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Abstract. The global in time existence of weak solutions to a cross-diffusion system with
fractional diffusion in the whole space is proved. The equations describe the evolution of
multi-species populations in the regime of large-distance interactions; they have been
derived in the many-particle limit from moderately interacting particle systems with Lévy
noise. The existence proof is based on a three-level approximation scheme, entropy and
moment estimates, and a new Aubin–Lions compactness lemma in the whole space.

1. Introduction

The topic of this paper is the analysis of the following cross-diffusion system with frac-
tional derivatives, modeling the dynamics of multi-species populations:

∂tui + σi(−∆)αui − div

( n∑

j=1

aijui∇(−∆)(β−1)/2uj

)
= 0 in R

d, t > 0,(1)

ui(0) = u0i in R
d, i = 1, . . . , n,(2)

where ui(x, t) describes the population density of the ith species and d ≥ 2 is the space
dimension. The parameters are σi ≥ 0 and 0 < α, β < 1. The fractional Laplacian (−∆)s

is defined for 0 < s < 1 as the singular integral operator

(−∆)su(x) = cd,s

∫

Rd

u(x)− u(y)

|x− y|d+2s
dy, where cd,s =

4sΓ(d/2 + s)

πd/2|Γ(−s)| ,

for u ∈ Hs(Rd). The integral is understood as the principal value, and Γ denotes the
Gamma function. The expression ∇(−∆)(β−1)/2 can be interpreted as a fractional partial
derivative of order β ∈ (0, 1) and can be seen as a nonlocal gradient.
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2 A. JÜNGEL AND N. ZAMPONI

System (1)–(2) has been derived in [7] as the many-particle limit of the following inter-
acting particle system driven by Lévy noise:

(3) dXk,N
i (t) = −

n∑

j=1

1

N

N∑

ℓ=1

aij∇(−∆)(β−1)/2VN(X
k,N
i (t)−Xℓ,N

j (t))dt+
√
2σidL

k
i (t),

where i = 1, . . . , n and k = 1, . . . , N , Xk,N
i (t) is the position of the kth particle of species

i at time t, VN is a potential function, and Lk
i is a Lévy process of index α ∈ (0, 1).

Lévy processes include jumps and large-distance interactions instead of the short-distance
interactions of Brownian motion. It was shown in [7] that if VN converges in the sense of
distributions to the delta distribution as N → ∞, the empirical measures associated to (3)
converge in a certain sense to limiting processes with density ui, solving (1)–(2). The global
in time existence of strong solutions is proved in [7] for sufficiently small initial data in the
Hs(Rd) norm with s > d/2 in the regime 2α > β + 1, in which self-diffusion dominates
cross-diffusion. In this paper, we prove the global in time existence of weak solutions
without any smallness assumption on the initial data and for all values of α, β ∈ (0, 1). In
particular, our proof allows for the case without self-diffusion, σi = 0. The key idea of our
analysis is to exploit the entropy structure of (1), thus significantly extending the results
of [7].
Most results on cross-diffusion systems in the literature refer to local models; see, e.g., the

references in [16]. Nonlocal cross-diffusion systems have been investigated rather recently
[8, 9, 12, 13, 17]. Fractional diffusion was introduced in the Keller–Segel system to model
cellular population dispersal with anomalous diffusion [11]. Another application is a three-
species food-chain cross-diffusion system with fractional operators [15]. In this paper, we
analyze the entropy structure of fractional cross-diffusion systems for the first time.
System (1) can be seen as an extension of the local cross-diffusion system of [5], which

is formally obtained from (1) by setting α = β = 1. The entropy structure of the local
model was investigated in [17, 18]. It turned out that such a structure holds if there exist
numbers π1, . . . , πn > 0 such that

πiaij = πjaji for i, j = 1, . . . , n,

and this condition is also assumed in this work. It can be interpreted as the detailed-balance
condition for the Markov chain associated with (aij), and (π1, . . . , πn) is the invariant
measure. Together with the parabolicity condition of Petrovskii [1], i.e., all eigenvalues of
(aij) ∈ R

n×n have a real part, this implies that the matrix (πiaij) ∈ R
n×n is symmetric and

positive definite [6, Prop. 3]. A formal computation using a generalized Stroock–Varopoulos
inequality (see Lemma 13 in the Appendix) shows that

(4)
d

dt
H[u] + 4

n∑

i=1

σi

∫

Rd

|(−∆)α/2
√
ui|2dx+ λ

n∑

i=1

∫

Rd

|∇(−∆)(β−1)/4ui|2dx ≤ 0,
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where λ > 0 is the smallest eigenvalue of (πiaij) and

(5) H[u] =
n∑

i=1

πi

∫

Rd

ui log uidx

is the entropy functional. Taking into account the mass conservation and the fractional
Gagliardo–Nirenberg inequality, we obtain an estimate for ui in L

p(0, T ;Lp(Rd)) for some
p > 2. Together with the L2(0, T ;H(β+1)/2(Rd)) bound for ui from (4), this is sufficient to
handle the product ui∇(−∆)(β−1)/2uj.
The mathematical difficulties to make these observations rigorous are of technical nature.

Indeed, since the fractional integral operator is singular, we regularize the Riesz kernel
K(x) = |x|1−β−d of the Riesz potential (−∆)(β−1)/2v = K ∗ u by some kernel K(ε) to define
the approximate scheme. Unfortunately, this distroys the L2(0, T ;H(β+1)/2(Rd)) estimate
for ui that is needed to obtain a bound for ui in L

p(0, T ;Lp(Rd)) for some p > 2 (observe
that we allow for σi = 0). One idea to remedy this issue is to add the function

κg0[ui] = κ

(
u2i −

e−|x|2

πd/2

∫

Rd

u2i dx

)
,

to the equation, where κ > 0 is the second approximation parameter. This function
preserves the mass conservation property and it provides an L1(0, T ;L1(Rd)) bound for
u2i (log ui)+, where z+ = max{0, z} (note that (4) is derived by using formally the test
function πi log ui). However, in order to build an approximated solution, we need to replace
g0 by a bounded continuous mapping L2(Rd) → L2(Rd). This forces us to introduce a third
level of approximation, namely

κgρ[ui](x) = κui(x)(Wρ ∗ ui)(x)−
e−|x|2

πd/2

∫

Rd

ui(y)(Wρ ∗ ui)(y)dy,

where Wρ is a mollifier with ρ > 0 such that gρ[ui] → g0[ui] a.e. in R
d as ρ → 0. This

yields, after the limit ρ → 0, the desired estimate for u2i (log ui)+, thus in a space slightly
better than L2(Rd).
The de-regularization limits ρ→ 0, ε→ 0, and κ→ 0 are based on suitable compactness

lemmas. We state and prove an Aubin–Lions-type compactness result in fractional Sobolev
spaces leading to strong convergence in the critical space L2(0, T ;L2(Rd)). Compactness
in the whole space R

d is achieved by controlling some moments of ui and applying the
compactness result in [4, Lemma 1]; see Lemma 14 in the Appendix.
We summarize our hypotheses:

(H1) Data: d ≥ 2, σi ≥ 0, aij ≥ 0, α ∈ (0, 1), and β ∈ (0, 1).
(H2) Diffusion matrix: All eigenvalues of the matrix A = (aij) ∈ R

n×n have a positive
real part, and the detailed-balance condition holds, i.e., there exist π1, . . . , πn > 0
such that πiaij = πjaji for all i, j = 1, . . . , n.

(H3) Initial data: u0 = (u01, . . . , u
0
n) satisfies u0i ∈ L1(Rd; (1 + |x|2)m/2dx), u0i log u

0
i ∈

L1(Rd) for i = 1, . . . , n, where 0 < m < min{1, 2α}.
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We already mentioned that Hypothesis (H2) implies that the matrix (πiaij) ∈ R
n×n

is symmetric and positive definite, and hence, its eigenvalues are real and positive. The
moment assumption on ui in Hypothesis (H3) is needed for the moment estimate of ui(t)
that in turn is used to prove the compactness in R

d.

Definition 1. We say that u = (u1, . . . , un) : Rd × [0,∞) → R
n is a weak solution to

(1)–(2) if

ui ∈ L2(0, T ;H(β+1)/2(Rd)),

ui ∈ L∞(0, T ;L1(Rd; (1 + |x|2)m/2dx) with m > 0 as in (H3),
√
ui ∈ L2(0, T ;Hα(Rd)) if σi > 0,

equation (1) holds in the sense of Lq(0, T ;W−1,q(Rd)) for some q > 1, and the initial
condition (2) holds in the sense of W−1,q(Rd).

We show in Lemma 3 below, using the product rule for the fractional Laplacian [2,
Prop. 1.5], that ui ∈ L∞(0, T ;L1(Ω)) and

√
ui ∈ L2(0, T ;Hα(Rd)) imply that (−∆)α/2ui ∈

L2(0, T ;L1(Rd)) such that the weak formulation of (1) makes sense.
Our main result is as follows.

Theorem 1 (Global existence). Let Hypotheses (H1)–(H3) hold. Then there exists a weak
solution u to (1)–(2), which is nonnegative, i.e. ui(t) ≥ 0 a.e. in R

d, conserves the mass,
∫

Rd

ui(t)dx =

∫

Rd

u0i dx for t > 0, i = 1, . . . , n,

and satisfies the entropy inequality,
n∑

i=1

πi

∫

Rd

ui(t) log ui(t)dx+ C
n∑

i=1

σi

∫ t

0

∫

Rd

∣∣(−∆)α/2
√
ui
∣∣2dxds(6)

+ λ
n∑

i=1

∫ t

0

∫

Rd

|∇(−∆)(β−1)/4ui|2dxds ≤
n∑

i=1

πi

∫

Rd

u0i log u
0
i dx, t > 0.

The paper is organized as follows. We derive formally some a priori estimates in Sec-
tion 2. Besides being an illustration of our strategy, the computations will be used in
the subsequent sections, in particular for the limit procedure at the last approximation
level. The approximate problem with three approximation levels is introduced in Section
3, and its global well-posedness is proved. In Section 4, the limit in the approximate prob-
lem is shown. Finally, we collect some technical results and prove an Aubin–Lions-type
compactness lemma in the Appendix.

Notation. The space W s,p(Rd) with s > 0 and 1 ≤ p ≤ ∞ is the usual fractional Sobolev
space; we set Hs(Rd) = W s,2(Rd). We write ‖ · ‖p for the norm in Lp(Rd), 1 ≤ p ≤ ∞, and
we define for m > 0 the space

L1(Rd; (1 + |x|2)m/2dx) =

{
v ∈ L1(Rd) :

∫

Rd

v(x)(1 + |x|2)m/2dx <∞
}
.
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The characteristic function on a set B ⊂ R
d is written as 1B. Finally, we denote by C > 0

a generic constant whose value may change from line to line.

2. A priori estimates

In this section, we derive formally some a priori estimates. First, we provide a proof for
the entropy inequality (4).

Lemma 2. Let u be a smooth solution to (1)–(2). Then

(7)
d

dt
H[u] + 4

n∑

i=1

σi

∫

Rd

|(−∆)α/2
√
ui|2dx+ λ

n∑

i=1

∫

Rd

|∇(−∆)(β−1)/4ui|2dx ≤ 0,

where the entropy H[u] is defined in (5) and λ > 0 is the smallest eigenvalue of (πiaij) ∈
R

n×n.

Proof. Using log ui formally as a test function in (1) yields

(8)
d

dt
H[u] = −

n∑

i=1

σi

∫

Rd

log ui(−∆)αuidx−
n∑

i,j=1

πiaij

∫

Rd

∇ui · ∇(−∆)(β−1)/2ujdx.

We integrate by parts in the last integral and use the positive definiteness of the matrix
(πiaij) to obtain

n∑

i,j=1

πiaij

∫

Rd

∇ui · ∇(−∆)(β−1)/2ujdx =
n∑

i,j=1

πiaij

∫

Rd

∇(−∆)(β−1)/4ui · ∇(−∆)(β−1)/4ujdx

≥ λ
n∑

i=1

∫

Rd

|∇(−∆)(β−1)/4ui|2dx.

We apply the generalized Stroock–Varopolous inequality in Lemma 13 (see Appendix A)
to the first integral on the right-hand side of (8) to conclude the proof. �

The mass conservation and entropy inequality (7) yield the following bounds for i =
1, . . . , n:

(9) ‖ui‖L∞(0,∞;L1(Rd)) + σi‖
√
ui‖L2(0,T ;Hα(Rd)) + λ‖ui‖L2(0,T ;H(β+1)/2(Rd)) ≤ C.

We derive further a priori estimates from the entropy inequality and the Gagliardo–
Nirenberg inequality.

Lemma 3. Let u be a smooth solution to (1)–(2). Then there exists a constant C > 0, not
depending on u, such that for i = 1, . . . , n,

(10) ‖∇(−∆)(β−1)/2ui‖L2(0,T ;L2d/(d+β−1)(Rd)) +
√
σi‖(−∆)α/2ui‖L2(0,T ;L1(Rd)) ≤ C.

Moreover, there exist p∗, q∗ > 1 such that for i, j = 1, . . . , n,

(11) ‖ui∇(−∆)(β−1)/2uj‖Lq∗ (0,T ;Lp∗ (Rd)) ≤ C.
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Proof. We claim that

(12) ‖ui‖Lq(0,T ;Lp(Rd)) ≤ C, where q ≥ 2 and
1

p
+

1

q

(
1 +

β + 1

d

)
= 1.

By interpolation, it holds for 1 < p, q <∞ and 0 < θ < 1 with 1/p = θ/r + (1− θ) that

‖ui‖qLq(0,T ;Lp(Rd))
=

∫ T

0

‖ui‖qpdt ≤
∫ T

0

‖ui‖θqr ‖ui‖(1−θ)q
1 dt.

Taking into account estimate (9) and the fractional Sobolev embedding H(β+1)/2(Rd) →֒
Lr(Rd) for r = 2d/(d− β − 1) [10, Theorem 6.5] and choosing θ = 2/q ≤ 1, we find that

‖ui‖qLq(0,T ;Lp(Rd))
≤ C‖ui‖(1−θ)q

L∞(0,T ;L1(Rd))

∫ T

0

‖ui‖θqH(β+1)/2(Rd)
dt ≤ C.

Inserting θ = 2/q and 1/r = 1/2− (β + 1)/(2d), we have

1

p
=
θ

r
+ (1− θ) =

2

q

(
1

2
− β + 1

2d

)
+ 1− 2

q
= 1− 1

q

(
1 +

β + 1

d

)
,

which proves the claim. Choosing q = p in (12) yields

‖ui‖Lp(0,T ;Lp(Rd)) ≤ C for p = 2 +
β + 1

d
> 2.

It follows from the Hardy–Littlewood–Sobolev inequality (Lemma 12 with s = (1− β)/4)
that

‖∇(−∆)(β−1)/2uj‖2d/(d+β−1) ≤ C‖∇(−∆)(β−1)/4uj‖2
and therefore, because of (9),

(13) ‖∇(−∆)(β−1)/2uj‖L2(0,T ;L2d/(d+β−1)(Rd)) ≤ C.

Since 2d/(d + β − 1) > 2, the product ui∇(−∆)(β−1)/2uj is bounded in some Lq∗(0, T ;
Lp∗(Rd)) for suitable q∗, p∗ > 1.
It remains to derive the bound for (−∆)α/2ui. By the product rule for the fractional

Laplacian [2, Prop. 1.5],

(−∆)α/2ui(x) = 2
√
ui(x)(−∆)α/2

√
ui(x)− cd,α/2

∫

Rd

(
√
ui(x)−

√
ui(y))

2

|x− y|d+α
dy.

We take the L1(Rd) norm and use the Cauchy–Schwarz inequality to find that

‖(−∆)α/2ui‖1 ≤ 2‖√ui‖2‖(−∆)α/2
√
ui‖2 + cd,α/2

∫

Rd

∫

Rd

(
√
ui(x)−

√
ui(y))

2

|x− y|d+α
dxdy

= 2‖ui‖1/21 ‖(−∆)α/2
√
ui‖2 + 2

∫

Rd

√
ui(−∆)α/2

√
uidx

≤ 4‖ui‖1/21 ‖(−∆)α/2
√
ui‖2.

After taking the square and integrating over time, we obtain

σi‖(−∆)α/2ui‖2L2(0,T ;L1(Rd)) ≤ 4σi‖ui‖L∞(0,T ;L1(Rd))‖(−∆)α/2
√
ui‖2L2(0,T ;L2(Rd)) ≤ C.
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This ends the proof. �

Next, we derive some moment bounds for ui.

Lemma 4. Let u be a smooth solution to (1)–(2) and 0 < m < min{1, 2α}. Then there
exists a constant C > 0, independent of u, such that

sup
0<t<T

∫

Rd

ui(x, t)(1 + |x|2)m/2dx ≤ C(T ), i = 1, . . . , n.

Proof. We use formally the test function (1 + |x|2)m/2 with 0 < m < min{1, 2α} in (1):

d

dt

∫

Rd

ui(1 + |x|2)m/2dx = −σi
∫

Rd

ui(−∆)α(1 + |x|2)m/2dx(14)

−
n∑

j=1

aij

∫

Rd

ui∇(1 + |x|2)m/2 · ∇(−∆)(β−1)/2ujdx.

To estimate the first term on the right-hand side, we claim that there exists C > 0 such
that

(15) |(−∆)α(1 + |x|2)m/2| ≤ C(1 + |x|2)m/2 for all x ∈ R
d.

Indeed, we infer from [10, Lemma 3.2] that

−(−∆)α(1 + |x|)m/2 =
cd,α
2

∫

Rd

(1 + |x+ y|2)m/2 + (1 + |x− y|2)m/2 − 2(1 + |x|2)m/2

|y|d+2α
dy

=: I1 + I2,

where

I1 =
cd,α
2

∫

{|y|>1}

(1 + |x+ y|2)m/2 + (1 + |x− y|2)m/2 − 2(1 + |x|2)m/2

|y|d+2α
dy,

I2 =
cd,α
2

∫

{|y|≤1}

(1 + |x+ y|2)m/2 + (1 + |x− y|2)m/2 − 2(1 + |x|2)m/2

|y|d+2α
dy.

The triangle inequality implies that

|I1| ≤ C

∫

{|y|>1}

|x|m + |y|m
|y|d+2α

dy ≤ C(1 + |x|2)m/2,

since the integrability is ensured if m−d−2α < −d or, equivalently, m < 2α. The function
Φx(y) := (1+ |x+y|2)m/2+(1+ |x−y|2)m/2−2(1+ |x|2)m/2 satisfies Φy(0) = |∇yΦy(0)| = 0
and

|D2
yΦx(y)| ≤ C(1 + |x+ y|2)m/2−1 + C(1 + |x− y|2)m/2−1, x, y ∈ R

d,

and this expression is bounded for all x, y ∈ R
d. We infer from Taylor’s theorem that

|Φx(y)| = 1
2
|D2

yΦx(θy)||y|2 ≤ C|y|2 for y ∈ R
d, where θ ∈ [0, 1] is a suitable number.

Therefore, |I2| ≤ C
∫
{|y|≤1}

|y|2−d−2αdy ≤ C ≤ C(1 + |x|2)m/2, since α < 1. This shows the

claim.



8 A. JÜNGEL AND N. ZAMPONI

We estimate the last term in (14). Choosing p = 2d/(d− β + 1) in (12), we find that

‖ui‖Lq(0,T ;L2d/(d−β+1)(Rd)) ≤ C, where q =
2(d+ β + 1)

d+ β − 1
> 2.

Because of (12) and (13), the product ui∇(−∆)(β−1)/2uj can be estimated according to

‖ui∇(−∆)(β−1)/2uj‖Lr(0,T ;L1(Rd)) ≤ C for some r > 1.

Taking into account that ∇(1 + |x|2)m/2 is bounded in R
d if m < 1, we obtain

−
n∑

j=1

aij

∫ t

0

∫

Rd

ui∇(1 + |x|2)m/2 · ∇(−∆)(β−1)/2ujdxdτ ≤ C.

Summarizing, we conclude from (14) that
∫

Rd

ui(t)(1 + |x|2)m/2dx ≤
∫

Rd

u0i (1 + |x|2)m/2dx+ C

∫ t

0

∫

Rd

ui(1 + |x|2)m/2dxds+ C

for some C > 0, which shows the result after applying Gronwall’s lemma. �

Lemma 5. Let u be a smooth solution to (1)–(2). Then there exist constants C > 0 and
p > 1, independent of u, such that

‖∂tui‖Lp(0,T ;W−1,p(Rd)) ≤ C.

Proof. It follows from estimates (10) and (11) that there exists p > 1 such that

‖∂tui‖Lp(0,T ;W−1,p(Rd)) ≤ σi‖(−∆)α/2ui‖Lp(0,T ;Lp(Rd))

+
n∑

j=1

aij‖ui∇(−∆)(β−1)/2uj‖Lp(0,T ;Lp(Rd)) ≤ C,

which finishes the proof. �

3. Approximate scheme

We approximate equation (1) by introducing three approximation levels. First, we reg-
ularize the Riesz potential. Noting that (−∆)(β−1)/2u = K(1−β)/2 ∗ u, where K(1−β)/2(x) =

|x|1−β−d for x ∈ R
d is the kernel of the Riesz potential, we define the approximation K(ε)

s

of Ks by

K(ε)
s := K̃(ε)

s/2 ∗ K̃
(ε)
s/2, where K̃(ε)

s/2 ∈ C2
0(R

d),(16)

0 ≤ K̃(ε)
s/2 ≤ K̃(ε′)

s/2 ≤ Ks/2 in R
d for 0 < ε′ < ε,

K̃(ε)
s/2(x) = Ks/2(x) for ε ≤ |x| ≤ 1/ε.

Since
∫
Rd uK(ε)

s dx generally does not preserve the nonnegativity for u ≥ 0, we define K(ε)
s

as a “convolution square” to guarantee this property. Second, we introduce the mollifier

Wρ(x) := ρ−dW1(x/ρ) for x ∈ R
d, where
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W1 ∈ C0
0(R

d), W1 ≥ 0 in R
d, ‖W1‖1 = 1,

that satisfies Wρ ∗ u→ u a.e. in R
d, and the mapping gρ : L

2(Rd) → L2(Rd) ∩ L1
0(R

d),

gρ[u](x) := u(x)(Wρ ∗ u)(x)−
e−|x|2

πd/2

∫

Rd

u(y)(Wρ ∗ u)(y)dy, u ∈ L2(Rd),

where L1
0(R

d) is the space of L1(Rd) functions with vanishing average. This mapping
satisfies the following properties:

‖gρ[u]‖1 ≤ 2‖u‖22, ‖gρ[u]‖2 ≤ C(ρ)‖u‖22,(17)

‖gρ[u]− gρ[v]‖2 ≤ C(ρ)‖u+ v‖2‖u− v‖2,(18)

where u, v ∈ L2(Rd). These inequalities follow from the Young convolution inequality,

‖u(Wρ ∗ u)‖1 ≤ ‖u‖2‖Wρ ∗ u‖2 ≤ ‖u‖22‖Wρ‖1 = ‖u‖22,
‖u(Wρ ∗ u)‖2 ≤ ‖u‖2‖Wρ ∗ u‖∞ ≤ ‖u‖22‖Wρ‖2 ≤ C(ρ)‖u‖22.

As explained in the introduction, the function gρ is needed to obtain an L2 logL2 estimate,
which is used to obtain strong convergence of the sequence of approximate solutions in
L2(Rd). Furthermore, we add a Laplacian to (1). This leads to the approximate problem

∂tu
(ρ,ε,κ)
i − κ∆u

(ρ,ε,κ)
i + σi(−∆)αu

(ρ,ε,κ)
i + κgρ[u

(ρ,ε,κ)
i ](19)

= div

( n∑

j=1

aij(u
(ρ,ε,κ)
i )+∇K(ε)

(1−β)/2 ∗ u
(ρ,ε,κ)
j

)
,

u
(ρ,ε,κ)
i (0) = u0i in R

d, i = 1, . . . , n,(20)

where z+ = max{0, z} denotes the positive part of z ∈ R.

3.1. Local well-posedness of the approximate problem. We prove the existence of
a local solution to (19)–(20) by applying Banach’s fixed-point theorem. To this end, we
introduce for R > 2‖u0‖2 and T > 0 the space

XR,T :=
{
v ∈ C0([0, T ];L2(Rd)) : ‖vi‖L∞(0,T ;L2(Rd)) ≤ R, i = 1, . . . , n

}

and the fixed-point mapping F : XR,T → XR,T , F (v) = u, where u = (u1, . . . , un) is the
unique solution to the linear problem

∂tui − κ∆ui + σi(−∆)αui = −κgρ[vi] + div

( n∑

j=1

aij(vi)+∇K(ε)
(1−β)/2 ∗ vj

)
,(21)

ui(0) = u0i in R
d, i = 1, . . . , n.

Since the kernel is regularized, this problem has a unique solution u = (u1, . . . , un) with
ui ∈ L2(0, T ;H1(Rd)), ∂tui ∈ L2(0, T ;H−1(Rd)), implying that ui ∈ C0([0, T ];L2(Ω)).
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We show that the mapping F is well defined. We use the test function ui in the weak
formulation of (21) and take into account (17):

1

2
‖ui(t)‖22 + κ

∫ t

0

‖∇ui‖22ds+ σi

∫ t

0

‖(−∆)α/2ui‖22ds

≤ 1

2
‖u0i ‖22 + C(κ, ρ)

∫ t

0

‖vi‖22‖ui‖2ds

+ C

n∑

j=1

∫ t

0

‖(vi)+∇K(ε)
(1−β)/2 ∗ vj‖2‖∇ui‖2ds.

We apply the Young (convolution) inequality to obtain for 0 < t < T ,

‖ui(t)‖22 + κ

∫ t

0

‖∇ui‖22ds+ σi

∫ t

0

‖(−∆)α/2ui‖22ds

≤ 2‖u0i ‖2L2(Rd) + C(κ, ρ)

∫ t

0

‖vi‖42ds

+ C(κ)
n∑

j=1

∫ t

0

‖(vi)+‖22‖∇K(ε)
(1−β)/2‖22‖vj‖22ds

≤ 2‖u0i ‖2L2(Rd) + C(ε, κ, ρ)T
n∑

j=1

‖vj‖4L∞(0,T ;L2(Rd)).

Therefore, since ‖u0i ‖2 < R/2, if T > 0 is sufficiently small, we infer that u ∈ XR,T , proving
the well-posedness of F .
Next, we show that F is a contraction on XR,T . Let v, v′ ∈ XR,T and set u = F (v),

u′ = F (v′). The test function ui − u′i in the weak formulation of

∂t(ui − u′i)− κ∆(ui − u′i) + σi(−∆)α(ui − u′i) + κ(gρ[vi]− gρ[v
′
i])

= div

( n∑

j=1

aij
[(
(vi)+ − (v′i)+

)
∇K(ε)

(1−β)/2 ∗ vj + (v′i)+∇K(ε)
(1−β)/2 ∗ (vj − v′j)

])

leads, after similar computations as before and using (18), for 0 < t < T , to

‖(ui − u′i)(t)‖22 + κ

∫ t

0

‖∇(ui − u′i)‖22ds+ σi

∫ t

0

‖(−∆)α/2(ui − u′i)‖22ds

≤ C(ρ)

∫ t

0

‖vi + v′i‖22‖vi − v′i‖22ds+ C(κ)
n∑

j=1

∫ t

0

(
‖(vi)+ − (v′i)+‖22‖∇K(ε)

(1−β)/2 ∗ vj‖2∞

+ ‖(v′i)+‖22‖∇K(ε)
(1−β)/2 ∗ (vj − v′j)‖2∞

)
ds

≤ C(ε, κ, ρ)
n∑

j,k=1

∫ t

0

‖vj − v′j‖22
(
‖vk‖22 + ‖v′k‖22

)
ds
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≤ C(ε, κ, ρ, R)T
n∑

j=1

‖vj − v′j‖2L∞(0,T ;L2(Rd)).

Hence, if T > 0 is sufficiently small, F is a contraction on XR,T . We conclude from
Banach’s fixed-point theorem that there exists T ∗ > 0 and a unique fixed point u ∈ XR,T ∗

of F , i.e. a unique solution u(ε,κ,ρ) ∈ L2(0, T ∗;H1(Rd)) with ∂tu
(ε,κ,ρ)
i ∈ L2(0, T ∗;H−1(Rd))

to (19)–(20).

3.2. Uniform bounds and global well-posedness. We show that the solution u =
u(ε,κ,ρ) ∈ C0([0, T ∗];L2(Rd)), derived in the previous subsection, is actually global in time.
First, we prove that ui(t) ≥ 0 for t ∈ [0, T ∗]. We use the test function (ui)− = min{0, ui}
as a test function in the weak formulation of (19):

1

2

∫

Rd

(ui)
2
−(t)dx+ κ

∫ t

0

∫

Rd

|∇(ui)−|2dxds = −σi
∫ t

0

∫

Rd

(ui)−(−∆)αuidxds

− κ

∫ t

0

∫

Rd

(ui)−gρ[ui]dxds−
n∑

j=1

aij

∫ t

0

∫

Rd

(ui)+(∇K(ε)
(1−β)/2 ∗ uj) · ∇(ui)−dxds

=: I3 + I4 + I5.

Since (ui)+∇(ui)− = (ui)+1{ui<0}∇ui = 0, we have I5 = 0. Moreover, by a symmetry
argument (also see [3, Lemma 7.4]),

I3 = −σicd,α
2

∫

Rd

[(ui(x))− − (ui(y))−](ui(x)− ui(y))

|x− y|d+2α
dxdy ≤ 0, and

I4 ≤ −
∫ t

0

∫

Rd

ui(Wρ ∗ ui)(ui)−dxds = −
∫ t

0

∫

Rd

(ui)
2
−(Wρ ∗ ui)dxds

≤
∫ t

0

‖Wρ ∗ ui‖∞‖(ui)−‖22ds ≤ C(ρ)

∫ t

0

‖ui‖2‖(ui)−‖22ds.

We conclude that for 0 < t < T ∗,

‖(ui)2−(t)‖22 ≤ C(ρ)

∫ t

0

‖ui‖2‖(ui)−‖22ds.

Since t 7→ ‖ui(t)‖2 is continuous [0, T ∗], we can apply the Gronwall lemma to conclude
that (ui)−(t) = 0 and hence ui(t) ≥ 0 for t ∈ [0, T ∗].
Now, we show the conservation of mass.

Lemma 6 (Conservation of mass). Let u = u(ε,κ,ρ) be a weak solution to (19)–(20) on
[0, T ∗]. Then ‖ui(t)‖1 = ‖u0i ‖1 for any t ∈ [0, T ∗].

Proof. Let R ≥ 1, γ > d and introduce the cutoff function ψR : Rd → [0,∞) by

ψR(x) = ψ1(x/R), ψ1(x) = (1 + |x|2)−γ/2 for x ∈ R
d.

The following estimates hold:

(22) |∇ψR(x)| ≤ CR−1ψR(x), |∆ψR(x)| ≤ CR−2ψR(x) for x ∈ R
d.
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We claim that

(23) −(−∆)αψR(x) ≤ CR−2αψR(x) for x ∈ R
d, lim

R→∞
‖(−∆)αψR‖∞ = 0.

It is sufficient to prove the first statement for R = 1, thanks to a scaling argument, while
the proof for R = 1 is similar to that one for (15). The second statement in (23) follows
from (−∆)αψR(x) = R−2α((−∆)αψ1)(x/R) and the property (−∆)αψ1 ∈ L∞(Rd).
Since ψR ∈ H1(Rd) for γ > d, we can use ψR as a test function in the weak formulation

of (19):
∫

Rd

ui(t)ψRdx−
∫

Rd

u0iψRdx = κ

∫ t

0

∫

Rd

ui∆ψRdxds− κ

∫ t

0

∫

Rd

gρ[ui]ψRdxds(24)

− σi

∫ t

0

∫

Rd

ui(−∆)αψRdxds−
n∑

j=1

aij

∫ t

0

∫

Rd

ui∇ψR · ∇K(ε)
(1−β)/2 ∗ ujdxds.

We deduce from (22) that
∫

Rd

ui(t)ψRdx−
∫

Rd

u0iψRdx ≤ 2κ

∫ t

0

‖ui‖22ds+ CR−2

∫ t

0

∫

Rd

uiψRdxds

+ CR−1

n∑

j=1

∫ t

0

‖ui‖2‖∇K(ε)
(1−β)/2 ∗ uj‖2ds

≤ 2κ

∫ t

0

‖ui‖22ds+ C

∫ t

0

∫

Rd

uiψRdxds+ C

n∑

j=1

∫ t

0

‖ui‖2‖uj‖2ds

≤ C
n∑

j=1

∫ t

0

‖uj‖22ds+ C

∫ t

0

∫

Rd

uiψRdxds.

Summing this inequality over i = 1, . . . , n, observing that ui ∈ C0([0, T ∗];L2(Rd)), and
applying Gronwall’s lemma shows that

sup
0<t<T ∗

∫

Rd

ui(t)ψRdx ≤ C(T ∗).

The monotone convergence theorem allows us to perform the limit R → ∞ leading to

sup
0<t<T ∗

∫

Rd

ui(t)dx ≤ C(T ∗).

At this point, because of (22), (23), and the fact that
∫
Rd gρ[ui]dx = 0, the limit R → ∞

in (24) gives the conservation of mass:
∫

Rd

ui(t)dx−
∫

Rd

u0i dx = 0 for t ∈ [0, T ∗],

finishing the proof. �

The next step is the proof of a bound for ui in C
0([0, T ∗];L2(Rd)), which allows us to

extend the local solution globally.
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Lemma 7 (L2(Rd) estimate). Let u = u(ε,κ,ρ) be a weak solution to (19)–(20) on [0, T ∗].
Then

‖ui‖L∞(0,T ∗;L2(Rd)) +
√
κ‖∇ui‖L2(0,T ∗;L2(Rd)) ≤ C(ε, T ∗).

Proof. We use ui as a test function in (19) and estimate in a similar way as before:

1

2
‖ui‖22 −

1

2
‖u0i ‖22 + κ

∫ t

0

‖∇ui‖22ds+ σi

∫ t

0

‖(−∆)α/2ui‖22ds

= −κ
∫ t

0

∫

Rd

gρ[ui]uidxds−
n∑

j=1

aij

∫ t

0

∫

Rd

ui∇ui · ∇K(ε)
(1−β)/2 ∗ ujdxds

≤ −κ
∫ t

0

∫

Rd

gρ[ui]uidxds+
1

2

n∑

j=1

aij

∫ t

0

∫

Rd

u2i∆K(ε)
(1−β)/2 ∗ ujdxds

≤ C(ε)
n∑

j=1

‖uj‖L∞(0,T ;L1(Rd))

∫ t

0

‖ui‖22ds.

Then mass conservation and Gronwall’s lemma yield the conclusion. �

We deduce from Lemma 7 that the solution u to (19)–(20) exists for all t ≥ 0.

4. Limit in the approximate problem

We first derive some estimates uniform in (ε, κ, ρ) and perform then the limits ρ → 0,
ε→ 0, and κ→ 0 in this order.

4.1. Uniform estimates. A uniform bound for a moment of ui = u
(ε,κ,ρ)
i can be derived

in a similar way as in Lemma 4. To make the proof rigorous, we may proceed as in the
proof of the conservation of mass in Section 3.2 by testing (19) with (1+ | · |2)m/2ψR. This
leads to the estimate

(25) sup
0<t<T

∫

Rd

(1 + |x|2)m/2ui(t)dx ≤ C(ε, u0, T ), where 0 < m < min{1, 2α}.

The following lemma states the entropy inequality for the approximate problem.

Lemma 8 (Entropy inequality for the approximate problem). Let u = u(ε,κ,ρ) be a weak
solution to (19)–(20). Then there exists a constant C > 0 that is independent of (ε, κ, ρ)
such that for t > 0,

n∑

i=1

πi

∫

Rd

ui(t) log ui(t)dx+ 4κ
n∑

i=1

πi

∫ t

0

∫

Rd

|∇√
ui|2dxds(26)

+ C
n∑

i=1

σi

∫ t

0

∫

Rd

|(−∆)α/2
√
ui|2dxds+ λ

n∑

i=1

∫ t

0

∫

Rd

|∇K̃(ε)
(1−β)/4 ∗ ui|2dxds

+ κ
n∑

i=1

πi

∫ t

0

∫

Rd

ui(log ui)+Wρ ∗ uidxds



14 A. JÜNGEL AND N. ZAMPONI

≤
n∑

i=1

πi

∫

Rd

u0i log u
0
i dx+ κCt+ κC

∫ t

0

∫

Rd

u2i dxds,

recalling that λ > 0 is the smallest eigenvalue of (πiaij) ∈ R
n×n.

Proof. The usual idea to derive the entropy estimate is to use πi log ui as a test function
in the weak formulation of (19). Since this function is not an element of L2(0, T ;H1(Rd)),
we need to regularize. Instead, we use πi(log(ui + η) − log η) ∈ L2(0, T ;H1(Rd)) with
0 < η < 1 as a test function. Thanks to mass conservation, we have

〈∂tui, log(ui + η)− log η〉 = d

dt

∫

Rd

(
(ui + η) log(ui + η)− η log η − (1 + log η)ui

)
dx

=
d

dt

∫

Rd

(
(ui + η) log(ui + η)− η log η

)
dx.

Setting Hη[u] =
∑n

i=1 πi
∫
Rd((ui + η) log(ui + η) − η log η)dx, we infer from the weak for-

mulation of (19), after summing over i = 1, . . . , n, that

Hη[u(t)]−Hη[u
0] + 4κ

n∑

i=1

πi

∫ t

0

∫

Rd

|∇√
ui + η|2dxds =: I6 + I7 + I8, where

I6 = −
n∑

i=1

σiπi

∫ t

0

∫

Rd

log(ui + η)(−∆)αuidxds,

I7 = −κ
n∑

i=1

πi

∫ t

0

∫

Rd

gρ[ui] log(ui + η)dxds,

I8 = −
n∑

i,j=1

πiaij

∫ t

0

∫

Rd

ui
ui + η

∇ui · ∇K(ε)
(1−β)/2 ∗ ujdxds.

We use the generalized Stroock–Varopoulos inequality (Lemma 13) to estimate I6:

I6 ≤ −C
n∑

i=1

∫ t

0

∫

Rd

|(−∆)α/2
√
ui + η|2dxds.

The definition of gρ[ui] yields

I7 = −κ
n∑

i=1

πi

∫ t

0

∫

Rd

ui log(ui + η)Wρ ∗ uidxds

+ κ
n∑

i=1

πi

∫ t

0

(∫

Rd

log(ui + η)
e−|x|2

πd/2
dx

)(∫

Rd

uiWρ ∗ uidy
)
ds

=: I71 + I72.

Since the logarithm is increasing, we find that

I71 ≤ −κ
n∑

i=1

πi

∫ t

0

∫

Rd

ui log uiWρ ∗ uidxds
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≤ −κ
n∑

i=1

πi

∫ t

0

∫

Rd

ui(log ui)+Wρ ∗ uidxds+ κ

n∑

i=1

πi

∫ t

0

‖ui(log ui)−‖2‖ui‖2ds

≤ −κ
n∑

i=1

πi

∫ t

0

∫

Rd

ui(log ui)+Wρ ∗ uidxds+ κC

n∑

i=1

∫ t

0

‖ui‖1/21 ‖ui‖2ds,

where we used the inequality u2i (log ui)
2
− ≤ ui in the last step. The inequality log(ui+η) ≤

C(1 + ui) and mass conservation imply that

I72 ≤ κ
n∑

i=1

∫ t

0

(
C + C

∫

Rd

ui
e−|x|2

πd/2
dx

)(∫

Rd

uiWρ ∗ uidy
)
ds ≤ κC

∫ t

0

‖ui‖22ds.

We infer that

I7 ≤ κCt+ κC

∫ t

0

‖ui‖22ds− κ
n∑

i=1

πi

∫ t

0

∫

Rd

ui(log ui)+Wρ ∗ uidxds.

Finally, by the definition of K(ε)
(1−β)/2, the positive definiteness of the matrix (πiaij), and

integration by parts,

I8 = −
n∑

i,j=1

πiaij

∫ t

0

∫

Rd

(∇K̃(ε)
(1−β)/4 ∗ ui) · (∇K̃(ε)

(1−β)/4 ∗ uj)dxds

+
n∑

i,j=1

πiaij

∫ t

0

∫

Rd

η

ui + η
∇ui · ∇K(ε)

(1−β)/2 ∗ ujdxds

≤ −λ
n∑

i=1

∫ t

0

∫

Rd

|∇K̃(ε)
(1−β)/4 ∗ ui|2dxds+ I81(η),

where

I81(η) = −
n∑

i,j=1

πiaij

∫ t

0

∫

Rd

η(log(ui + η)− log η)∆K(ε)
(1−β)/2 ∗ ujdxds.

We summarize the previous estimates:

Hη[u(t)]−Hη[u
0] + 4κ

n∑

i=1

πi

∫ t

0

∫

Rd

|∇√
ui + η|2dxds

+ C
n∑

i=1

∫ t

0

∫

Rd

|(−∆)α/2
√
ui + η|2dxds+ κ

n∑

i=1

πi

∫ t

0

∫

Rd

ui(log ui)+Wρ ∗ uidxds(27)

+ λ
n∑

i=1

∫ t

0

∫

Rd

|∇K̃(ε)
(1−β)/4 ∗ ui|2dxds ≤ κCt+ κC

∫ t

0

‖ui‖22ds+ I81(η).
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Before performing the limit η → 0, we estimate the error term I81(η):

I81(η) ≤ C
n∑

i,j=1

‖∆K(ε)
(1−β)/2 ∗ uj‖L∞(0,T ;L∞(Rd))

∫ t

0

∫

Rd

η(log(ui + η)− log η)dxds

≤ C(ε)
n∑

i,j=1

‖uj‖L∞(0,T ;L1(Rd))

∫ t

0

∫

Rd

η(log(ui + η)− log η)dxds.

By mass conservation, the first factor is bounded, while the second one tends to zero as
ε → 0. Indeed, it holds that η(log(ui + η) − log η) → 0 a.e. in R

d × (0, T ) as η → 0
and 0 ≤ η(log(ui + η) − log η) ≤ ui ∈ L∞(0, T ;L1(Rd)), and therefore, we can apply the
dominated convergence theorem leading to I81(η) → 0 as η → 0.
At this point, we can take the limit η → 0 in (27) by applying dominated convergence,

Fatou’s lemma, and the weak lower semicontinuity of the L2(Rd) norm to conclude the
proof. �

We deduce from the upper bound for ui log ui, mass conservation, and the moment bound
that ui log ui is bounded in L1(Rd), as stated in the following lemma.

Lemma 9. Let u = u(ε,κ,ρ) be a weak solution to (19)–(20). Then for any T > 0,

‖ui log ui‖L∞(0,T ;L1(Rd)) ≤ C.

Proof. The proof is similar to that one in [14, Section 2]. In fact, the result holds for any
function 0 ≤ v ∈ L∞(0, T ;L1(Rd)) satisfying

sup
0<t<T

∫

Rd

v(t)
(
log v(t) + (1 + |x|2)m/2

)
dx ≤ C(T ),

where m > 0. We show that sup0<t<T ‖v(t) log v(t)‖1 ≤ C(T ). For this, we write
∫

Rd

|v log v|dx = −
∫

{v<1}

v log vdx+

∫

{v≥1}

v log vdx

= −2

∫

{v<1}

v log vdx+

∫

Rd

v log vdx ≤ −2

∫

{v<1}

v log vdx+ C.

We use the Cauchy–Schwarz inequality to the integral on the right-hand side:

−
∫

{v<1}

v log vdx =

∫

{v<1}

v(1−δ)/2v(1+δ)/2 log
1

v
dx

≤
(∫

{v<1}

v1−δdx

)1/2(∫

{v<1}

v

(
vδ/2 log

1

v

)2

dx

)1/2

,

where δ ∈ (0, 1). The function (0, 1) → R, s 7→ sδ/2 log(1/s), is bounded by a constant
C(δ). Therefore, taking into account mass conservation for v and the Hölder inequality,

−
∫

{v<1}

v log vdx ≤ C(δ)

(∫

{v<1}

v1−δdx

)1/2
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= C(δ)

(∫

{v<1}

(1 + |x|2)m(1−δ)/2v(x)1−δ(1 + |x|2)−m(1−δ)/2dx

)1/2

≤ C(δ)

(∫

{v<1}

(1 + |x|2)m/2v(x)dx

)(1−δ)/2(∫

{v<1}

(1 + |x|2)−m(1−δ)/(2δ)dx

)δ/2

.

The moment estimate shows that the first integral is bounded, while the second one is
finite if m(1− δ)/(2δ) > d or δ < m/(m+ 2d). This proves the claim. �

We deduce from the previous lemmas the following estimates.

Lemma 10 (Uniform estimates). Let u = u(ε,κ,ρ) be a weak solution to (19)–(20). Then
there exist constants q > 1 and C(ε, T ) > 0, which is independent of (κ, ρ), such that for
t > 0,

√
κ‖√ui‖L2(0,T ;H1(Rd)) +

√
σi‖

√
ui‖L2(0,T ;Hα(Rd)) ≤ C(ε, T ),(28)

‖∇K̃(ε)
(1−β)/4 ∗ ui‖L2(0,T ;L2(Rd)) + κ‖ui(log ui)+Wρ ∗ ui‖L1(0,T ;L1(Rd)) ≤ C(ε, T ),(29)

‖ui log ui‖L∞(0,T ;L1(Rd)) + ‖∂tui‖Lq(0,T ;W−1,q(Rd)) ≤ C(ε, T ).(30)

Proof. Estimates (28) and (29) follow from Lemmas 6 and 8. The first estimate in (30) is
proved in Lemma 9. It remains to prove the second estimate in (30).
Let p > max{d/(1−α), 2d/(1−β)} > 2 with 1/p+1/q = 1 and use φ ∈ C0([0, T ];C∞

0 (Rd))
as a test function in the weak formulation of (19):

∫ T

0

〈∂tui, φ〉dt =: I9 + · · ·+ I12, where(31)

I9 = −κ
∫ T

0

∫

Rd

∇ui · ∇φdxdt,

I10 = −σi
∫ T

0

∫

Rd

(−∆)α/2ui(−∆)α/2φdxdt,

I11 = −κ
∫ T

0

∫

Rd

gρ[ui]φdxdt,

I12 = −
n∑

j=1

aij

∫ T

0

∫

Rd

ui∇φ ·
(
K̃(ε)

(1−β)/4 ∗ (∇K̃(ε)
(1−β)/4 ∗ uj)

)
dxdt.

We estimate the integrals I9, . . . , I12. First, by Lemma 7 with T ∗ = T , it holds that√
κ‖∇ui‖L2(0,T ;L2(Rd)) ≤ C(ε, T ). We infer from (28) that

√
κ∇ui = 2

√
κ
√
ui∇

√
ui is

bounded in L1(Rd), i.e.
√
κ‖∇ui‖L1(0,T ;L1(Rd)) ≤ C(ε, T ). Hence, since q < 2, it follows by

interpolation that
√
κ‖∇ui‖Lq(0,T ;Lq(Rd)) ≤ C(ε, T ). We deduce that

|I9| ≤ κ‖∇ui‖Lq(0,T ;Lq(Rd))‖∇φ‖Lp(0,T ;Lp(Rd)) ≤ C‖φ‖Lp(0,T ;W 1,p(Rd)).
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We can prove, using the generalized Stroock–Varopoulos inequality (Lemma 13) in a similar
way as in Lemma 3, that

√
σi‖(−∆)α/2ui‖L2(0,T ;L1(Rd)) ≤ C. Therefore, since p > d/(1−α),

|I10| ≤ σi‖(−∆)α/2ui‖L2(0,T ;L1(Rd))‖(−∆)α/2φ‖L2(0,T ;L∞(Rd)) ≤ C‖φ‖L2(0,T ;W 1,p(Rd)).

It follows from property (17) of gρ[ui], the L
∞(0, T ;L2(Rd)) estimate of ui in Lemma 7,

and the embedding W 1,p(Rd) →֒ L∞(Rd) that

|I11| ≤
∫ T

0

‖gρ[ui]‖1‖φ‖∞dt ≤ C

∫ T

0

‖ui‖22‖φ‖W 1,p(Rd)dt ≤ C(ε, T )‖φ‖Lp(0,T ;W 1,p(Rd)).

Finally, the Hardy–Littlewood–Sobolev inequality (Lemma 12 with r = 2d/(d + 1 − β))
and the Hölder inequality with 1/q2 + 1/p = 1/r lead to

|I12| ≤ C(ε)

∫ T

0

‖ui∇φ‖r‖∇K̃(ε)
(1−β)/4 ∗ uj‖2dt

≤ C(ε)

∫ T

0

‖ui‖q2‖∇φ‖p‖∇K̃(ε)
(1−β)/4 ∗ uj‖2dt ≤ C(ε, T )‖∇φ‖Lp(0,T ;Lp(Rd)),

where we used Lemma 7, mass conservation, the fact that q1 ∈ [1, 2], and estimate (29) in
the last step. Putting together the estimates for I9, . . . , I12, we conclude the proof from
(31) for φ ∈ Lp(0, T ;W 1,p(Rd)) with p > max{d/(1− α), 2d/(1− β)}. �

4.2. Limit ρ→ 0. We conclude from Lemma 14 in the Appendix that

V :=

{
v ∈ H1(Rd) :

∫

Rd

(1 + |x|2)m/2|v(x)|dx <∞
}

is compactly embedded into L2(Rd). Moreover, the embedding L2(Rd) →֒ H−s(Rd) is
continuous for any s > 0. The uniform L2(0, T ;H1(Rd)) bound in Lemma 7 and the
moment bound (25) show that (u(ε,κ,ρ)) is bounded in L2(0, T ;V ), while, by estimate (30),

(∂tu
(ε,κ,ρ)
i ) is bounded in L1(0, T ;H−s(Rd)). It follows from the Aubin–Lions lemma that

there exists a subsequence, which is not relabeled, such that, as ρ→ 0,

u
(ε,κ,ρ)
i → ui strongly in L2(0, T ;L2(Rd)).

Since (u
(ε,κ,ρ)
i ) is bounded in L∞(0, T ;L2(Rd))∩L2(0, T ;H1(Rd)) by Lemma 7, the Gagliar-

do–Nirenberg inequality provides a uniform bound in L2+4/d(0, T ;L2+4/d(Rd)). Hence,
there exists 2 < p < 2 + 4/d such that

(32) u
(ε,κ,ρ)
i → ui strongly in Lp(0, T ;Lp(Rd)).

Given the uniform bounds in Lemma 10, it is quite standard to perform the limit ρ → 0
in (19). We consider here only the term that explicitly depends on ρ, namely

∫ T

0

∫

Rd

gρ[u
(ε,κ,ρ)
i ]φdxdt =

∫ T

0

∫

Rd

u
(ε,κ,ρ)
i (Wρ ∗ u(ε,κ,ρ)i )φdxdt

−
∫ T

0

(∫

Rd

u
(ε,κ,ρ)
i (Wρ ∗ u(ε,κ,ρ)i )dx

)(∫

Rd

e−|x|2

πd/2
φdx

)
dt
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for test functions φ ∈ L2(0, T ;L∞(Rd)). Since ‖Wρ‖1 = 1 and (u
(ε,κ,ρ)
i ) is bounded in

L∞(0, T ;L2(Rd)), we have

Wρ ∗ u(ε,κ,ρ)i ⇀∗ ui weakly* in L∞(0, T ;L2(Rd)).

This implies that, for suitable test functions,
∫ T

0

∫

Rd

gρ[u
(ε,κ,ρ)
i ]φdxdt→

∫ T

0

∫

Rd

g0[ui]φdxdt as ε→ 0,

where

g0[v](x) := v(x)2 − e−|x|2

πd/2

∫

Rd

v(y)2dy, v ∈ L2(Rd).

We have proved that the limit u
(ε,κ)
i := ui is a solution to

∂tu
(ε,κ)
i − κ∆u

(ε,κ)
i + σi(−∆)αu

(ε,κ)
i + κg0[u

(ε,κ)
i ]

= div

( n∑

j=1

aiju
(ε,κ)
i ∇K(ε)

(1−β)/2 ∗ u
(ε,κ)
j

)
in R

d, t > 0,(33)

u
(ε,κ)
i (·, 0) = u0i in R

d, i = 1, . . . , n.

The strong convergence (32), Fatou’s lemma, and the weak lower semicontinuity of the
L2(Rd) norm allow us to take the limit ρ→ 0 in the approximate entropy inequality (26),
leading to

n∑

i=1

πi

∫

Rd

u
(ε,κ)
i (t) log u

(ε,κ)
i (t)dx+ 4κ

n∑

i=1

πi

∫ t

0

∫

Rd

∣∣∣∇
√
u
(ε,κ)
i

∣∣∣
2

dxds

+ C

n∑

i=1

σi

∫ t

0

∫

Rd

∣∣∣(−∆)α/2
√
u
(ε,κ)
i

∣∣∣
2

dxds+ λ

n∑

i=1

∫ t

0

∫

Rd

|∇K̃(ε)
(1−β)/4 ∗ u

(ε,κ)
i |2dxds

+ κ

n∑

i=1

πi

∫ t

0

∫

Rd

(u
(ε,κ)
i )2(log u

(ε,κ)
i )+dxds

≤
n∑

i=1

πi

∫

Rd

u0i log u
0
i dx+ κCt+ κC

∫ t

0

∫

Rd

(u
(ε,κ)
i )2dxds.

The last integral on the right-hand side can be controlled by the last integral on the left-
hand side. Therefore,

n∑

i=1

πi

∫

Rd

u
(ε,κ)
i (t) log u

(ε,κ)
i (t)dx+ 4κ

n∑

i=1

πi

∫ t

0

∫

Rd

∣∣∣∇
√
u
(ε,κ)
i

∣∣∣
2

dxds

+ C
n∑

i=1

σi

∫ t

0

∫

Rd

∣∣∣(−∆)α/2
√
u
(ε,κ)
i

∣∣∣
2

dxds+ λ
n∑

i=1

∫ t

0

∫

Rd

|∇K̃(ε)
(1−β)/4u

(ε,κ)
i |2dxds(34)
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+ κ

n∑

i=1

πi

∫ t

0

∫

Rd

(u
(ε,κ)
i )2(log u

(ε,κ)
i )+dxds ≤

n∑

i=1

πi

∫

Rd

u0i log u
0
i dx+ κC(t+ 1).

This shows that the uniform bounds in Lemma 10 also hold for u(ε,κ) with constants
independent of ε.

Lemma 11. The solution ui := u
(ε,κ)
i constructed above satisfies the following uniform

estimates with a constant C(T ) > 0 that is independent of ε and κ:
√
κ‖√ui‖L2(0,T ;H1(Rd)) +

√
σi‖

√
ui‖L2(0,T ;Hα(Rd)) ≤ C(T ),(35)

‖∇K̃(ε)
(1−β)/4 ∗ ui‖L2(0,T ;L2(Rd)) + κ‖u2i (log ui)+‖L1(0,T ;L1(Rd)) ≤ C(T ),(36)
√
σi‖(−∆)α/2ui‖L2(0,T ;L1(Rd)) + ‖∂tui‖Lq(0,T ;W−1,q(Rd)) ≤ C(T )(37)

‖ui log ui‖L∞(0,T ;L1(Rd)) + sup
0<t<T

∫

Rd

|x|mui(t)dx ≤ C(T ),(38)

where q > 1.

Proof. Estimates (35)–(36) follow from (34). The first estimate in (37) is a consequence
of the L∞(0, T ;L1(Rd)) bound for ui and the L2(0, T ;L2(Rd)) norm for (−∆)α/2

√
ui; see

the proof of (10). The second estimate in (37) is shown as in Lemma 10, now using the
ε-independent entropy estimates. The moment estimate for ui can be proved as in Lemma
4. Compared to (25), we are able to derive a uniform bound independent of ε. This is
possible since we have an ε-independent L2(Rd) bound for ui after having performed the

limit ρ→ 0. This bound is not available for u
(ε,κ,ρ)
i , since its L2(Rd) estimate depends on ε;

see Lemma 7. The critical term becomes, using the Hardy–Littlewood–Sobolev inequality
and a cutoff function ψR,

∣∣∣∣
n∑

j=1

aij

∫ T

0

∫

Rd

ui∇(1 + |x|2)m/2 ·
(
K̃(ε)

(1−β)/4 ∗ (∇K̃(ε)
(1−β)/4 ∗ uj)

)
ψRdxdt

∣∣∣∣

≤ C

∫ T

0

‖ui‖2‖∇(1 + |x|2)m/2‖∞‖∇K̃(ε)
(1−β)/4 ∗ uj‖2dt ≤ C.

Then, proceeding as in the proofs of Lemmas 4 and 6 (to handle the cutoff), we ob-
tain the moment estimate for ui. This estimate, together with the upper bound for∫
Rd ui log uidx from (34) and the mass conservation property, imply the L∞(0, T ;L1(Rd))
bound for ui log ui, by proceeding as in the proof of Lemma 9. �

4.3. Limit ε → 0. The uniform bounds of Lemma 11 allow us to apply the compactness
result of Aubin–Lions-type in Lemma 15 below to conclude that there exists a subsequence
(not relabeled) such that

u
(ε,κ)
i → u

(κ)
i strongly in L2(0, T ;L2(Rd)) as ε→ 0.
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We wish to perform the limit ε → 0 in (33). The only nontrivial term is that one on the
right-hand side of (33). We first notice that, by Lemma 11,

(39) ∇K̃(ε)
(1−β)/4 ∗ u

(ε,κ)
i ⇀ ξi weakly in L2(0, T ;L2(Rd))

for some ξi ∈ L2(0, T ;L2(Rd)), i = 1, . . . , n. To identify ξi, we consider

(40)

∫ T

0

∫

Rd

φ
(
K̃(ε)

(1−β)/4 ∗ u
(ε,κ)
i

)
dxdt =

∫ T

0

∫

Rd

u
(ε,κ)
i

(
K̃(ε)

(1−β)/4 ∗ φ
)
dxdt,

and we wish to pass to the limit ε→ 0 on the right-hand side. For this, we remark that it

follows from the definition of K̃(ε)
(1−β)/4 that

‖K̃(ε)
(1−β)/4 ∗ φ‖L2(0,T ;L2d/(d−1+β)(Rd)) ≤ ‖K(1−β)/4 ∗ |φ|‖L2(0,T ;L2d/(d−1+β)(Rd))(41)

≤ C‖φ‖L2(0,T ;L2(Rd)).

It holds that 0 ≤ K̃(ε)
(1−β)/4 ր K(1−β)/4 a.e. in R

d and K(1−β)/4 (the kernel of the Riesz

potential) is integrable in the unit ball B1(0), while its square K2
(1−β)/4 is integrable in R

d \
B1(0). Hence, we infer from Young’s convolution inequality and the monotone convergence
theorem that

∥∥[(K̃(ε)
(1−β)/4 −K(1−β)/4)1B1(0)

]
∗ φ

∥∥
L2(0,T ;L2(Rd))

≤
∥∥(K̃(ε)

(1−β)/4 −K(1−β)/4)1B1(0)

∥∥
1
‖φ‖L2(0,T ;L2(Rd)) → 0,

∥∥[(K̃(ε)
(1−β)/4 −K(1−β)/4)1Rd\B1(0)

]
∗ φ

∥∥
L2(0,T ;L2(Rd))

≤
∥∥(K̃(ε)

(1−β)/4 −K(1−β)/4)1Rd\B1(0)

∥∥
2
‖φ‖L2(0,T ;L1(Rd)) → 0,

such that for φ ∈ L2(0, T ;L2(Rd) ∩ L1(Rd)),

(42) K̃(ε)
(1−β)/4 ∗ φ→ K(1−β)/4 ∗ φ strongly in L2(0, T ;L2(Rd)).

Thus, we deduce from (40) and the strong convergence of (u
(ε,κ)
i ) in L2(0, T ;L2(Rd)) that

∫ T

0

∫

Rd

φ
(
K̃(ε)

(1−β)/4 ∗ u
(ε,κ)
i

)
dxdt→

∫ T

0

∫

Rd

u
(κ)
i K(1−β)/4 ∗ φdxdt

=

∫ T

0

∫

Rd

φ
(
K(1−β)/4 ∗ u(κ)i

)
dxdt,

which means that

K̃(ε)
(1−β)/4 ∗ u

(ε,κ)
i ⇀ K(1−β)/4 ∗ u(κ)i weakly in L2(0, T ; (L1(Rd) ∩ L2(Rd))′).

Hence, we can identify the limit ξi in (39), leading to the convergence

(43) ∇K̃(ε)
(1−β)/4 ∗ u

(ε,κ)
i ⇀ ∇K(1−β)/4 ∗ u(κ)i weakly in L2(0, T ;L2(Rd)).
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We claim that a similar weak limit holds for ∇K(ε)
(1−β)/2 instead of ∇K̃(ε)

(1−β)/4. To this

end, we use definition (16) of K(ε)
(1−β)/2 and convergences (42) and (43):

∫ T

0

∫

Rd

φ∇K(ε)
(1−β)/2 ∗ u

(ε,κ)
i dxdt =

∫ T

0

∫

Rd

φK̃(ε)
(1−β)/4 ∗ ∇K̃(ε)

(1−β)/4 ∗ u
(ε,κ)
i dxdt

=

∫ T

0

∫

Rd

(
∇K̃(ε)

(1−β)/4 ∗ u
(ε,κ)
i

)(
K̃(ε)

(1−β)/4 ∗ φ
)
dxdt

→
∫ T

0

∫

Rd

(
∇K(1−β)/4 ∗ u(κ)i

)(
K(1−β)/4 ∗ φ

)
dxdt

=

∫ T

0

∫

Rd

φK(1−β)/4 ∗ ∇K(1−β)/4 ∗ u(κ)i dxdt

=

∫ T

0

∫

Rd

φ∇K(1−β)/2 ∗ u(κ)i dxdt

for any φ ∈ L2(0, T ;L2(Rd)), where we used the representation Ks ∗ f = (−∆)−sf . We
infer that

∇K̃(ε)
(1−β)/2 ∗ u

(ε,κ)
i ⇀ ∇K(1−β)/2 ∗ u(κ)i weakly in L2(0, T ;L2(Rd)).

Together with the strong L2(Rd) convergence of (u
(ε,κ)
i ), it follows that

u
(ε,κ)
i ∇K̃(ε)

(1−β)/2 ∗ u
(ε,κ)
j ⇀ u

(κ)
i ∇K(1−β)/2 ∗ u(κ)j weakly in L1(0, T ;L1(Rd)).

These convergences allow us to perform the limit ε→ 0 in (33) to conclude that u(κ) solves

∂tu
(κ)
i − κ∆u

(κ)
i + σ(−∆)αu

(κ)
i + κg0[u

(κ)
i ]

= div

( n∑

j=1

aiju
(κ)
i ∇(−∆)(β−1)/2u

(κ)
j

)
in R

d, t > 0,(44)

u
(κ)
i (·, 0) = u0i in R

d, i = 1, . . . , n.

The limit ε→ 0 in the entropy inequality (34) leads to

n∑

i=1

πi

∫

Rd

u
(κ)
i (t) log u

(κ)
i (t)dx+ 4κ

n∑

i=1

πi

∫ t

0

∫

Rd

∣∣∣∇
√
u
(κ)
i

∣∣∣
2

dxds

+ C
n∑

i=1

σi

∫ t

0

∫

Rd

∣∣∣(−∆)α/2
√
u
(κ)
i

∣∣∣
2

dxds+ λ
n∑

i=1

∫ t

0

∫

Rd

|∇(−∆)(β−1)/4u
(κ)
i |2dxds(45)

+ κ
n∑

i=1

πi

∫ t

0

∫

Rd

(u
(κ)
i )2(log u

(κ)
i )+dxds ≤

n∑

i=1

πi

∫

Rd

u0i log u
0
i dx+ κC(t+ 1)
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for t > 0. Estimates (35)–(38) also hold for u(κ) with the exception that the first bound in
(36) is replaced by

(46) ‖∇(−∆)(β−1)/4u
(κ)
i ‖L2(0,T ;L2(Rd)) ≤ C, i = 1, . . . , n.

4.4. Limit κ→ 0. We deduce from (12) with q = 2(d+β+1)/d and the κ-uniform bounds

for u
(κ)
i that (u

(κ)
i ) is bounded in L2(d+β+1)/d(0, T ;L2(Rd)). Together with estimate (46),

we conclude that (u
(κ)
i ) is bounded in L2(0, T ;H(β+1)/2(Rd)).

We claim that the embedding H(β+1)/2(Rd) ∩ L1(Rd; |x|dx) →֒ L2(Rd) is compact. This
claim follows from [10, Corollary 7.2], applied to balls (which are extension domains due
to [10, Theorem 5.4]), [4, Lemma 1], and a Cantor diagonal argument. In view of the

moment estimate for u
(κ)
i and the Lq(0, T ;W−1,q(Rd)) bound for ∂tu

(κ)
i , the Aubin–Lions

lemma yields, up to a subsequence, the convergence

u
(κ)
i → ui strongly in L2(0, T ;L2(Rd)) as κ→ 0.

All the terms in (44) have been already estimated in Section 2 except those depending
explicitly on κ, in particular

κg0[u
(κ)
i ](x) = κu

(κ)
i (x)2 − κ

e−|x|2

πd/2

∫

Rd

u
(κ)
i (y)2dy.

The strong convergence of u
(κ)
i in L2(Rd)) implies that

κg0[u
(κ)
i ] → 0 strongly in L1(0, T ;L1(Rd)).

Therefore, we can perform the limit κ → 0 in (44) to infer that u is a weak solution to
(1). The entropy inequality (45) for u(κ) and Fatou’s lemma yield in the limit ε → 0 the
entropy inequality (6) for u. This finishes the proof of Theorem 1.

Appendix A. Auxiliary results

We collect some results from fractional calculus used in this paper. The following lemma
can be found in [20, Chap. V, Sect. 1.2].

Lemma 12 (Hardy–Littlewood–Sobolev inequality). Let 0 < s < 1 and 1 < p <∞. Then
there exists a constant C > 0 such that for all u ∈ Lp(Rd),

‖(−∆)−su‖q ≤ C‖u‖p, where
1

p
=

1

q
+

2s

d
.

The following Stroock–Varopoulos-type inequality is known even for general functions;
see, e.g., [19, Lemma 7.2].

Lemma 13 (Generalized Stroock–Varopoulos inequality). Let u ∈ Hs(Rd) be such that
u ≥ 0 in R

d and log(u)(−∆)su ∈ L1(Rd), where 0 < s < 1. Then
∫

Rd

log(u)(−∆)sudx ≥ 4

∫

Rd

|(−∆)s/2
√
u|2dx.
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Proof. A symmetry argument shows that
∫

Rd

log(u)(−∆)sudx =
cd,s
2

∫

Rd

∫

Rd

(u(x)− u(y))(log u(x)− log u(y))

|x− y|d+2s
dxdy.

Elementary computations yield

(u(x)− u(y))(log u(x)− log u(y))

= 4
(√

u(x)−
√
u(y)

)2
√
u(x) +

√
u(y)

2(
√
u(x)−

√
u(y))

(
log

√
u(x)− log

√
u(y)

)
.

We claim that √
u(x) +

√
u(y)

2(
√
u(x)−

√
u(y))

(
log

√
u(x)− log

√
u(y)

)
≥ 1.

Notice that the above relation holds in the limit u(x) → u(y) as x→ y. Therefore, we can

assume without loss of generality that u(x) > u(y). Defining Z = log
√
u(x)− log

√
u(y) >

0, the previous inequality is equivalent to

eZ + 1

eZ − 1

Z

2
≥ 1 ⇐⇒ eZ + 1 ≥ eZ − 1

Z/2
.

Multiplying both sides of the inequality by e−Z/2/2 yields the elementary relation sinh(Z/2) ≤
(Z/2) cosh(Z/2), which is true.
This gives, using the same symmetry argument as before,

∫

Rd

log u(−∆u)sudx ≥ 2cd,s

∫

Rd

∫

Rd

(
√
u(x)−

√
u(y))2

|x− y|d+2s
dxdy

= 4

∫

Rd

√
u(−∆)s

√
udx = 4

∫

Rd

|(−∆)s/2
√
u|2dx,

finishing the proof. �

The following lemma can be proved exactly as in [4, Lemma 1].

Lemma 14 (Compactness). Let d ≥ 2, 1 ≤ p < d, m > 0, and 0 < r ≤ p. Then the space
{
v ∈ W 1,p(Rd) :

∫

Rd

(1 + |x|2)m/2|v(x)|rdx <∞
}

is compactly embedded into Lq(Rd) for any max{1,m} ≤ q < dp/(d− p).

The previous lemma allows us to prove a compactness result in R
d of Aubin–Lions type.

Lemma 15. Let d ≥ 1, T > 0, m > 0, s ≥ 0, and let (uε) be a family of nonnegative
functions satisfying

‖√uε‖L2(0,T ;H1(Rd)) + ‖∂tuε‖L1(0,T ;H−s(Rd)) ≤ C,

‖u2ε(log uε)+‖L1(0,T ;L1(Rd)) + ‖(1 + | · |2)m/2uε‖L∞(0,T ;L1(Rd)) ≤ C
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for some C > 0 independent of ε > 0. Then, up to a subsequence,

uε → u strongly in L2(0, T ;L2(Rd)) as ε→ 0.

Proof. The bounds for (uε) imply that ∇uε = 2
√
uε∇

√
uε is bounded in L2(0, T ;L1(Rd))

and consequently, (uε) is bounded in L2(0, T ;W 1,1(Rd)). By Lemma 14, V := {v ∈
W 1,1(Rd) :

∫
Rd(1 + |x|2)m/2v(x)dx < ∞} is compactly embedded into Lq(Rd) for any

1 ≤ q < d/(d− 1).
If s ≥ d/2, the embedding Hs(Rd) →֒ Lq′(Rd) for q′ = q/(q − 1) > d implies that

Lq(Rd) →֒ H−s(Rd) is continuous. Thus, we can apply the standard Aubin–Lions lemma
with the spaces V →֒ Lq(Rd) →֒ H−s(Rd). If s < d/2, it holds that Hd/2(Rd) →֒ Hs(Rd)
and H−s(Rd) →֒ H−d/2(Rd) and consequently, (∂tuε) is bounded in L1(0, T ;H−d/2(Rd)). In
any case, the Aubin–Lions lemma can be applied with V →֒ Lq(Rd) →֒ H−max{d/2,s}(Rd).
Thus, there exists a subsequence of (uε), which is not relabeled, such that uε → u strongly
in L2(0, T ;Lq(Rd)) as ε→ 0.
It remains to show that this convergence holds in L2(0, T ;L2(Rd)). To this end, we

observe that there exists C > 0 such that f(z) := z2 log(1 + z2) ≤ C(1 + z2(log z2)+)
for z ∈ R, and for any 1 < q < 2 and δ > 0, there exists C(δ) > 0 such that z2 ≤
δf(z) + C(δ)|z|q for s ∈ R. Since f is even, increasing on [0,∞), and convex, this gives
with z = (uε − u)/2 and for any δ > 0,

1

4
‖uε − u‖2L2(0,T ;L2(Rd)) ≤ δ

∫ T

0

∫

Rd

f

(
uε − u

2

)
dxdt+ C(δ)‖uε − u‖q

Lq(0,T ;Lq(Rd))

≤ δ

∫ T

0

∫

Rd

f

(
uε + u

2

)
dxdt+ C(δ)‖uε − u‖q

Lq(0,T ;Lq(Rd))

≤ δ

2

∫ T

0

∫

Rd

(f(uε) + f(u))dxdt+ C(δ)‖uε − u‖q
Lq(0,T ;Lq(Rd))

.

We apply the limes superior ε→ 0 to both sides and use the strong convergence of (uε):

lim sup
ε→0

‖uε − u‖2L2(0,T ;L2(Rd)) ≤ 2δ lim sup
ε→0

∫ T

0

∫

Rd

(f(uε) + f(u))dxdt ≤ δC.

Since δ > 0 is arbitrary, the conclusion follows. �
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[17] A. Jüngel, S. Portisch, and A. Zurek. Nonlocal cross-diffusion systems for multi-species populations

and networks. To appear in Nonlin. Anal., 2022. arXiv:2104.06292.
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