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Abstract. The limit of vanishing ratio of the electron mass to the ion mass in the
isentropic transient Euler-Poisson equations with periodic boundary conditions is proved.
The equations consist of the balance laws for the electron density and current density
for given ion density, coupled to the Poisson equation for the electrostatic potential. The
limit is related to the low-Mach-number limit of Klainerman and Majda. In particular, the
limit velocity satisfies the incompressible Euler equations with damping. The difference
to the zero-Mach-number limit comes from the electrostatic potential which needs to be
controlled. This is done by a reformulation of the equations in terms of the enthalpy,
higher-order energy estimates and a careful use of the Poisson equation.
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1. Introduction

A couple of years ago, the last two authors started a program to derive rigorously some
asymptotic limits, namely the relaxation limit, the quasineutral limit and the zero-electron-
mass limit, in quasi-hydrodynamic models for plasmas. Whereas most of these limits could
be rigorously proved, the zero-electron-mass limit in the hydrodynamic equations remained
unsolved. In this paper we fill this gap for the hydrodynamic model with given ion density.

First, consider the (scaled) hydrodynamic equations for the electron density ne with
charge qe = −1, the density ni of the positively charged ions with charge qi = +1, the
respective velocities ve, vi and the electrostatic potential φ,

∂tnα + ∇ · (nαvα) = 0, α = e, i,

mα∂t(nαvα) +mα∇ · (nαvα ⊗ vα) + ∇pα(nα) = −qαnα∇φ−mα

nαvα

τα
,

−λ2∆φ = ni − ne − C(x) for x ∈ T
d, t > 0,

where d ≥ 1 and T
d denotes the d-dimensional torus. The initial conditions are given by

nα(·, 0) = nI,α, vα(·, 0) = vI,α in T
d, α = e, i.
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In the above equations, pα are the pressure functions, usually given by pα(n) = cαn
γα ,

n ≥ 0, where cα > 0 and γα ≥ 1 are constants. In this work, we only assume that pα is
smooth and strictly increasing. The function C(x) models fixed charged background ions
(doping profile). The (scaled) physical parameters are the particle mass mα, the relaxation
time τα and the Debye length λ. We assume that the value of the integral

∫

Td φdx is fixed;
for instance,

∫

Td φdx = 0.
In this paper we restrict ourselves to a situation in which the ion density is given, i.e.,

we wish to perform rigorously the limit me → 0 in the system

∂tne + ∇ · (neve) = 0,(1)

me∂t(neve) +me∇ · (neve ⊗ ve) + ∇pe(ne) = ne∇φ−me

neve

τe
,(2)

λ2∆φ = ne −N for x ∈ T
d, t > 0,(3)

where N = ni − C is given. (In fact, we need that N is a constant.) The parameter
me is essentially the ratio of the electron mass to the ion mass (see, e.g., [14] for details
on the scaling). We assume that the ion is much heavier than the electron such that the
limit me → 0 makes sense. The limit has the goal to achieve simpler models containing
the essential physical phenomena. We notice that in plasma physics, zero-electron-mass
assumptions are widely used (see, e.g., [9, 17]).

Concerning the existence of solutions to the hydrodynamic model in the one-dimensional
or multi-dimensional situation, either in the torus or in the whole space, we refer to [2] for
precise references. Whereas in the one-dimensional case, the existence of general global-
in-time weak entropy solutions has been shown, there are only results for smooth solutions
for small times or initial data close to an equilibrium state in the multi-dimensional case,
which we consider here.

The relaxation limit in the hydrodynamic (Euler-Poisson) equations to the drift-diffusion
model, which has been first studied by Marcati and Natalini [21], has been solved in [10, 12,
13] for weak entropy solutions (also see [1]). The quasineutral limit in the hydrodynamic
model has been analyzed for transient smooth solutions by Cordier and Grenier [4] in
the one-dimensional case and independently in [25, 29] in the multi-dimensional case. We
refer also to [8] for an analysis of the limit in Vlasov-Poisson equations and [6] for a
combined quasineutral-relaxation limit. The limit for steady states has been considered
in [23, 24, 27]. The zero-electron-mass limit in the transient equations has been achieved
only under restrictive assumptions; see [7]. For steady states, we refer to [23].

These asymptotic limits have been also studied in the drift-diffusion equations which are
obtained in the relaxation limit. The quasineutral limit has been proved in [5, 15, 30]. In
[14] the zero-electron-mass limit in these equations could be shown (which is easier than
in the hydrodynamic model). We mention that such limits have been recently analyzed in
quasi-hydrodynamic quantum models; see [11, 16].

Before we present the main ideas of this paper, it is convenient to write the main part
of the system (1)-(2) in symmetric hyperbolic form. Setting n = ne, v = ve, p(n) = pe(ne),
and ε2 = me and introducing the enthalpy h = h(ne), defined by h′(n) = p′(n)/n and
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h(1) = 0, as a new variable, the system (1)-(3) can be rewritten as

(∂t + v · ∇)h+ p′(n)∇ · v = 0,

ε2(∂t + v · ∇)v + ∇h = ∇φ− ε2v,(4)

∆φ = n(h) −N, x ∈ T
d, t > 0,

where we assume that
∫

Td φdx = 0, with initial conditions

(5) h(·, 0) = hε
I , v(·, 0) = vε

I in T
d.

Here, we have set τe = λ = 1 in order to simplify the notation. Clearly, for smooth
solutions, this system is equivalent to (1)-(3). As we suppose that the pressure function is
invertible, so does h(n) and we denote its inverse by n(h). The objective of this paper is
to perform the limit ε→ 0 in (4).

1.1. Formal asymptotic analysis. Assume that N > 0 is a constant. In order to derive
the limiting system when ε→ 0, we substitute the formal expansions

h = h0 + εh1 + ε2h2 + · · · , v = v0 + εv1 + ε2v2 + · · · , φ = φ0 + εφ1 + ε2φ2 + · · ·

in the system (4) and equate equal powers of ε. The lowest-order terms satisfy the equations

(6) (∂t + v0 · ∇)h0 + p′(n(h0))∇ · v0 = 0, ∇(h0 − φ0) = 0, ∆φ0 = n(h0) −N.

The second equation implies that h0 − φ0 is a function of time only. Combining this
fact with the third equation, we find that h0 solves ∆h0 = n(h0) − N . Employing the
assumption

∫

φ0dx = 0, it is not difficult to see that φ0 = 0 and h0 = h(N) ∈ R are the
unique solutions of the corresponding equations, such that

∫

h0dx = meas(Td)h(N). In
particular, the first equation in (6) becomes ∇ · v0 = 0. The first-order terms satisfy

∇(h1 − φ1) = 0, ∆φ1 = n′(h0)h1.

The solutions h1 = φ1 = 0 are consistent with these equations. At second order, we find

(7) (∂t + v0 · ∇)v0 + v0 = ∇(φ2 − h2), ∆φ2 = n′(h0)h2.

From ∇ · v0 = 0 and the first equation, v0 and φ2 − h2 can be found. Then, h2 is the
solution of the third equation, written in the form ∆h2 = n′(h0)h2−∆(φ2−h2) and finally,
φ2 is given by φ2 = h2 +(φ2−h2). These considerations motivate to choose the initial data
as

(8) hε
I = h0

I + ε2h2
I , vε

I = v0
I + εv1

I .

The formal analysis shows that the zero-electron-mass limit has some similarities with
the low-Mach-number limit in the compressible Euler system [20]. It is possible to use ideas
from Klainerman and Majda [18, 19] to deal with the term ε−1∇h in (4) (after division
by ε). However, we have another singularity from ε−1∇φ which cannot be fixed by their
method. Our idea is to control this term by a careful use of the mass conservation and the
Poisson equation. To describe the idea more precisely, introduce the new variables

h̃ =
h− h0

ε
, φ̃ =

φ− φ0

ε
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as in [20, Ch. 2.4], where φ0 is any constant fixed by
∫

φdx (if
∫

φdx = 0 then φ0 = 0).
The system (4) can be written as

A(εh̃)(∂t + v · ∇)h̃+
1

ε
∇ · v = 0,(9)

(∂t + v · ∇)v +
1

ε
∇h̃ =

1

ε
∇φ̃− v,(10)

∆φ̃ =
1

ε
(n(εh̃+ h0) − n(h0)), x ∈ T

d, t > 0,(11)

where A(εh̃) = 1/p′(εh̃+ h0).

1.2. Main ideas. For the proof of the limit ε → 0 we need to derive uniform estimates
up to sth-order derivatives with s > d/2 + 1. Here, we will describe only how to derive
the lowest-order estimates, which is sufficient to illustrate the idea. We assume that there
are L∞(0, T ;W 1,∞(Td)) estimates for h̃ and v. Friedrich’s energy estimate for symmetric
hyperbolic systems and integration by parts yield

d

dt

∫

Td

(A(εh̃)|h̃|2 + |v|2)dx+

∫

Td

|v|2dx ≤ c

∫

Td

(|h̃|2 + |v|2)dx−
1

ε

∫

Td

φ̃∇ · vdx,

where the constant c > 0 depends on the L∞(0, T ;W 1,∞(Td)) bounds for h̃ and v. Re-
placing the term ε−1∇ · v by the mass conservation equation, we are left to control the
integrals

∫

Td

φ̃A(εh̃)h̃tdx+

∫

Td

φ̃A(εh̃)v · ∇h̃dx.

The second integral can be easily controlled (after integration by parts) by the L∞(0, T ;

W 1,∞(Td)) bounds for h̃ and v. In order to deal with the first integral we employ the
Poisson equation,

∆φ̃t = n′(εh̃+ h0)h̃t.

Then we arrive at
∫

Td

φ̃A(εh̃)h̃tdx =

∫

Td

A(εh̃)

n′(εh̃+ h0)
∆φ̃tφ̃dx.

Again after integration by parts, we obtain an integral with a “good” sign, −∂t‖∇φ̃‖
2
L2

and other integrals which can be estimated by ‖ε∇φ̃t‖L2 and ‖∂t(n
′(εh̃ + h0))‖L2 . Using

the Poisson equation to bound the first expression, it can be seen that both terms contain
the derivative εh̃t as above but now including the factor ε. Indeed, by (9), we are now able
to control this expression in some norm in terms of the L∞(0, T ;W 1,∞(Td)) estimates for

h̃ and v.
For higher-order derivatives, we need to take care of the nonlinear terms arising from the

partial derivatives, but finally, we end up with estimates for h̃ and v which are appropriate
to employ the standard continuation argument (see below for details).

We remark that a more general strategy to perform the low-Mach-number limit, and
possibly also the zero-electron-mass limit, has been suggested by Métivier and Schochet in
[22]. However, the technique of Klainerman and Majda is quite fundamental and sufficient
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for our purpose. For other results on the incompressible limit of the compressible Euler
equations, we refer to [3, 28].

1.3. Main results. In order to formulate our main theorems, we introduce as in [20] the
following notations:

‖ · ‖s = ‖ · ‖Hs(Td), ‖| · ‖|s,T = sup
0<t<T

‖ · ‖s for s ∈ R, ‖ · ‖∞ = ‖ · ‖L∞(Td).

Theorem 1. Let n be a smooth strictly increasing function and let N > 0. Furthermore,
let s > d/2 + 1 and let the initial data (hε

I , v
ε
I) satisfy vε

I = v0
I and

∥

∥

∥

∥

hε
I − h0

ε

∥

∥

∥

∥

s

+ ‖vε
I‖s ≤M0,

where h0 = h(N) and M0 > 0 is a constant independent of ε. Then there exist constants
T0 > 0 and M ′

0 > 0, independent of ε and ε0(M0) > 0 such that for all 0 < ε < ε0(M0),
the problem (4)-(5) has a classical solution (hε, vε, φε) in [0, T0] satisfying

∥

∥

∥

∥

∣

∣

∣

∣

hε − h0

ε

∥

∥

∥

∥

∣

∣

∣

∣

s,T0

+ ‖|vε‖|s,T0
+

∥

∥

∥

∥

∣

∣

∣

∣

∇φε

ε

∥

∥

∥

∥

∣

∣

∣

∣

s,T0

≤M ′
0.

Theorem 2. Let the assumptions of Theorem 1 hold with ∇ · v0
I = 0 and

(12)

∥

∥

∥

∥

hε
I − h0

ε2

∥

∥

∥

∥

s

≤M1.

Let (hε, vε, φε) be a classical solution to (4)-(5) in [0, T0] with T0 > 0 independent of ε.
Then, as ε→ 0,

hε → h0, ∇φε → 0 strongly in L∞(0, T0;H
α(Td)) ∩ C0,1([0, T0];L

2(Td)),

vε → v0 strongly in C0([0, T0];H
α(Td)) for all α < s,

where v0 is the (unique) classical solution of the following incompressible Euler equations
with damping,

∇ · v0 = 0, (∂t + v0 · ∇)v0 + v0 = ∇π, x ∈ T
d, t > 0,(13)

v0(·, 0) = v0
I in T

d,

and π is the limit of

∇

(

φε − hε

ε

)

⇀∗ ∇π weakly* in L∞(0, T0;L
2(Td)).

The paper is organized as follows. In section 2, uniform estimates are shown and The-
orem 1 is proved by means of a continuation argument. Section 3 is devoted to the proof
of Theorem 2.
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2. Uniform local existence

First we recall for convenience some Moser-type inequalities which we will use in the
subsequent analysis. Let α = (α1, . . . , αd) be a multi-index. The differential operator Dα

is defined by Dα = ∂α1

x1
· · · ∂αd

xd
; Ds for s ∈ N denotes the sth derivative.

• Let s ≥ 0, f , g ∈ Hs(Td) ∩ L∞(Td), and α a multi-index with |α| ≤ s. Then, for
some constant cs > 0,

(14) ‖Dα(fg)‖0 ≤ cs(‖f‖∞‖Dsg‖0 + ‖g‖∞‖Dsf‖0).

• Let s ≥ 1, f ∈ Hs(Td) with Df ∈ L∞(Td), g ∈ Hs−1(Td) ∩ L∞(Td) and |α| ≤ s.
Then, for some constant cs > 0,

(15) ‖Dα(fg) − fDαg‖0 ≤ cs(‖Df‖∞‖Ds−1g‖0 + ‖g‖∞‖Dsf‖0).

For the proof of Theorem 1 we employ the basic theory of smooth solutions to hyperbolic
systems of Majda [20]. The key result is contained in the following lemma.

Lemma 3. Suppose that it holds, for some T ∗ > 0 (maybe depending on ε) and M > 0
(independent of ε),

(16) ‖h̃‖L∞(0,T ∗;W 1,∞(Td)) + ‖v‖L∞(0,T ∗;W 1,∞(Td)) ≤M.

Then there exist ε0 = ε0(M) > 0 and c(M) > 0 such that for all 0 < ε < ε0, it holds

(17) ‖|h̃‖|s,T ∗ + ‖|v‖|s,T ∗ + ‖|∇φ̃‖|s,T ∗ ≤ ec(M)T ∗

(M0 + c(M)T ∗).

We assume Lemma 3 for the moment and proceed with the proof of Theorem 1.

Proof of Theorem 1. In view of the existence results of [20], the proof follows from a
continuation argument. We follow the lines of [20, p. 59]. First, let M1 > M0 and fix
T1 > 0 such that

ec(M1)T1(M0 + c(M1)T1) ≤M1.

Writing φ = ∆−1(n(h)−N) (with periodic boundary conditions) and using the properties
of the linear operator ∆−1, the first two equations in (4) form a symmetric hyperbolic
system with the unknowns (h, v). Therefore, the local existence results of [20] show that
there exists a local smooth solution (h, v). Let T (ε) be the maximal time of existence of
such a smooth solution. If T (ε) = +∞ for all ε > 0, we are done. Otherwise, T (ε) < +∞
for some ε > 0 and then

lim sup
t→T (ε)−

(‖|h̃‖|s,t + ‖|v‖|s,t + ‖|∇φ̃‖|s,t) = +∞.

There exists t1(ε) < T (ε) such that

(18) ‖|h̃‖|s,t1(ε) + ‖|v‖|s,t1(ε) + ‖|∇φ̃‖|s,t1(ε) ≤M1

and

(19) ‖|h̃‖|s,t + ‖|v‖|s,t + ‖|∇φ̃‖|s,t > M1 for all t > t1(ε).

Lemma 3, applied with some T ∗ > 0 and M = M1, provides the existence of ε0 > 0
(independent of T ∗) such that (17) holds for all ε < ε0. If t1(ε) ≥ T1 for all 0 < ε < ε0, the
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proof is finished. Otherwise, we argue by contradiction; there exists 0 < ε1 < ε0 such that
t1(ε1) < T1. In particular,

‖|h̃‖|s,t1(ε1) + ‖|v‖|s,t1(ε1) + ‖|∇φ̃‖|s,t1(ε1) ≤M1.

Now, we apply Lemma 3 with T ∗ = t1(ε1) and M = M1. This does not change the value
of ε0 since it only depends on M1. Then, by (17),

‖|h̃‖|s,t1(ε1) + ‖|v‖|s,t1(ε1) + ‖|∇φ̃‖|s,t1(ε1) ≤ ec(M1)t1(ε1)(M0 + c(M1)t1(ε1))

< ec(M1)T1(M0 + c(M1)T1) ≤M1.

Thanks to the strict inequality sign, we may extend, again by local existence results, the
time interval [0, t1(ε1)] to [0, t2(ε1)] for some t2(ε1) > t1(ε1) such that

‖|h̃‖|s,t2(ε1) + ‖|v‖|s,t2(ε1) + ‖|∇φ̃‖|s,t2(ε1) ≤M1.

But this contradicts the definition of t1(ε). Hence, t1(ε) ≥ T1 > 0 for all 0 < ε < ε0, which
shows that there exists a solution on [0, T1] and T1 does not depend on ε. �

Proof of Lemma 3. Step 1: preparations. First we collect some useful inequalities which
we will employ several times in this proof. Let f be a smooth function and let (16) hold.
Then there exist constants c(M), c0(M), c1(M) > 0 such that

0 < c0(M) ≤ f (m)(εh̃) ≤ c1(M) for all m ∈ N and sufficiently small ε,

sup
(0,T )

‖∇f(εh̃)‖∞ ≤ εc(M), sup
(0,T )

‖∂tf(εh̃)‖∞ ≤ c(M).(20)

In fact, the first estimates can be derived directly by elementary computations. The last
one is a consequence of the first, using (16) and (9),

‖|∂tf(εh̃)‖|∞,T ≤ ‖|f ′(εh̃)‖|∞,T‖|ε∂th̃‖|∞,T

≤ c(M)(‖|εv · ∇h̃‖|∞,T + ‖|A−1(εh̃)∇ · v‖|∞,T ) ≤ c(M).

We will use the following notations. Let α with |α| ≤ s be a multi-index. Then we define
|D|α|u| = supα |D

αu|. Furthermore, we abbreviate

hα = Dαh̃, vα = Dαv, φα = Dαφ̃.

Step 2: Friedrich’s energy estimates. We divide (9) by A(εh̃), apply the operator Dα

and multiply by A(εh̃). Differentiating also (10) and (11), the resulting equations are

A(εh̃)∂thα + A(εh̃)v · ∇hα +
1

ε
∇ · vα = Fα,(21)

∂tvα + v · ∇vα +
1

ε
∇hα =

1

ε
∇φα − vα +Gα,(22)

∆φα = n′(εh̃+ h0)hα +Hα,(23)
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where

Fα = A(εh̃)(v · ∇hα −Dα(v · ∇h̃)) +
1

ε

(

∇ · vα − A(εh̃)Dα(A−1(εh̃)∇ · v)
)

,

Gα = v · ∇vα −Dα(v · ∇v),

Hα =
1

ε
Dα(n(εh̃+ h0)) − n′(εh̃+ h0)hα.(24)

Friedrich’s energy estimate for (21)-(22) (i.e., multiplying (21) by hα and (22) by vα,
integrating over T

d, taking the sum and integrating by parts) give

1

2

d

dt

∫

Td

(

A(εh̃)|hα|
2 + |vα|

2
)

dx+

∫

Td

|vα|
2dx

≤ B

∫

Td

(|hα|
2 + |vα|

2)dx+

∫

Td

(|Fα|
2 + |Gα|

2)dx+
1

ε

∫

Td

∇φα · vαdx(25)

= I1 + I2 + I3,

where

B = ‖|∂t(A(εh̃))‖|∞,T + ‖|∇A(εh̃)‖|∞,T‖|v‖|∞,T + ‖|A(εh̃)‖|∞,T‖|∇ · v‖|∞,T

+ c‖|∇v‖|∞,T + 1.

Step 3: control of I1, I2 and I3. The inequalities (20) show that

I1 ≤ c(M)

∫

Td

(|hα|
2 + |vα|

2)dx.

The integral I2 can be estimated in a similar way as done by Klainerman and Majda
[18, 19]. For convenience, we present the details. We employ Moser-type estimates (14)-
(15) to obtain for |α| ≥ 1 (noting that F0 = G0 = 0)

‖Fα‖0 ≤ ‖A(εh̃)‖∞‖v · ∇hα −Dα(v · ∇h̃)‖0 +
1

ε
‖∇ · vα − A(εh̃)Dα(A−1(εh̃)∇ · v)‖0

≤ c‖A(εh̃)‖∞

(

‖∇v‖∞‖D|α|−1∇h̃‖0 + ‖D|α|v‖0‖∇h̃‖∞

)

+
c

ε

(

‖∇A(εh̃)‖∞‖D|α|−1(A−1(εh̃)∇ · v)‖0 + ‖D|α|A(εh̃)‖0‖A
−1(εh̃)∇ · v‖∞

)

≤ c(M)
(

‖D|α|h̃‖0 + ‖D|α|v‖0

)

+ c(M)
(

‖A−1(εh̃)‖∞‖D|α|v‖0

+ ‖∇ · v‖∞‖D|α|−1A−1(εh̃)‖0 +
1

ε
‖D|α|A(εh̃)‖0

)

≤ c(M)
(

‖D|α|h̃‖0 + ‖D|α|v‖0 + 1
)

(26)

and

‖Gα‖0 ≤ ‖v · ∇vα −Dα(v · ∇v)‖0

≤ c
(

‖∇v‖∞‖D|α|−1∇v‖0 + ‖D|α|v‖0‖∇v‖∞
)

≤ c(M)
(

‖D|α|v‖0 + 1
)

.
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This yields

I2 ≤ c(M)
(

‖D|α|h̃‖2
0 + ‖D|α|v‖2

0 + 1
)

.

Now we turn to the delicate integral I3. This term cannot be controlled directly from
the Riesz transformation (derived from the coupling with the Poisson equation), as done
in [2], for instance. Our idea is to replace the singular term ε−1∇φα, after integration by
parts in I3, by equation (21),

I3 = −
1

ε

∫

Td

φα∇ · vαdx

= −

∫

Td

φαFαdx+

∫

Td

φαA(εh̃)v · ∇hαdx+

∫

Td

φαA(εh̃)∂thαdx

= K1 +K2 +K3.

Step 4: control of K1, K2 and K3. With the help of the estimate (26), it is not difficult
to see that the first integral K1 can be controlled by

K1 ≤
1

2

∫

Td

(|φα|
2 + |Fα|

2)dx ≤ c(M)

∫

Td

(|φα|
2 + |D|α|h̃|2 + |D|α|v|2)dx+ c(M).

We integrate by parts in the second integral since ∇hα cannot be estimated by D|α|h̃,

K2 = −

∫

Td

∇φα · vA(εh̃)hαdx−

∫

Td

φα∇A(εh̃) · vhαdx−

∫

Td

φαA(εh̃)∇ · vhαdx

≤ c(M)

∫

Td

(|∇φα|
2 + |φα|

2 + |hα|
2)dx.

The difficult term is now K3. In order to control K3, we cannot use (21) since this would
(again) give a term containing ε−1∇ · vα. Our strategy is to employ the Poisson equation
in the following way. Taking the time derivative of (23), we have

∆∂tφα = n′(εh̃+ h0)∂thα + ∂t(n
′(εh̃+ h0))hα + ∂tHα,

recalling the definition (24) of Hα. Then, multiplying this equation by φαA(εh̃)/n′(εh̃+h0)
and substituting the expression into K3, we arrive at

K3 =

∫

Td

A(εh̃)

n′(εh̃+ h0)
φα∆∂tφαdx−

∫

Td

A(εh̃)

n′(εh̃+ h0)
φα∂t(n

′(εh̃+ h0))hαdx

−

∫

Td

A(εh̃)

n′(εh̃+ h0)
φα∂tHαdx = L1 + L2 + L3.
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Step 5: control of L1 and L2. After integration by parts we obtain

L1 = −
1

2

∫

Td

A(εh̃)

n′(εh̃+ h0)
∂t|∇φα|

2dx−

∫

Td

∂t∇φα · ∇

(

A(εh̃)

n′(εh̃+ h0)

)

φαdx

= −
1

2

d

dt

∫

Td

A(εh̃)

n′(εh̃+ h0)
|∇φα|

2dx+
1

2

∫

Td

∂t

(

A(εh̃)

n′(εh̃+ h0)

)

|∇φα|
2dx

−

∫

Td

∂t∇φα · ∇

(

A(εh̃)

n′(εh̃+ h0)

)

φαdx.

The bound (20) allows to estimate the second and third integral:

L1 ≤ −
1

2

d

dt

∫

Td

A(εh̃)

n′(εh̃+ h0)
|∇φα|

2dx+c(M)

∫

Td

|∇φα|
2dx+c(M)

∫

Td

(|ε∂t∇φα|
2+ |φα|

2)dx.

In order to estimate the integral over |ε∂t∇φα|
2, we employ again the Poisson equation

(23), now written in the form

∆∂tφα =
1

ε
Dα∂t(n(εh̃+ h0)).

For |α| = 0, we have, observing (20),

‖ε∂t∇φ̃‖0 ≤ c‖∂t(n(εh̃+ h0))‖0 ≤ c(M).

For 1 ≤ |α| ≤ s, we proceed by induction. Elliptic estimates give

‖ε∂t∇φα‖0 ≤ c
(

‖Dα∂t(n(εh̃+ h0))‖−1 + ‖ε∂tφα‖0

)

≤ c
(

‖D|α|−1(n′(εh̃+ h0)ε∂th̃)‖0 + ‖ε∂tφα‖0

)

.

The last term is bounded by the induction hypothesis. In order to bound the first term,
we employ (21). This gives controllable terms since the time derivative provides the factor

ε in front of h̃t and εh̃t can be estimated. Therefore, by Moser-type calculus,

‖ε∂t∇φα‖0 ≤ c(M)(‖D|α|h̃‖0 + ‖D|α|v‖0 + 1).

Hence, the integral L1 is bounded by

L1 ≤ −
1

2

d

dt

∫

Td

A(εh̃)|∇φα|
2

n′(εh̃+ h0)
dx+ c(M)

∫

Td

(|D|α|h̃|2 + |D|α|v|2 + |∇φα|
2 + |φα|

2)dx+ c(M).

The estimate of L2 uses again the fact that the term ‖ε∂th̃‖∞ can be controlled, em-
ploying (21). More precisely, we have

L2 ≤ c(M)‖∂t(n
′(εh̃+ h0))‖∞

∫

Td

(|hα|
2 + |φα|

2)dx ≤ c(M)

∫

Td

(|hα|
2 + |φα|

2)dx.
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Step 6: control of L3. First we write, recalling the definition (24) of Hα,

L3 = −

∫

Td

A(εh̃)

n′(εh̃+ h0)
φα∂t

(

1

ε
Dα(n(εh̃+ h0)) − n′(εh̃+ h0)hα

)

dx.

Before we describe our idea how to deal with this terms, we notice that Hα = 0 for all α
with |α| = 1 and thus L3 = 0. Therefore, we may assume that 2 ≤ |α| ≤ s. The natural
idea is to take the time derivative in the above integral and then to employ Moser-type
inequalities. However, in this case we would obtain terms like ‖∂t∇h̃‖∞ which cannot be
controlled by M . Our idea is to reformulate the integral in such a way that only terms
like εh̃t and not h̃t appear. For convenience, we set g(εh̃) = A(εh̃)/n′(εh̃+ h0). Then, by
a slight abuse of notation for Dα, a reformulation gives

L3 = −

∫

Td

g(εh̃)φα∂t

(

1

ε
Dα−1(n′(εh̃+ h0)εDh̃) −Dα(n′(εh̃+ h0)h̃)

)

dx

−

∫

Td

g(εh̃)φα∂t

(

Dα(n′(εh̃+ h0)h̃) − n′(εh̃+ h0)hα

)

dx

=

∫

Td

g(εh̃)φα∂tD
α−1(D(n′(εh̃+ h0))h̃)dx−

∫

Td

g(εh̃)φα

(

Dα∂t(n
′(εh̃+ h0)h̃)

− n′(εh̃+ h0)Dα∂th̃− ∂t(n
′(εh̃+ h0))hα

)

dx.

We write these two integrals in the following way, using integration by parts:
∫

Td

g(εh̃)φα∂tD
α−1(D(n′(εh̃+ h0))h̃)dx

=

∫

Td

g(εh̃)φαD
α−1
(

∂t(Dn
′(εh̃+ h0))h̃+Dn′(εh̃+ h0)∂th̃

)

dx

= −

∫

Td

D(g(εh̃)φα)Dα−2(∂t(Dn
′(εh̃+ h0))h̃)dx

+

∫

Td

g(εh̃)φαD
α−1
(

Dn′(εh̃+ h0)∂th̃
)

dx = N1 +N2

and

−

∫

Td

g(εh̃)φα

(

Dα∂t(n
′(εh̃+ h0)h̃) − n′(εh̃+ h0)Dα∂th̃− ∂t(n

′(εh̃+ h0))hα

)

dx

=

∫

Td

D(g(εh̃)φα)
(

Dα−1∂t(n
′(εh̃+ h0)h̃) − n′(εh̃+ h0)Dα−1∂th̃

)

dx

−

∫

Td

g(εh̃)φαDn
′(εh̃+ h0)Dα−1∂th̃dx+

∫

Td

g(εh̃)φα∂t(n
′(εh̃+ h0))hαdx

=

∫

Td

D(g(εh̃)φα)
(

Dα−1(n′(εh̃+ h0)∂th̃) − n′(εh̃+ h0)Dα−1∂th̃
)

dx

+

∫

Td

D(g(εh̃)φα)Dα−1(∂t(n
′(εh̃+ h0))h̃)dx−

∫

Td

g(εh̃)φαDn
′(εh̃+ h0)Dα−1∂th̃dx
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+

∫

Td

g(εh̃)φα∂t(n
′(εh̃+ h0))hαdx = N3 +N4 +N5 +N6.

Before we estimate N1, . . . , N6, we notice the following useful inequalities. Let f be a
smooth function and 2 ≤ |α| ≤ s. Then, by Moser-type calculus (14) and employing (21),

‖Dα−1∂tf(εh̃)‖0 = ‖Dα−1(f ′(εh̃)ε∂th̃)‖0

≤ c
(

‖f ′(εh̃)‖∞‖ε∂thα−1‖0 + ‖ε∂th̃‖∞‖Dα−1f ′(εh̃)‖0

)

≤ c(M) (‖ε∇hα−1‖0 + ‖∇ · vα−1‖0 + ‖εFα−1‖0 + ‖hα−1‖0)

≤ c(M)(‖D|α|h̃‖0 + ‖D|α|v‖0 + 1).(27)

Furthermore, by applying Gagliardo-Nirenberg’s inequality, it is not difficult to verify that

(28) ‖Dαf(εh̃)‖0 ≤ εc(‖h̃‖∞)‖Dαh̃‖0.

For the term N1 we use first integration by parts and then (14) and (20):

N1 = −

∫

Td

D(g(εh̃)φα)
(

Dα−1(∂t(n
′(εh̃+ h0))h̃) −Dα−2(∂t(n

′(εh̃+ h0))Dh̃)
)

dx

= −N4 +

∫

Td

D(g(εh̃)φα)Dα−2(∂t(n
′(εh̃+ h0))Dh̃)dx

≤ −N4 + ‖∇(g(εh̃)φα)‖0‖D
α−2(∂t(n

′(εh̃+ h0))Dh̃)‖0

≤ −N4 + c(M)(‖εφα‖0 + ‖∇φα‖0)(‖∂tn
′(εh̃+ h0)‖∞‖hα−1‖0

+ ‖∇h̃‖∞‖Dα−2∂tn
′(εh̃+ h0)‖0)

≤ −N4 + c(M)

∫

Td

(|φα|
2 + |∇φα|

2 + |D|α|h̃|2 + |D|α|v|2)dx+ c(M),

where in the last inequality we have employed (27). In a similar way, using (28), we obtain

N2 ≤ c(M)‖φα‖0‖D
α−1(Dn′(εh̃+ h0)∂th̃)‖0

≤ c(M)‖φα‖0

(

‖Dn′(εh̃+ h0)‖∞‖D|α|−1∂th̃‖0 + ‖∂th̃‖∞‖D|α|n′(εh̃+ h0)‖0

)

≤ c(M)‖φα‖0

(

‖εD|α|−1∂th̃‖0 + ‖ε∂th̃‖∞‖D|α|h̃‖0

)

≤ c(M)

∫

Td

(|φα|
2 + |D|α|h̃|2 + |D|α|v|2)dx+ c(M),

since the integral over ‖ε∂thα−1‖∞ can be bounded. The third integral N3 is estimated by
means of (15):

N3 ≤ ‖D(g(εh̃)φα)‖0

(

‖Dn′(εh̃+ h0)‖∞‖D|α|−2∂th̃‖0 + ‖∂th̃‖∞‖D|α|−1n′(εh̃+ h0)‖0

)

≤ c(M)(‖εφα‖0 + ‖∇φα‖0)
(

‖εD|α|−2∂th̃‖0 + ‖∂th̃‖∞‖εD|α|−1h̃‖0

)

≤ c(M)

∫

Td

(|φα|
2 + |∇φα|

2 + |D|α|h̃|2 + |D|α|v|2)dx+ c(M).
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Here, the condition |α| ≥ 2 is essential to obtain, after differentiation, terms like ε∂th̃

instead of ∂th̃ only. The remaining integrals N5 and N6 are estimated in a similar way:

N5 ≤ c(M)‖φα‖0‖Dn
′(εh̃+ h0)‖∞‖D|α|−1∂th̃‖0

≤ c(M)

∫

Td

(|φα|
2 + |D|α|h̃|2 + |D|α|v|2)dx+ c(M),

N6 ≤ c(M)

∫

Td

(|φα|
2 + |hα|

2)dx.

Summarizing, we have found that

L3 ≤ c(M)

∫

Td

(|φα|
2 + |∇φα|

2 + |D|α|h̃|2 + |D|α|v|2)dx+ c(M).

Step 7: end of the proof. The bounds for L1, L2 and L3 in Steps 5 and 6 show that
the integral K3 from Step 4 can also be controlled. The control of K1, K2 and K3 then
controls I3 from Step 3. Finally, the bounds for I1, I2 and I3 give the inequality (see (25))

1

2

d

dt

∫

Td

(

A(εh̃)|hα|
2 + |vα|

2 +
A(εh̃)

2n′(εh̃+ h0)
|∇φα|

2

)

dx+

∫

Td

|vα|
2dx

≤ c(M)

∫

Td

(|D|α|h̃|2 + |D|α|v|2 + |∇φα|
2 + |φα|

2)dx+ c(M).

Summing up over all multi-indices α with the same norm gives

1

2

d

dt

∫

Td

(

A(εh̃)|D|α|h̃|2 + |D|α|v|2 +
A(εh̃)

2n′(εh̃+ h0)
|D|α|∇φ̃|2

)

dx+

∫

Td

|D|α|v|2dx

≤ c(M)

(
∫

Td

(|D|α|h̃|2 + |D|α|v|2 + |D|α|∇φ̃|2 + |φ̃|2)dx+ 1

)

.

By Gronwall’s inequality, we obtain

sup
0<t<T ∗

‖(h̃, v,∇φ̃)(·, t)‖s + ‖v‖L2(0,T ∗;Hs(Td)) ≤ (M0 + 1)ec(M)T ∗

− 1

≤ ec(M)T ∗

(M0 + c(M)T ∗).

This gives the assertion of the Lemma. �

We also need estimates for the time derivative of h̃, v and ∇φ̃.

Lemma 4. Let the assumptions in lemma 3 and (12) hold, ∇ · v0
I = 0, then there exists

ε1 ∈ (0, ε0) such that for all 0 < ε < ε1, it holds

‖|h̃t‖|0,T ∗ + ‖|vt‖|0,T ∗ + ‖|∇φ̃t‖|0,T ∗ ≤ c(M,M0,M1, T
∗).
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Proof. Taking the time derivative of (9)-(11), we obtain

A(εh̃)∂th̃t + A(εh̃)v · ∇h̃t +
1

ε
∇ · vt = Ft,(29)

∂tvt + v · ∇vt +
1

ε
∇h̃t =

1

ε
∇φ̃t − vt +Gt,(30)

∆φ̃t = n′(εh̃+ h0)h̃t,(31)

where

Ft = A(εh̃)(v · ∇h̃t − ∂t(v · ∇h̃)) +
1

ε

(

∇ · vt − A(εh̃)∂t(A
−1(εh̃)∇ · v)

)

,

Gt = v · ∇vt − ∂t(v · ∇v) = −vt · ∇v.

Friedrich’s estimates for (29)-(30) give

1

2

d

dt

∫

Td

(A(εh̃)|h̃t|
2 + |vt|

2)dx+

∫

Td

|vt|
2dx

≤

∫

Td

(|Ft|
2 + |Gt|

2)dx+ c(M)

∫

T d

(|h̃t|
2 + |vt|

2)dx+
1

ε

∫

Td

∇φ̃t · vtdx.

The terms Ft and Gt can be easily controlled by

‖Ft‖0 ≤ ‖A(εh̃)‖∞(‖∇h̃‖∞‖vt‖0 + c(M)‖∇ · v‖∞‖h̃t‖0) ≤ c(M)(‖h̃t‖0 + ‖vt‖0),

‖Gt‖0 ≤ ‖∇v‖∞‖vt‖0 ≤ c(M)‖vt‖0.

The only delicate integral in the Friedrich’s estimate is the term involving 1/ε. In order
to control it we use (29):

1

ε

∫

Td

∇φ̃t · vtdx = −
1

ε

∫

Td

φ̃t∇ · vtdx

= −

∫

Td

φ̃tFtdx+

∫

Td

φ̃tA(εh̃)v · ∇h̃tdx+

∫

Td

φ̃tA(εh̃)h̃ttdx

= P1 + P2 + P3.

The above estimate for Ft gives

P1 ≤ c(M)

∫

Td

(|φ̃t|
2 + |h̃t|

2 + |vt|
2)dx.

In order to avoid the term ∇h̃t in P2, we integrate by parts:

P2 = −

∫

Td

(

∇φ̃tA(εh̃)v + φ̃t∇A(εh̃)v + φ̃tA(εh̃)∇ · v
)

h̃tdx

≤ c(M)

∫

Td

(|∇φ̃t|
2 + |φ̃t|

2 + |h̃t|
2)dx.
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For the estimate of the remaining integral P3, we take the time derivative of (31) and

multiply the resulting equation by φ̃tA(εh̃)/n′(εh̃+ h0). This yields

A(εh̃)φ̃th̃tt =
A(εh̃)

n′(εh̃+ h0)
φ̃t∆φ̃tt −

A(εh̃)

n′(εh̃+ h0)
∂t(n

′(εh̃+ h0))φ̃th̃t.

Substituting the product A(εh̃)φ̃th̃tt in P3 by the above expression, we obtain, setting

g(εh̃) = A(εh̃)/n′(εh̃+ h0),

P3 =

∫

Td

g(εh̃)φ̃t∆φ̃ttdx−

∫

Td

g(εh̃)∂t(n
′(εh̃+ h0))φ̃th̃tdx

≤ −
1

2

∫

Td

g(εh̃)∂t|∇φ̃t|
2dx−

∫

Td

∇g(εh̃) · ∇φ̃ttφ̃tdx

+ c(M)‖∂tn
′(εh̃+ h0)‖∞

∫

Td

|φ̃th̃t|dx

≤ −
1

2

d

dt

∫

Td

g(εh̃)|∇φ̃t|
2dx+

1

2

∫

Td

∂tg(εh̃)|∇φ̃t|
2dx

+ c(M)

∫

Td

(|φ̃t|
2 + |h̃t|

2 + |ε∇φ̃tt|
2)dx

≤ −
1

2

d

dt

∫

Td

g(εh̃)|∇φ̃t|
2dx+ c(M)

∫

Td

(|∇φ̃t|
2 + |φ̃t|

2 + |h̃t|
2 + |ε∇φ̃tt|

2)dx.

We employ again the Poisson equation to deal with the term ε∇φ̃tt. From (29) we find
that

∆φ̃tt = ∂t(n
′(εh̃+ h0))h̃t + n′(εh̃+ h0)h̃tt

= ∂t(n
′(εh̃+ h0))h̃t − n′(εh̃+ h0)v · ∇h̃t −

1

ε

n′(εh̃+ h0)

A(εh̃)
∇ · vt +

n′(εh̃+ h0)

A(εh̃)
Ft.

Multiplying this equation by ε2φ̃tt, integrating over T
d and integrating by parts yields

∫

Td

|ε∇φ̃tt|
2dx = −ε2

∫

Td

∂t(n
′(εh̃+ h0))h̃tφ̃ttdx+ ε2

∫

Td

n′(εh̃+ h0)v · ∇h̃tφ̃ttdx

+ ε

∫

Td

n′(εh̃+ h0)

A(εh̃)
∇ · vtφ̃ttdx− ε2

∫

Td

n′(εh̃+ h0)

A(εh̃)
Ftφ̃ttdx

= −ε2

∫

Td

∂t(n
′(εh̃+ h0))h̃tφ̃ttdx− ε2

∫

Td

∇ · (n′(εh̃+ h0)v)h̃tφ̃ttdx

− ε2

∫

Td

n′(εh̃+ h0)h̃tv · ∇φ̃ttdx+ ε

∫

Td

∇

(

n′(εh̃+ h0)

A(εh̃)

)

· vtφ̃ttdx

+ ε

∫

Td

n′(εh̃+ h0)

A(εh̃)
vt · ∇φ̃ttdx− ε2

∫

Td

n′(εh̃+ h0)

A(εh̃)
Ftφ̃ttdx
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≤
1

2

∫

Td

|ε∇φ̃tt|
2dx+ c(M)

∫

Td

(|h̃t|
2 + |vt|

2)dx,

where we have used Poincaré’s inequality
∫

Td

|φ̃tt|
2dx ≤ c

∫

Td

|∇φ̃tt|
2dx,

which is allowed since the integral over φ̃ and hence also over φ̃tt vanishes. Thus, the
estimate of P3 becomes

P3 ≤ −
1

2

d

dt

∫

Td

g(εh̃)|∇φ̃t|
2dx+ c(M)

∫

Td

(|∇φ̃t|
2 + |h̃t|

2 + |vt|
2)dx.

We end up with an estimate of ε−1
∫

∇φ̃t · vtdx, and thus, we obtain

1

2

d

dt

∫

Td

(

A(εh̃)|h̃t|
2 + |vt|

2 +
A(εh̃)

2n′(εh̃+ h0)
|∇φ̃t|

2

)

dx+

∫

Td

|vt|
2dx

≤ c(M)

∫

Td

(|∇φ̃t|
2 + |h̃t|

2 + |vt|
2)dx.

The proof of the lemma is completed by application of Gronwall’s lemma if a bound for
the initial data is available, i.e. ‖(h̃t, vt,∇φ̃t)(·, 0)‖0 ≤ c(M0). In fact, from (9) and using
assumption vε

I = v0
I with ∇ · v0

I = 0, we have

‖h̃t(·, 0)‖0 ≤ c(M0)(‖∇(hε
I − h0)‖0 + ‖v1

I‖0) ≤ c(M0),

and similarly for vt(·, 0) with the help of assumption (12) and ‖∇φ̃t(·, 0)‖0 ≤ C‖h̃t(·, 0)‖0.
�

3. Proof of Theorem 2

Let (hε, vε, φε) be a (classical) solution to (4)-(5) in the interval [0, T0] with T0 inde-
pendent of ε. The estimates of Lemmas 3 and 4 show that the following uniform bounds
hold:

‖|ε−1(hε − h0)‖|s,T0
+ ‖|vε‖|s,T0

+ ‖|ε−1∇φε‖|s,T0
≤ M,

‖|ε−1hε
t‖|0,T0

+ ‖|vε
t‖|0,T0

+ ‖|ε−1∇φε
t‖|0,T0

≤ c(M).

The inequalities imply that, as ε→ 0,

hε → h0, ∇φε → 0 strongly in L∞(0, T0;H
s(Td)) ∩ C0,1([0, T0];L

2(Td)).

Furthermore, by Aubin’s lemma (see Theorem 5 in [26]), there exists a subsequence of vε,
which is not relabeled, such that

vε → v0 strongly in L∞(0, T0;H
α(Td)) for all α < s,

where v0 ∈ C0([0, T0];C
1(Td)) ∩ C0,1([0, T0];L

2(Td)).
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It remains to show that v0 is a solution of the incompressible Euler equations with
damping. It holds for all χ ∈ C∞([0, T0]), ψ ∈ C∞

0 (Td; Rd) such that ∇ · ψ = 0,
∫ T0

0

∫

Td

(vε
t + vε · ∇vε + vε) · ψχdxdt =

1

ε2

∫ T0

0

∫

Td

∇(φε − hε) · ψχdxdt

=
1

ε2

∫ T0

0

∫

Td

(φε − hε)∇ · ψχdxdt = 0.

Letting ε→ 0 in the above equation gives
∫

QT0

(v0ψχt + v0 · ∇v0ψχ+ v0ψχ)dxdt = 0.

By the definition of weak derivatives, we conclude that

v0
t = −P (v0 · ∇v0 + v0),

where P is the standard projection on the set of divergence-free vector fields. Since we
already have v0 ∈ C0([0, T0];C

1(Td))∩L∞(0, T0;H
s(Td)), which implies that v0 ·∇v0+v0 ∈

C0([0, T0];C
0(Td)) ∩ L∞(0, T0;H

s−1(Td)), we infer

v0
t ∈ C0(Td × [0, T0]) ∩ L

∞(0, T0;H
s−1(Td)).

Thus, v0 ∈ C1(Td × [0, T0]) is a classical solution to

∇ · v0 = 0, P (v0
t + v0 · ∇v0 + v0) = 0, v0(x, 0) = v0

I (x), x ∈ T
d, t > 0.

The second equation and the regularity of v0
t +v0 ·∇v0+v0 show that there exists a function

π ∈ L∞(0, T0;H
s(Td)) such that

∇ · v0 = 0, v0
t + v0 · ∇v0 + v0 = ∇π.

Taking into account the equation satisfied by vε and

vε
t + vε · ∇vε + vε ⇀∗ v0

t + v0 · ∇v0 + v0 = ∇π weakly* in L∞(0, T0;L
2(Td)),

we infer that
1

ε
∇(φε − hε) = vε

t + vε · ∇vε + vε ⇀∗ ∇π weakly* in L∞(0, T0;L
2(Td)).

Finally, the uniqueness of smooth solutions to the incompressible Euler equations with
damping implies the convergence of the whole sequences. This completes the proof.
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[13] A. Jüngel and Y.J. Peng, Zero-relaxation-time limits in hydrodynamic models for plasmas revisited,

Z. Angew. Math. Phys. 51 (2000), 385-396.
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