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Abstract. Eigenvalue computations for large sparse matrices such as the Lanczos method are commonly based on Krylov
subspace techniques. One of the dominant operations in such algorithms are iterated computations of inner products with the
same vector in order to preserve orthogonality of the Krylov basis. These operations can be accelerated by existing BLAS
functionality using GPUs. However, this is not fully efficient due to unnecessary memory transfers. We present improved
implementations in CUDA and OpenCL, which are now available in ViennaCL, PETSc and SLEPc, and demonstrate an up to
two-fold performance gain over existing GPU vendor libraries.
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INTRODUCTION

Eigenvalue computations are at the heart of quantum mechanics: The fundamental stationary Schrödinger equation

is naturally formulated as an eigenvalue problem. Frameworks built on top of the Schrödinger equation such as the

density functional theory preserve the need for computing eigenvalues.

Depending on the respective setting, either the full eigenvalue problem for a dense system matrix A needs to be

solved, or only certain eigenvalues (usually either the largest or the smallest) of a sparse matrix A are of interest. We

also note that the general eigenvalue problem of finding z such that

Az= λBz (1)

for eigenvalues λ and eigenvectors z can be reduced to the standard eigenvalue problem if B is positive definite and

either real symmetric or complex Hermitian: Using the Cholesky factorization B= LLT (or B= LLH in the Hermitian

case), one can rewrite (1) to

(L−1AL−T )(LT z) = λLT z , (2)

hence denotingC := L−1AL−T and y= LT z one observes that the eigenvalue problemCy= λy is equivalent to (1) [1].

If A is dense, standard basic linear algebra subroutines (BLAS) supplemented by additional library functionality in

e.g. LAPACK [2] can be used [3]. With the advent of accelerators, particularly graphics processing units (GPUs) for

general purpose computations, the actual mapping of these standard linear algebra routines becomes challenging and is

subject of active research [4, 5, 6]. In this work, however, we focus on the case of a sparse matrixA. Eigenvaluemethods

for sparse matrices predominantly, yet not exclusively, rely on orthogonal Krylov bases, which are commonly dealt

with by using Gram-Schmidt methods or Householder reflections [7]. Even though Householder reflections provide

better round-off properties, Gram-Schmidt methods are often preferred in practice because of the lower number of

arithmetic operations and the higher amount of parallelism involved. Given an orthonormal basis (v1, . . . ,vN) and a

vector w not in the space spanned by the basis, the basis extension with respect to w is computed by

vN+1← w−
N

∑
i=1

〈w,vi〉vi , vN+1← vN+1/‖vN+1‖ (3)

where we refer to the parallel computation of the scalars 〈w,vi〉 in (3) as mdot (multiple dot) operation. If A stems from

a stencil discretization and the Krylov basis reaches sizes of more than, say, 50 vectors, the mdot operation becomes

the dominating factor for the overall performance.



GPU IMPLEMENTATIONS

In the following we compare three possible implementations for the computation of multiple inner products with one

common argument in parallel:

Ddot Assuming that repeated loads of w from global memory is cheap or ignoring the costs of memory loads, the

first implementation is an iterated call of the function for dot product.

Dgemv In order to reuse the common vectorw, the second implementationwe consider is to copy the vectors {vi}
N
i=1

into a matrix V and obtain the results 〈w,vi〉 from the resulting vector of the matrix-vector multiplication

V×w. In the context of a Gram-Schmidt orthogonalization one could also augmentV with additional vectors

in each call, but this is not a viable approach for an actual software implementation because it requires to

pass V along.

mdot The third implementation is an optimized custom implementation, avoiding most spurious memory loads.

For portability reasons, both a CUDA and an OpenCL version were implemented. We implemented kernels

dot, dot2, dot3, dot4, dot8 for dealing with one, two, three, four, and eight vectors {vi}, respectively.
In the following we discuss dot4 in more detail, other kernels follow the same pattern.

Thread i loads the entry of w[i] into a local variable w_i. Then, the scalars

alpha1 = w_i * v1[i]

alpha2 = w_i * v2[i]

alpha3 = w_i * v3[i]

alpha4 = w_i * v4[i]

are computed. If threads need to deal with more than a single entry, they continue with summing contribu-

tions into alpha1, alpha2, alpha3, and alpha4. A parallel reduction in shared on-chip memory for

each thread group leads to partial results beta1, beta2, beta3, and beta4 which contain the sum over

all alpha-variables of each thread. These partial results are written back to a vector z in global memory and

are then copied back to the host. Note that the size of the vector z equals the number of independent thread

groups and is much smaller than the input vectors w and {vi}. The host finally sums these partial results to

obtain the results of 〈w,v1〉, 〈w,v2〉, 〈w,v3〉, and 〈w,v4〉.
If the number of vectors in the set {vi} does not exactly map to one of the dotX-kernels (X ∈ 1,2,3,4,8),
then the largest suitable dotX-kernels are iterated until all inner products have been computed. For example,

an mdot operation acting on 21 vectors calls dot8 twice, dot4 once, and dot2 once. Hence, values from

w may still be loaded multiple times, but the asymptotic overhead is only 12.5 percent. Kernels dealing with
a higher number of vectors {vi} are possible, but the price to pay is two-fold: First, increased maintenance

effort is required for the higher number of kernels. Second, the higher number of vectors leads to increased

register and on-chip shared memory pressure in the kernels, ultimately either reducing the effective memory

bandwidth obtained for the kernel or exceeding the on-chip resources available.

While the first two implementations are motivated by making use of the tuning effort put into vendor libraries, our

third approach is entirely concerned about minimizing memory transfer. Even though we focus on GPUs here, such a

reuse of data is also important for good performance on conventional processors. As long as the programmingmodels,

here CUDA and OpenCL, are able to load data near peak memory bandwidth, our third approach can also be justified

from the software maintenance point of view.

BENCHMARK RESULTS

We compare our implementation of mdot with the two implementations discussed in the previous section. Our

implementations are freely available through the GPU linear algebra package ViennaCL [8], the solver package PETSc

[9, 10], and hence the eigenvalue package SLEPc [11]. The latter two have been reported to be in use for grid-based

quantum computing just recently [12].

Our experiments were run on an NVIDIA GeForce GTX 470 using CUDA 5 platform libraries and an AMDRadeon

HD7970 using clAmdBlas 1.10.321. Both systems are Linux-based, hence the latency overheads reported here may

be slightly different on a Windows-based machine. All operations are carried out using double precision arithmetics.
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FIGURE 1. Comparison of execution times for inner products 〈w,vi〉, i= 1, . . . ,N using double precision arithmetics on NVIDIA

hardware. Left: N = 50, varying vector size. Right: Vector size 106, varying N. A performance gain of up to a factor of two over
CUBLAS (CUDA 5.0) is obtained.

Matrix setup times for the Dgemv implementations are included in our timings. Since all operations considered are

entirely memory bandwidth limited, our results are directly transferable to workstation hardware (NVIDIA Tesla

series, AMD FirePro series). We used 64 threads for each of the 256 thread groups for both platforms. In order to

judge the expected performance on a broad range of machines, no autotuning was applied to the kernels. Conversely,

target- and size-specific optimizations may further improve the performance by a few percent [6].

Both the CUDA and OpenCL implementation ofmdot are depicted with the respective alternatives based on vendor-

libraries for the NVIDIA GPU in Fig. 1. Comparing the performance for different vector sizes and a fixed number of

50 vectors {vi}, the overhead of iterated kernel launches for Ddot becomes apparent at small vector sizes. The matrix-

vector product implementation using Dgemv is faster than Ddot for small vector sizes, but is still unable to outperform

our mdot implementation. It should be noted that for vector sizes below about 104, the PCI-Express communication

overhead makes a purely CPU-based implementation the better choice over a GPU implementation anyway. For large

vector sizes, Dgemv performs poorly and is by an order of magnitude slower than our mdot implementation. The Ddot

function stays within a factor of two when compared to mdot at large problem sizes, which is expected as it needs

to read almost twice as much data from global GPU memory. There are no significant differences in performance

between our CUDA and OpenCL implementation of mdot. We assume that the slightly better performance of the

OpenCL version is due to better device-specific optimization possibilities of the just-in-time OpenCL compiler.

For a fixed vector size 106, the comparison of performance for a varying number of vectors vi on the right of Fig. 1

shows a large overhead of the Dgemv implementation. Moreover, due to the additional memory needed for the matrix,

the GPU runs out of memory if more than 70 vectors {vi} are involved. Both of our mdot implementation outperforms

the Ddot-based approach as soon as the number of vectors exceeds two and gradually increases to a factor of 1.9 for

100 vectors, which is almost the theoretically possible maximum speed-up. Again, there is no significant difference in

performance for our CUDA and OpenCL implementations.

Execution times for the AMD GPU are compared in Fig. 2. Our mdot implementation is outperformed by the

Dgemv-based approach for small vector sizes up to 104. As mentioned earlier, this regime is of little relevance in

practice, hence we refrained from a separate optimization for this case. For larger vector sizes, however, the Dgemv-

based implementation quickly shows a large overhead of more than an order of magnitude. Also, the slope of the

benchmark curves when comparing different vector sizes suggests that the communication overhead is still significant

even at a vector size of 106. Larger vector sizes, however, exceed the available GPU RAM limitations, because up to

101 of them need to reside there at the same time. This is again reflected by the missing data points for the Dgemv-

implementation when using more than 80 vectors. The Ddot-based implementation shows the anticipated factor of

slightly below two in execution time with respect to our mdot implementation. This factor is fairly independent of the

number of vectors {vi}, except for the case of a single dot product.
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FIGURE 2. Comparison of execution times for inner products 〈w,vi〉, i = 1, . . . ,N using double precision arithmetics on AMD

hardware. Left: N = 50, varying vector size. Right: Vector size 106, varying N. A performance gain of up to a factor of two over
clAmdBlas 1.10.321 is obtained.

CONCLUSION

We discussed our implementation of the multiple inner products 〈w,vi〉 with a common argument vector w for GPUs

from major vendors. A performance benefit of a factor of almost two is obtained by packing multiple inner products

into a single kernel and thus avoiding unnecessary multiple reads of the values in w. Our results also confirm that

the leading hardware metric for the performance of vector operations on modern hardware is memory bandwidth, not

floating point operations per second.
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