
Diffusive semiconductor moment equations
using Fermi-Dirac statistics
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Abstract. Diffusive moment equations with an arbitrary number of moments
are formally derived from the semiconductor Boltzmann equation employing
a moment method and a Chapman-Enskog expansion. The moment equa-
tions are closed by employing a generalized Fermi-Dirac distribution func-
tion obtained from entropy maximization. The current densities allow for a
drift-diffusion-type formulation or a “symmetrized” formulation, using dual
entropy variables from nonequilibrium thermodynamics. Furthermore, drift-
diffusion and new energy-transport equations based on Fermi-Dirac statistics
are obtained and their degeneracy limit is studied.
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1. Introduction

In semiconductor device modeling, macroscopic equations are derived from the
semiconductor Boltzmann equation with the aim to obtain simpler and numeri-
cally cheaper models which still contain the important physical phenomena. One
idea consists in multiplying the Boltzmann equation by a finite number of cer-
tain weight functions, depending on the momentum variable only, and to integrate
over the momentum space. This leads to evolution equations for averaged quanti-
ties of the Boltzmann distribution function, the so-called moments. The moment
equations can be closed by (essentially) taking that distribution function in the
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definition of the moments, which maximizes the kinetic entropy under the con-
straints of given moments. This approach was first used by Dreyer [11] and later
carried out by Levermore [26]. The entropy-maximizing distribution function turns
out to be a generalization of the Maxwell-Boltzmann distribution. In the context
of semiconductor modeling, entropy maximization has been introduced by Anile
and coworkers in a hydrodynamic scaling [2]. Moments models for one or two mo-
ments have been derived by Ben Abdallah and Degond in a diffusive scaling [3],
leading to drift-diffusion equations (one moment) or energy-transport equations
(two moments). Combining entropy maximization and a diffusive scaling, diffu-
sive moment models with an arbitrary number of moments have been proposed
recently in [23].

Most of these works are based on a moment closure using Maxwell-Boltz-
mann-type distribution functions. In degenerate semiconductor materials, it is
known that the equilibrium situation is described by a Fermi-Dirac distribution.
In this paper, we are concerned with the derivation of diffusive moment equa-
tions employing Fermi-Dirac statistics. Drift-diffusion models based on Fermi-
Dirac statistics, under various assumptions on the collision operator, have been
derived in [5, 14, 15]. Albinus et al. suggested a thermodynamics-based energy-
transport model including Fermi-Dirac statistics [1]. Degond and Ben Abdal-
lah derived energy-transport models using Fermi-Dirac distributions with general
(nonexplicit) diffusion matrices [3]. Instead of the Maxwell distribution M(p) =
e−ε(p)/kBT , where ε(p) denotes the carrier energy, kB the Boltzmann constant,
and T the carrier temperature, Chen et al. [9] employed the equilibrium func-
tion (1+γ/kBT )M(p), where γ ≥ 0, to derive a non-Maxwellian energy-transport
model. Here, we derive diffusive moment models of arbitrary order, based on Fermi-
Dirac statistics, and for collision operators under abstract hypotheses, continuing
our work [23].

Our main results are as follows. Under suitable assumptions on the scattering
operators (see (H1)-(H3) below), we derive the higher-order moment equations

∂tmi + divJi − iJi−1 · ∇V = Wi, i = 0, . . . , N, (1)

where m = (m0, . . . ,mN ) is the moment vector (m0 being the particle density and
m1 the energy density), Ji are the fluxes, V is the electric potential, and Wi are
certain averaged scattering terms (with W0 = 0). The fluxes are given by

Ji = −
N∑

j=0

(
Dij∇λj + jλjDi,j−1∇V

)
, (2)

where Dij are the (matrix-valued) diffusion coefficients, coming from the dominant
scattering processes, and λ = (λ0, . . . , λN ) is the Lagrange multiplier vector, com-
ing from the constrained entropy maximization problem. The moments mi depend
nonlinearly on the Lagrange multipliers λ:

mi(x, t) =

∫

B

ε(p)idp

η + exp(−λ(x, t) · κ(p))
, κ(p) = (1, ε(p), . . . , ε(p)N ),
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where η ≥ 0 is the degeneracy parameter. When η = 0, we recover the generalized
Maxwell-Boltzmann case of [23]; η = 1 corresponds to Fermi-Dirac statistics. We
observe that the moment balance equations (1) and the constitutive relations (2)
are the same as in the generalized Maxwell-Boltzmann case. Fermi-Dirac statistics
enters only in the relation between m and λ. Therefore, it is not surprising that
the properties, which are valid for the generalized Maxwell-Boltzmann model, also
hold here:

• Under some conditions on the collision operator (see Proposition 3), the diffu-
sion matrix D = (Dij) ∈ R

3(N+1)×3(N+1) is symmetric and positive definite.
• If the dominant scattering mechanism is described by a BGK-type (Bhatna-

gar-Gross-Krook) operator (see Remark 6), the current equations can be
written in the drift-diffusion form

Ji = −∇gi − Ri(g)gi∇V, i = 0, . . . , N,

where g = (g0, . . . , gN ) are the new independent variables. For more general
collision operators, we obtain the formulation

Jik = −divgk
i − Rk

i (g)gk
i · ∇V, i = 0, . . . , N, k = 1, 2, 3. (3)

We refer to Proposition 7 for details.
• The convective parts including the electric field −∇V in (1) and (2) can be

eliminated by introducing so-called dual entropy variables λ̄i, depending on
the Lagrange multipliers and the electric potential, such that

∂tm̄i + div J̄i = W̄i, J̄i = −
N∑

j=0

Cij∇λ̄j , (4)

where the new diffusion matrix (Cij) is again symmetric and positive defi-
nite. This formulation extends the dual-entropy concept from nonequilibrium
thermodynamics and it allows us to derive an entropy–entropy dissipation in-
equality (see Proposition 5).

We notice that the drift-diffusion formulation is less obvious, and the argu-
ments leading to (3) are different from those in [23]. Also the entropy–entropy
dissipation inequality is new. Compared to our previous work [23], the main nov-
elties include (i) new alternative formulations of the model equations and a new
entropy–entropy dissipation inequality; (ii) the derivation of the degenerate drift-
diffusion model; and (iii) the derivation of a new energy-transport model based on
Fermi-Dirac statistics.

Our derivation is formal since a rigorous proof in a general setting seems to
be out of reach. Rigorous mathematical results for low-order moment models can
be found, e.g., in [4, 14].

For BGK-type collision operators and a parabolic band structure, we are
able to make the above model explicit. (Also more general scattering integrals
and nonparabolic bands can be assumed, but the corresponding models would be
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less explicit.) Supposing a constant relaxation time τ , the drift-diffusion model
becomes

∂tn + divJ = 0, J = −τn∇(λ0 − V ), n = (2π)3/2η−1F1/2(λ0 + log η),

where F1/2 is the Fermi integral with index 1/2 defined in (20) below. This model
was first formulated by Bonch-Bruevich and Kalashnikov [6] and has been analyzed
by Gajewski and Gröger [13]. A numerical treatment can be found in [29]. We
present here the first derivation of this model from the Boltzmann equation. In the
Maxwell-Boltzmann limit η → 0, we recover the standard drift-diffusion equations,
whereas in the degeneracy limit η → ∞ (after a rescaling), the so-called degenerate
drift-diffusion model

∂tn + divJ = 0, J = −τ
(
N0∇(n5/3) + n∇V

)
, (5)

where N0 > 0 is a number, is obtained. Such a limit was made rigorous in [20].
The initial-value problem was analyzed first in [18, 21], the stationary problem
in [27]. A numerical discretization in one and two space dimensions has been
presented in [19, 24] employing mixed finite elements and in [7, 8] using a finite-
volume approximation. The model (5) coupled to a heat equation with power
dissipation was studied by Guan and Wu [17]. Equations (5) may be employed in
degenerate semiconductors in which the particle density is very large. We mention
that Poupaud and Schmeiser [28] rigorously derived a high-density model from the
Boltzmann equation, but their model differs from the above equations.

Under the same assumptions as above, the diffusive moment model with two
moments becomes the Fermi-Dirac energy-transport model:

∂tn + divJ0 = 0, J0 = −∇g0 +
F1/2(z)

F3/2(z)

g0

T
∇V,

∂t(ne) + divJ1 − J0 · ∇V = W, J1 = −∇g1 +
F3/2(z)

F5/2(z)

g1

T
∇V,

where z = λ0 + log η, T = −1/λ1, and the variables (g0, g1) are related to (n, ne)
by

g0 =
2τ

3
ne, g1 =

5τ

3
(ne)T

F5/2(z)

F3/2(z)
.

We remark that the mapping (n, ne) 7→ (λ0, λ1) is invertible. This model seems
to be new in the literature. In the limit η → 0, we recover the energy-transport
model with diffusion matrix (8.21) from [22]; in the limit η → ∞, we obtain again
the degenerate model (5).

The paper is organized as follows. The model equations (1)-(2) are derived
in Section 2, and some properties on the diffusion coefficients are proved. The
drift-diffusion and dual-entropy formulations (3) and (4), respectively, are derived
in Section 3. Finally, Section 4 is concerned with the computation of some explicit
models, also including an extension of the six-moments model of Grasser et al.
[16].
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2. Derivation of the moment model

Let B ⊂ R
3 be the first Brillouin zone, either being the periodic cube B = (−π, π)3

or (for parabolic band structures) B = R
3 [22]. The evolution of the charged

particles in the semiconductor domain Ω ⊂ R
3 is described by a distribution

function f(x, p, t) depending on time t ≥ 0 and space-crystal momentum variables
(x, p) ∈ Ω × B. The distribution function f = fα satisfies the (dimensionless)
semiconductor Boltzmann equation in diffusion scaling:

α2∂tfα + α
(
u · ∇xfα + ∇xV · ∇pfα

)
= Q(fα). (6)

Here, α > 0 is the Knudsen number (the ratio between the optical phonon energy
and the typical energy of an electron; see [3] for details). We assume that the
kinetic electron energy is much larger than the phonon energy, i.e. α ≪ 1, and
we are looking for limiting diffusive equations as α → 0. The group velocity u
is defined by u(p) = ∇pε(p), where ε(p) is the kinetic carrier energy given by
the semiconductor band structure. The electric potential V = V (x, t) is a given
function or self-consistently determined from the Poisson equation

λ2
D∆V =

∫

B

fαdp − C(x),

where λD > 0 is the (scaled) Debye length and C(x) the doping profile, modeling
fixed charged background ions in the semiconductor crystal. The collision operator
is supposed to consist of two parts: a dominant part and a small part,

Q(f) = Q1(f) + α2Q2(f).

This decomposition has been justified, for particular scattering processes, in [3,
10], for instance. Below, we will specify our assumptions on the first operator
Q1, whereas the second one Q2 will remain unspecified. To this end, we need to
introduce generalized Fermi-Dirac equilibrium distributions.

2.1. Entropy maximization

We define the entropy (or free energy) functional

H(f)(x, t) = −
∫

B

(
f log f +

1

η
(1 − ηf) log(1 − ηf) + ε(p)f

)
dp

for a given function f(x, p, t), where η > 0 is a parameter. When η = 1, we obtain
the Fermi-Dirac entropy. In the limit η → 0, we recover the Maxwell-Boltzmann
entropy density f(log f −1+ε(p)). Let weight functions κ(p) = (κ0(p), . . . , κN (p))
and moments m(x, t) = (m0(x, t), . . . ,mN (x, t)) be given. We set 〈g〉 =

∫
B

g(p)dp
for a function g(p), and we call the expression 〈κif〉 the i-th moment of f . The
generalized Fermi-Dirac distribution is that function f∗ which maximizes the en-
tropy H(f) under the constraints 〈κif〉(x, t) = mi(x, t) for i = 0, . . . , N , x ∈ Ω,
t > 0. The solution of this problem, if it exists, is given by

f∗(x, p, t) =
1

η + exp(−λ̃(x, t) · κ(p) + ε(p))
,
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where λ̃ = (λ̃0, . . . , λ̃N ) are the Lagrange multipliers. This representation simplifies
under the following hypothesis:

(H1) The energy ε is even in p and the weight functions are given by
κi(p) = ε(p)i, i = 0, . . . , N .

Then, setting λ1 = λ̃1 − 1 and λi = λ̃i for i 6= 1,

f∗ =
(
η + exp(−λ0 + ε)

)−1
for N = 0,

f∗ =
(
η + exp(−λ · κ)

)−1
for N > 0.

Furthermore, for given f with moments mi = 〈κif〉, we denote by Ff that function
which maximizes the entropy under the constraints 〈κiFf 〉 = mi for i = 0, . . . , N .

Hypothesis (H1) on the weight functions is imposed for simplicity only; the
subsequent results are also valid if the functions κi(p) are arbitrary but even in p
(see [23]). The carrier energy may be given by the parabolic band approximation,
ε(p) = 1

2 |p|2. A more refined model is the Kane dispersion relation, which takes

into account the nonparabolicity at higher energies, ε(1+ δε) = 1
2 |p|2, where δ > 0

measures the nonparabolicity. In terms of ε, we have

ε(p) =
1

2δ

(√
1 + 2δ|p|2 − 1

)
. (7)

If δ = 0, we recover the parabolic band approximation.

We point out that the mathematical solution of the constrained maximization
problem may be delicate. The problem is uniquely solvable if, for instance, the
Brillouin zone B is a bounded domain and ε(p) is a general band structure; or if
B = R

3, κ = (1, ε, ε2), and ε(p) is given by (7); or if B = R
3, κ = (1, ε), and ε(p) =

1
2 |p|2. However, when the momentum space B is unbounded and the polynomial
weight functions have superquadratic growth at infinity, the maximization problem
may be unsolvable [12].

2.2. Assumptions on the collision operators

For the dominant collisional part Q1, we have in mind the simple BGK-type oper-
ator Q1(f) = (Ff − f)/τ , where Ff is the Fermi-Dirac distribution defined in the
previous subsection and τ > 0 is the relaxation time, since this operator allows
us to derive explicit models (see Section 4). Our results are also valid for more
general operators satisfying the following hypothesis:

(H2) All moments of Q1(f) vanish, 〈κiQ1(f)〉 = 0 for all functions f
and all i = 0, . . . , N . Furthermore, Q1(f) = 0 if and only if f = Ff .
Finally, 〈Q2(f)〉 = 0 for all functions f .

This assumption mainly expresses the collisional invariants. The conservation
property for Q1 with respect to all moments is rather strong but it is satisfied,
for instance, by the BGK-type operator. In Sections 4.1 and 4.2, we only assume
that mass and/or energy are conserved, which corresponds to elastic collisions,
〈Q1(f)〉 = 〈εQ1(f)〉 = 0, since κ0 = 1 and κ1 = ε by (H1). In Section 4.3, we
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discuss an extended energy-transport model based on conservation of the quan-
tity 〈ε2f〉, which has no direct physical interpretation. Notice, however, that the
moments of the total collision operator Q = Q1 + α2Q2, 〈κiQ(f)〉, are of order α2

and thus, we do not require complete conservation of the collision moments.

Another example for Q1 is the electron-electron scattering operator

(Qee(f))(p) =

∫

B3

σ(p, p′, p1, p
′

1)δ(ε
′ + ε′1 − ε − ε1)

×
(
f ′f ′

1(1 − f)(1 − f1) − ff1(1 − f ′)(1 − f ′

1)
)
dp′ dp1 dp′1,

where f ′ = f(p′), f1 = f(p1), f ′
1 = f(p′1) and the scattering rate σ is symmetric

(see [22, formula (4.31)]). It is shown in [3] that this operator conserves mass and
energy and that Qee(f) = 0 if and only if f is a Fermi-Dirac distribution. An
example for Q2 is the inelastic phonon scattering operator

(Qph(f))(p) =

∫

B

(
sph(p, p′)f ′ − sph(p′, p)f

)
dp′,

where sph(p, p′) = φph(p, p′)[(Nph + 1)δ(ε − ε′ + εph) + Nphδ(ε − ε′ − εph)] and
ε′ = ε(p′) [3]. The number Nph is the phonon occupation number, and εph is the
phonon energy. A computation shows that 〈Qph(f)〉 = 0, i.e., Qph conserves mass.

2.3. Moment equations and Chapman-Enskog expansion

First we derive the balance equations.

Proposition 1 (Balance equations). Let (H1)-(H2) hold, and let fα be a solution
of the Boltzmann equation (6). We assume that the formal limits F = limα→0 fα,
G = limα→0(fα − Ffα

)/α exist. Then the moments mi = 〈κiFF 〉 and the current
densities Ji = 〈uκiG〉 are solutions of

∂tmi + divJi − iJi−1 · ∇V = Wi, i = 0, . . . , N, (8)

where Wi = 〈κiQ2(F )〉 are averaged collision integrals, W0 = 0, and the differen-
tiations are taken with respect to x.

Proof. We multiply the Boltzmann equation (6) by κi, integrate over B, integrate
by parts in the electric force term, and observe that the moments of Q1(fα) vanish
by (H2),

∂t〈κifα〉 + α−1
(
divx〈uκifα〉 − ∇xV · 〈∇pκifα〉

)
= 〈κiQ2(fα)〉.

Inserting the Chapman-Enskog expansion fα = Ffα
+αgα in this equation, taking

into account that, by (H1), p 7→ u(p)κi(p)Ffα
(p) and p 7→ ∇pκi(p)Ffα

(p) are odd
functions, and performing the formal limit α → 0, we infer that

∂t〈κiFF 〉 + divx〈uκiG〉 − ∇xV · 〈∇pκiG〉 = 〈κiQ2(F )〉.

Since, by (H1), ∇pκi = iεi−1u = iκi−1u, we obtain (8). �
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In order to specify the current densities Ji, we need a hypothesis on the
linearization of Q1 at FF , i.e. L = DQ1(FF ). We introduce as in [3] the Hilbert
space L2(B) with the scalar product

(g1, g2)F =

∫

B

g1g2

FF (1 − ηFF )
dp

and the corresponding norm.

(H3) The linear operator L = DQ1(FF ) is continuous, closed, and sym-
metric on L2(B), and Lg = 0 if and only if g = FF .

Hypothesis (H3) is needed to solve the equation LG = H. By the Fredholm
alternative, this equation is solvable if and only if H ∈ N(L∗)⊥ = N(L)⊥ and its
solution is unique in N(L)⊥, where N(L) is the kernel of L. Since the kernel of L
consists of the generalized Fermi-Dirac distributions, LG = H is solvable if and
only if 0 = (H,FF )F . In the case of the BGK-type operator Q1(f) = (Ff − f)/τ ,
the limit function G can be explicitly determined (see Remark 6), and we do not
need to impose (H3) in this situation.

Proposition 2 (Current equations). Let (H1)-(H3) hold. Then the current densities
can be written as

J0 = −D00∇(λ0 − V ) for N = 0, (9)

Ji = −
N∑

j=0

(
Dij∇λj + jλjDi,j−1∇V

)
for N > 0, (10)

where i = 0, . . . , N , the diffusion coefficients Dij = (Dkℓ
ij ) ∈ R

3×3 are defined by

Dij = −〈κiu ⊗ φj〉,

and φj = (φj1, φj2, φj3) is the unique solution in N(L)⊥ of the operator equations

Lφjk = κjukFF (1 − ηFF ), j = 0, . . . , N, k = 1, 2, 3. (11)

Formula (10) has to be understood in the following way:

Jik = −
N∑

j=0

3∑

ℓ=1

(
Dkℓ

ij

∂λj

∂xℓ
+ jλjD

kℓ
i,j−1

∂V

∂xℓ

)
, k = 1, 2, 3.

Proof. First, we notice that the operator equations (11) are solvable in L2(B),
by the Fredholm alternative, since κjukFF (1 − ηFF ) is odd in p, and hence,
(FF , κjukFF (1 − ηFF ))F = 0. Next, we expand the collision operator Q1(fα) =
Q1(Ffα

)+αDQ1(Ffα
)gα +O(α2). Inserting the Chapman-Enskog expansion fα =

Ffα
+ αgα into the Boltzmann equation (6), dividing the equation by α, and per-

forming the formal limit α → 0 gives

u · ∇xFF + ∇xV · ∇pFF = LG,
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where we recall that G = limα→0 gα. We claim that

G = φ0 · ∇x(λ0 − V ) for N = 0,

G =

N∑

j=0

(
∇xλj · φj + jλj∇xV · φj−1

)
for N > 0. (12)

Indeed, observing that

∇xFF = FF (1 − ηFF )

N∑

j=0

κj∇xλj , ∇pFF = FF (1 − ηFF )

N∑

j=0

jκj−1uλj

(if N = 0, ∇pFF = −FF (1 − ηFF )u), we compute for N > 0

LG =

N∑

j=0

(
∇xλj · Lφj + jλj∇xV · Lφj−1

)

= FF (1 − ηFF )
N∑

j=0

(
κj∇xλj · u + jκj−1λj∇xV · u

)

= ∇xFF · u + ∇xV · ∇pFF .

The conclusion now follows from Ji = 〈uκiG〉. The proof for N = 0 is similar. �

2.4. Properties of the diffusion matrix

We show that the diffusion matrix D = (Dij) is symmetric and, under an addi-
tional condition on the operator L and the band structure, positive definite. Notice
that the symmetry of D expresses the Onsager principle of thermodynamics [25],
whereas the positive definiteness shows that the balance equations (8) together
with the current relations (9)-(10) are of diffusive type. The condition on L reads
as follows.

(H4) The operator −L = −DQ1(FF ) is bounded and coercive on the
space N(L)⊥, i.e., there exist µ0, µ1 > 0 such that for all g ∈ N(L)⊥,
(−Lg, g)F ≥ µ0‖g‖2

F and ‖ − Lg‖F ≤ µ1‖g‖F .

Proposition 3. The diffusion matrix D = (Dαβ) ∈ R
3(N+1)×3(N+1) is symmetric

and positive semi-definite. Moreover, if (H4) holds and {κiuk : i = 0, . . . , k =
1, 2, 3} is linearly independent, D is positive definite.

The explicit expression of D for BGK-type collision operators (see Remark 6
below) shows that the proposition also holds in this situation.

Proof. First, we prove the symmetry of D. Let α, β ∈ {1, . . . , 3(N + 1)}. There
exist unique indices i, j ∈ {0, . . . , N} and k, ℓ ∈ {1, 2, 3} such that α = 3i + k and
β = 3j + ℓ. By (H3), L is symmetric on L2(B). Hence,

Dαβ = Dkℓ
ij = −〈κiukφjℓ〉 = −(Lφik, φjℓ)F = −(φik, Lφjℓ)F = −〈κjuℓφik〉

= Dℓk
ji = Dβα.
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Next, we compute, for ξ ∈ R
3(N+1), ξ 6= 0:

ξ⊤Dξ =

N∑

i,j=0

3∑

k,ℓ=1

ξ3i+kξ3j+ℓD
kℓ
ij =

(
− L

( N∑

i=0

3∑

k=1

ξ3i+kφik

)
,

N∑

j=0

3∑

ℓ=1

ξ3j+ℓφjℓ

)

F

≥ µ0

µ2
1

∥∥∥L
( N∑

i=0

3∑

k=1

ξ3i+kφik

)∥∥∥
2

F
=

µ0

µ2
1

∫

B

∣∣∣
N∑

i=0

3∑

k=1

ξ3i+kκiuk

∣∣∣
2

dp.

In view of the linear independence of κiuk, the sum and hence the integral are
positive. �

3. Alternative formulations

Similarly as in the Maxwell-Boltzmann case of [23], the moment model (8)-(10) can
be rewritten either in a dual-entropy variable or in a drift-diffusion formulation.
In the case N = 0, we do not need to rewrite the model. Therefore, let in the
following N > 0. We suppose that (H1)-(H4) hold.

The dual-entropy formulation is similar to the corresponding one in the
Maxwell-Boltzmann case [23]. Indeed, let the transformation matrix P = (Pij) ∈
R

(N+1)×(N+1) be defined by

Qij =

(
j

i

)
aijV

j−i, Pij = (−1)i+jQij with aij =

{
1 if i ≤ j,
0 if i > j,

where i, j = 0, . . . , N . Notice that Q = (Qij) is the inverse matrix of P . Define
the dual-entropy variables λ̄ = (λ̄0, . . . , λ̄N )⊤, the transformed moments m̄ =
(m̄0, . . . , m̄N )⊤, and the thermodynamic fluxes J̄ = (J̄0, . . . , J̄N )⊤ by, respectively,

λ̄ = Qλ, m̄ = P⊤m, and J̄ = P⊤J.

Proposition 4 (Dual-entropy formulation). The model equations (8)-(10) can be
equivalently written as

∂tm̄i + divJ̄i = (P⊤W )i − i∂tV m̄i−1, J̄i = −
N∑

j=0

Cij∇λ̄i, (13)

where i = 0, . . . , N , W = (0,W1, . . . ,WN )⊤ and the new diffusion matrix C =
(Ckℓ

ij ) is defined by Ckℓ = P⊤DkℓP or, more precisely, by

Ckℓ
ij =

N∑

m,n=0

PmiD
kℓ
mnPnj , i, j = 0, . . . , N, k, ℓ = 1, 2, 3.

The current relation has to be understood in the following way:

J̄ik = −
N∑

j=0

3∑

ℓ=1

Ckℓ
ij

∂λ̄j

∂xℓ
, i = 0, . . . , N, k = 1, 2, 3.



Diffusive semiconductor moment equations 11

The proof of the above result is exactly as the proof of Proposition 4.6 in [23] and
is therefore omitted. One advantage of the “symmetrized” formulation is that it
allows us to derive an entropy–entropy dissipation inequality. Here, the (relative)
entropy is defined by

H(t) =

∫

R3

h(λ)dx

= −
∫

R3

(
m · (λ − λeq) − η−1〈log(1 + ηeλ·κ)〉 + η−1〈log(1 + ηeλeq·κ)〉

)
dx,

where h(λ) is the entropy density and λeq = (V,−1, 0, . . . , 0) the equilibrium
value. Notice that in the Maxwell-Boltzmann limit η → 0, we recover the entropy
suggested in [23] since

η−1 log(1 + ηeλ·κ) = log
(
(1 + ηeλ·κ)1/η

)
→ eλ·κ as η → 0.

Proposition 5 (Entropy–entropy dissipation inequality). Let the electric potential
be time-independent and let W in (13) be monotone in the sense of

∫
R3 W · (λ −

λeq)dx ≤ 0. Then any (smooth) solution of (13) satisfies

−dH

dt
+

∫

R3

N∑

i,j=0

(∇λ̄i)
⊤Cij(∇λ̄j)dx ≤ 0.

The second integral is called the entropy dissipation. If D is symmetric posi-
tive definite (see Proposition 3 for sufficient conditions), so does C, and hence, the
entropy is nondecreasing in time.

Proof. A simple computation shows that

∂

∂λi

〈
η−1 log(1 + ηe−λ·κ)

〉
=

〈
κi(η + eλ·κ)−1

〉
= mi, i = 0, . . . , N.

Therefore, the derivative of the entropy density h(λ) becomes

∂h

∂λi
= −∂m

∂λi
· (λ − λeq) − mi +

∂

∂λi
〈η−1 log(1 + ηeλ·κ)〉 = −∂m

∂λi
· (λ − λeq).

Moreover, we have

∂tm · (λ − λeq) =
N∑

i=0

∂m

∂λi
· (λ − λeq)∂tλi = −

N∑

i=0

∂h

∂λi
∂tλi = −∂th(λ). (14)

Hence, multiplying (13) by λ̄ − λ̄eq, where λ̄eq = Qλeq = (0,−1, 0, . . . , 0)⊤, inte-
grating over R

3, and summing over i = 0, . . . , N , it follows that
∫

R3

(P⊤∂tm)⊤(λ̄ − λ̄eq)dx +

∫

R3

(div J̄)⊤(λ̄ − λ̄eq)dx =

∫

R3

(P⊤W )⊤(λ̄ − λ̄eq)dx.

The integrand of the right-hand side equals W⊤PQ(λ−λeq) = W⊤(λ−λeq), and
thus, its integral is nonpositive, by assumption. Because of (14), the first integrand
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of the left-hand side is equal to ∂tm
⊤PQ(λ − λeq) = −∂th(λ). Then, integrating

by parts in the second integral, we conclude that

−
∫

R3

∂th(λ)dx +

∫

R3

N∑

i,j=0

(∇λ̄i)
⊤Cij(∇λ̄j)dx ≤ 0,

proving the proposition. �

Remark 6. The expressions for the diffusion coefficients can be simplified if the
collision operator Q1 is of BGK type and the band energy ε(p) only depends on
|p|. We will use this fact in Section 4.1 for the drift-diffusion case. Indeed, let
Q1(f) = (Ff − f)/τ and ε(p) = E( 1

2 |p|2) for p ∈ B = R
3 and for some function

E. Inserting the Chapman-Enskog expansion fα = Ffα
+ αgα into the Boltzmann

equation (6) and letting α → 0, we obtain an explicit expression for the limit
function G = limα→0 gα:

G = −τ
(
u · ∇xFF + ∇xV · ∇pFF

)

= −τ

N∑

j=0

(
κju · ∇xλj + jκj−1λju · ∇xV

)
FF (1 − ηFF ).

Comparing this relation with (12), we see that

Dkℓ
ij = −〈κiukφjℓ〉, where φjℓ = −τκjuℓFF (1 − ηFF ).

Using the radial symmetry of ε(p), we compute

Dij = τ〈ε(p)i+ju ⊗ uFF (1 − ηFF )〉 = τ

∫

R3

Ei+j(E′)2p ⊗ pFF (1 − ηFF )dp

=
τ

3

∫

R3

Ei+j(E′)2|p|2FF (1 − ηFF )dp I, (15)

where I is the identity matrix in R
3×3. Thus, we can identify the matrix Dij by

the above scalar value. �

We are able to write the current densities in a drift-diffusion-type formulation
which may be convenient for a numerical decoupling of the equations.

Proposition 7 (Drift-diffusion-type formulation). Let gi ∈ R
3×3 be defined by gi =

−〈κiu ⊗ χ〉, where χ = (χj) are the unique solutions in N(L)⊥ of Lχj = ujFF ,
j = 1, 2, 3 (see (H3) for the definition of L). Then the current densities (10) can
be written as

Jik = −
3∑

ℓ=1

(∂gkℓ
i

∂xℓ
+ Rkℓ

i (g)gkℓ
i

∂V

∂xℓ

)
, i = 0, . . . , N, k = 1, 2, 3, (16)

where g = (g0, . . . , gN ) and

Rkℓ
i (g) =

N∑

j=0

j
Dkℓ

i,j−1

gkℓ
i

λj , i = 0, . . . , N, k, ℓ = 1, 2, 3.
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Furthermore, if the assumptions of Remark 6 hold and {κ0, . . . , κN} is linearly
independent, we may identify gi by its scalar value, and the current equations (16)
become

Ji = −∇gi − Ri(g)gi∇V, i = 0, . . . , N, (17)

where Ri(g) =
∑

j j(Di,j−1/gi)λj, and λ = (λj) is uniquely computed from g =

g(λ) ∈ R
N+1.

In the Maxwell-Boltzmann case η = 0, the functions χj and φ0j coincide (up
to an element of N(L)), and we can choose gi = Di0.

Proof. The new variables gi are different from those in [23], therefore we give a
complete proof. From

L
(∂χk

∂xℓ

)
=

∂

∂xℓ
(ukFF ) =

N∑

j=0

κjuk
∂λj

∂xℓ
FF (1 − ηFF ) = L

( N∑

j=0

∂λj

∂xℓ
φjk

)

and the unique solvability in N(L)⊥, we obtain ∂χk/∂xℓ =
∑

j(∂λj/∂xℓ)φjk+cFF ,
where c is a constant. Then

3∑

ℓ=1

∂gkℓ
i

∂xℓ
= −

3∑

ℓ=1

〈
κiuk

∂χℓ

∂xℓ

〉
= −

N∑

j=0

3∑

ℓ=1

〈κiukφjℓ〉
∂λj

∂xℓ
=

N∑

j=0

3∑

ℓ=1

Dkℓ
ij

∂λj

∂xℓ

corresponds to the first term in (10), and (16) follows.

Under the assumptions of Remark 6, we can write Dkℓ
ij = Dijδkℓ and gkℓ

i =
giδkℓ, where, similarly as in Remark 6,

gkℓ
i =

τ

3

∫

R3

Ei(E′)2|p|2FF dp δkℓ. (18)

The linear independency of (κi) implies, arguing similarly as in the proof of Propo-
sition 3, that the matrix D = (Dij) ∈ R

(N+1)×(N+1) is positive definite. It remains
to prove that λj can be uniquely defined from the mapping g = g(λ). We show
that the mapping λ 7→ g(λ) is one-to-one. To emphasize the dependency of FF on
λ, we will write FF (λ · κ). Let λ(1), λ(2) be such that g(λ(1)) = g(λ(2)). By (18),
identifying gkℓ

i with its scalar value gi and summing over i = 0, . . . , N ,

N∑

i=0

λ
(j)
i

∫

R3

Ei(E′)2|p|2
(
FF (λ(1) · κ) −FF (λ(2) · κ)

)
dp = 0, j = 1, 2.

Taking the difference of the above equation for j = 1 and j = 2, we find that

0 =
N∑

i=0

∫

R3

Ei(E′)2|p|2
(
FF (λ(1) · κ) −FF (λ(2) · κ)

)(
λ

(1)
i − λ

(2)
i

)
dp

=

∫

R3

(E′)2|p|2
(
FF (λ(1) · κ) −FF (λ(2) · κ)

)(
λ(1) · κ − λ(2) · κ

)
dp,
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observing that κ = (1, E, . . . , EN ). Since FF is increasing, the last integral is
nonnegative and hence, its integrand vanishes:

(
FF (λ(1) · κ) −FF (λ(2) · κ)

)(
λ(1) · κ − λ(2) · κ

)
= 0.

The same argument shows that λ(1) · κ = λ(2) · κ. By the linear independence of
{κ0, . . . , κN}, it follows that λ(1) = λ(2), proving the claim. �

4. Explicit models

The diffusive moment model (8)-(10) can be made explicit under additional con-
ditions. We assume that the collision operator Q1 is of BGK type and that the
energy is given by the parabolic band approximation,

Q1(f) =
1

τ
(Ff − f), ε(p) =

1

2
|p|2, p ∈ R

3. (19)

Below, we need the Fermi integrals

Fa(z) =
1

Γ(a + 1)

∫ ∞

0

ta

1 + et−z
dt, z ∈ R, a > −1, (20)

where Γ is the Gamma function satisfying Γ(1
2 ) =

√
π and Γ(a + 1) = aΓ(a). We

recall the following properties:

F ′

a+1(z) = Fa(z), z ∈ R, a > −1; (21)

Fa(z) ∼ ez as z → −∞; (22)

Fa(z) ∼ za+1

Γ(a + 2)
as z → ∞; (23)

(a + 2)Fa−1(z)Fa+1(z) − (a + 1)Fa(z)2 > 0, z ∈ R, a > 0. (24)

Here f(z) ∼ g(z) as z → b signifies limz→b f(z)/g(z) = 1.

4.1. Drift-diffusion models

In the case N = 0, we obtain a drift-diffusion model based on Fermi-Dirac statis-
tics.

Proposition 8 (Drift-diffusion model). Let (19) hold. Then equations (8) and (9)
specify for N = 0 to

∂tn + divJ0 = 0, J0 = −τn∇(λ0 − V ) = −τ
( F1/2(z)

F−1/2(z)
∇n − n∇V

)
, (25)

where z = λ0 + log η and the zeroth moment n = m0 and the Lagrange multiplier
λ0 are related by

n = (2π)3/2η−1F1/2(λ0 + log η).
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Proof. The expression D00 in (15) becomes, using ∂FF /∂λ0 = FF (1 − ηFF ) and
the substitution ε = |p|2/2,

D00 = τ〈p ⊗ pFF (1 − ηFF )〉 =
4πτ

3

∂

∂λ0

∫ ∞

0

|p|4FF d|p|

=
4πτ

3η

∂

∂λ0

∫ ∞

0

(2ε)3/2dε

1 + exp(−λ0 − log η + ε)
=

(2π)3/2τ

η

∂F3/2

∂λ0
(z)

=
(2π)3/2τ

η
F1/2(z),

where we have used (21) and z = λ0 + log η. Moreover,

n = 〈FF 〉 =
4π

η

∫ ∞

0

√
2εdε

1 + e−z+ε
=

(2π)3/2

η
F1/2(z) = τ−1D00.

Thus, by (9), J0 = −τn∇(λ0 − V ). The drift-diffusion formulation of the current
density follows from ∇n = (2π)3/2η−1F−1/2(z)∇λ0. �

The quantity φ = λ0−V is called the Fermi potential and the current equation
can be written in terms of φ as

J0 = −τn∇φ, n = (2π)3/2η−1F1/2(φ + V ).

We recall that the corresponding drift-diffusion model was first formulated by
Bonch-Bruevich and Kalashnikov [6] (see the introduction).

Remark 9 (Limits η → 0 and η → ∞). Notice that in the Maxwell-Boltzmann
limit η → 0, the second current relation in (25) reduces to J0 = −τ(∇n − n∇V )
(employing (22)), which is the current density of the standard drift-diffusion equa-
tions. In the degeneracy limit η → ∞, we rescale the particle and current densities
by setting ns = ηn and Js = ηJ0. Then, by (23), as η → ∞,

F1/2(λ0 + log η)

F−1/2(λ0 + log η)
∼ 2

3
(λ0 + log η), ns ∼ 8

√
2π

3
(λ0 + log η)3/2.

This implies that

F1/2(λ0 + log η)

F−1/2(λ0 + log η)
∼ n

2/3
s

2(6π2)1/3
as η → ∞

and, using (25) and setting N0 = 3/(10(6π2)1/3),

Js ∼ −τ
(
N0∇(n5/3

s ) − ns∇V
)

as η → ∞. (26)

This relation, together with the mass conservation equation, is the degenerate
drift-diffusion model first analyzed in [18, 27]. �
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4.2. Energy-transport models

Energy-transport models are obtained for N = 1. The balance equations are

∂tn + div J0 = 0, ∂t(ne) + divJ1 − J0 · ∇V = W, (27)

where we have set n = m0 and m1 = ne for the particle and energy densities.
To simplify the notation, we define the (generalized) particle temperature T by
T = −1/λ1.

Proposition 10 (Energy-transport model). Let (19) hold. The particle and energy
densities simplify to

n = (2πT )3/2η−1F1/2(z), ne =
3

2

F3/2(z)

F1/2(z)
nT,

where z = λ0 + log η. The diffusion coefficients of the energy-transport model read
as

D00 = τnT, D01 = D10 =
5τ

2

F3/2(z)

F1/2(z)
nT 2, D11 =

35τ

4

F5/2(z)

F1/2(z)
nT 3.

In the drift-diffusion formulation, the current densities can be written as

J0 = −∇g0 +
F1/2(z)

F3/2(z)

g0

T
∇V, J1 = −∇g1 +

F3/2(z)

F5/2(z)

g1

T
∇V,

where the variables (g0, g1) are related to (n, ne) by

g0 =
2τ

3
ne, g1 =

10τ

9

F1/2(z)F5/2(z)

F3/2(z)2
(ne)2

n
.

We recall that, by Proposition 7, the mapping (g0, g1) 7→ (λ0, λ1) is invertible
on its range.

Proof. The relation for the particle density follows after substituting t = −λ1ε:

n = 〈FF 〉 =
4π

η

∫ ∞

0

√
2εdε

1 + exp(−z − λ1ε)
=

4
√

2π

η(−λ1)3/2

∫ ∞

0

t1/2dt

1 + e−z+t

=
(2π)3/2

η(−λ1)3/2
F1/2(z).

The expression for ne is shown in a similar way. Because of ∂FF /∂λ0 = FF (1 −
ηFF ), formula (15) simplifies to

Dij =
4πτ

3

∂

∂λ0

∫ ∞

0

εi+j(2ε)3/2FF dε =
8
√

2πτ

3η

∂

∂λ0

∫ ∞

0

εi+j+3/2dε

1 + exp(−z − λ1ε)

=
8
√

2πτΓ(i + j + 5
2 )

3η(−λ1)i+j+5/2

∂

∂λ0
Fi+j+3/2(z) =

8
√

2πτΓ(i + j + 5
2 )

3η(−λ1)i+j+5/2
Fi+j+1/2(z),
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employing (21). Furthermore, we specify (18):

g0 =
τ

3
〈|p|2FF 〉 =

4πτ

3η

∫ ∞

0

(2ε)3/2dε

1 + exp(−z − λ1ε)
=

(2π)3/2τ

η(−λ1)5/2
F3/2(z) =

2

3
τne,

g1 =
5
√

2π3/2τ

η(−λ1)7/2
F5/2(z) =

5τ

3

ne

−λ1

F5/2(z)

F3/2(z)
=

10τ

9

F1/2(z)F5/2(z)

F3/2(z)2
(ne)2

n
.

Since D10 = (5/3)τ(ne)T , these formulas allow us to compute

F0(g) =
D00

g0
λ1 = −F1/2(z)

F3/2(z)

1

T
, F1(g) =

D10

g1
λ1 = −F3/2(z)

F5/2(z)

1

T
,

which proves the current relations. �

Remark 11 (Energy-dependent relaxation time). Above, we have assumed that
the relaxation time in (19) is constant. Different energy-transport models can be
derived by assuming that the relaxation time depends on the macroscopic energy,

τ = τ0

( 〈εFF 〉
〈FF 〉

)−β

,

or on the microscopic energy, τ = τ(ε) = τ0ε
−β , where β ≥ 0. We refer to [22,

Remark 8.9] and leave the details to the reader. �

Remark 12 (Limits η → 0 and η → ∞). In the Maxwell-Boltzmann limit η → 0,
the diffusion coefficients and the energy density become, using (22),

D00 = τnT, D01 = D10 =
5

2
τnT 2, D11 =

35

4
τnT 3, ne =

3

2
nT,

which are exactly the expressions derived in [23, Example 3.4]. The current densi-
ties read as

J0 = −τ
(
∇(nT ) − n∇V

)
, J1 = −5

2
τ
(
∇(nT 2) − nT∇V

)
.

For the degeneracy limit η → ∞, we rescale the variables and introduce
ns = ηn, (ne)s = η(ne), Ts = (log η)T , Ji,s = ηJi, and gi,s = ηgi for i = 0, 1.
Then, employing (23),

n ∼ N1T
3/2η−1(log η)3/2, ne ∼ 3

5
N1T

5/2η−1(log η)5/2 as η → ∞,

where N1 = 8
√

2π/3, and we obtain in the limit η → ∞ the relations ns = N1T
3/2
s

and (ne)s = 3
5N1T

5/2
s = 3

5nsTs. Notice that the limiting energy density differs

from its Maxwell-Boltzmann limit ne = 3
2nT by a factor. Since

F1/2(z)

F3/2(z)
∼ 5

2 log η
,

the particle current density can be written in the limit η → ∞ as

J0,s = −∇g0,s +
5

2

g0,s

Ts
∇V.
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Furthermore, since g0,s = 2
3τ(ne)s = 2

5N
−2/3
1 τn

5/3
s and 2

5N
−2/3
1 = N0 (see Remark

9 for the definition of N0), we conclude that

J0,s = −τ
(
N0∇(n5/3

s ) − ns∇V
)
,

which equals the degeneracy limit (26). Since the temperature Ts is completely
determined by the density ns, the energy equation becomes obsolete, and the
energy-transport model reduces to the degenerate drift-diffusion equations (26).

�

4.3. Extended energy-transport model

The balance equations (8) and current relations (17) for N = 2 read as

∂tm0 + divJ0 = 0,

∂tm1 + divJ1 − J0 · ∇V = W1,

∂tm2 + divJ2 − 2J1 · ∇V = W2,

Ji = −∇gi −
(Di0

gi
λ1 + 2

Di1

gi
λ2

)
gi∇V, i = 0, 1, 2.

The variables gi and the diffusion coefficients Dij are given by

gi =
8
√

2πτ

3η

∫ ∞

0

εi+3/2dε

1 + exp(−λ0 − log η − λ1ε − λ2ε2)
, Dij =

∂gi+j

∂λ0
.

Interestingly, the current equations can be expressed in terms of mi only. An
integration by parts yields

mi =
4
√

2π

η

∫ ∞

0

εi+1/2dε

1 + exp(−λ0 − log η − λ1ε − λ2ε2)

=
4
√

2π

η

∫ ∞

0

2

2i + 3

d

dε
(εi+3/2)

dε

1 + exp(−λ0 − log η − λ1ε − λ2ε2)

= −4
√

2π

η

∫ ∞

0

2

2i + 3
(λ1 + 2λ2ε)

∂

∂λ0

εi+3/2

1 + exp(−λ0 − log η − λ1ε − λ2ε2)
dε

= − 3

(2i + 3)τ

(
Di0λ1 + 2Di1λ2

)
,

and, since gi = (2τ/3)mi+1,

Ji = −2τ

3

(
∇mi+1 −

3(2i + 3)

4
mi∇V

)
, i = 0, 1, 2.

This is the same expression as in the Maxwell-Boltzmann case, see [23, formula
(4.5)]. The Fermi-Dirac statistics enter only through the relation between m3 and
(λ0, λ1, λ2) or, alternatively, (m0,m1,m2). This model extends the six-moments
model of Grasser et al. [16] to the Fermi-Dirac case.

Notice that, according to Section 2.1, the entropy maximization problem with
N = 2 is solvable if the Kane dispersion relation (7) is employed, but it may be
unsolvable in the parabolic band approximation. In order to justify the above
derivation for parabolic bands, we derive the extended energy-transport model
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first for the band structure (7) and perform then the limit δ → 0, which leads to
the above model.
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ducteurs pour une statistique de Fermi-Dirac. Asympt. Anal. 6 (1992), 135-160.

[15] T. Goudon and A. Mellet. On fluid limit for the semiconductors Boltzmann equation.
J. Diff. Eqs. 189 (2003), 17-45.

[16] T. Grasser, H. Kosina, C. Heitzinger, and S. Selberherr. Characterization of the hot
electron distribution function using six moments. J. Appl. Phys. 91 (2002), 3869-
3879.

[17] P. Guan and B. Wu. Existence of weak solutions to a degenerate time-dependent
semiconductor equations with temperature effects. J. Math. Anal. Appl. 332 (2007),
367-380.
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