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Abstract. The existence of global-in-time weak solutions to a quantum energy-transport
model for semiconductors is proved. The equations are formally derived from the quantum
hydrodynamic model in the large-time and small-velocity regime. They consist of a nonlinear
parabolic fourth-order equation for the electron density, including temperature gradients; an
elliptic nonlinear heat equation for the electron temperature; and the Poisson equation for
the electric potential. The equations are solved in a bounded domain with periodic boundary
conditions. The existence proof is based on an entropy-type estimate, exponential variable
transformations, and a fixed-point argument. Furthermore, we discretize the equations by
central finite differences and present some numerical simulations of a one-dimensional ballistic
diode.

1. Introduction

The nanoscale structure of state-of-the-art semiconductor devices makes it necessary to
incorporate suitable quantum corrections in the existing simulation tools. In order to reduce
the computational cost, these tools are often based on macroscopic models for averaged phys-
ical quantities. In engineering applications, the quantum drift-diffusion equations [2] became
very popular since they are capable to describe quantum confinement and tunneling effects
in metal-oxide-semiconductor structures and to simulate ultrasmall semiconductor devices
[25, 26]. Quantum drift-diffusion models have been derived from a Wigner-Boltzmann equa-
tion by a moment method [9]. The idea is to integrate the Wigner equation over the momen-
tum space and to expand the Wigner distribution function around the quantum equilibrium
by the Chapman-Enskog method [10]. This gives an evolution equation for the zeroth-order
moment, the electron density, containing fourth-order derivatives.

Physically more precise models may be derived by taking into account more moments, for
instance, the electron and energy densities, which leads to so-called quantum energy-transport
models. In this paper, we will analyze a simplified version of a quantum energy-transport
model. More precisely, we study the following scaled equations for the electron density n, the
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electron temperature T , and the selfconsistent electric potential V :

∂tn + div

(

ε2

6
n∇

(∆
√

n√
n

)

−∇(nT ) + n∇V

)

= 0,(1)

−div(n∇T ) =
n

τe
(TL(x) − T ),(2)

λ2∆V = n − C(x).(3)

The physical parameters are the scaled Planck constant ε, the energy relaxation time τe > 0,
and the Debye length λ. The doping profile C(x) models fixed background charges in the
semiconductor crystal, and the lattice temperature TL(x) is a given function. We refer to
Section 2 for a derivation of the above model and the simplifications we have made. System
(1)-(3) is solved in the multi-dimensional torus T

d ⊂ R
d (thus imposing periodic boundary

conditions), and we prescribe the initial datum

(4) n(·, 0) = n0 in T
d.

Equation (1) is a generalization of the quantum drift-diffusion model since we take into
account temperature gradients. The fourth-order differential term includes the so-called Bohm
potential ∆

√
n/

√
n which is well known in quantum mechanics. The heat equation (2) is a

simplification of the energy equation in the macroscopic quantum model; its right-hand side
describes the relaxation to the lattice temperature TL. If the lattice temperature is constant,
T = TL solves the heat equation (2), and the system (1) and (3) reduces to the quantum
drift-diffusion equations. Hence, temperature gradients are only due to variations of the
lattice temperature. In (2), the heat conductivity is taken as κ(n, T ) = n; we comment this
(simpliying) choice at the end of Section 2.

Before we explain the main mathematical challenges to analyze (1)-(3) and state our main
theorem, we review briefly related results. The stationary quantum drift-diffusion model (1)
with T = const. and (3) has been analyzed in [3, 21], and the existence of weak solutions
with positive particle density has been shown. Existence of global-in-time weak solutions to
the transient equations without the diffusion term ∇(nT ) and for vanishing electric fields
has been proved first in [20] in one space dimension and later in [14, 18] in multiple space
dimensions. Global existence results for the full quantum drift-diffusion model in one space
dimension can be found in [22] for physical boundary conditions, [6] for Dirichlet boundary
conditions, and [7] for homogeneous Neumann boundary conditions.

There are much less analytical results for semiconductor models including temperature
variations, due to a lack of suitable a priori estimates for the temperature. Earlier results
have been concerned with the drift-diffusion equations with temperature-dependent mobil-
ities but without temperature gradients [27] (also see [16]) or with nonisothermal systems
containing simplified thermodynamic forces [1]. Later, temperature effects via the energy-
transport model have been included, see [11, 15] for stationary solutions near the equilibrium,
[5] for transient solutions close to thermal equilibrium, and [8] for systems with nondegenerate
diffusion coefficients.

Up to our knowledge, there are no analytical results in the literature for quantum diffusion
models including temperature variations. In particular, the model (1)-(3) is studied here for
the first time.

The following mathematical difficulties have to be overcome. First, the fourth-order dif-
ferential term in (1) prevents the use of the maximum principle and it is not clear how to
define the Bohm potential term. This problem has been solved in [18, 20] by introducing the



A SIMPLIFIED QUANTUM ENERGY-TRANSPORT MODEL 3

exponential variable n = ey/2 which is positive if suitable bounds for y are available. The
variable y is chosen since we can reformulate the fourth-order term as

(5) div
(

n∇∆
√

n√
n

)

=
1

2
∇2 : (n∇2 log n) = ∇2 : (n∇2y),

where ∇2 log n is the Hessian matrix of log n and the double point means summation over
both matrix indices. The fourth-order term is symmetric in the variable y allowing for the use
of the Lax-Milgram lemma in the linearized problem. Second, even without the fourth-order
quantum term, the maximum principle does not apply to (1) due to the temperature gradients.
There exist estimates for the entropy (or free energy) of the energy-transport model [8], but
these estimates cannot be derived for the present model. Third, the fourth-order term (5) in
y and the heat equation (2) are degenerate at n = 0. Fourth, for more physical boundary
conditions, boundary integrals appear in the weak formulation of (1) which cannot be handled
easily. The last problem is overcome by using periodic boundary conditions.

Our idea is to apply the maximum principle to the heat equation (2) together with entropy-
type estimates. Indeed, assuming suitable bounds for TL, the maximum principle for (2) shows
that T is bounded from below and above by positive constants. Differentiating formally the
“entropy” functional

H(t) =

∫

Td

n(log n − 1)dx,

we obtain after a computation (see Section 3 for details)

dH

dt
+

ε2

12

∫

Td

n|∇2 log n|2 + 4

∫

Td

T |∇
√

n|2dx

= 2

∫

Td

√
n∇

√
n · ∇Tdx − λ−2

∫

Td

(n − C(x))ndx,(6)

where we have employed the Poisson equation (3). The last integral is clearly bounded. The
first integral on the right-hand side can be estimated from above by

δ

∫

Td

|∇
√

n|2dx +
1

δ

∫

Td

n|∇T |2dx,

where δ > 0. As T is bounded from below, the first integral can be absorbed by the last term
on the left-hand side of (6) if δ > 0 is chosen sufficiently small. For the second integral, the
test function T in the weak formulation of (2) leads to

∫

Td

n|∇T |2dx =
1

τe

∫

Td

n(TL(x) − T )Tdx ≤ − 1

2τe

∫

Td

nT 2dx +
1

2τe

∫

Td

nT 2
Ldx.

The last integral is bounded since the total mass
∫

Td ndx is constant in time, which is a
consequence of the periodic boundary conditions. Then, putting together these estimates,
our key estimate reads as follows:

(7)
dH

dt
+

ε2

12

∫

Td

n|∇2 log n|2 + K1

∫

Td

|∇
√

n|2dx ≤ K2 +
1

2τe
‖TL‖2

L∞(Td)

∫

Td

n0dx,

where K1, K2 > 0 are some constants only depending on λ, C, and TL.
We will show below that this estimate provides H2 bounds for

√
n. However, no gradient

bounds for T can be expected since we have only an L2 bound for
√

n∇T and an H1 bound
for

√
nT . Thus, the “right” variable for (2) is neither the temperature T nor the energy
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density nT but
√

nT . Notice that this situation is related to the analysis of the Korteweg-
Navier-Stokes equations with density-dependent viscosities which vanish at vacuum [4]. In
these equations, the third-order Korteweg term provides gradient estimates for n. However,
due to the degeneracy of the viscosity coefficient, there is no estimate for the velocity u but
for

√
ndivu and

√
nu only, see e.g. [4].

Our main result reads as follows.

Theorem 1. Let d ≤ 3, ε, λ, τe > 0, C, TL ∈ L∞(Td) with 0 < mL ≤ TL(x) ≤ ML for

x ∈ T
d. Let the initial datum n0 ∈ L1(Td) satisfy n0 ≥ 0 in T

d,
∫

Td n0 log n0dx < ∞, and
∫

Rd(n0 − C(x))dx = 0. Then there exists a weak solution to (1)-(3) such that the regularity

properties

n(·, t) ≥ 0, 0 < m ≤ T (·, t) ≤ M a.e.,
√

n ∈ L2
loc(0,∞; H2(Td)) ∩ L∞

loc(0,∞; L2(Td)), n ∈ W
1,11/10
loc (0,∞; H−2(Td)),

√
nT ∈ L2

loc(0,∞; H1(Td)),
√

n∇T ∈ L2
loc(0,∞; L2(Td)), V ∈ L2

loc(0,∞; H2(Td)),

where m = mL/2 > 0 and M = ML + 1, hold and the equations

∂tn +
ε2

12
∇2 :

(√
n∇2√n −∇

√
n ⊗∇

√
n
)

= div(∇(nT ) − n∇V ),(8)

−div(n∇T ) =
n

τe
(TL(x) − T ),(9)

λ2∆V = n − C(x),

∫

Td

V dx = 0,(10)

are satisfied in the sense of L1
loc(0,∞; H−2(Td)). The initial condition n(·, 0) = n0 holds in

the sense of H−2(Td). Moreover, the total mass is constant,
∫

Td n(x, t)dx =
∫

Td n0(x)dx for

all t > 0.

Due to our weak regularity results, we can prove the existence of solutions in the formu-
lation (8) only. We remark that the Poisson equation is uniquely solvable since

∫

Td(n(x, t) −
C(x))dx =

∫

Td(n0(x)−C(x))dx = 0. Furthermore, we notice that the bounds on T can be im-
proved. In fact, the proof of Theorem 1 below shows that the bounds hold for m = (1−η)mL,
M = ML + η for any η > 0 and then, the limit η → 0 yields mL ≤ T ≤ ML in T

d.
Theorem 1 is proved by semi-discretizing (1) in time, employing the Leray-Schauder fixed-

point theorem, and working with the variables
√

n and y = 2 log n. To solve the linearized
problem in the variable y, we add to (1) the uniformly elliptic term δ(∆2y + y) since the
operator (5) may degenerate at n = 0. Unfortunately, this additional term prevents the L1

conservation of n which is needed in the key estimate (7). This problem is overcome by
combining the L1 estimate for n with estimates coming from the additional term δ(∆2y + y).

The paper is organized as follows. The next section is devoted to a formal derivation of
the model (1)-(3). The proof of Theorem 1 is presented in Section 3. Section 4 is devoted
to the numerical solution of (1)-(3) and the illustration of heating effects in a simple ballistic
diode. We conclude in Section 5 and mention some open problems.

2. Derivation of the model equations

System (1)-(3) is deduced formally from the quantum hydrodynamic equations, which have
been derived from the Wigner equation in [19]. The quantum hydrodynamic equations consist
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of balance equations for the electron density n, the electron mean velocity u, and the energy
density ne:

∂tn + div(nu) = 0,(11)

∂t(nu) + div(nu ⊗ u) + ∇(nT ) − n∇V − ε2

6
n∇∆

√
n√

n
= −nu

τp
,(12)

∂t(ne) + div
(

(P + neI)u
)

− ε2

8
div(n∆u) − nu · ∇V − div(κ(n, T )∇T ) =

n

τe
(TL − T ),(13)

selfconsistently coupled to the Poisson equation (3), where the matrix u ⊗ u has the compo-
nents uiuj , τp is the (scaled) momentum relaxation time and κ(n, T ) the heat conductivity.
The energy density ne and the stress tensor P are given by

ne =
d

2
nT +

1

2
n|u|2 − ε2

24
n∆ log n, P = nT I − ε2

12
n∇2 log n,

where I is the identity matrix in R
d×d.

Compared to the model derived in [19], we have added the following expressions. First,
we have included momentum and energy relaxation terms which are coming from Caldeira-
Leggett-type collision operators in the kinetic Wigner-Boltzmann equation from which the
quantum hydrodynamic equations have been derived [17]. Furthermore, we allow for the heat
flux term div(κ(n, T )∇T ) in the energy equation. The heat flux is usually taken into account
in numerical simulations for stability reasons [12, 19]. It is necessary to obtain a positive
definite diffusion matrix in the quantum energy-transport equations [17].

Quantum energy-transport equations are derived from system (11)-(13) after a diffusive
rescaling and a relaxation-time limit. More precisely, we change the time scale t → t/τp and
scale the velocity as u → τpu, the thermal conductivity as κ → τpκ, and the energy relaxation
time as τe → τe/τp, giving

τ2
p ∂t(nu) + τ2

p div(nu ⊗ u) + ∇(nT ) − n∇V − ε2

6
n∇

(∆
√

n√
n

)

= −nu,(14)

ne =
d

2
nT +

τ2
p

2
n|u|2 − ε2

24
n∆ log n,

and (11) and (13) remain unchanged. Then, performing the formal limit τp → 0, we arrive to
the quantum energy-transport equations

∂tn + div

(

ε2

6
n∇

(∆
√

n√
n

)

−∇(nT ) + n∇V

)

= 0,(15)

∂t(ne) + div
(

(P + neI)u
)

− ε2

8
div(n∆u) − nu · ∇V − div(κnT∇T ) =

n

τe
(TL − T ),(16)

where the energy density simplifies to

ne =
d

2
nT − ε2

24
n∆ log n.

The simplified quantum energy-transport model (1)-(2) is obtained from (11)-(13) in a
slightly different relaxation-time limit. We rescale time and velocity as above but we do not
rescale the thermal conductivity or the energy relaxation time. Then (11) and (14) remain
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unchanged and (13) is written as

τp

(

∂t(ne) + div
(

(P + neI)u
)

− ε2

8
div(n∆u) − nu · ∇V

)

− div(κ(n, T )∇T ) =
n

τe
(TL − T ).

Performing the formal limit τp → 0 in the above equation and in (11) and (14), we deduce
(1)-(2) with the choice κ(n) = n for the heat conductivity.

Physically, we expect that the heat conductivity depends on the thermal energy d
2nT .

Often, the function κ(n, T ) = nT is taken [12, 19]. Our choice κ(n, T ) = n has a purely
technical reason. Indeed, having regularity for

√
nT only, it seems to be difficult to treat

the heat flux nT∇T since the temperature appears quadratically, and we have only weak
convergence results for the sequence of approximating temperatures.

3. Proof of Theorem 1

3.1. Existence of a time-discrete solution. We replace (1)-(3) by a semidiscrete system.
To this end, let τ > 0 be a time step and w be a given function. We wish to find a solution
to the problem

1

τ
(w2 − w2) +

ε2

12
∇2 : (w∇2w −∇w ⊗∇w) = div

(

∇(w2T ) − w2∇V
)

,(17)

−div(w2∇T ) =
w2

τe
(TL(x) − T ),(18)

λ2∆V = w2 − C(x) in T
d.(19)

Here, w represents the square root of the electron density at some time t and w the corre-
sponding quantity at time t − τ .

Lemma 2. Let the assumptions of Theorem 1 hold and let w ∈ L∞(Td) satisfy
∫

Td(w
2 −

C(x))dx = 0. Then there exists a weak solution (w, T, V ) ∈ H2(Td) × L∞(Td) × H2(Td)
to (17)-(19) such that wT ∈ H1(Td), w∇T ∈ L2(Td),

∫

Td(w
2 − C(x))dx = 0, and w ≥ 0,

0 < m ≤ T ≤ M in T
d, where m = mL/2 and M = ML + 1.

Proof. The proof is performed in several steps.

Step 1: Definition of a regularized problem. The solution to (17)-(19) is obtained as the limit
of solutions to a regularized problem. In particular, we add a strongly elliptic operator in
y = 2 log w:

1

τ
(w2 − w2) +

ε2

12
∇2 : (w2∇2y) + δ(∆2y + y) = div

(

∇(w2T ) − w2∇V
)

,(20)

−div
(

(w2 + δ)∇T
)

=
1

τe
(w2 + δ)(TL(x) − T ),(21)

λ2∆V = w2 − C(x) in T
d,(22)

where δ > 0 is a regularization parameter. The fourth-order operator δ(∆2y + y) guarantees
coercivity of the left-hand side of (20) with respect to y.

Step 2: Solution of the regularized problem. We solve (20)-(22) by employing the Leray-
Schauder fixed-point theorem (see Theorem B.5 in [24]). Let σ ∈ [0, 1] and w ∈ W 1,4(Td) →֒
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L∞(Td) (here we use the restriction on the space dimension d ≤ 3). Let V ∈ H2(Td) be the
unique solution to the Poisson equation

λ2∆V = w2 − C(x) in T
d,

∫

Td

V dx = 0.

Notice that this problem is solvable since we have assumed that
∫

Td(w
2−C(x))dx = 0. Next,

let T ∈ H1(Td) be the unique solution to the linear equation

−div
(

(w2 + δ)∇T
)

=
1

τe
(σw2 + δ)(TL(x) − T ) in T

d.

As the coefficient of the zeroth-order term τ−1
e (σw2 + δ)T is uniformly positive, this problem

is uniquely solvable. Finally, introduce for y, z ∈ H2(Td) the forms

a(y, z) =
ε2

12

∫

Td

w2∇2y : ∇2zdx + δ

∫

Rd

(∆y∆z + yz)dx,

f(z) = −σ

τ

∫

Td

(w2 − w2)zdx − σ

∫

Td

(∇(w2T ) − w2∇V ) · ∇zdx,

The bilinear form a is continuous and coercive for δ > 0, and the linear form f is continuous
(since ∇(w2T ) ∈ L2(Td)). Consequently, the Lax-Milgram lemma provides the existence of a
unique solution y ∈ H2(Td) to

(23) a(y, z) = f(z) for all z ∈ H2(Td).

This defines the fixed-point operator S : W 1,4(Td) × [0, 1] → W 1,4(Td), S(w, σ) = v := ey/2.
Indeed, since y ∈ H2(Td) →֒ L∞(Td) in dimensions d ≤ 3, we have v ∈ H2(Td) →֒ W 1,4(Td).

We shall now verify the hypotheses of the Leray-Schauder theorem which provides a solution
w to S(w, 1) = w. The operator S is constant at σ = 0, S(w, 0) = 1. By standard results for
elliptic equations, S is continuous and compact since the embedding H2(Td) →֒ W 1,4(Td) is
compact. It remains to show a uniform bound for all fixed points of S(·, σ). This is achieved
by suitable entropy estimates.

Let w ∈ H2(Td) be a fixed point of S(·, σ) for some σ ∈ [0, 1]. Then there exists y ∈ H2(Td)

such that w = ey/2. We derive first some bounds for T . With the test function (T − M)+ =
max{0, T − M} ∈ H1(Td) in (21), where M = supTd TL + 1, we infer that

∫

Td

(w2 + δ)|∇(T − M)+|2dx =
1

τe

∫

Td

(σw2 + δ)(TL(x) − T )(T − M)+dx

≤ − 1

τe

∫

Td

(σw2 + δ)(T − M)+dx ≤ 0.

This implies that (T − M)+ = 0 and hence T ≤ M in T
d. The test function (T − m)− =

min{0, T − m} ∈ H1(Td) with m = 1
2 infTd TL > 0 leads to

∫

Td

(w2 + δ)|∇(T − m)−|2dx =
1

τe

∫

Td

(σw2 + δ)(TL(x) − T )(T − m)−dx

≤ 1

2τe
inf
Td

TL

∫

Td

(σw2 + δ)(T − m)−dx ≤ 0,
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from which we conclude that (T − m)− = 0 and T ≥ m > 0 in T
d. Furthermore, we employ

the test function T in (21):
∫

Td

(w2 + δ)|∇T |2dx =
1

τe

∫

Td

(σw2 + δ)(TL(x) − T )Tdx

≤ − 1

2τe

∫

Td

(σw2 + δ)T 2dx +
1

2τe

∫

Td

(σw2 + δ)T 2
Ldx,

which gives, since ML = ‖TL‖L∞(Td),
∫

Td

(w2 + δ)|∇T |2dx +
σ

2τe

∫

Td

(wT )2dx ≤ 1

2τe
M2

L

∫

Td

(σw2 + δ)dx.

We derive an approximate L2 bound for w by using the test function z = 1 in (23):

(24) σ

∫

Td

w2dx = σ

∫

Td

w2dx − δτ

∫

Td

ydx = σ

∫

Td

C(x)dx − δτ

∫

Td

ydx,

Thus, the estimate on w∇T becomes
∫

Td

(w2 + δ)|∇T |2dx +
σ

2τe

∫

Td

(wT )2dx ≤ σ

2τe
M2

L

∫

Td

C(x)dx − δτ

2τe
M2

L

∫

Td

ydx

+
δ

2τe
M2

Lmeas(Td).(25)

We proceed with the estimates for w. Taking the test function y = 2 log w in (23), we find
that

ε2

3

∫

Td

(w2 + δ)|∇2 log w|2dx + δ

∫

Td

(

(∆y)2 + y2
)

dx

= −σ

τ

∫

Td

(w2 − w2) log(w2)dx − 2σ

∫

Td

(

∇(w2T ) − w2∇V
)

· ∇ log wdx

≤ −σ

τ

∫

Td

(

φ(w2) − φ(w2)
)

dx − 2σ

∫

Td

(

2T |∇w|2 + w∇T · ∇w − 1

2
∇(w2) · ∇V

)

dx,

where we have employed the convexity of the function φ(s) = s(log s − 1) + 1, φ(s) − φ(t) ≤
φ′(s)(s − t) for all s, t ≥ 0. Then, using the Poisson equation and the Young inequality, we
obtain

σ

τ

∫

Td

(

φ(w2) − φ(w2)
)

dx +
ε2

3

∫

Td

(w2 + δ)|∇2 log w|2dx + δ

∫

Td

(

(∆y)2 + y2
)

dx

≤ σ

∫

Td

(

− 2m|∇w|2 +
w2

2m
|∇T |2 − w2

λ2
(w2 − C(x))

)

dx

≤ −2σm

∫

Td

|∇w|2dx +
1

2m

∫

Td

w2|∇T |2dx +
σ

λ2
‖C‖L∞(Td)

∫

Td

w2dx.

The second term on the right-hand side is estimated by (25) and the last term can be bounded
by (24), leading to

σ

τ

∫

Td

(

φ(w2) − φ(w2)
)

dx +
ε2

3

∫

Td

w2|∇2 log w|2dx + δ

∫

Td

(

(∆y)2 + y2
)

dx

≤ −2σm

∫

Td

|∇w|2dx − δτK1(m)

∫

Td

ydx + K2(m),



A SIMPLIFIED QUANTUM ENERGY-TRANSPORT MODEL 9

where the constants Ki(m) > 0 depend on C(x), TL(x) etc. but not on σ, τ , or δ. Now, the
integral over y2 on the left-hand side dominates the integral over y on the right-hand side
since

−δ

2

∫

Td

(2τK1(m)y + y2)dx ≤ δτK1(m)2meas(Td).

This yields our key (entropy) estimate

σ

τ

∫

Td

(

φ(w2) − φ(w2)
)

dx +
ε2

3

∫

Td

w2|∇2 log w|2dx

+ δ

∫

Td

(∆y)2dx +
δ

2

∫

Td

y2dx + 2σm

∫

Td

|∇w|2dx ≤ K,(26)

where K > 0 denotes here and in the following a generic constant not depending on y, T , τ ,
or δ. Hence, y and ∆y are uniformly bounded in L2(Td) for any fixed δ > 0. This implies that

y and also w = ey/2 are uniformly bounded in H2(Td). Then the Leray-Schauder theorem
provides a solution w to S(w, 1) = w, which we denote by wδ. Obviously, wδ satisfies (20).
We denote by Tδ the solution to (21) and by Vδ the solution to (22).

Step 3: Lower bound for wδ. By construction of wδ, there exists yδ ∈ H2(Td) such that wδ =
exp(yδ/2). Inequality (26) yields an H2 bound for yδ, depending on w and δ, ‖yδ‖H2(Td) ≤
Kδ−1/2. In combination with the embedding H2(Td) →֒ L∞(Td), this gives ‖yδ‖L∞(Td) ≤
Kδ−1/2. Consequently, wδ is strictly positive,

wδ = exp(yδ/2) ≥ exp(−Kδ−1/2/2) > 0 in T
d.

Step 4: Uniform H1 bound for wδTδ. Estimate (26) shows that
√

δ‖yδ‖L2(Td) is uniformly

bounded. Hence, by (25) with σ = 1,
∫

Td

(w2
δ + δ)|∇Tδ|2dx +

1

2τe

∫

Td

(wδTδ)
2dx ≤ K1 + δK2‖y‖L1(Td)

≤ K1 + δK3‖y‖L2(Td) ≤ K4.(27)

Thus, in view of (26),
∫

Td

|∇(wδTδ)|2dx ≤ 2

∫

Td

w2
δ |∇Tδ|2dx + 2M2

∫

Td

|∇wδ|2dx

is uniformly bounded. This provides a uniform bound for wδTδ in H1(Td).

Step 5: The limit δ → 0. By (26), the sequences (φ(w2
δ )) and (|∇wδ|2) are bounded in L1(Td).

Since s ≤ φ(s) + e − 1 for all s ≥ 0, the sequence (w2
δ ) is bounded in L1(Td) too. Next, we

employ Lemma 2.2 of [18] which gives the inequality

(28)

∫

Td

w2
δ |∇2 log wδ|2dx ≥ K

∫

Td

(∆wδ)
2dx,

for some constant K > 0 (depending on the space dimension only). This inequality, together
with the estimate (26), shows that (∆wδ) is bounded in L2(Td). Since (wδ) is bounded in
L2(Td), we conclude that (wδ) is bounded in H2(Td). Thus, for a subsequence which is not
relabeled, as δ → 0,

wδ ⇀ w weakly in H2(Td),

wδ → w strongly in W 1,4(Td)
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for some w ∈ H2(Td). In particular, since wδ > 0, we have w ≥ 0 in T
d. Furthermore,

w2
δ∇2 log wδ = wδ∇2wδ −∇wδ ⊗∇wδ ⇀ w∇2w −∇w ⊗∇w weakly in L2(Td).

By the δ-dependent bound for yδ in (26),
∣

∣

√
δ〈(∆2yδ + yδ), z〉H−2,H2

∣

∣ ≤
√

δ
(

‖yδ‖H2(Td)‖z‖H2(Td) + ‖yδ‖L2(Td)‖z‖L2(Td)

)

≤ K‖z‖H2(Td),

for any test function z ∈ H2(Td). Therefore,

δ
(

∆2yδ + yδ

)

⇀ 0 weakly in H−2(Td).

The sequence (Vδ) is bounded in H2(Td) since (wδ) is bounded in L4(Td). Moreover, (Tδ)
is bounded in L∞(Td). Unfortunately, we do not have better bounds for Tδ since we do not
have a uniform lower bound for wδ and the heat equation may degenerate in the limit δ → 0.
However, we know from step 4 that (wδTδ) is bounded in H1(Td). As a consequence, up to
subsequences,

Vδ → V strongly in W 1,4(Td),

Tδ ⇀ T weakly* in L∞(Td),

wδTδ ⇀ θ weakly in H1(Td),

for some function θ ∈ H1(Td). In fact, we can identify θ with wT since (wδ) converges
strongly to w in L2(Td) and (Tδ) converges weakly* to T in L∞(Td), implying that

wδTδ ⇀ wT weakly in L2(Td).

It is clear that V solves the Poisson equation (19).
We claim that T is a solution to the heat equation (18). The above convergence results

show that

w2
δ∇Tδ = wδ∇(wδTδ) − wδTδ∇wδ ⇀ w∇(wT ) − wT∇w = w2∇T weakly in L2(Td).

Furthermore, by (27), (
√

δ∇Tδ) is bounded in L2(Td) and therefore, δ∇Tδ → 0 strongly in
L2(Td). This proves that

(w2
δ + δ)∇Tδ ⇀ w2∇T weakly in L2(Td).

Hence, T solves (18).
The above convergence results are sufficient to pass to the limit in the right-hand side of

(20):
∫

Td

(

∇(w2
δTδ) − w2

δ∇Vδ

)

· ∇zdx =

∫

Td

(

wδ∇(wδTδ) + wδTδ∇wδ − w2
δ∇Vδ

)

· ∇zdx

→
∫

Td

(

w∇(wT ) + wT∇w − w2∇V
)

· ∇zdx

=

∫

Td

(

∇(w2T ) − w2∇V
)

· ∇zdx,

for z ∈ H1(Td). We have proved that (w, T, V ) solves (17)-(19). Finally, the test function
z = 1 in (17) yields

∫

Td

w2dx =

∫

Td

w2dx =

∫

Td

C(x)dx,
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completing the proof. �

3.2. A priori estimates. Let an arbitrary final time t0 > 0 be fixed. Define the step
functions (w(τ), T (τ), V (τ)) : [0, t0) → L2(Td)3 recursively as follows. Let w0 =

√
n0, and for

given k ∈ N, let (wk, Tk, Vk) ∈ H2(Td) × L∞(Td) × H2(Td) be a solution to (17)-(19) with

w = wk−1 (according to Lemma 2). Now we define w(τ)(t) = wk for (k − 1)τ < t ≤ kτ and

similarly for T (τ) and V (τ). These step functions satisfy in T
d

1

τ

(

(w(τ))2 − (στw
(τ))2

)

+ ∇2 :
(

w(τ)∇2w(τ) −∇w(τ) ⊗∇w(τ)
)

= div
(

∇
(

(w(τ))2T (τ)
)

− (w(τ))2∇V (τ)
)

,(29)

−div
(

(w(τ))2∇T (τ)
)

=
(w(τ))2

τe
(TL(x) − T (τ)),(30)

λ2∆V (τ) = (στw
(τ))2 − C(x),

∫

Td

V (τ)dx = 0,(31)

where στ denotes the shift operator (στw
(τ))(t) = w(τ)(·, t−τ) for τ ≤ t < T . In order to pass

to the continuum limit τ → 0 in the above system, we need the following a priori estimates.

Lemma 3. The functions (w(τ) and T (τ)) satisfy

‖w(τ)‖L∞(0,t0;L2(Td)) + ‖w(τ)‖L2(0,t0;H2(Td)) ≤ K,

‖T (τ)‖L∞(0,t0;L∞(Td)) + ‖w(τ)T (τ)‖L2(0,t0;H1(Td)) ≤ K,

where K > 0 is a generic constant not depending on τ .

Proof. The bounds for w(τ) are a consequence of (26), together with (28). The estimate for

T (τ) follows from the proof of Lemma 2, and the bound for w(τ)T (τ) comes from step 4 of the
proof. �

Lemma 4. The following estimates hold:
∥

∥(w(τ))2
∥

∥

L11/10(0,t0;H2(Td))
+ τ−1

∥

∥(w(τ))2 − (στw
(τ))2

∥

∥

L11/10(0,t0;H−2(Td))
≤ K,(32)

∥

∥w(τ)
∥

∥

L8/d+2(0,t0;L8/d+2(Td))
+ ‖V (τ)‖L4/d+1(0,t0;H2(Td)) ≤ K,(33)

where K > 0 is a constant independent of τ .

Proof. In Lemma 4.2 of [18], it is proved that the bounds of (w(τ)) in L∞(0, t0; L
2(Td)) and

L2(0, t0; H
2(Td)) imply that (w(τ))2 is uniformly bounded in L11/10(0, t0; H

2(Td)) and that

the fourth-order term in (29) is uniformly bounded in L11/10(0, t0; H−2(Td)),

(34)
∥

∥w(τ)∇2w(τ) −∇w(τ) ⊗∇w(τ)
∥

∥

L11/10(0,t0;H−2(Td))
≤ K.

The same bounds show that (w(τ)) is bounded in L8/d+2(0, t0; L
8/d+2(Td)), since the Gagliar-

do-Nirenberg inequality with θ = d/(d + 4) gives

‖w(τ)‖8/d+2

L8/d+2(0,t0;L8/d+2(Td))
≤ K

∫ t0

0
‖w(τ)‖(8/d+2)θ

H2(Td)
‖w(τ)‖(8/d+2)(1−θ)

L2(Td)
dt

≤ K‖w(τ)‖8/d

L∞(0,t0;L2(Td))

∫ t0

0
‖w(τ)‖2

H2(Td)dt ≤ K.
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We infer from the Poisson equation that (∆V (τ)) is bounded in L4/d+1(0, t0; L
4/d+1(Td)), and

using elliptic regularity, we deduce a bound for V (τ) in L4/d+1(0, t0; H
2(Td)).

The estimates of Lemma 3 imply that
∥

∥∆((w(τ))2T (τ))
∥

∥

L2(0,t0;H−2(Td))
≤

∥

∥(w(τ))2T (τ)
∥

∥

L2(0,t0;L2(Td))

≤ ‖w(τ)‖2
L4(0,t0;L4(Td))‖T (τ)‖L∞(0,t0;L∞(Td)) ≤ K.(35)

Since the embedding H1(Td) →֒ L4(Td) is continuous in space dimensions d ≤ 3, the same

holds for the embedding L4/3(Td) = (L4(Td))∗ →֒ H−1(Td) for the dual spaces. This embed-
ding, together with the Hölder inequality in x with p = 3/2 and p′ = 3, gives

∥

∥div
(

(w(τ))2∇V (τ)
)
∥

∥

11/10

L11/10(0,t0;H−2(Td))
≤

∥

∥(w(τ))2∇V (τ)
∥

∥

11/10

L11/10(0,t0;H−1(Td))

≤ K

∫ t0

0

∥

∥(w(τ))2∇V (τ)
∥

∥

11/10

L4/3(Td)
dt ≤ K

∫ t0

0
‖w(τ)‖11/5

L4(Td)
‖∇V (τ)‖11/10

L4(Td)
dt.

Next, we apply the Hölder inequality in t with p = 70/37 and p′ = 70/33:

∥

∥div
(

(w(τ))2∇V (τ)
)∥

∥

11/10

L11/10(0,t0;H−2(Td))

≤ K‖w(τ)‖11/5

L154/37(0,t0;L4(Td))
‖∇V (τ)‖11/10

L7/3(0,t0;L4(Td))
≤ K,(36)

since 7/3 ≤ 4/d + 1 and 154/37 < 8/3 + 2 in dimensions d ≤ 3. Estimates (34), (35), and

(36) imply the estimate for the discrete time derivative of w(τ), which finishes the proof. �

3.3. The limit τ → 0. The a priori estimates of the previous subsection are sufficient to
pass to the limit τ → 0. First, the estimates (32) allow for the application of Aubin’s lemma

[23], showing that, up to a subsequence, (w(τ))2 → n in L11/10(0, t0; W
1,4(Td)) as τ → 0

for some limit function n. Here we have used that the embedding H2(Td) →֒ W 1,4(Td) is

compact in dimensions d ≤ 3. In particular, (w(τ)) converges pointwise a.e. As (w(τ))2 is

obviously nonnegative, so is n, and we can define the square root
√

n ∈ L22/10(0, t0; L
∞(Td))

with w(τ) → √
n pointwise a.e. The second estimate in (32) implies that, up to a subsequence,

τ−1
(

(w(τ))2 − (στw
(τ))2

)

⇀ ∂tn weakly in L11/10(0, t0; H
−2(Td)).

Furthermore, the same arguments as in the proof of Lemma 4.3 in [18] show that w(τ) → √
n

strongly in L2(0, t0; W
1,4(Td)), which implies that

w(τ)∇2w(τ) ⇀
√

n∇2√n weakly in L1(0, t0; L
2(Td)),

∇w(τ) ⊗∇w(τ) ⇀ ∇
√

n ⊗∇
√

n weakly in L1(0, t0; L
2(Td)).

By Lemma 4, (w(τ)T (τ)) converges weakly (up to a subsequence) to some function θ in
L2(0, t0; H

1(Td)). We can identify θ with
√

nT . Indeed, the pointwise a.e. convergence of

w(τ) to
√

n and the boundedness of (w(τ)) in L8/d+2(0, t0; L
8/d+2(Td)) (see (33)) imply that

w(τ) converges strongly to
√

n in L4(0, t0; L
4(Td)), since 8/d + 2 < 4 for d ≤ 3. Furthermore,

T (τ) converges weakly* to T in L∞(0, t0; L
∞(Td)). Hence, the product w(τ)T (τ) converges

weakly to
√

nT in L4(0, t0; L
4(Td)), which shows that θ =

√
nT . In particular, we infer that

w(τ)T (τ) ⇀
√

nT weakly in L2(0, t0; H
1(Td)).
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Moreover, (w(τ)T (τ)) is bounded in L∞(0, t0; L
2(Td)), since (w(τ)) is bounded in L∞(0, t0;

L2(Td)) and T (τ) is bounded in L∞(0, t0; L
∞(Td)). Then, up to a subsequence,

w(τ)T (τ) ⇀∗
√

nT weakly* in L∞(0, t0; L
2(Td)).

The above convergence results, together with the strong convergence of (w(τ)) in L4(0, t0;
L4(Td)) and in L2(0, t0; W

1,4(Td)), imply that

∇
(

(w(τ))2T (τ)
)

= w(τ)∇
(

w(τ)T (τ)
)

+ w(τ)T (τ)∇(w(τ))

⇀
√

n∇(
√

nT ) +
√

nT∇
√

n = ∇(nT )(37)

weakly in L4/3(0, t0; L
4/3(Td)).

The strong convergence of (w(τ)) in L4(0, t0; L
4(Td)) and the weak convergence of (V (τ)) (to

some function V ) in L2(0, t0; W
1,4(Td)) gives

(w(τ))2∇V (τ) ⇀ n∇V weakly in L4/3(0, t0; L
2(Td)).

These limits allow us to perform the limit τ → 0 in (29), showing that
√

n solves (8).
We remark that the initial datum is satisfied by n in the sense of H−2(Td) since n ∈
W 1,11/10(0, t0; H

−2(Td)) →֒ C0(0, t0; H
−2(Td)) and hence, n(·, 0) is defined.

It remains to pass to the limit τ → 0 in the Poisson equation (31) and the heat equation
(30). In view of (32), we have

∥

∥(στw
(τ))2 − n

∥

∥

L11/10(0,t0;H−2(Td))

≤
∥

∥(στw
(τ))2 − (w(τ))2

∥

∥

L11/10(0,t0;H−2(Td))
+

∥

∥(w(τ))2 − n
∥

∥

L11/10(0,t0;H−2(Td))

≤ K1τ + K2

∥

∥(w(τ))2 − n
∥

∥

L11/10(0,t0;L2(Td))
→ 0 as τ → 0,

and we can perform the limit in the Poisson equation, showing that V is a solution to
(10). Since ∇w(τ) converges strongly in L2(0, t0; L

4(Td)) and w(τ)T (τ) converges weakly*
in L∞(0, t0; L

2(Td)), we obtain, together with (37),
(

w(τ)
)2∇T (τ) = w(τ)∇

(

w(τ)T (τ)
)

− w(τ)T (τ)∇w(τ) ⇀
√

n∇(
√

nT ) −
√

nT∇
√

n = n∇T

weakly in L4/3(0, t0; L
4/3(Td)). Thus, T solves (9). This completes the proof of Theorem 1.

4. Numerical results

In this section we present some numerical results for the simplified quantum energy-
transport model in one space dimension:

nt +
ε2

12

(

n(log n)xx

)

xx
− (nT )xx + (nVx)x = 0,(38)

−κ(nTx)x +
1

τe
n(T − TL) = 0,(39)

λ2Vxx − n + C = 0,(40)

where x ∈ [0, 1] and t > 0. The initial condition is n(x, 0) = C(x), x ∈ (0, 1). The parameters
in the above equations are the scaled Planck constant ε, the Debye length λ, the heat-
conduction constant κ, and the energy relaxation time τe. Notice that in contrast to the
previous sections, we have introduced here the heat conductivity constant κ (see Section 2).
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Parameter Physical meaning Value
q elementary charge 1.602 · 10−19 As
m effective electron mass 0.067 · 9.11 · 10−31 kg
kB Boltzmann constant 1.3807 · 10−23 kg m2/s2K
~ reduced Planck constant 1.0546 · 10−34 kg m2/s
εs semiconductor permitivity 12.9 · 8.8542 · 10−12 A2s4/kg m3

τ0 momentum relaxation time 0.9 · 10−12 s

Table 1. Physical parameters for GaAs.

We consider periodic as well as the Dirichlet-Neumann boundary conditions, see below. In
the numerical tests we simulate a GaAs n+nn+ diode, defined by the smooth doping profile

C(x) = 1 + 0.25(tanh(100x − 60) − tanh(100x − 40)), x ∈ [0, 1].

We consider following two cases: (i) heating through the device contacts and (ii) heating
in the interior of the device. Since we are interested in qualitative effects only, we choose the
(artificial) scaled lattice temperature functions

(i) TL(x) = 4(a − 1)(x2 − x) + a, (ii) TL(x) = −4(a − 1)(x2 − x) + 1,

where a = 300/77. The parameter a is chosen in such a way that, for the first function, the
unscaled temperature equals 300 K at the boundary and 77 K at x = 1

2 and vice versa for the
second function. We have chosen here a characteristic temperature of T0 = 77 K. The values
of the remaining physical constants are given in Table 1.

In order to compute the values of the dimensionless parameters, we have to specify the
scaling. Let L be a characteristic length, for instance the device length. We define the
characteristic density, voltage, and time, respectively, by

(41) C∗ = sup |C|, V ∗ =
kBT0

q
, t∗ =

√

mL2

kBT0
.

The standard scaling (see for example [17]) gives

ε2 =
~

2

mkBT0L2
, λ2 =

ǫsV
∗

qC∗L2
, κ = κ0τ0

kBT0

m
, τe =

τ0

t∗
.

For our numerical tests we have choosen L = 75 nm for the device length, C∗ = 1023 m−3 for
the maximal doping concentration, and κ0 = 0.8 for the thermal conductivity. Then

ε2 ≈ 3.05 · 10−2, λ2 ≈ 8.42 · 10−3, κ ≈ 1.253 · 10−2, τ ≈ 1.583.

The discretization of the model (38)–(40) using central finite differences reads as

nk+1
i − nk

i

△t
= − ε2

12(△x)4

[

nk+1
i+1

(

uk+1
i+2 − 2uk+1

i+1 + uk+1
i

)

− 2nk+1
i

(

uk+1
i+1 − 2uk+1

i + uk+1
i−1

)

+ nk+1
i−1

(

uk+1
i − 2uk+1

i−1 + uk+1
i−2

)]

+
1

(△x)2

[

nk+1
i+1 T k

i+1 − 2nk+1
i T k

i + nk+1
i−1 T k

i−1

]

− 1

2(△x)2

[

(V k
i+1 − V k

i )nk+1
i+1 + (V k

i+1 − 2V k
i + V k

i−1)n
k+1
i − (V k

i − V k
i−1)n

k+1
i−1

]

,(42)
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Figure 1. Periodic boundary conditions, case (i): Electron temperature (left)
and electron density (right) at various times.

− (nk
i+1 + nk

i )

2
T k

i+1 +
(

αT nk
i +

nk
i+1 + 2nk

i + nk
i−1

2

)

T k
i − nk

i + nk
i−1

2
T k

i−1 = αT nk
i (TL)i,(43)

λ2

(∆x)2
(V k

i+1 − 2V k
i + V k

i−1) = nk
i − Ci,(44)

where ui = log(ni), i = 1, . . . , N − 1, αT = (△x)2/(κτe). We used a uniform mesh with
N = 250 points and △x = 1/N . For the time step we have taken △t = 10−7. The system
(42)–(44) is solved using an iterative semi-implicit numerical method. More precisely, given
the electron density nk at time step k, we solve the linear equations for the potential V k and
the temperature T k. Then the values for T k and V k are employed in the nonlinear equation
(42) for the particle density, which is solved by the Newton method. In this way we obtain
the electron density nk+1 at time step k + 1.

4.1. Periodic boundary conditions. Since the existence results in this paper are proved
for periodic boundary conditions, we perform the first numerical tests for these boundary
conditions. In order to assure the unique solvability of the Poisson equation, we impose the

constraint
∫ 1
0 (n − C)dx = 0.

First, we were interested how heating of the device through its contacts effects the device
temperature. Figure 1 shows the electron temperature T (left) and particle density n (right)
at various times. Notice that the values for the time are dimensionless; the characteristic
time equals, according to (41), t∗ ≈ 5.68 · 10−13 s. The temperature stabilizes extremely fast
to its steady state. As expected, the heating through the contacts leads to a heating in the
interior of the device and, because of the periodic boundary conditions, to an electron cooling
in the n+ regions at the contacts. The electron density becomes first smaller than the doping
concentration (thin line) in the low-doped region, but it increases at larger times and finally
reaches its steady state. Figure 2 illustrates the electron temperature and density in case (ii).
In contrast to the previous case, the particle temperature T is smaller than TL in the middle
of the device, but larger at the contacts. This heating leads to an increase of the electron
density at the contacts (right figure).

4.2. Dirichlet-Neumann boundary conditions. In this subsection, we consider more re-
alistic boundary conditions for the one-dimensional n+nn+ diode studied in the previous
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Figure 2. Periodic boundary conditions, case (ii): Electron temperature
(left) and electron density (right) at various times.

subsection. We impose the following boundary conditions:

n(0) = C(0), n(1) = C(1), nx(0) = nx(1) = 0,

T (0) = T (1) = Tbc, V (0) = 0, V (1) = U,

where U is the applied potential and Tbc the given boundary temperature (300 K in case (i)
and 77 K in case (ii)). The Dirichlet boundary conditions for the electron density express
that the total space charge C(x)−n vanishes at the boundary. Since C(x) is nearly constant
close to the boundary, we expect that (C − n)x ≈ 0 at x = 0, 1. This motivates the use
of homogeneous Neumann boundary conditions for n. We are interested in the situation in
which the device temperature at the contacts is constant, so we impose Dirichlet boundary
conditions for the electron temperature T . Beside the Dirichlet conditions for V , no further
constraint on V needs to be imposed.

The numerical results for the equilibrium situation U = 0 are presented in Figure 3 (case
(i)) and in Figure 4 (case (ii)). The behavior of the temperature and density is similar to
the previous subsection (except that now, the particle density cannot increase at the contacts
since it is fixed). This is not surprising since the periodic case corresponds to some extend to
the equilibrium situation.

In Figures 5 and 6, the particle temperatures and densities in case (i) and (ii), respectively,
are shown for an applied voltage of U = 1 V. The temperature profile does not change signifi-
cantly. On the other hand, the low-doped region in the diode is flushed by electrons, and the
depletion region moves to the right due to the high electric field. The same behavior can be
observed in the quantum drift-diffusion model in which the electron temperature is constant.

5. Conclusion and open problems

In this paper, we have shown the existence of global-in-time solutions to a simplified quan-
tum energy-transport model. This is the first analytical result on a quantum diffusion model
including temperature variations. The proof is based on exponential variable techniques
employed in [18, 20], a fixed-point argument in the variables

√
n and log n, and the key

entropy-type estimate (6). Moreover, some numerical results illustrate the heating behavior
of a ballistic diode.
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Figure 3. Dirichlet-Neumann boundary conditions, case (i), U = 0: Electron
temperature (left) and electron density (right) at various times.

0 20 40 60 75
50
77

100

150

200

250

300

Position x [nm]

T
em

pe
ra

tu
re

 T
 [K

]

t = 0

t = 10−6

t = 5 ⋅ 10−4

t = 10−3

0 20 40 60 75
4

6

8

10

12
x 10

22

Position x [nm]

D
en

si
ty

 n
 [m

−
3 ]

Figure 4. Dirichlet-Neumann boundary conditions, case (ii), U = 0: Electron
temperature (left) and electron density (right) at various times.
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Figure 5. Case (i), Dirichlet-Neumann boundary conditions, U = 1 V: Elec-
tron temperature (left) and electron density (right) at various times.
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Figure 6. Case (ii), Dirichlet-Neumann boundary conditions, U = 1 V: Elec-
tron temperature (left) and electron density (right) at various times.

It is well known that, in real applications, thermal effects in semiconductors are becoming
stronger in smaller devices due to large electric fields. Our result is slightly different. The
numerical experiments show that the particle temperature depends only weakly on the model
parameters. The reason is that the electron temperature is mainly governed by the lattice
temperature through energy relaxation. A future investigation should take into account the
full energy equation (16).

We have imposed several simplifications to the original quantum energy-transport model
(15)-(16). First, the model (15)-(16) is special in the sense that it has been derived from
the quantum hydrodynamic equations. There exists a class of quantum energy-transport
models, derived directly from the Wigner-BGK equation [9, 17] and depending on the choice
of the relaxation time model in the BGK collision operator. Second, the energy equation (16)
has been significantly simplified, allowing us to use the maximum principle for the electron
temperature. Third, we have chosen a rather simple model for the heat conductivity. Finally,
we have imposed very simple periodic boundary conditions for the analytical results.

These comments lead us to the following open problems:

• Prove the global existence of solutions to the simplified model (1)-(3) with heat con-
ductivity κ(n, T ) = nT instead of κ(n, T ) = n.

• Prove the global existence of solutions to the simplified model (1)-(3) using more
physical boundary conditions (for instance, n = nD, ∇n · ν = 0, T = TD, V = VD on
∂Ω, where Ω ⊂ R

d is the semiconductor domain and ν the exterior unit normal vector
to its boundary).

• Describe the long-time behavior of solutions to (1)-(3).
• Prove the semiclassical limit ε → 0 in (1)-(3) (the problem is that we loose the H2

bounds on
√

n).
• Prove the global existence of solutions to the full quantum energy-transport model

(15)-(16).
• Analyze the quantum energy-transport models derived in [9] and reveal its mathe-

matical structure.
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