
DERIVATION OF NEW QUANTUM HYDRODYNAMIC EQUATIONS

USING ENTROPY MINIMIZATION∗
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Abstract. New quantum hydrodynamic equations are derived from a Wigner-Boltzmann model,
using the quantum entropy minimization method recently developed by Degond and Ringhofer. The
model consists of conservation equations for the carrier, momentum, and energy densities. The
derivation is based on a careful expansion of the quantum Maxwellian in powers of the Planck con-
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1. Introduction. Quantum phenomena in semiconductor devices are increas-
ingly important as the characteristic lengths of modern devices are of the order of
deca-nanometers only. In fact, there are devices, like resonant tunneling diodes, whose
behavior is essentially based on quantum effects. Since the numerical solution of the
Schrödinger equation (or one of its approximations) or the Wigner equation is very
time consuming, fluid-type quantum models seem to provide a compromise between
accurate and efficient numerical simulations. Moreover, quantum fluid models have
several advantages. First, they are formulated in macroscopic quantities like the cur-
rent density, which can be measured. Second, for the macroscopic quantum models,
the same type of boundary conditions are commonly employed as for their classical
counterparts.

A fluiddynamical formulation of the Schrödinger equation is known since the early
years of quantum mechanics [25]. A simple derivation uses WKB wave functions
ψ =

√
n exp(iS/ε) for the electron density n(x, t) and the phase S(x, t), where ε is the

scaled Planck constant. Separating the real and the imaginary part of the single-state
Schrödinger equation gives Euler-type equations for n and the “velocity” u = ∇S,
which are called the quantum hydrodynamic (QHD) model. These equations include
the so-called Bohm potential ∆

√
n/

√
n as a quantum correction [16, 19]. In the

semi-classical limit ε → 0, the classical pressure-less Euler equations are recovered.

In order to incorporate many-particle effects, we are aware of two approaches.
The first approach starts from the mixed-state Schrödinger-Poisson system [16, 19].
Defining the particle and current densities as the superpositions of all single-state
densities, quantum equations for the macroscopic variables (particle density, current
density, and energy density) are derived. The system of equations is closed by ex-
pressing the heat flux heuristically in terms of the macroscopic variables.
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The second approach starts from the (collisional) Wigner equation in position-
momentum space,

∂tf + p · ∇xf + θ[V ]f = Q(f), t > 0, f(x, p, 0) = fI(x, p), (x, p) ∈ R
2d, (1.1)

where (x, p) is the position-momentum variable, t > 0 is the time, and θ[V ] is a
pseudo-differential operator defined by

(θ[V ]w)(x, p, t) =

i

(2π)d/2

∫

R2d

1

ε

[
V

(
x +

ε

2
η, t

)
− V

(
x − ε

2
η, t

)]
w(x, p′, t)eiη·(p−p′)dηdp′.

The electric potential V = V (x, t) is selfconsistently coupled to the Wigner function
f(x, p, t) via Poisson’s equation

λ2∆V =

∫

Rd

fdp − C, (1.2)

where λ is the scaled Debye length and C = C(x) the doping concentration charac-
terizing the semiconductor device. Notice that the collision-less Wigner equation is
formally equivalent to the Heisenberg equation for the density matrix.

The above approach allows for an abstract formulation of the collision operator.
In fact, we only assume that its kernel consists of the quantum thermal equilibrium
distribution (defined in section 2) and that the operator preserves certain moments.

The macroscopic variables are defined as the moments of the Wigner function
over momentum space; more precisely, we consider the particle density n = 〈1〉, the
fluiddynamical momentum density nu = 〈p〉, and the energy density e = 〈 1

2 |p|2〉,
where we have used the notation 〈g(p)〉 =

∫
f(·, p)g(p)dp for functions g(p). In order

to obtain macroscopic equations as well, a moment method is applied to (1.1): we
multiply the equation by 1, p, and 1

2 |p|2 and integrate over momentum space. This
yields evolution equations for n, nu and e. However, the resulting system of moment
equations needs to be closed.

As a closure condition, Gardner [11] employed a quantum-corrected thermal equi-
librium distribution function in place of f in the derivation of the moment equations.
The use of this closure can be – formally – justified by a hydrodynamic scaling and
passage to the limit of vanishing scaling parameter. Gardner bases his choice of the
quantum equilibrium distribution on a result by Wigner [30]. His equilibrium function
contains second derivatives of the electric potential. However, the total potential is
discontinuous at heterojunctions. Arguing that the electric potential is close to log n
near equilibrium, he replaces V by log n, which is the origin of the Bohm potential.

Another approach, avoiding second derivatives of the potential, consists in de-
riving an approximate solution to the Bloch equation by an asymptotic expansion
of the solution for “small” potentials. This leads to the so-called “smooth” QHD
equations in which the potential V is replaced by a smoothed potential S[V ], where
S is a pseudo-differential operator [13]. The drawback of this approach is that the
numerical solution of the “smooth” QHD model is a non-trivial task. Moreover, there
is an ambiguity in the interpretation of the temperature (see the remark in section 6
of [27]).

Our approach to define a closure is based on Levermore’s entropy minimization
principle. This method has been first employed in the context of classical gas dynamics
[24] and has been recently extended to quantum fluids by Degond and Ringhofer
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[8]. The idea is to define the equilibrium distribution as the minimizer Mf of the
quantum entropy subject to the constraints of given moments. (Here, we adopted
the mathematical sign convention of decreasing entropy.) The minimizer is called
the quantum Maxwellian since there are some similarities to the classical Maxwellian
of gas dynamics (see section 2). The quantum Maxwellian Mf , as the solution of
a constrained minimization problem, depends on Lagrange multipliers which can be
interpreted in the O(ε2) approximation as the logarithm of the particle density, the
fluid velocity, and the temperature, respectively. Expanding Mf in powers of ε2 and
assuming similarly as in [11] that spatial variations of the temperature T = T (x, t)
are of the order O(ε2), we derive the following QHD equations up to order O(ε4),

∂tn + div(nu) = 0, (1.3)

∂t(nu) + div(nu ⊗ u) + divP − n∇V = 0, (1.4)

∂te + div
(
(P + eI)u

)
+ divS −

(d

2
+ 1

)
divU − nu · ∇V = 0, (1.5)

where I is the unit matrix in R
d, the energy density equals

e =
d

2
nT +

1

2
n|u|2 − ε2

24
n
(
∆log n − 1

T
tr(R>R)

)
,

with the trace “tr” of a matrix, the quantities P (stress tensor), S, and U are given
by

P = nTI − ε2

12
n
(
(∇⊗∇) log n − 1

T
R>R

)
,

S = − ε2

12
n
((d

2
+ 1

)
R∇ log n +

(d

2
+ 2

)
div R +

3

2
∆u

)
,

U = − ε2

12
n(R∇ log n + divR),

and the vorticity matrix R = (Rij) is the antisymmetric part of the velocity derivative,

Rij = ∂xj
ui − ∂xi

uj . (1.6)

A more general model, allowing arbitrarily large spatial deviations of the temperature,
is derived in section 3.

The quantum correction (ε2/12)n(∇ ⊗∇) log n to the stress tensor in the QHD
equations has been first stated in the semiconductor context by Ancona, Iafrate, and
Tiersten in [1, 2]. Since

ε2

12
div(n(∇⊗∇) log n) =

ε2

6
n∇

(∆
√

n√
n

)
,

the quantum correction can be interpreted as a force including the Bohm potential
∆
√

n/
√

n [10]. The hydrodynamic formulation of quantum mechanics is employed in
solid-state physics since many years; see, for instance, [17] and the references in the
review [21].

For ε = 0 in (1.3)-(1.5), we recover the classical hydrodynamic equations. For
ε > 0 and constant temperature, we obtain the same equations as derived in [20]
where also the quantum entropy minimization method has been used. Our model
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differs from Gardner’s QHD equations (formulas (1)-(3) in [11]) by the vorticity term
R and the dispersive velocity term in the energy equation (1.5),

div qS =
ε2

8
div(n∆u). (1.7)

The origin of this difference lies in the different choices of the quantum Maxwellian.
We refer to section 3.5 for a detailed discussion.

The term qS – but not the vorticity R – also appears in other QHD derivations. It
has been derived in [12] from a mixed-state Wigner model and interpreted as a disper-
sive “heat flux” (see formula (36) in [12]). Moreover, it appears in the QHD equations
of [15] involving a “smoothed” potential, derived from the Wigner-Boltzmann equa-
tion by a Chapman-Enskog expansion.

An interesting feature of the dispersive term (1.7) is that it stabilizes the QHD
system numerically. This statement needs some explaination. It is known that the
numerical approximation of Gardner’s QHD model (see (6.5)-(6.7)) is quite delicate.
The usual approach is to employ a hyperbolic solver, for instance an upwind method
[11] or a shock-capturing discontinuous Galerkin method [5], originally devised for the
classical hydrodynamic equations. It has been argued in [23] that a hyperbolic solver
may be inadequate for the QHD equations since the numerical viscosity might destroy
the dispersive quantum effects. Therefore, a central finite-difference scheme provides
an alternative (but still simple) numerical approach. In fact, a central finite-difference
approach for Gardner’s QHD equations fails and a stabilization in form of numerical
viscosity seems to be necessary. The dispersive term (1.7) allows us to solve the new
QHD equations by using a central scheme, thus avoiding numerical viscosity.

In this paper we present the first numerical simulations of a QHD model involving
the term (1.7). More precisely, a simple one-dimensional resonant tunneling diode
is simulated. The current-voltage characteristics show multiple regions of negative
differential resistance. The dispersive term (1.7) has the effect of “smoothing” the
current-voltage curve, i.e., it decreases the peak-to-valley ratio, the quotient of the
peak to the valley current.

Another QHD model with physical viscosity has been derived in [18] using a
Fokker-Planck collision operator. This operator describes the interaction of the elec-
trons with a heat bath modeling the phonons of the semiconductor lattice. In nu-
merical simulations of a resonant tunneling diode, it turns out that the shape of the
current-voltage characteristic is unphysical if the temperature is kept constant [23],
and that the diffusion effects are too strong compared to the quantum dispersion [22].

We also examine the existence of conserved quantities of the new QHD equations.
Clearly, the mass is conserved. We prove that also the energy E =

∫
(e+λ2|∇V |2/2)dx

is conserved. This provides gradient estimates for the particle density, velocity, and
temperature, which is useful in the mathematical analysis of the equations.

We summarize the advantages of our approach:
• Starting from the Wigner-BGK equation, no ad-hoc assumptions are needed

in order to derive the QHD equations.
• An energy for the new model can be defined, leading to useful mathematical

estimates.
• The dispersive velocity term seems to stabilize the (numerical) solution of the

system.
• The new model provides physically reasonable current-voltage characteristics.

The paper is organized as follows. In section 2 we specify our definition of the
quantum Maxwellian which is used as the closure in the moment method developed in
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section 3. Section 4 is devoted to simplified QHD models and the system (1.3)-(1.5)
is derived. In section 5 we prove that the energy of the system is conserved. Finally,
in section 6, the new QHD model (1.3)-(1.5) is numerically discretized and solved in
one space dimension, and simulations of a resonant tunneling diode are presented.

2. Definition of the quantum Maxwellian. In order to define the quantum
Maxwellian, we first recall the Wigner transform. Let Aρ be an operator on L2(Rd)
with integral kernel ρ(x, x′), i.e.

(Aρφ)(x) =

∫

Rd

ρ(x, x′)φ(x′)dx′ for all φ ∈ L2(Rd).

The Wigner transform of Aρ is defined by

W (Aρ)(x, p) =
1

(2π)d

∫

Rd

ρ
(
x +

ε

2
η, x − ε

2
η
)
eiη·pdη.

Its inverse W−1, also called Weyl quantization, is defined as an operator on L2(Rd):

(W−1(f)φ)(x) =

∫

R2d

f
(x + y

2

)
φ(y)eip·(x−y)/εdpdy for all φ ∈ L2(Rd).

With these definitions we are able to introduce the quantum exponential and the
quantum logarithm formally by

Exp f = W (exp W−1(f)), Log f = W (log W−1(f)),

where exp and log are the operator exponential and logarithm, respectively. In [7] it
has been (formally) shown that the quantum exponential and quantum logarithm are
equal to the usual exponential and logarithm, respectively, up to order O(ε2),

Exp f = exp f + O(ε2), Log f = log f + O(ε2). (2.1)

The essential ingredient in the definition of the quantum Maxwellian is the relative
quantum entropy. Let a quantum mechanical state be described by the Wigner func-
tion f solving the Wigner equation (1.1). Then its relative quantum (von Neumann)
entropy is given by

H(f) =

∫

R2d

f(x, p)
(
(Log f)(x, p) − 1 +

|p|2
2

− V (x)
)
dxdp.

Whereas the classical entropy is a function on the configuration space, the above
quantum entropy is a real number, underlining the non-local nature of quantum me-
chanics.

We define the quantum thermal equilibrium or quantum Maxwellian Mf for some
given function f(x, p) as the solution of the constrained minimization problem

H(Mf ) = min



H(f̂) :

∫

Rd

f̂(x, p, t)




1
p

|p|2/2


 dp =




n(x, t)
nu(x, t)
e(x, t)


 , x ∈ R

d, t > 0



 ,

(2.2)
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where

n(x, t) = 〈1〉(x, t) =

∫

Rd

f(x, p, t)dp,

nu(x, t) = 〈p〉(x, t) =

∫

Rd

f(x, p, t)pdp,

e(x, t) =
1

2
〈|p|2〉(x, t) =

1

2

∫

Rd

f(x, p, t)|p|2dp.

In [8] it is shown that the solution f∗ of the contrained minimization problem (if it
exists) is given by

Mf (x, p, t) = Exp
(
A(x, t) − |p − w(x, t)|2

2T (x, t)

)
. (2.3)

The Lagrange multipliers A, w, and T are uniquely determined by the moments of f .
They can be interpreted (up to order O(ε2)) as the logarithm of the particle density,
the velocity, and the temperature, respectively (see Lemma 3.4).

3. Derivation of the general QHD model. The derivation of the new QHD
equations is done in several steps. First, we derive the moment equations. Then the
quantum exponential is expanded in powers of ε2 up to order O(ε4). The third step
is to expand the moments accordingly. Finally, the expansions are substituted into
the moment equations.

3.1. Moment equations. We consider the Wigner-Boltzmann equation (1.1)
in the hydrodynamic scaling, i.e., we introduce the scaling

x′ = δx, t′ = δt,

for some parameter δ > 0 which is assumed to be small compared to one. Then (1.1)
becomes for f = fδ (omitting the primes)

∂tfδ + p · ∇xfδ + θ[V ]fδ = δ−1Q(fδ), (x, p) ∈ R
2d, t > 0, (3.1)

with initial condition fδ(x, p, 0) = fI(x, p). We assume that the collision operator has
the following properties: Its kernel consists exactly of (multiples of) Mf and

∫

Rd

Q(f)dp = 0,

∫

Rd

Q(f)pdp = 0,

∫

Rd

Q(f) 1
2 |p|2dp = 0 for all f(x, p). (3.2)

An example satisfying these conditions is the relaxation-time or “BGK” operator
Q(f) = Mf − f (with scaled relaxation time τ = 1) [4]. It is possible to relax the
conditions (3.2) by assuming that the above integrals can be expressed in terms of n,
nu, and e. For instance, in [15] it is assumed that the first moments of the collision
operator yield the relaxation-time terms

∫

Rd

Q(f)dp = 0,

∫

Rd

Q(f)pdp = −nu

τp
,

∫

Rd

Q(f) 1
2 |p|

2dp = − 1

τw

(
e − 3

2
nT0

)
,

where τp and τw are the momentum and energy relaxation times, respectively, and T0

is the lattice temperature.
The formal limit δ → 0 in (3.1) yields Q(f) = 0, where f = limδ→0 fδ, which

implies that the limit f is equal to Mf .
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The moment equations are obtained from (3.1) by multiplication with 1, p, and
1
2 |p|2, respectively, and integration over the momentum space. Since

∫

Rd

θ[V ]fdp = 0,

∫

Rd

θ[V ]fpdp = −n∇V,

∫

Rd

θ[V ]f 1
2 |p|2dp = −nu · ∇V

(see, e.g., [7]), we obtain

∂tn + div(nu) = 0, (3.3)

∂t(nu) + div〈p ⊗ p〉 − n∇V = 0, (3.4)

∂te + div〈 1
2 |p|2p〉 − nu · ∇V = 0, (3.5)

where (p ⊗ p)ij = pipj for i, j = 1, . . . , d. Recall that the brackets denote integration
against the Wigner function f = Mf , i.e. in multi-index notation,

〈pα〉(x, t) =

∫

Rd

Mf (x, p, t)pαdp,

for multi-indices α ∈ N
d. To close the system (3.3)-(3.5), we need to express the

integrals 〈p⊗ p〉 and 〈 1
2 |p|2p〉 in terms of the moments n, nu, and e. This constitutes

the main step of the derivation.
The following computations are simplified by working with the new variable s =

T−1/2(p − w), where w is the Lagrange multiplier introduced in (2.3). In terms of s,
the quantum Maxwellian reads as

Mf (x, p(s)) = Exp
(
A(x) − 1

2
|s|2

)
=: g(x, s).

From now on, we omit the dependence of the time t since it acts only as a parameter.
The substitution p 7→ s yields

〈sα〉(x) = T d/2

∫

Rd

g(x, s)sαds.

In the following lemma we express the moments 〈pα〉 in terms of moments in s. This
allows for a more canonical form of the QHD equations.

Lemma 3.1. The system (3.3)-(3.5) has the formal expansion

∂tn + div(nu) = 0, (3.6)

∂t(nu) + div(nu ⊗ u) + divP − n∇V = O(ε4), (3.7)

∂te + div
(
(P + eI)u

)
+ div S −

(d

2
+ 1

)
divU − nu · ∇V = O(ε4), (3.8)

where I is the identity matrix, u = (nu)/n, and

P = T 〈s ⊗ s〉, S =
1

2
T 3/2〈|s|2s〉, U = T 3/2〈s〉. (3.9)

Proof. Using the expansion (2.1), elementary integrations yield for i, j = 1, . . . , d,

〈1〉 = T d/2eA

∫

Rd

e−|s|2/2ds + O(ε2) = (2πT )d/2eA + O(ε2), (3.10)

〈si〉 = T d/2eA

∫

Rd

e−|s|2/2sids + O(ε2) = O(ε2), (3.11)

〈sisj〉 = T d/2eA

∫

Rd

e−|s|2/2sisjds + O(ε2) = nδij + O(ε2). (3.12)
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The relations n = 〈1〉, 〈w〉 = w〈1〉 = nw, and nu = 〈p〉 = 〈T 1/2s+w〉 = T 1/2〈s〉+nw
give for the second moments

〈p ⊗ p〉 = T 〈s ⊗ s〉 +
〈
(T 1/2s + w) ⊗ (T 1/2s + w) − (T 1/2s) ⊗ (T 1/2s)

〉

= P + T 1/2〈s〉 ⊗ w + T 1/2w ⊗ 〈s〉 + w ⊗ w〈1〉

= P +
1

n
〈T 1/2s + w〉 ⊗ 〈T 1/2s + w〉 − T

n
〈s〉 ⊗ 〈s〉

= P + nu ⊗ u + O(ε4),

where in the last equality we have employed (3.11). In a similar way, we compute the
third moment:

1

2
〈|p|2p〉 =

1

2
T 1/2〈|T 1/2s + w|2s〉 +

1

2
w〈|p|2〉

=
1

2
T 3/2〈|s|2s〉 + T 〈s ⊗ s〉w +

1

2
T 1/2|w|2〈s〉 + ew

= S + (P + eI)w +
1

2
T 1/2|w|2〈s〉.

By (3.10) and (3.11), the energy density can be expanded as

e =
1

2
〈|p|2〉 =

T

2
〈|s|2〉 + T 1/2w · 〈s〉 +

1

2
|w|2〈1〉 =

d

2
nT +

1

2
n|w|2 + O(ε2).

Thus, since w = u − T 1/2〈s〉/n and P = d
2nT + O(ε2), we obtain

1

2
〈|p|2p〉 = S + (P + eI)u − T 1/2

n

(
P + eI − 1

2
n|w|2I

)
〈s〉

= S + (P + eI)u − T 3/2

n

((d

2
+ 1

)
nI + O(ε2)

)
〈s〉

= S + (P + eI)u −
(d

2
+ 1

)
U + O(ε4).

This proves the formal equivalence of (3.3)-(3.5) and (3.6)-(3.8).

3.2. Expansion of the quantum exponential. We wish to give asymptotic
expansions of P , S, and U up to order O(ε4). For this, we first need to expand the
quantum Maxwellian. This is done by means of the following lemma, which is adopted
from [8].

Lemma 3.2. Let f(x, p) be a smooth symbol. Then the quantum exponential
Exp f can be expanded as follows:

Exp f = ef − ε2

8
efQ + O(ε4),

where, using Einstein’s summation convention,

Q = ∂2
xixj

f ∂2
pipj

f − ∂2
xipj

f ∂2
pixj

f +
1

3
∂2

xixj
f ∂pi

f ∂pj
f

− 2

3
∂2

xipj
f ∂pi

f ∂xj
f +

1

3
∂2

pipj
f ∂xi

f ∂xj
f. (3.13)
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In the situation at hand, the symbol is f(x, p) = A(x)− |p−w(x)|2/2T (x). Then
we obtain the following result.

Lemma 3.3. The quantum correction (3.13) can be written for f(x, p) = A(x) −
|p − w(x)|2/2T (x) as follows:

Q(s) = T−1
(
X0 + X1

i si + X2
ijsisj + X3

ijksisjsk

+ Y 0|s|2 + Y 1
i |s|2si + Y 2

ij |s|2sisj + Z0|s|4
)
, (3.14)

where the coefficients Xi, Y i, and Z are defined by

X0 = −∆A − 1

3
|∇A|2 +

1

2T
tr (R̃>R̃),

X1
i =

2

T 1/2
∂xm

(1

3
A − log T

)
R̃mi −

1√
T

∆wi,

X2
ij =

1

3
∂2

xixj
A +

2

3
∂xi

(log T )∂xj
A − ∂xi

(log T )∂xj
(log T ) − 1

3T
(R̃>R̃)ij

X3
ijk =

1

3T 1/2
∂2

xixj
wk,

Y 0 = ∇
(1

2
log T − 1

3
A

)
· ∇(log T ) − 1

2
∆(log T ),

Y 1
i =

1

3T 1/2
∂xm

(log T )R̃mi,

Y 2
ij =

1

6

(
∂2

xixj
(log T ) + ∂xi

(log T )∂xj
(log T )

)
,

Z0 = − 1

12
|∇(log T )|2,

and R̃ij = ∂xj
wi − ∂xi

wj. The symbol “tr” denotes the trace of a matrix.
Proof. The proof consists in computing the relevant derivatives of f with respect

to xi and pj , namely

∂xi
f = ∂xi

A + T−1∂xi
wk(p − w)k +

1

2
T−2∂xi

T |p − w|2

= ∂xi
A + T−1/2∂xi

wksk +
1

2
T−1∂xi

T |s|2,

∂2
xixj

f = ∂2
xixj

A − T−1∂xi
wk∂xj

wk − T−2∂xj
T∂xi

wk(p − w)k + T−1∂2
xixj

wk(p − w)k

− T−2∂xi
T∂xj

wk(p − w)k − T−3∂xi
T∂xj

T |p − w|2 +
1

2
T−2∂2

xixj
T |p − w|2

= ∂2
xixj

A − T−1∂xi
wk∂xj

wk − T−3/2∂xj
T∂xi

wksk + T−1/2∂2
xixj

wksk

− T−3/2∂xi
T∂xj

wksk − T−2∂xi
T∂xj

T |s|2 +
1

2
T−1∂2

xixj
T |s|2,

∂pi
f = −T−1(p − w)i = −T−1/2si,

∂2
pixj

f = T−1∂xj
wi + T−2∂xj

T (p − w)i = T−1∂xj
wi + T−3/2∂xj

Tsi,

∂2
pipj

f = −T−1δij ,

and the products appearing in the sum (3.13), which are

∂2
xixj

f ∂2
pipj

F =
(
−T−1∆A − T−3/2∆wk + T−2‖∇w‖2 + 2T−5/2∇T · ∇wk

)
sk

+

(
1

2
T−2∆T − T−3|∇T |2

)
|s|2,
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∂2
xipj

f ∂2
pixj

f = T−2∂xi
wj∂xj

wi + 2T−5/2∂xj
T∂xi

wjsi + T−3∂xi
T∂xj

Tsisj ,

∂2
xixj

f ∂pi
f ∂pj

f =
(
T−1∂2

xixj
A − T−2∂xi

w`∂xj
w`

)
sisj

+
(
T−3/2∂2

xixj
wk − 2T−5/2∂xi

T∂xj
wk

)
sisjsk

+

(
1

2
T−2∂2

xixj
T − T−3∂xi

T∂xj
T

)
|s|2sisj ,

∂2
xipj

f ∂pi
f ∂xj

f = −T−3/2∂x`
A∂xi

w`si − T−2∂xi
T∂xj

Asisj − T−2∂xi
wj∂xj

wksisk

− T−5/2∂xi
T∂xj

wksisjsk − 1

2
T−5/2∂xi

wj∂xj
T |s|2si

− 1

2
T−3∂xi

T∂xj
T |s|2sisj ,

∂2
pipj

f ∂xi
f ∂xj

f = −T−1|∇A|2 − 2T−3/2∇A · ∇wksk − T−2∇A · ∇T |s|2

− T−2∇wk · ∇w`sks` − T−5/2∇T · ∇wk|s|2sk − 1

4
T−3|∇T |2|s|4.

Inserting these expressions into (3.13) and simplifying, we arrive at (3.14).

3.3. Expansion of the moments. The aim of this subsection is to specify the
integrals 〈sα〉 in order to expand the moments n, nu, and e. By Lemma 3.2, we obtain

〈sα〉 = T d/2

∫

Rd

g(x, s)sαds

= T d/2

∫

Rd

eA−|s|2/2
(
1 − ε2

8
Q(s)

)
sαds + O(ε4)

= (2πT )d/2eA
(
[sα] − ε2

8
[Q(s)sα]

)
+ O(ε4),

where [g] denotes the integral of a function g = g(s) against the classical Gaussian
kernel,

[g] = (2π)−d/2

∫

Rd

e−|s|2/2g(s)ds.

Notice that from the expansion

n = 〈1〉 = (2πT )d/2eA
(
1 − ε2

8
[Q(s)]

)
+ O(ε4) (3.15)

it follows that

〈sα〉 = n
(
[sα] +

ε2

8

(
[Q(s)][sα] − [Q(s)sα]

))
+ O(ε4). (3.16)

Thus it remains to calculate the integrals [Q(s)sα].
Integrals of type [sα] can be computed explicitly. Using

∫

R

tme−t2/2dt =
√

2π ×





0 if m is odd
1 if m = 0 or m = 2
3 if m = 4

15 if m = 6,
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it becomes a matter of combinatorics to conclude for i, j, m, n = 1, . . . , d,

[sisj ] = δij ,

[|s|2] = d,

[sisjsmsn] = δijδmn + δimδjn + δinδjm,

[sisj |s|2] = (d + 2)δij ,

[|s|4] = d(d + 2),

[sisjsmsn|s|2] = (d + 4)(δijδmn + δimδjn + δinδjm),

[smsn|s|4] = (d + 2)(d + 4)δmn.

Then the expansion of Q(s), given in (3.14), yields the following formulas:

[Q(s)] = X0 +
∑

`

X2
`` + dY 0 + (d + 2)

∑

`

Y 2
`` + d(d + 2)Z0, (3.17)

[Q(s)sm] = X1
m +

∑

`

(
X3

m`` + X3
`m` + X3

``m

)
+ (d + 2)Y 1

m, (3.18)

[Q(s)s2
m] = [Q(s)] + 2X2

mm + 2Y 0 + 2
∑

`

Y 2
`` + 2(d + 4)Y 2

mm + 4(d + 2)Z0,(3.19)

[Q(s)smsn] =
(
X2

mn + X2
nm

)
+ (d + 4)

(
Y 2

mn + Y 2
nm

)
, (3.20)

[Q(s)|s|2sm] = (d + 2)X1
m + (d + 4)

∑

`

(
X3

m`` + X3
`m` + X3

``m

)
+ (d + 2)(d + 4)Y 1

m.

(3.21)

Lemma 3.4. The moments n, nu, and e can be expressed in terms of the Lagrange
multipliers A, w, and T asymptotically as follows:

n = (2πT )d/2eA − ε2

24T
(2πT )d/2eA

{
− 2∆A − |∇A|2 + (d − 2)∇ log T · ∇A(3.22)

− (d − 1)∆ log T −
(d

2
− 1

)(d

2
− 2

)
|∇ log T |2 +

1

2T
tr (R̃>R̃)

}
+ O(ε4),

nu = nw + T−1U, (3.23)

e =
d

2
nT +

1

2
n|u|2 − ε2

24
n
{

∆log n − 1

T
tr (R̃>R̃) +

d

2
|∇ log T |2

− ∆log T −∇ log T · ∇ log n
}

+ O(ε4). (3.24)

Notice that (3.22) and (3.23) imply the inverse relations

A = log n − d

2
log T − d

2
log(2π) + O(ε2), w = u + O(ε2). (3.25)

In particular, the vorticity matrices R̃ and R, defined in (1.6), coincide up to order

O(ε2) since R̃ij = ∂jui − ∂iuj + O(ε2) = Rij + O(ε2).
Proof. The formula for the particle density (3.22) is obtained by first substituting

the expressions for the coefficients X, Y , and Z into (3.17). This yields [Q(s)] in
terms of A, w, and T . Inserting the result into (3.15) then gives (3.22).

In order to derive (3.23), we write, by the definition of U (see (3.9)),

nu = 〈T 1/2s + w〉 = T 1/2〈s〉 + w〈1〉 = T−1U + nw.
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Hence, u − w = U/nT = O(ε2). The above equations also show that T 1/2w · 〈s〉 =
nu · w − n|w|2. Hence, using 〈1〉 = n,

e =
1

2
〈|T 1/2s + w|2〉 =

T

2
〈|s|2〉 + T 1/2w · 〈s〉 +

1

2
|w|2〈1〉

=
T

2
〈|s|2〉 + nu · w − 1

2
n|w|2 =

T

2
〈|s|2〉 +

1

2
n|u|2 − 1

2
n|u − w|2.

In view of (3.25), we have |u − w|2 = O(ε4) from which we conclude

e =
T

2
〈|s|2〉 +

1

2
n|u|2 + O(ε4).

The bracket 〈|s|2〉 can be computed from (3.16), employing [|s|2] = d,

〈|s|2〉 = dn +
ε2

8
n

∑

m

(
[Q(s)] − [Q(s)s2

m]
)

+ O(ε4).

Substitution of (3.17) and (3.19) into the above expression and elimination of A and
w using (3.25), gives 〈|s|2〉 in terms of n, nu, and T . This finally leads to (3.24).

3.4. Expansion of the terms P , S, and U . The QHD equations (3.6)-(3.8)
are determined by the following expansion of the auxiliary terms P , S, and U , defined
in (3.9), in terms of the macroscopic variables n, nu, and e.

Lemma 3.5. The following expansion holds:

P = nTI +
ε2

12
n
{(d

2
+ 1

)
∇ log T ⊗∇ log T −∇ log T ⊗∇ log n

−∇ log n ⊗∇ log T − (∇⊗∇) log(nT 2) +
R>R

T

}
(3.26)

+
ε2

12
Tdiv

(
n
∇ log T

T

)
I + O(ε4),

S = − ε2

12
n
{(d

2
+ 1

)
R∇ log

( n

T

)
+

(d

2
+ 2

)
div R +

3

2
∆u

}
+ O(ε4), (3.27)

U = − ε2

12
n
{

R∇ log
( n

T 2

)
+ divR

}
+ O(ε4). (3.28)

Proof. We apply formula (3.16) to obtain for all m, n = 1, . . . , d,

Pmn = nT
(
δmn +

ε2

8
(δmn[Q(s)] − [Q(s)smsn])

)
,

Sm = − ε2

16
nT 3/2[Q(s)|s|2sm],

Um = −ε2

8
nT 3/2[Q(s)sm].

Then the components of P are computed by employing (3.17) and (3.20), substituting
the definitions of the coefficients X, Y , and Z, and replacing A and w by n and nu
according to (3.25). In a similar way, S and U are evaluated using (3.18) and (3.21).
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3.5. Discussion of the QHD equations. The differences between our QHD
equations and Gardner’s model can be understood as follows. In both approaches,
closure is obtained by assuming that the Wigner function f is in thermal equilibrium.
However, the notion of “thermal equilibrium” is different.

In order to illustrate the differences, we recall the classical situation. For a system
with the Hamiltonian h(x, p) = |p|2/2 + V (x), the unconstrained thermal equilibrium
distribution is given by the Gibbs measure fG(x, p) = exp(−h(x, p)/T0) which mini-
mizes the relative entropy S =

∫
f(log f−1−h/T0)dp. Here, T0 denotes a temperature

constant. If mass, momentum, and energy densities are given, the constrained ther-
mal equilibrium is realized by a suitable rescaling and a momentum-shift of the Gibbs
state,

f̃G(x, p) = n(x) exp
(
− h(x, p − u(x))

T (x)

)
. (3.29)

The temperature T (x), which is a Lagrange multiplier coming from the minimization

procedure, is determined from the given energy density. The choice of f̃G as a thermal
equilibrium function has its physical justification in the fact that it is the unique
minimizer of the relative entropy S with the prescribed moments.

Analogously, a quantum system, which is characterized by its energy operator
H = W−1(h) (recall that W−1 is the Weyl quantization), attains its minimum of
the relative (von Neumann) entropy in the mixed state with Wigner function fQ =
Exp (−h/T0). This state represents the unconstrained quantum thermal equilibrium.
The expansion of fQ in terms of the scaled Planck constant ε2 was first given in [30],

fQ(x, p) = exp(−h(x, p)/T0)(1 + ε2f2(x, p)) + O(ε4)

with an appropriate function f2. As a definition of the quantum equilibrium with
moment constraints, Gardner employed this expansion of fQ and modified it as follows:

f̃Q(x, p) = n(x) exp
(
− h(x, p − u(x))

T (x)

)(
1 + ε2f2(x, p − u(x))

)
+ O(ε4). (3.30)

These modifications mimic the passage from the Gibbs state to (3.29) in the classical

situation. The use of f̃Q as an equilibrium function results in simple formulas for
the moment equations. However, the Wigner function (3.30) is an ad hoc ansatz.

Moreover, in contrast to the classical case, f̃Q is not the constrained minimizer for
the relative von Neumann entropy.

The equilibrium state Mf used here is a genuine minimizer of the relative quantum
entropy with respect to the given moments. In the spirit of the classical situation,
these equilibria seem to be more natural. The price we have to pay is the appearance
of various additional terms in the expansion of Mf .

If the temperature is assumed to be constant and if only the particle density is
prescribed, both approaches to define a thermal equilibrium coincide. In order to
see this, we write Gardner’s momentum-shifted quantum equilibrium more explicitly
than in (3.30):

f̃G(x, p, t) = e−V/T−|p|2/2T
{

1 +
ε2

8T 2

(
−∆V +

1

3T
|∇V |2 +

1

3T
pipj∂xixj

V
)}

+ O(ε4),

The equilibrium function obtained from the entropy minimization with given particle
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density equals (see [20], Remark 3.3)

f̃(x, p, t) = Exp
(
A(x, t) − |p|2

2T

)

= eA−|p|2/2T
{

1 +
ε2

8T

(
∆A +

1

3
|∇A|2 − 1

3T
pipj∂xixj

A
)}

+ O(ε4).

Both approximations are essentially derived in the same way. Using n =
∫

f̃Qdp =
(2πT )d/2e−V/T + O(ε2) and assuming constant (or “slowly varying”) temperature,

Gardner has substituted ∇V = −T∇ log n + O(ε2) in the formula for f̃Q in order to
avoid the second-order derivatives of the potential. This substitution in fact yields the
approximation f̃ since, by (3.25), ∇A = ∇ log n + O(ε2), and thus, both expansions

f̃Q and f̃ coincide.

4. Simplified QHD models. The full QHD model is given by equations (3.6)-
(3.8) with the constitutive relations (3.26)-(3.28). In this section we will discuss some
simplified versions. The QHD equations read, up to order O(ε4),

∂tn + div(nu) = 0, (4.1)

∂t(nu) + div(nu ⊗ u) + div P − n∇V = 0, (4.2)

∂te + div
(
(P + eI)u

)
+ divS −

(d

2
+ 1

)
divU − nu · ∇V = 0, (4.3)

where e is the energy density given by (3.24), and P , S, and U are given by (3.26)-
(3.28) (without the O(ε4) terms).

First, we shall assume that the temperature is slowly varying in the sense of
∇ log T = O(ε2). Then the expressions ε2∇ log T in (3.26)-(3.28) are of order O(ε4)
and can therefore be neglected in our approximation:

P = nTI − ε2

12
n(∇⊗∇) log n, (4.4)

S = − ε2

12
n
{(d

2
+ 1

)
R∇ log n +

(d

2
+ 2

)
divR +

3

2
∆u

}
, (4.5)

U = − ε2

12
n
{

R∇ log n + divR
}
, (4.6)

e =
d

2
nT +

1

2
n|u|2 − ε2

24
n
(
∆log n − 1

T
tr (R>R)

)
, (4.7)

As in [11], the stress tensor P consists of the classical pressure nT on the diagonal
and the “quantum pressure” (ε2/12)n(∇ ⊗ ∇) log n. The terms S and U provide
additional quantum corrections not present in [11]. The energy density consists of the
thermal energy, kinetic energy, and quantum energy. Again, due to the vorticity R,
the energy takes a different form than the expressions in [11, 15].

Further simplifications can be obtained if the vorticity is “small”, i.e. R = O(ε2).
In one space dimension this term always vanishes. If R = O(ε2) then ε2R is of order
O(ε4) and can be neglected. We obtain the QHD equations

∂tn + div(nu) = 0, (4.8)

∂t(nu) + div(nu ⊗ u) + ∇(nT ) − ε2

12
div

(
n(∇⊗∇) log n

)
− n∇V = 0, (4.9)

∂te + div
(
(P + eI)u

)
− ε2

8
div(n∆u) − nu · ∇V = 0, (4.10)
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with the stress tensor and energy density, respectively,

P = nTI − ε2

12
n(∇⊗∇) log n, e =

d

2
nT +

1

2
n|u|2 − ε2

24
n∆log n.

This system of equations corresponds to Gardner’s QHD model except for the dis-
persive velocity term (ε2/8)div(n∆u). We already mentioned in the introduction
that this term has been also derived by Gardner and Ringhofer [15] by employing
a Chapman-Enskog expansion of the Wigner-Boltzmann equation. They do not ob-
tain vorticity terms since they assume that the quantum equilibrium distribution is
an even function of the momentum p. Roughly speaking, this gives (in our context)
the quantum exponential Exp (A − |p|2/2T ) instead of Exp (A − |p − w|2/2T ). The
Lagrange multiplier w, however, is responsible for the presence of the vorticity term
R.

Interestingly, most quantum terms cancel out in the energy equation. In fact,
by substituting the above expression for the energy density in (4.10), a computation
yields

∂t(nT ) + div (nTu) +
2

d
nTdiv u − ε2

6d
div(n∆u) = 0.

5. Conserved quantities. In this subsection we show that the mass and energy
are conserved for the system (3.6)-(3.8) and (1.2) with the relations (3.26)-(3.28),
neglecting the O(ε4) terms.

Lemma 5.1. The mass N(t) =
∫

ndx and the energy

E(t) =

∫

Rd

(
e +

λ2

2
|∇V |2

)
dx,

where e is defined in (3.24) (without the O(ε4) term), are conserved, i.e. dN/dt(t) = 0
and dE(t)/dt = 0 for all t > 0. Furthermore, the energy can be written as

E(t) =

∫

Rd

(d

2
nT +

1

2
n|u|2 +

λ2

2
|∇V |2 +

ε2

6
|∇

√
n|2 +

ε2d

48
n|∇ log T |2

+
ε2

24T
n tr(R>R)

)
dx ≥ 0. (5.1)

Proof. The conservation of N is clear. In order to prove that E is conserved, we
differentiate E and employ the equations (4.3) and (1.2):

dE

dt
=

∫

Rd

(∂te + λ2∇V · ∇∂tV )dx =

∫

Rd

(nu · ∇V − λ2V ∂t∆V )dx

=

∫

Rd

(−div(nu)V − V ∂tn)dx = 0,

taking into account (4.1). Next we show the formulation (5.1). The integral of the
energy density e can be written as

E =

∫

Rd

(d

2
nT +

1

2
n|u|2 +

ε2d

48
n|∇ log T |2 +

ε2

24T
n tr(R>R)

)
dx

+
ε2

24

∫

Rd

(
− n∆log n + n∆log T + n∇ log T · ∇ log n

)
dx.
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The last integral equals, after an integration by parts, to

ε2

24

∫

Rd

(
4|∇

√
n|2 −∇n · ∇ log T + n∇ log T · ∇ log n

)
dx =

ε2

6

∫

Rd

|∇
√

n|2dx,

which shows (5.1).

The energy (5.1) consists of, in this order, the thermal energy, the kinetic energy,
the electric energy, the quantum energy associated to the Bohm potential, and two
additional quantum energy terms associated to spatial variations of the temperature
and the vorticity. The last two energy terms are new, i.e., they do not appear in the
QHD equations of [11].

In the case of the QHD equations with slowly varying temperature, i.e. equations
(4.1)-(4.3) and (1.2) with the definitions (4.4)-(4.6), the energy is given by (5.1) except
the term involving |∇ log T |2. If, additionally, the vorticity is “small”, i.e. in the case
of the model (4.8)-(4.10) and (1.2), which is used in the numerical simulations of
section 6, the energy is equal to (5.1) except the last two terms.

6. Numerical results. In this section we summarize the results from our nu-
merical simulations of a simple one-dimensional GaAs resonant tunneling diode, using
the new QHD system. The aim is to compare the new equations with Gardner’s QHD
model; in particular, the influence of the dispersive velocity term will be explored.
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Fig. 6.1. Geometry of the resonant tunneling diode and external potential modeling the double
barriers. The Al mole fraction is x = 0.3.

The geometry of the tunneling diode is chosen essentially as in [11] (see Figure
6.1). The diode consists of highly doped 50 nm GaAs regions near the contacts and
a lightly doped middle region (the channel) of 25 nm length. The channel contains
a quantum well of 5 nm length sandwiched between two 5 nm AlxGa1−xAs barriers
with Al mole fraction x = 0.3. The double barrier heterostructure is placed between
two 5 nm GaAs spacer layers. The total length of the device is thus 125 nm. The
double barrier height is B = 0.209 eV. It is incorporated into the QHD equations by
replacing V by V + B.

For our simulations, we use the one-dimensional stationary QHD equations for
small temperature variations ∇ log T = O(ε2) coupled to the Poisson equation for the
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Parameter Physical meaning Value
q elementary charge 1.602 · 10−19 As
m effective electron mass 0.067 · 10−31 kg
kB Boltzmann constant 1.3807 · 10−23 kg m2/s2K
~ reduced Planck constant 1.0546 · 10−34 kg m2/s
εs semiconductor permitivity 12.9 · 8.8542 · 10−12 A2s4/kg m3

τ0 momentum relaxation time 0.9 · 10−12 s
T0 lattice temperature 77 K

Table 6.1

Physical parameters for GaAs.

electric potential. Including the physical parameters, these equations read as follows:

(nu)x = 0, (6.1)

m(nu2)x + kB(nT )x − ~
2

12m
(n(log n)xx)x − qnVx = 0, (6.2)

5

2
kB(nTu)x +

1

2
m(nu3)x − ~

2

8m
(nu(log n)xx + nuxx)x − qnuVx = kBσ(nTx)x, (6.3)

εsVxx = q(n − C). (6.4)

We have allowed the heat flux kBσ(nTx)x since this term has also been used by Gard-
ner [11] in his model with which we wish to compare our numerical results. The
physical constants in the above equations are the effective mass m, the Boltzmann
constant kB , the reduced Planck constant ~, the elementary charge q, and the semi-
conductor permittivity εs. The values of these constants are given in Table 6.1. The
parameter σ is defined by

σ = κτ0
kBT0

m
,

with the thermal conductivity κ, the relaxation time τ0, and the lattice temperature
T0. Using a standard scaling (see, e.g., [18]), we derive the scaled QHD equations
(1.2)-(1.5) of the introduction, where the nondimensional parameters are given by

ε2 =
~

2

mkBT0L2
, λ2 =

εskBT0

q2C∗L2
.

Here, L is the device length and C∗ the maximal doping concentration. For the values
we used in the numerical simulations below (see Table 6.1), we obtain ε2 ≈ 0.011 which
justifies our expansion in ε2.

We compare the numerical results with Gardner’s QHD equations which do not
contain the dispersive expression (1.7) in the velocity but additional relaxation-time
terms of Baccarani-Wordeman type [3]:

(nu)x = 0, (6.5)

m(nu2)x + kB(nT )x − ~
2

12m
(n(log n)xx)x − qnVx = −mnu

τp
, (6.6)

5

2
kB(nTu)x +

1

2
m(nu3)x − ~

2

8m
(nu(log n)xx)x − qnuVx

= kBσ(nTx)x − 1

τw

(
e − 3

2
nT0

)
, (6.7)
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together with the Poisson equation (6.4). Here, the momentum and energy relaxation
times are given by, respectively,

τp = τ0
T0

T
, τw =

τp

2

(
1 +

3T

mv2
s

)
,

where τ0 is given in Table 6.1 and vs = 2 · 107 cm/s is the saturation velocity.
The above QHD equations have to be solved in the interval (0, 1) with the fol-

lowing boundary conditions taken from [11]:

n(0) = C(0), n(1) = C(1), nx(0) = nx(1) = 0,

ux(0) = ux(1) = 0, T (0) = T (1) = T0, V (0) = 0, V (1) = U0,

where U0 is the applied voltage.
First, we discretize the new QHD equations (6.1)-(6.4) using central finite differ-

ences on a uniform mesh with N = 500 points. This corresponds to a mesh size of
4x = 1/500 = 0.002. The resulting discrete nonlinear system is solved by a damped
Newton method with damping parameter found by a line search method (see Algo-
rithm A6.3.1 in [9]). We employ the following continuation method for the applied
voltage: first the system of equations is solved for applied voltage U0 = 0 V; then
given the solution corresponding to the voltage U0, it is taken as an initial guess for
the solution of the system with applied voltage U0 +4U . The voltage step is chosen
as 4U = 1 mV.

The current-voltage characteristics using the thermal conductivities κ = 0.2 and
κ = 0.3 are presented in Figure 6.2. There are two regions of negative differential
resistance (NDR) if κ = 0.2 and three NDR regions if κ = 0.3. It is well known for
Gardner’s QHD model, that the behavior of the solutions is quite sensitive to changes
of the value of the thermal conductivity. We observe a similar sensitive dependence:
the peak-to-valley ratio, i.e. the ratio of local maximal to local minimal current density,
is larger for larger thermal conductivities.

The electron density shows a charge enhancement in the quantum well which is
more pronounced for smaller κ (see Figure 6.3). At the center of the right barrier, the
electron density dramatically decreases. After the first valley in the current-voltage
characteristics, the density develops a “wiggle”. This phenomenum is not a numerical
effect but it is related to the dispersive structure of the equations [26]. For larger
values of the thermal conductivity, the minimum of the particle density increases,
which stabilizes the numerical scheme.

The influence of the effective mass on the current-voltage curves are shown in
Figure 6.4 (left). Corresponding to the effective masses m = 0.067m0, m = 0.092m0,
m = 0.126m0, the peak-to-valley ratios are 1.44, 1.79, 2.37, respectively. Similarly to
the quantum drift-diffusion model, the peak-to-valley ratio increases with the effective
mass [21]. Strictly speaking, the effective mass is not constant in the whole device
but it is material depending. The use of a constant effective mass can be justified in
an average sense. The correct averaging is not known but the average value could be
used as a fitting parameter. The use of a nonconstant effective mass would be more
physical, but the modeling and the numerical approximation is—even in the much
simpler quantum drift-diffusion model—quite involved [28, 29].

In Figure 6.4 (right) the current-voltage curve for the barrier height B = 0.3 eV
is shown. As expected, the peak-to-valley ratio is larger if the barrier is higher (cor-
responding to a higher Al mole fraction); the values for the first NDR region are 1.44
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Fig. 6.2. Current-voltage characteristic for the new QHD system with thermal conductivities
κ = 0.2 (solid line) and κ = 0.3 (dashed line).

0 20 40 60 80 100 120
10

20

10
21

10
22

10
23

10
24

10
25

Position x [nm]

E
le

ct
ro

n 
de

ns
ity

 n
 [m

−
3 ]

 

 

U = 0.21V
U = 0.30V

0 20 40 60 80 100 120
10

19

10
20

10
21

10
22

10
23

10
24

10
25

Position x [nm]

E
le

ct
ro

n 
de

ns
ity

 n
 [m

−
3 ]

 

 

U = 0.215V
U = 0.240V

Fig. 6.3. Electron density before (dashed line) and after (solid line) the first valley for thermal
conductivities κ = 0.2 (left) and κ = 0.3 (right).

for B = 0.209 eV and 2.48 for B = 0.3 eV. The current densities are much smaller
than in Figure 6.2, where the lower potential barrier B = 0.209 eV has been used.
Interestingly, there are at least three NDR regions, whereas there are only two regions
for the barrier height B = 0.209 eV.

In Figure 6.5, the current-voltage curves for the new QHD equations and for
Gardner’s model are compared. Gardner’s model is discretized using a second-order
upwind method as in [11]. The right figure with N = 500 points corresponds to
Figure 2 of the cited paper. Notice that close to equilibrium, there are well-known
difficulties to compute the solution, which is not the case for our new model. Due to
the numerical viscosity introduced by the upwind method, it is clear that the solution
of Gardner’s model depends on the mesh size. The solution to the new QHD equations
is less mesh depending. In particular, the numerical results before the first valley are
almost the same for N ≥ 500 grid points. More importantly, the slope of the curve
in Gardner’s model becomes steeper in the region after the valley when the mesh
size 4x is decreased. In fact, the numerical scheme becomes unstable for mesh sizes
4x < 1/750 which may be explained by the steep slope. On the other hand, the
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Fig. 6.4. Left: Influence of the effective mass meff on the current-voltage characteristic. Right:
Current-voltage characteristic for a barrier height of B = 0.3 eV. In both pictures, κ = 0.2.

current-voltage curve of the new QHD model does not seem to develop such singular
slopes. Moreover, it is possible to solve the discrete system for mesh sizes 4x < 1/750
(not shown).

Finally, we study the influence of the dispersive velocity term (ε2/8)(nuxx)x. For
this, we replace the factor ε2/8 by δ2/8 and choose various values for δ. Clearly, only
δ = ε corresponds to the physical situation. The dispersive velocity term indeed regu-
larizes the equations in the sense that the current-voltage curves become “smoother”
(see Figure 6.6). A similar “smoothing” has been observed in [22, 23] for the viscous
QHD equations, but there, the smoothing originates from a diffusive and not from
a dispersive term. For smaller values of δ, the peak-to-valley ratio of the first NDR
region becomes larger. For δ = 0, we arrive at Gardner’s QHD equations without
relaxation terms. We already mentioned that a central finite-difference discretization
fails for this model; therefore, the numerical limit δ → 0 cannot be performed.
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Fig. 6.5. Influence of the number of discretization points on the current-voltage characteristics
for the new QHD equations (left) and for Gardner’s QHD model (right). In both pictures, κ = 0.2.
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Fig. 6.6. Influence of the dispersive velocity term (δ2/8)(nuxx)x on the current-voltage curve
for thermal conductivity κ = 0.2.
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