
(
α +

γ

2
− 1

)∣∣∣
∇u

u

∣∣∣
2 ∆u

u
+ α

(γ

2
− 1

)∣∣∣
∇u

u

∣∣∣
4

(8)

+ (β + 1)uδq ·
∇u

u

∆u

u
+ (β + 1)

(γ

2
− 1

)
uδq ·

∇u

u

∣∣∣
∇u

u

∣∣∣
2

−
2c

γ2
(γ + 2δ)u2δ ∆u

u
−

2c

γ2
α(γ + 2δ)

∣∣∣uδ∇u

u

∣∣∣
2

−
2c

γ2
(β + 1)(γ + 2δ)u3δq ·

∇u

u

]
dx.

Notice that the last term vanishes since, in view of the periodic boundary conditions,

(α + γ + 3δ)

∫

Td

uα+γ+3δq ·
∇u

u
dx =

∫

Td

div
(
uα+γ+3δq

)
dx = 0.

The entropy dissipation can be written as

J =
( γ

α + γ

)2
∫

Td

(
∆u(α+γ)/2

)2
dx

=
γ2

4

∫

Td

uα+γ
[(∆u

u

)2

+
1

4
(α + γ − 2)2

∣∣∣
∇u

u

∣∣∣
4

+ (α + γ − 2)
∣∣∣
∇u

u

∣∣∣
2 ∆u

u

]
dx.(9)
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We wish to show that −dE/dt−µJ is nonnegative for some µ ≥ 0 by employing systematic
integration by parts. To this end, we employ the following integration-by-parts formulas:

I1 =

∫

Td

div
(
uα+γ+2δ∇u

u

)
dx =

∫

Td

uα+γ
(
u2δ ∆u

u
+ (α + γ + 2δ − 1)

∣∣∣uδ∇u

u

∣∣∣
2)

dx,

I2 =

∫

Td

div
(
uα+γ+δq

∣∣∣
∇u

u

∣∣∣
2)

dx

=

∫

Td

uα+γ
(
2uδq⊤

∇2u

u

∇u

u
+ (α + γ + δ − 2)uδq ·

∇u

u

∣∣∣
∇u

u

∣∣∣
2)

dx,

I3 =

∫

Td

div
(
uα+γ+δq ·

∇u

u

∇u

u

)
dx

=

∫

Td

uα+γ
(
uδq ·

∇u

u

∆u

u
+ uδq⊤

∇2u

u

∇u

u
+ (α + γ + δ − 2)uδq ·

∇u

u

∣∣∣
∇u

u

∣∣∣
2)

dx,

I4 =

∫

Td

div
(
uα+γ

∣∣∣
∇u

u

∣∣∣
2∇u

u

)
dx

=

∫

Td

uα+γ
(∣∣∣

∇u

u

∣∣∣
2 ∆u

u
+ (α + γ − 3)

∣∣∣
∇u

u

∣∣∣
4

+ 2
∇u⊤

u

∇2u

u

∇u

u

)
dx,

I5 =

∫

Td

div
(
uα+γ

(∇2u

u
−

∆u

u
I

)∇u

u

)
dx

=

∫

Td

uα+γ
(
(α + γ − 3)

(∇u⊤

u

∇2u

u

∇u

u
−

∣∣∣
∇u

u

∣∣∣
2 ∆u

u

)
+

∥∥∥
∇2u

u

∥∥∥
2

−
(∆u

u

)2)
dx,

where I is the identity matrix, ∇2u the Hessian of u, and ‖∇2u‖ the Euclidian norm of the
Hessian. Clearly, in view of the periodic boundary conditions, Ij = 0 for all j = 1, . . . , 5.

The idea of systematic integration by parts is to formulate the integrands of the above
integrals as polynomials by translating the derivatives to polynomial variables:

ξG =
∇u

u
, ξL =

∆u

u
, ξH =

∇2u

u
, ηG = uδ∇u

u
, ηL = u2δ ∆u

u
.

The new idea here is to introduce variables with mixed orders in powers of u. Then the
integrand of −dE/dt (up to the factor γ2uα+γ/4) translates to

S0(ζ) = ξ2
L +

(
α +

γ

2
− 1

)
|ξG|

2ξL + α
(γ

2
− 1

)
|ξG|

4 + (β + 1)q · ηGξL(10)

+ (β + 1)
(γ

2
− 1

)
q · ηG|ξG|

2 −
2c

γ2
(γ + 2δ)ηL −

2c

γ2
α(γ + 2δ)|ηG|

2,

where ζ = (ξG, ξL, ξH , ηG, ηL); the integrand of the entropy dissipation (9) translates to

D(ζ) = ξ2
L +

1

4
(α + γ − 2)2|ξG|

4 + (α + γ − 2)|ξG|
2ξL;
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and the integrands of Ij become (up to the factor γ2uα+γ/4)

T1(ζ) = ηL + (α + γ + 2δ − 1)|ηG|
2,

T2(ζ) = 2q⊤ξHηG + (α + γ + δ − 2)q · ηG|ξG|
2,

T3(ζ) = q · ηGξL + q⊤ξHηG + (α + γ + δ − 2)q · ηG|ξG|
2,

T4(ζ) = |ξG|
2ξL + (α + γ − 3)|ξG|

4 + 2ξ⊤GξHξG,

T5(ζ) = (α + γ − 3)ξ⊤GξHξG − (α + γ − 3)|ξG|
2ξL + ‖ξH‖

2 − ξ2
L.

The inequality −dE/dt− µJ is nonnegative if there are constants c1, . . . , c5 ∈ R such that
S1(ζ) = (S0 − µD + c1T1 + · · · + c5T5)(ζ) ≥ 0 for all ζ. We wish to eliminate some terms,
in particular the first-order expressions in q · ηG, ηL, and ξH . (We retain the third-order
expression ηG|ξG|

2 since this term can be estimated by |ηG|
2 and |ξG|

4. The expression
q · ηGξL could be estimated by |ηG|

2 and ξ2
L but we prefer to eliminate this term.) We

choose

c1 = 2c(γ + 2δ)/γ2 to eliminate ηL,

c3 = −(β + 1) to eliminate q · ηGξL,

c2 = −c3/2 = (β + 1)/2 to eliminate q⊤ξHηG,

c4 = −(α + γ − 3)c5/2 to eliminate ξ⊤GξHξG.

This gives the polynomial

S1(ζ) = (1 − κ − µ)ξ2
L + a2|ξG|

2ξL + a3|ξG|
4 + a4q · ηG|ξG|

2 + a5|ηG|
2 + κ‖ξH‖

2,

where we have set κ = c5 and

a2 = α +
γ

2
− 1 −

3

2
(α + γ − 3)κ − µ(α + γ − 2),

a3 = α
(γ

2
− 1

)
−

1

2
(α + γ − 3)2κ −

µ

4
(α + γ − 2)2,

a4 = −
1

2
β(β + 1), a5 =

2c

γ2
(γ + 2δ)(γ + 2δ − 1).

There are two difficulties to prove the nonnegativity of S. First, due to the zeroth-order
entropy, the homogeneity in the order of the derivatives is broken which makes it impossible
to employ the techniques of [12] directly. Second, it is not clear how to estimate the norm
of the Hessian variable ξH . For the second problem, an easy choice would be to choose
κ ≥ 0 and to neglect the term κ‖ξH‖

2 since it is nonnegative. However, by this choice,
we neglect a possibly useful positive contribution. We employ the following elementary
estimate:

‖ξH‖
2 =

∥∥∥
∇2u

u

∥∥∥
2

≥
1

d

(∆u

u

)2

=
1

d
ξ2
L.

Then we can write, if κ is nonnegative,

(1 − κ)ξ2
L + κ‖ξH‖

2 ≥
(
1 −

d − 1

d
κ
)
ξ2
L
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and obtain

(11) S1(ζ) ≥ S(ζ) := a1ξ
2
L + a2|ξG|

2ξL + a3|ξG|
4 + a4q · ηG|ξG|

2 + a5|ηG|
2,

where

a1 = 1 −
d − 1

d
κ − µ.

The advantage of this approach is that we obtain an optimal result in the one-dimensional
case (the inequality becomes an equality). If d → ∞, we essentially neglect the contribution
of ‖ξH‖

2. In principle, this could be improved by employing the following refined estimate
between the Hessian and the Laplacian [13, Lemma 2.1]:

‖∇2u‖2 ≥
1

d
(∆u)2 +

d

d − 1

( 1

|∇u|2
(∇u)⊤∇2u∇u −

1

d
(∆u)

)2

.

In order to make full use of this estimate, as in [13], we need to employ the variables ξG,
ξL/d, and ξM , defined by (ξL/d + ξM)|ξG|

2 = ξ⊤GξHξG. However, with these variables, we
are not able to prove the nonnegativity of the above polynomial. The difficulty comes
from the different orders of the powers of u. The disadvantage of our approach is that the
estimate is only sharp in the one-dimensional case and that the estimates will depend on
the space dimension.

The problem to deal with the inhomogeneity is solved by a formulation of the polyno-
mial as a sum of squares which mixes the orders of derivatives. We suggest to write the
polynomial S in (11) as

S(ζ) = a1

(
ξL +

a2

2a1

|ξG|
2
)2

+
a5

|q|2

(
q · ηG +

a4|q|
2

2a5

|ξG|
2
)2

+
(
a3 −

a2
2

4a1

−
a2

4|q|
2

4a5

)
|ξG|

4 + a5

(
|ηG|

2 −
∣∣∣

q

|q|
· ηG

∣∣∣
2)

.(12)

We stress the fact that this formulation is nontrivial since we mix the variables ηG and
|ξG|

2 in the second sum. The last summand is nonnegative since the norm of q · ηG/|q|
is never larger than the norm of ηG. The polynomial S is nonnegative if κ ≥ 0, a1 > 0,
a5 > 0, and 4a1a3a5 − a2

2a5 − a1a
2
4|q|

2 ≥ 0. The first three conditions are equivalent to

(13) 0 ≤ µ ≤ 1, 0 ≤ κ <
d

d − 1
(1 − µ) (κ ∈ R if d = 1), c(γ + 2δ)(γ + 2δ − 1) > 0,

and the last condition can be written as

0 ≤ 4dγ2(4a1a3a5 − a2
2a5 − a1a

2
4|q|

2)

= −β2(β + 1)2γ2d
(
1 −

d − 1

d
κ − µ

)
|q|2 − 2c(γ + 2δ)(γ + 2δ − 1)(b1κ

2 + b2κ + b3),(14)
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where

b1 = (α + γ − 3)2(d + 8),

b2 = −4(d − µ)α2 + 2(3d + 4µ − 4)αγ + 2(d + 2µ)γ2 + 4(dµ − 4d − 4µ + 4)α

+ 2(2dµ − 9d − 8µ)γ + 4(−4dµ + 9d + 4µ),

b3 = d
(
4(1 − µ)α2 − 4(1 − µ)αγ + γ2 + 8(1 − µ)α − 4γ + 4

)
.

Condition (14) can be satisfied for sufficiently large values of c, if there exists 0 ≤ κ <
d(1 − µ)/(d − 1) such that b1κ

2 + b2κ + b3 < 0. Indeed, we have to choose

c ≥ c∗|q|2 =
β2(β + 1)2γ2(d − (d − 1)κ − dµ)

2c(γ + 2δ)(γ + 2δ − 1)(−b1κ2 − b2κ − b3)
|q|2.

It is convenient to distinguish in the following the cases d > 1 and d = 1.

3. The multi-dimensional case

We need to analyze the polynomial p(κ) = b1κ
2 + b2κ + b3 in (14) and to find κ ∈ [0, κ̂)

such that p(κ) < 0, where κ̂ = d(1 − µ)/(d − 1).
First, we notice that b1 and b3 are nonnegative. This is clear for b1. When we consider

b3 as a function of (α, γ), its minimum is attained at (0, 2) and b3(0, 2) = 0. Therefore,
b3(α, γ) ≥ 0 for all (α, γ). The polynomial p has real roots if b2

2 − 4b1b3 ≥ 0. If b2 is
positive, the roots are negative (since b2

2 − 4b1b3 ≤ b2
2), and we cannot find κ ≥ 0 such that

p(κ) < 0. If b2 = 0, the polynomial has no roots. Therefore, it must hold b2 < 0. In this
case, the roots are positive. The value p(κ̂) can be written as the square of a polynomial
in α and γ and hence, it is nonnegative. This shows that either the roots of p are larger
than all values of the interval [0, κ̂) or they lie in that interval. In the former case, there
cannot exist κ ∈ [0, κ̂) such that p(κ) < 0. In order to guarantee the latter case, we have
to require that p′(κ̂) > 0.

Summarizing, we can find κ ∈ [0, κ̂) such that p(κ) < 0 if the following conditions are
satisfied:

(15) b2
2 − 4b1b3 > 0, b2 < 0, p′(κ̂) = 2b1κ̂ + b2 > 0.

Let Ad,µ be the set of all (α, γ) satisfying (15). Notice that (α, γ) with α + γ − 3 = 0
cannot be an element of any Ad,µ since otherwise, b1 = (α+γ− 3)2(d+8) = 0 implies that
p′(κ̂) = b2 > 0, contradicting b2 < 0. The set Ad,µ may be empty. We claim that it is not
empty if µ = 0. Indeed, in this situation, the discriminant factorizes,

0 < b2
2 − 4b1b3 = −32

(
2α2 + dαγ − dγ2 − 3dα + 6dγ − 9d

)
(16)

×
(
2dα2 + dαγ − γ2 − 6dα + (4 − d)γ + 4d − 4

)
.

The two factors are quadratic polynomials in (α, γ). The corresponding discriminants
vanish if and only if

α =
1

4

(
− d ±

√
d(d + 8)

)
(γ − 3) or α =

1

4d

(
− d(γ − 6) ±

√
d(d + 8)(γ − 2)

)
.
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It can be seen that the boundary of the set of all (α, γ) satisfying all three conditions in
(15) consists of four straight line segments (see Figure 1).

We have shown the following result.

Theorem 3. Let d > 1 and let u be a smooth positive solution to (1) with q ∈ R
d. Then

there exists µ∗ ∈ (0, 1] such that for all 0 ≤ µ < µ∗, there exists a non-empty set Ad,µ ⊂ R
2

of admissible parameters. Let (α, γ) ∈ Ad,µ and β > −1 satisfy (6). Then there exists
c∗ > 0 such that for all c ≥ c∗|q|2, it holds

dE

dt
+ µ

( γ

α + γ

)2
∫

Td

∣∣∆(u(α+γ)/2)
∣∣2dx ≤ 0.

From this result, Theorem 1 follows. Indeed, let (α, γ) ∈ Ad = Ad,0. Then, by a
continuity argument, there exists µ > 0 such that (α, γ) ∈ Ad,µ, and the above theorem
applies.

Remark 4. The above proof is valid for smooth positive solutions only. It is possible
to extend the results, however, under stronger conditions on the parameters, to weak
nonnegative solutions. To this end, consider the nondegenerate equation

ut = div((uα + ε)∇u + quβ+1), t > 0, u(x, 0) = u0(x) + ε, x ∈ T
d,

where ε > 0. If u0 is smooth, there exists a smooth positive solution uε to this problem.
Then we can proceed similarly as above, but we have now two diffusion coefficients, one
with α > 0 (uα∇u) and one with α = 0 (ε∇u). For instance, in the one-dimensional
case, we need to satisfy both 0 < γ − 2α < 3, (γ + 2β − 2α)(γ + 2β − 2α − 1) > 0 and
0 < γ < 3, (γ + 2β)(γ + 2β − 1) > 0. Since uε can be shown to converge in some gradient
norm, as ε → 0, to the solution to (1), the above entropy estimates are valid also for weak
nonnegative solutions, under stronger assumptions on the parameters.

4. The one-dimensional case

In the one-dimensional case d = 1, the problem simplifies. First, we remark that the
shift polynomial T5 vanishes since ξH = ξL. Thus, we do not need to take into account the
coefficient c5, and we have κ = c4 ∈ R. Then we have to show the nonnegativity of the
polynomial

S(ζ) = a1ξ
2
L + a2ξ

2
GξL + a3ξ

4
G + a4qηGξ2

G + a5η
2
G,

where

a1 = 1 − µ, a2 = α +
γ

2
− 1 + 3κ − µ(α + γ − 2),

a3 = α
(γ

2
− 1

)
+ (α + γ − 3)κ −

µ

4
(α + γ − 2)2,

a4 = −
1

2
β(β + 1), a5 =

2c

γ2
(γ + 2δ)(γ + 2δ − 1).

This polynomial is written similarly as above as a sum of squares,

S(ζ) = a1

(
ξL +

a2

2a1

ξ2
G

)2

+
a5

q2

(
qηG +

a4q
2

2a5

ξ2
G

)2

+
(
a3 −

a2
2

4a1

−
a2

4q
2

4a5

)
ξ4
G.
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This expression is nonnegative if a1 > 0, a5 > 0, and 4a1a3a5 − a2
2a5 − a1a

2
4q

2 ≥ 0. These
inequalities are equivalent to µ < 1, c(γ + 2δ)(γ + 2δ − 1) > 0, and

0 ≤ 4γ2(4a1a3a5 − a2
2a5 − a1a

2
4q

2) = d1κ
2 + d2κ + d3,

where

d1 = −72c(γ + 2δ)(γ + 2δ − 1),

d2 = 8c(γ + 2δ)(γ + 2δ − 1)
(
2(µ − 1)α + (1 + 2µ)γ − 6

)
,

d3 = −β2(β + 1)2γ2(1 − µ)q2

− 2c(γ + 2δ)(γ + 2δ − 1)
(
4(1 − µ)α2 + γ2 − 4(1 − µ)αγ + 8(1 − µ)α − 4γ + 4

)
.

The inequality holds true for some κ ∈ R if and only if the discriminant d2
2 − 4d1d3 is

nonnegative,

0 ≤ d2
2 − 4d1d3 = 64c(γ + 2δ)(γ + 2δ − 1)(α + γ − 3)2

(
e1µ

2 + e2µ + e3

)
,

where

e1 = 4c(γ + 2δ)(γ + 2δ − 1)(α + γ)2 > 0,

e2 =
9

2
β2(β + 1)2γ2q2 + 4c(γ + 2δ)(γ + 2δ − 1)

(
7α2 + γ2 − 10αγ + 12α − 6γ

)
,

e3 = −
9

2
β2(β + 1)2γ2q2 − 8c(γ + 2δ)(γ + 2δ − 1)(γ − 2α)(γ − 2α − 3).

If we choose (α, γ) such that (γ − 2α)(γ − 2α − 3) < 0 and c > 0 such that

(17) c ≥
9β2(β + 1)2γ2q2

−16(γ + 2δ)(γ + 2δ − 1)(γ − 2α)(γ − 2α − 3)
> 0,

then e3 > 0 and there exists 0 < µ ≤ 1 satisfying e1µ
2 + e2µ+ e3 ≥ 0, i.e., the discriminant

d2
2 − 4d1d3 becomes nonnegative with such a choice of µ. This shows Theorem 2.
Now we discuss how large we can choose µ. For this, we observe that the discriminant

of the quadratic polynomial in µ can be written as

e2
2 − 4e1e3 =

9

4

(
3β2(β + 1)2γ2q2 + 8c(γ + 2δ)(γ + 2δ − 1)P (α, γ)

)2
,

where

P (α, γ) = 3α2 + γ2 − 2αγ + 4α − 2γ.

We define

Z =
3β2(β + 1)2γ2q2

8c(γ + 2δ)(γ + 2δ − 1)
> 0.

We distinguish three cases: P (α, γ) ≤ −Z, −Z < P (α, γ) < 0, and P (α, γ) ≥ 0. Let
first P (α, γ) ≤ −Z. Then

√
e2
2 − 4e1e3 = −

3

2

(
3β2(β + 1)2γ2q2 + 8c(γ + 2δ)(γ + 2δ − 1)P (α, γ)

)
,
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and the smallest root µ1 of e1µ
2 + e2µ + e3 = 0 equals

µ1 =
1

2e1

(
− e2 −

√
e2
2 − 4e1e3

)
= 1.

Thus, we can choose µ = 1. Next, let −Z < P (α, γ) < 0. Then
√

e2
2 − 4e1e3 =

3

2

(
3β2(β + 1)2γq2 + 8c(γ + 2δ)(γ + 2δ − 1)P (α, γ)

)
,

and

(18) µ1 = −
1

(α + γ)2

( 9β2(β + 1)2γ2q2

8c(γ + 2δ)(γ + 2δ − 1)
+ 2(γ − 2α)(γ − 2α − 3)

)
.

Under condition (17), it holds µ1 > 0. Furthermore, we have µ1 < 1 since this is equivalent
to

(19) 3Z =
9β2(β + 1)2γq2

8c(γ + 2δ)(γ + 2δ − 1)
> −(α + γ)2 − 2(γ − 2α)(γ − 2α − 3) = −3P (α, γ),

which is true since P (α, γ) > −Z. Thus, we have to choose µ ≤ µ1 < 1. Finally, let
P (α, γ) ≥ 0. Then µ1 is given by (18) and it holds µ1 ≥ 1 such that we can choose µ = 1.

Proposition 5. Define P (α, γ) = 3α2 + γ2 − 2αγ + 4α − 2γ and

c1 =
3β2(β + 1)2γ2

−8(γ + 2(β − α))(γ + 2(β − α) − 1)P (α, γ)
q2.

Then if P (α, γ) < 0 and c > c1, we can choose µ = 1 in (7), otherwise µ ≤ µ1 < 1, where
µ1 is defined in (18).

We remark that c1 is larger than the constant c∗ in Theorem 2 since, by (19), the
inequality c1 > c∗ is equivalent to

(α + γ)2 = 3P (α, γ) − 2(2α − γ)(2α − γ + 3) > 0.

Remark 6. For the one-dimensional porous-medium equation without convection, we can
prove that if E1(t) =

∫
T
|ux(x, t)γ/2|2dx is an entropy then 0 ≤ γ − 2α ≤ 3 must be

satisfied. This shows the optimality of the entropy parameter range for the convectionless
equation. The idea of the proof is to employ a periodic regularisation of the initial datum
u0(x) = |x|3/(α+γ). Indeed, using u0 formally in the entropy dissipation (see (8))

D[u] = −
dE1

dt
=

γ2

4

∫

T

uα+γ
((uxx

u

)2

+
(
α +

γ

2
− 1

)(ux

u

)2uxx

u
+ α

(γ

2
− 1

)(ux

u

)4)
dx,

a computation shows that

D[u0] = −
γ2

4

9

2(α + γ)4
(γ − 2α)(γ − 2α − 3)

∫

T

|x|−1dx.

Suppose that (γ−2α)(γ−2α−3) > 0. Ignoring the fact that |x|−1 is not integrable at x = 0,
we conclude that, starting with the initial datum u0, the functional E1(t) is increasing for
small times t ≥ 0 and cannot be an entropy. Thus, it must hold (γ − 2α)(γ − 2α − 3) ≤ 0
which is equivalent to 0 ≤ γ − 2α ≤ 3.
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Now, the problem of the nonintegrability of u0 can be overcome, see [14]. The argument
of [14] was extended in [12, Thm. 19] and the following result was proved: If the polynomial
S0(ζ) corresponding to the entropy dissipation −dE1/dt is negative at ξ∗ = (ξ1, ξ2) =
(1, 1 − 3(α + γ)) then E1 cannot be an entropy. We apply this result to our situation,
suppose (γ − 2α)(γ − 2α − 3) > 0 and calculate (see (10))

S0(ξ
∗) = ξ2

2 +
(
α +

γ

2
− 1

)
ξ2
1ξ2 + α

(γ

2
− 1

)
ξ4
1 = −

1

18
(γ − 2α)(γ − 2α − 3) < 0.

Thus, for such (α, γ), E1 cannot be an entropy.
Unfortunately, it seems to be difficult to extend the above argument to the convective

porous-medium equation since the proof of [14] (and [12]) uses the homogeneity of the
underlying differential equation.
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[1] S. Benachour, G. Karch, and P. Laurençot. Asymptotic profiles of solutions to convection-diffusion
equations. C. R. Acad. Sci. Paris 338 (2004), 369-374.

[2] P. Bénilan and J. I. Dı́az. Pointwise gradient estimates of solutions to onedimensional nonlinear
parabolic equations. J. Evol. Eqs. 3 (2004), 577-602.

[3] J. A. Carrillo and K. Fellner. Long-time asymptotics via entropy methods for diffusion dominated
equations. Asympt. Anal. 42 (2005), 29-54.

[4] J. I. Dı́az and R. Kersner. On a nonlinear degenerate parabolic equation in infiltration or evaporation
through a porous medium. J. Diff. Eqs. 69 (1987), 368-403.

[5] C. van Duijn and J. de Graaf. Large time behaviour of solutions of the porous medium equation with
convection. J. Diff. Eqs. 84 (1990), 183-203.
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