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1 Introduction

In this paper uniform lower and upper bounds for finite-element discretizations of
semi-linear elliptic boundary-value problems are derived. In short the following
type of PDEs is considered:

Lu = g(x, u) in Ω, u = uD on ΓD, uν = 0 on ΓN , (1)

where L is the second-order differential operator

Lu = −
d
∑

i,j=1

∂i(aij(x)∂ju) +
d
∑

i=1

ai(x)∂iu, (2)

the function g(x, u) may be non-monotone, and uν is the normal derivative of
u associated to the operator L. The domain Ω ⊂ Rd (d ≥ 1) is bounded with
boundary ΓD ∪ΓN . The precise assumptions are to be found in the next section.

The investigations are motivated by numerical approximations of the station-
ary quantum drift-diffusion model

δ2∆
√
n =

√
n(log(

√
n) + V − F ),

div(n∇F ) = 0,

−∆V = n− C(x) in Ω,

for the electron density n, the quantum quasi-Fermi potential F , and the elec-
trostatic potential V . The parameter δ is the (scaled) Planck constant, and the
prescribed function C = C(x) is the concentration of fixed background charges
[2, 11]. The equations are supplemented by mixed Dirichlet-Neumann boundary
conditions. The model describes the distribution of electrons in semiconductor
devices whose performance relies on quantum-mechanical effects. Typically this
model is used to simulate inversion layers in MOSFET devices [1] or to compute
current-voltage characteristics of resonant tunneling diodes [12, 18, 20]. For δ = 0
the model equations reduce to the classical drift-diffusion model [17].

In a Gummel-type iteration procedure [20] one has to solve for fixed F and
V the equation

δ2∆u = g(x, u) := u(log u+ f(x)), in Ω, (3)

where u =
√
n ≥ 0 and f(x) = V (x) − F (x). Here the function g(x, u) is

not monotone. It is important for a numerical scheme solving (3) to have the
following two properties:

• The numerical approximation of the particle density n(x) has to be positive.

• Uniform estimates on the numerical solution should be independent of the
scaled Planck constant δ.
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In this paper we prove that the linear finite-element approximation actually has
these properties. More precisely, the numerical method is positivity-preserving
and the upper bounds are independent of the parameter δ.

We remark that estimates independent of δ have been proved for the quantum
drift-diffusion model (3)-(3) in [19] in a one-dimensional setting.

The peculiar non-linearity in (3) is the sum of a monotone and a bounded
function. A combination of discrete maximum principles for bounded [6, Sec. 20]
and monotone non-linearities [13] may be applied. However, the validity of dis-
crete minimum and maximum principles does not rely on this specific structure.

There is a vast literature on discrete maximum principles, whereas much less
references can be found for uniform positive lower bounds [13]. Discrete maximum
principles for (linear) finite-element approximations have been first derived in [7]
for linear elliptic equations. The method has been extended in [9] for a special
system of non-linear equations. Other techniques are based on elliptic estimates
[21] or matrix properties [10]. Stampacchia’s method has been also applied to
linear discrete variational inequalities [8]. It is well known that the validity of
discrete maximum principles is closely related to geometric properties of the
finite-element meshes, see, e.g., [5, 7, 14, 15]. Discrete maximum principles for
convection-diffusion equations have been derived in [4]. They also have been
studied for finite-volume [3] and finite-difference schemes [16].

Let us check the paper’s main results in advance. Let uh be a (piecewise
linear) finite-element approximation of (1) and let g(x, u) be a Carathéodory
function (a precise definition will be given later on) such that g(x, u) ≤ g(x) for
x ∈ Ω and u ∈ R and g(x, u) ≥ g(x) for x ∈ Ω and u ≤ m0 for some m0 ∈ R,
where g(x) and g(x) are Lp functions. Then, under some assumptions on the
differential operator and the triangulation, there exist positive constants C1, C2,
and α, independent of the maximal size h of the elements of the finite-element
triangulation of Ω, such that

min
Ω

uh ≥ min{m0,min
ΓD

uD,h} − C1‖g‖1/2Lp(Ω) − C2h
α, (4)

where uD,h is an approximation of uD. Hence, for positive Dirichlet data, positive
m0, and sufficiently small g and h, the approximation uh is strictly positive.
Kerkhoven and Jerome [13] derived a similar result with α = 2, however, only for
monotone non-linearities. Our result applies to more general non-linearities and
to space dimensions d ≤ 5.

The proof is based on the Stampacchia truncation method. For a continuous
weak solution u of (1), this technique provides the estimate

inf
Ω
u ≥ min{m0, inf

ΓD
uD} − C0‖g‖Lp(Ω), (5)

where C0 > 0 is some constant. Estimate (5) will follow if one uses the truncated
function (−u+m)+ = max{0,−u+m} as a test function in the weak formulation
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of (1) (see section 3.1 for details). When setting h = 0 in (4), we do not recover
the estimate (5). This is because the truncated function (−u +m)+ cannot be
used as test function in the discretized version of (1). Instead of (−u +m)+ we
use a projection of (−u+m)+ on the finite-element space as test function. This
yields extra terms which are carefully estimated and (4) follows.

The second main result is a discrete maximum principle for equilibrium solu-
tions which are minimizers of an energy functional associated with (1). We give
sufficient conditions such that discrete equilibrium solutions are finite-element so-
lutions. Furthermore, assuming (essentially) that there exists a constant M0 ∈ R
such that the primitive of g(x, ·) is strictly increasing on (M0,∞), we prove that
any equilibrium solution uh of (1) satisfies

sup
Ω

uh ≤ max{M0, inf
ΓD

uD,h}.

This result also holds for degenerate diffusion matrices. Thus, when applied to
(3) the maximum principle holds for any value of the Planck constant δ ≥ 0. We
can even allow for diffusion coefficients vanishing on (parts of) Ω. The proof of
this result is based on estimates for the projected test function.

The paper is organized as follows. In the section 2 we state our main hy-
potheses and we prove some auxiliary results. Section 3 is devoted to the discrete
minimum principle. The discrete maximum principle is shown in section 4.

2 Main assumptions and auxiliary results

We impose the following assumptions:

(A1) Ω ⊂ Rd, d ∈ N, is a bounded polyhedral domain, ΓN is a measurable open
subset of ∂Ω, and ΓD = ∂Ω \ ΓN .

(A2) g : Ω× R → R is a Carathéodory function, i.e., g is measurable and for all
x ∈ Ω, the function g(x, ·) : R → R is continuous.

(A3) aij : Ω → R, i, j = 1, . . . , d, are bounded, measurable functions. For each
x ∈ Ω the matrix (aij(x))i,j=1,...,d is symmetric and positive semi-definite.
The functions ai : Ω→ R, i = 1, . . . , d, are bounded and measurable.

(A4) uD ∈ H1(Ω) ∩ L∞(Ω).

Let C∞0 (Ω ∪ ΓN) be the set of restrictions of functions φ ∈ C∞0 (Rd) to Ω
such that supp(φ) ∩ ∂Ω ⊂ ΓN . Furthermore, let H1

0 (Ω ∪ ΓN) be the closure of
C∞0 (Ω ∪ ΓN) in H1(Ω) [23].

Each polyhedral domain has a Lipschitzian boundary. Thus the following
Poincaré-Sobolev inequality holds if measd−1(ΓD) > 0:

‖u‖Lr(Ω) ≤ Cs(r)‖∇u‖L2(Ω) ∀u ∈ H1
0 (Ω ∪ ΓN), (6)
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where r <∞ (if d ≤ 2) and r = 2d/(d− 2) (if d ≥ 3).
The finite-element approximation relies on a weak formulation of (1). The

bilinear form associated with L is a : H1(Ω)×H1(Ω)→ R, defined by

a(u, v) =
d
∑

i,j=1

∫

Ω

aij(∂iu)(∂jv) dx+
d
∑

i=1

∫

Ω

ai(∂iu)v dx.

Assumption (A3) implies the existence of a constant K > 0 such that

a(u, v) ≤ K‖∇u‖L2(Ω)‖v‖H1(Ω) ∀u, v ∈ H1(Ω). (7)

We introduce the functional F : H1(Ω)×H1
0 (Ω ∪ ΓN)→ R ∪ {∞} by

F [u](v) =







∫

Ω

g(x, u)v dx if g(., u)v ∈ L1(Ω)

∞ if g(., u)v 6∈ L1(Ω).

Then the weak formulation of (1) reads

a(u, φ) = F [u](φ) ∀φ ∈ H1
0 (Ω ∪ ΓN), u− uD ∈ H1

0 (Ω ∪ ΓN). (8)

For the finite-element discretization we assume:

(A5) Th is an admissible, regular triangulation of Ω in the sense of Ciarlet [6],
made up of d-simplices τ ∈ Th.

(A6) The edges of each simplex τ ∈ Th which are part of ∂Ω are entirely contained
either in ΓD or ΓN .

The involved finite-element spaces are

Xh := {vh ∈ C(Ω) : vh|τ is affine for all τ ∈ Th},
Vh := {vh ∈ Xh : vh = 0 on ΓD}.

Let xi (1 ≤ i ≤ N), xi (N + 1 ≤ i ≤ N + NN), and xi (N + NN + 1 ≤ i ≤
Nh := N +NN +ND) be the vertices of Th that belong to Ω, to ΓN , and to ΓD,
respectively. Furthermore, φi (1 ≤ i ≤ Nh) are functions of Xh defined via

φi(xj) = δij, 1 ≤ i, j ≤ Nh,

i.e., the functions φi (1 ≤ i ≤ N +NN) and φi (1 ≤ i ≤ Nh) are a basis of Vh or
of Xh, respectively. The finite-element discretization of (8) is

a(uh, vh) = F [uh](vh) ∀vh ∈ Vh, uh − uD,h ∈ Vh, (9)

where uD,h ∈ Xh is an approximation of uD. Finally we assume
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(A7) The matrix (a(φi, φj))ij is an L0 matrix, i.e. a(φi, φj) ≤ 0 for all i 6= j.

(A8) uD,h ∈ Xh.

Assumption (A7) is a condition on the triangulation. As an example, for
L = Laplacian and d = 2, (A7) is satisfied if all angles of the triangles of Th are
not larger than π/2 [6, Thm. 20.2].

The starting point for the Stampacchia truncation method in the continuous
equation is to use the truncated function (u−M)+ = max{0, u−M} ∈ H1

0 (Ω∪ΓN)
with M ∈ R as test function in (8). However, (u−M)+ is usually not in Xh. As
a consequence, we cannot use (u −M)+ as test function in (9). Instead we test
(9) with the projected function

[uh −M ]± :=

N+NN
∑

i=1

(uh(xi)−M)±φi,

where (u)+ := max{0, u} and (u)− := min{0, u}. We observe

Lemma 1. Let (A1)-(A3), (A5)-(A7) hold and let L be uniformly elliptic, i.e.,
there is a constant k > 0 such that a(u, u) ≥ k‖u‖2L2(Ω) for all u ∈ H1

0 (Ω ∪ ΓN).
Furthermore, let vh ∈ Xh and let M ≥ supΓD vh. Then

‖∇[vh −M ]+‖L2(Ω) ≤ K0‖∇vh‖L2(Ω),

where K0 = (K/k)
√

Cs(2)2 + 1, and K and Cs(2) are defined in (7), (6), respec-
tively.

Remark 2. If L = Laplacian, it is not difficult to check that K0 = 1. In fact,
the above estimate holds for any bilinear form a(·, ·) of a differential operator L
provided the triangulation ensures that a(φi, φj) is an L0 matrix.

Proof of Lemma 1. Since a(M, [vh −M ]+) = 0 we deduce via (A7)

a(vh, [vh −M ]+)

= a([vh −M ]+, [vh −M ]+) + a([vh −M ]−, [vh −M ]+)

≥ k‖∇[vh −M ]+‖2L2(Ω)

+
∑

i6=j

(vh(xi)−M)−(vh(xj)−M)+a(φi, φj)

≥ k‖∇[vh −M ]+‖2L2(Ω). (10)

Since [vh −M ]+ ∈ H1
0 (Ω ∪ ΓN) via (6), (7),

k‖∇[vh −M ]+‖2L2(Ω) ≤ a(vh, [vh −M ]+)

≤ K‖∇vh‖L2(Ω)‖[vh −M ]+‖H1(Ω)

≤ K
√

Cs(2)2 + 1‖∇vh‖L2(Ω)‖∇[vh −M ]+‖L2(Ω).
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Lemma 3. Let (A1)-(A3), (A5)-(A7) hold, let a1 = · · · = an = 0 and let
vh ∈ Xh, M ∈ R. Then

a([vh −M ]−, [vh −M ]−) ≤ a(vh, vh).

Proof. Via (A7),

a([vh −M ]+, [vh −M ]−) =
∑

i6=j

(vh(xi)−M)+(vh(xj)−M)−a(φi, φj) ≥ 0.

Since (a(φi, φj)ij is symmetric and positive semi-definite, we obtain

a(vh, vh) = a([vh −M ]−, [vh −M ]−) + 2a([vh −M ]+, [vh −M ]−)

+ a([vh −M ]+, [vh −M ]+)

≥ a([vh −M ]−, [vh −M ]−) + a([vh −M ]+, [vh −M ]+)

≥ a([vh −M ]−, [vh −M ]−).

Furthermore, we need an estimate for [v]+ − (v)+ for v ∈ Xh. Since [v]+ is
the linear interpolation of (v)+, we can use the interpolation results of [6]:

Lemma 4. Let 1 ≤ s ≤ 2d/(d− 2) (s <∞ if d ≤ 2) and let v ∈ Xh. Then

‖[v]+ − (v)+‖Ls(Ω) ≤ CIh
1+d/s−d/2‖∇([v]+ − (v)+)‖L2(Ω),

where CI > 0 is a constant depending on s and d.

Actually the proof in [6] needs the assumption H1(Ω) ↪→ C0(Ω) which holds
only for d = 1. However, one easily verifies along the argumentation in [6] that
the estimate of Lemma 4 also holds for H1(Ω) ∩ C0(Ω), in particular for Xh.

The proof of the following technical lemma can be found in [6, p. 150]:

Lemma 5. Let r ∈ [1,∞). Then there is a constant κr > 0 such that for each

d-simplex τ in Rd (with vertices x
(τ)
1 , . . . , x

(τ)
d+1) and for each affine, non-negative

function v : τ → R,

‖v‖rLr(τ) ≥ κrmeas(τ)
d+1
∑

i=1

v(x
(τ)
i )r.

Remark 6. The constant κr can explicitly be calculated by transforming τ to
a (reference) d-simplex σ in Rd with vertices x

(σ)
1 , . . . , x

(σ)
d+1. If v : σ → R is

affine and non-negative, then v(x) =
∑d+1

i=1 v(x
(σ)
i )φ

(σ)
i (x), where the barycentric

coordinate functions φ
(σ)
i : σ → R, i = 1, . . . , d+ 1, are affine, non-negative with

φ
(σ)
i (x

(σ)
j ) = δij, i, j = 1, . . . , d+ 1, and it holds [6, p. 151]

κr = meas (σ)−1 min
i=1,...,d+1

‖φ(σ)i )‖rLr(σ).

If d = 2, then we can choose σ to be the triangle with vertices (0, 0), (0, 1), (1, 0)
and we deduce κr = 2/(r + 1)(r + 2).
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3 A discrete minimum principle

We recall the minimum principle for the continuous case using the Stampacchia
truncation technique. Then we prove the discrete minimum principle.

3.1 The continuous case

We assume:

(B1) measd−1(ΓD) > 0.

(B2) The operator L of (2) is uniformly elliptic, i.e., there exists k > 0 such that
a(u, u) ≥ k‖∇u‖L2(Ω) for all u ∈ H1

0 (Ω ∪ ΓN).

(B3) There exist m0 ∈ R, p > max{1, d/2} and g ∈ Lp(Ω) such that

g(x, u) ≥ g(x) for x ∈ Ω and u ≤ m0.

Proposition 7. Let q, r > 1 be such that 1/p + 1/q + 1/r = 1. If d ≤ 2 we
choose r > q, otherwise r = 2d/(d− 2). Furthermore, let u ∈ H1

0 (Ω ∪ ΓN) + uD

be a weak solution of (8). Then

inf
Ω
u ≥ min{m0, inf

ΓD
uD} − C0‖g‖Lp(Ω), (11)

where
C0 = 2r/(r−q)k−1Cs(r)

2meas (Ω)(r−q)/rq (12)

and Cs(r) is the Poincaré-Sobolev constant in (6).

In particular, if m0 > 0, if infΓD uD > 0 and if ‖g‖Lp(Ω) is small enough then
u ≥ c > 0 in Ω for some constant c.

The proof is a variant of Stampacchia’s maximum principle [22] and relies on
the following lemma which is proved, for instance, in [23, p. 105].

Lemma 8. Let H : [α, β) → [0,∞) be a non-increasing function with α < β ≤
∞. Suppose there are positive constants κ, r, γ with γ > 1 and

H(µ) ≤ κr

(µ−m)r
H(m)γ for α < m < µ < β.

If M∗ = 2γ/(γ−1)κH(α)(γ−1)/r is such that α +M ∗ < β, then

H(α+M ∗) = 0.
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Proof of Proposition 7. Let m < min{m0, infΓD uD}. Then (−u+m)+ ∈ H1
0 (Ω∪

ΓN) can be used as a test function in (8) and we obtain, by (B2) and (B3),

k‖∇(−u+m)+‖2L2(Ω) ≤ a((−u+m)+, (−u+m)+)

= −a(u, (−u+m)+)

= −
∫

Ω

g(x, u) (−u+m)+dx

≤ −
∫

Ω

g(x) (−u+m)+dx (13)

≤ ‖g‖Lp(Ω)‖(−u+m)+‖Lr(Ω)(meas (u < m))1/q

≤ ‖g‖Lp(Ω)Cs(r)‖∇(−u+m)+‖L2(Ω)(meas (u < m))1/q,

where p, q, r are specified above, and in the last inequality we used the Poincaré-
Sobolev inequality (6). This estimate and the elementary inequality

‖(−u+m)+‖Lr(Ω) ≥ (m− ν)(meas (u < ν))1/r ∀ν < m

together imply via the Poincaré-Sobolev inequality (6)

(m− ν)(meas (u < ν))1/r ≤ Cs(r)‖∇(−u+m)+‖L2(Ω)

≤ Cs(r)
2k−1‖g‖Lp(Ω)(meas (u < m))1/q

and for all ν < m

meas (u < ν) ≤
Cs(r)

2rk−r‖g‖rLp(Ω)

(m− ν)r
(meas (u < m))r/q.

The assumptions on q and r imply γ := r/q > 1, because due to assumption p >
max{1, d/2}. We set α = −min{m0, infΓD uD}, β = ∞, and H(y) = meas (u <
−y) for y ∈ [α, β). Hence, we can apply Lemma 8 with κ = Cs(r)

2 k−1 ‖g‖Lp(Ω)

to deduce
H
(

α + 2γ/(γ−1)κH(α)(γ−1)/r
)

= 0.

In view of the estimate H(α) ≤ meas (Ω) we conclude

u ≥ min{m0, inf
ΓD

uD} − C0‖g‖Lp(Ω) in Ω,

where C0 is as above.

3.2 The discrete case

We use the projected function [−uh +m]+ defined in section 2 as a test function.
Replacing in Stampacchia’s argument the term (−uh+m)+ by [−uh+m]+ yields
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extra terms which can be estimated under additional assumptions on the non-
linearity g(x, u). For this, let uh ∈ Xh + uD,h be a solution of (9) such that

sup
Ω

uh ≤M0, ‖∇uh‖L2(Ω) ≤ D0. (14)

Estimates for M0 and D0 are given in section 3.3. We assume:

(B4) There exists g∗ ∈ Lp(Ω) with p > max{1, d/2} such that

g(x, u) ≥ g∗(x) for x ∈ Ω, m0 ≤ u ≤M0,

where m0 is as in (B3) and M0 is defined in (14).

(B5) There exists g ∈ Lp(Ω) with p > max{1, d/2} such that

g(x, u) ≤ g(x) for x ∈ Ω, u ∈ R.

Theorem 9. Let (A1)-(A8), (B1)-(B4) and (14) hold. Moreover, assume d ≤ 5
and p > max{1, 2d/(6− d)}. Then

min
Ω

uh ≥ min{m0, inf
ΓD

uD,h} − C1‖g‖1/2Lp(Ω) − C2h
α, (15)

where the positive constants α, C1 and C2 are defined as follows:

α =
1

2
+

d

2s
− d

4
,

C1,2 = 2r/(r−2q)(meas (Ω))(r−2q)/2rqCs(r)κ
−1/r
r (D0/k)

1/2C∗1,2,

where

C∗1 =
√

Cs(s), C∗2 =
√

CI(K0 + 1)(‖g‖Lp(Ω) + ‖g∗‖Lp(Ω)),

and r > 2q, s > p/(p− 1) if d ≤ 2, r = 2d/(d− 2), s ∈ (dp/(2p− d), 2d/(d− 2)]
if 3 ≤ d ≤ 5, and 1/q = 1 − 1/p − 1/s ∈ (0, 1). The constant K0 is defined in
Lemma 1.

Remark 10. (1) For monotone non-linearities, Kerkhoven et al. [13] proved a
similar discrete minimum principle with α = 2. In our case the exponent α
in Theorem 9 is always smaller than one.

(2) If we set h = 0 the bounds of Proposition 7 will not be recovered. This is
not surprising since in the proof of Proposition 7 we can divide by ‖∇(−u+
m)+‖L2(Ω). This is not possible in the proof of Theorem 9.
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(3) The discrete solution uh corresponding to the problem

−∆u = −u(log u+ f(x)) in Ω, u = uD > 0 on ΓD, uν = 0 on ΓN ,

with f0 ≤ f(x) ≤ f1 for x ∈ Ω and for some f0, f1 ∈ R satisfies, by Theorem
9,

min
Ω

uh ≥ min{exp(−f1), inf
ΓD

uD,h} − C2h
α > 0,

if uD,h > 0 and if h > 0 is small enough.

Proof of Theorem 9. Letm < m1 = min{m0, infΓD uD,h} and use [−uh+m]+ ∈ Vh

as test function in (9) to obtain

a(uh, [−uh +m]+) = F [uh]([−uh +m]+). (16)

The inequality (10) allows to estimate the left-hand side:

a(−uh, [−uh − (−m)]+) = −a(uh, [−uh +m]+) ≥ k‖∇[−uh +m]+‖2L2(Ω). (17)

Concerning the right-hand side of (16) we introduce the set E(m) = {[−uh +
m]+ > 0} and employ (B3)-(B4) and the elementary inequality [−uh + m]+ ≥
(−uh +m)+, yielding

−F [uh]([−uh +m]+)

= −
∫

E(m)

g(x, uh)(−uh +m)+dx

−
∫

E(m)∩{uh≤m0}

g(x, uh)
(

[−uh +m]+ − (−uh +m)+
)

dx

−
∫

E(m)∩{uh>m0}

g(x, uh)
(

[−uh +m]+ − (−uh +m)+
)

dx

≤ −
∫

E(m)

g(x)(−uh +m)+dx

−
∫

E(m)∩{uh≤m0}

g(x)
(

[−uh +m]+ − (−uh +m)+
)

dx

−
∫

E(m)∩{uh>m0}

g∗(x)
(

[−uh +m]+ − (−uh +m)+
)

dx.

The choice of the parameters p, s and q allows the use of the Hölder inequality:

−F [uh]([−uh +m]+) ≤ ‖g‖Lp(Ω)‖(−uh +m)+‖Ls(Ω)(measE(m))1/q

+
(

‖g‖Lp(Ω) + ‖g∗‖Lp(Ω)

)

‖[−uh +m]+ − (−uh +m)+‖Ls(Ω)

× (measE(m))1/q

≤ ‖g‖Lp(Ω)Cs(s)‖∇(−uh +m)+‖L2(Ω)(measE(m))1/q

+
(

‖g‖Lp(Ω) + ‖g∗‖Lp(Ω)

)

CIh
1+d/s−d/2

× ‖∇([−uh +m]+ − (−uh +m)+)‖L2(Ω)(measE(m))1/q.

11



In the last inequality we used Lemma 4 which is possible since s ≤ 2d/(d− 2) (if
d ≥ 3) and s <∞ if d ≤ 2. By Lemma 1,

‖∇([−uh +m]+ − (−uh +m)+)‖L2(Ω)

≤ ‖∇[−uh +m]+‖L2(Ω) + ‖∇(−uh +m)+‖L2(Ω) ≤ (K0 + 1)‖∇uh‖L2(Ω),

and therefore, observing (14),

−F [uh]
(

[−uh +m]+
)

≤ D0(measE(m))1/q
[

Cs(s)‖g‖Lp(Ω)

+ CI(K0 + 1)h1+d/s−d/2(‖g‖Lp(Ω) + ‖g∗‖Lp(Ω))
]

.

Putting together (17) and the above estimate we deduce from the Poincaré-
Sobolev inequality (6) for r = 2d/(d− 2) (if d ≥ 3) or 2q < r <∞ (if d ≤ 2):

‖[−uh +m]+‖2Lr(Ω) ≤ Cs(r)
2(D0/k)(measE(m))1/q

[

Cs(s)‖g‖Lp(Ω)

+ CI(K0 + 1)h1+d/s−d/2(‖g‖Lp(Ω) + ‖g∗‖Lp(Ω))
]

.

We estimate the left-hand side from below. For this, let Th(ν) = {τ ∈ Th : τ

has a vertex x
(τ)
j such that ν > uh(x

(τ)
j }. Then, by Lemma 5, for any ν < m,

‖[−uh +m]+‖rLr(Ω) =
∑

τ∈Th

‖[−uh +m]+‖rLr(τ)

≥ κr

∑

τ∈Th

meas(τ)
d+1
∑

j=1

(

(−uh(x
(τ)
j ) +m)+

)r

= κr

∑

τ∈Th

meas(τ)
∑

j, m>uh(x
(τ)
j )

(−uh(x
(τ)
j ) +m)r

≥ κr

∑

τ∈Th(ν)

meas(τ)
∑

j, ν>uh(x
(τ)
j )

(−uh(x
(τ)
j ) +m)r

≥ κr

∑

τ∈Th(ν)

meas(τ)
∑

j, ν>uh(x
(τ)
j )

(−ν +m)r

≥ κr

∑

τ∈Th(ν)

meas(τ)(m− ν)r = κr(m− ν)rmeas(E(ν)).

Hence, if we set

K̄(s, r) = Cs(r)κ
−1/r
r (D0/k)

1/2
[√

Cs(s)‖g‖Lp(Ω)

+ h1/2+d/2s−d/4
√

CI(K0 + 1)(‖g‖Lp(Ω) + ‖g∗‖Lp(Ω))
]

,

then for all ν < m,

meas (E(ν)) ≤ K̄(s, r)r

(m− ν)r
(meas (E(m))r/2q.
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We introduce the function H : [α,∞) → [0,∞), where α = −m1, β = ∞, by
H(y) = meas(E(−y)). Then H is non-increasing and

H(y) ≤ K̄(r, s)r

(y − z)r
H(z)r/2q for α < z < y.

We claim that r/2q > 1, Indeed, if d ≥ 3 then

r

2q
=

d

d− 2

(

1− 1

p
− 1

s

)

>
d

d− 2

(

1− 1

p
+

1

p
− 2

d

)

= 1,

and if d ≤ 2, then r/2q > 1 by assumption. We deduce from Stampacchia’s
Lemma 8 that H(α +M ∗) = 0, where M ∗ = 2r/(r−2q)H(α)(r−2q)/2rqK̄(r, s), such
that in view of H(α) ≤ meas (Ω) the estimate

uh ≥ m1 − 2r/(r−2q)(meas (Ω))(r−2q)/2rqK̄(r, s)

follows.

3.3 Estimates for uh and ∇uh

Theorem 9 involves upper estimates on uh and ‖∇uh‖L2(Ω). In this section we
give estimates for these quantities independent of h.

Proposition 11. Let (A1)-(A8) and (B1)-(B2), (B5) hold and let uh be a weak
solution of (9). Then

sup
Ω

uh ≤ sup
ΓD

uD,h + C3‖g‖Lp(Ω),

where
C3 = 2r/(r−q)k−1Cs(r)

2κ−1/rr (meas (Ω))(r−q)/rq,

Cs(r) is the Poincaré-Sobolev constant in (6), and 1 < q < r are defined by
1/p+ 1/q + 1/r = 1 and r <∞ (if d ≤ 2), r = 2d/(d− 2) (if d > 2).

Proof. Let M ≥ supΓD uD,h. Then [uh −M ]+ is an admissible test function in
(9):

a(uh, [uh −M ]+) = F [uh]([uh −M ]+).

The estimate (10) again yields

a(uh, [uh −M ]+) ≥ k‖∇[uh −M ]+‖2L2(Ω). (18)

For the estimate of F [uh]([uh−M ]+) we introduce the set E(M) = {[uh−M ]+ >
0}. Then, using (B5),

F [uh]([uh −M ]+) =

∫

E(M)

g(x, uh)[uh −M ]+dx

≤
∫

E(M)

g(x)[uh −M ]+dx

≤ ‖g‖Lp(Ω)‖[uh −M ]+‖Lr(Ω)(measE(M))1/q,
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where p, q, r are specified above. We infer from the Poincaré-Sobolev embedding
(6):

F [uh]([uh −M ]+) ≤ Cs(r)‖g‖Lp(Ω)‖∇[uh −M ]+‖L2(Ω)(meas E(M))1/q.

Putting together the above estimates, we obtain

‖∇[uh −M ]+‖L2(Ω) ≤ k−1Cs(r)‖g‖Lp(Ω)(measE(M))1/q,

and, again with the Poincaré-Sobolev inequality,

‖[uh −M ]+‖Lr(Ω) ≤ k−1Cs(r)
2‖g‖Lp(Ω)(meas E(M))1/q.

Proceeding as in the proof of Theorem 9 we deduce

‖[uh −M ]+‖rLr(Ω) ≥ κr(µ−M)rmeas (E(µ))

for all µ > M . Therefore, setting α = supΓD uD,h and β = ∞, the function
H : [α, β) → [0,∞), H(µ) = meas (E(µ)), is non-increasing and we infer for all
µ, M with α < M < µ < β the inequality

H(µ) ≤
Cs(r)

2r‖g‖rLp(Ω)

κrkr(µ−M)r
H(M)r/q.

By assumption, it holds r/q > 1. Hence we can apply Lemma 8 with κ =

Cs(r)
2‖g‖Lp(Ω)/κ

1/r
r k to deduce, taking into account H(α) ≤ meas (Ω),

uh ≤ sup
ΓD

uD,h + C3‖ḡ‖Lp(Ω) in Ω.

An estimate of ‖∇uh‖L2(Ω) clearly depends on the precise structure of the
non-linearity g(x, u). However, essentially under the assumptions (B3) and (B5),
we can prove the following result.

Proposition 12. Let (A1)-(A8) and (B1)-(B3), (B5) hold. Furthermore, we
assume that G1 = maxm≤u≤M |g(·, u)| ∈ Lp(Ω), where m = min{m0, infΓD uD,h}
and M = supΓD uD,h. Let uh be a weak solution of (9). Then

‖∇uh‖L2(Ω) ≤ (KCs(2)/k + 1)‖∇uD,h‖L2(Ω) + C4,

where k is the coercitivity constant defined in (B2), K is defined in (7),

C4 = Cs(p/(p− 1))(‖g‖Lp(Ω) + ‖g‖Lp(Ω) + ‖G1‖Lp(Ω))/k,

and Cs(p/(p− 1)) is the Poincaré-Sobolev constant defined in (6).
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Proof. The proof is not difficult. With the test function uh − uD,h we estimate

k‖∇(uh − uD,h)‖2L2(Ω) ≤ a(uh − uD,h, uh − uD,h)

=

∫

Ω

g(x, uh)(uh − uD,h)dx− a(uD,h, uh − uD,h)

≤
∫

{uh≤m}

g(x)(uh − uD,h)dx+

∫

{m<uh<M}

G1(x)|uh − uD,h|dx

+

∫

{uh≥M}

g(x)(uh − uD,h)dx

+KCs(2)‖∇uD,h‖L2(Ω)‖∇(uh − uD,h)‖L2(Ω)

≤
(

‖g‖Lp(Ω) + ‖g‖Lp(Ω) + ‖G1‖Lp(Ω)

)

‖uh − uD,h‖Lq(Ω)

+KCs(2)‖∇uD,h‖L2(Ω)‖∇(uh − uD,h)‖L2(Ω),

where q = p/(p − 1). Since p > max{1, d/2} ≥ 2d/(d + 2) we have for d ≥ 3,
q ≤ 2d/(d− 2). Thus, with the Poincaré-Sobolev inequality (6),

‖∇(uh − uD,h)‖L2(Ω) ≤ k−1Cs(q)(‖g‖Lp(Ω) + ‖g‖Lp(Ω) + ‖G1‖Lp(Ω))

+ k−1KCs(2)‖∇uD,h‖L2(Ω),

from which the assertion follows.

4 A discrete maximum principle

In this section maximum principles for equilibrium solutions are considered. In
the first subsection equilibrium solutions are introduced. A corresponding maxi-
mum principle is formulated. The second subsection deals with a discrete version
of this principle.

4.1 The continuous case

In the sequel let

G : Ω× R → R, G(x, s) =

∫ s

0

g(x, σ)dσ.

We assume

(C1) For all i = 1, . . . , d: ai = 0. We write a0(u, v) instead of a(u, v).

(C2) For all s ∈ R: G(·, s) ∈ L1(Ω).

(C3) There is a number M0 ∈ R such that for all x ∈ Ω the function G(x, ·)
strictly decreases on (M0,∞).
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Differently from the assumptions of the previous sections, the pure Neumann
boundary case Ω = ΓN and the case of degenerate diffusion matrices are included.
Assumption (C3) is satisfied if, for instance, there is M0 ∈ R such that for x ∈ Ω
and s > M0 it holds g(x, s) < 0.

We introduce the functional

E : C → R, E(v) =
1

2
a0(v, v)−

∫

Ω

G(x, v)dx, (19)

where
C = {v ∈ uD +H1

0 (Ω ∪ ΓN) : G(·, v) ∈ L1(Ω)}.
Definition 13. Let (A1)-(A8) and (C1)-(C3) hold. Then the function u ∈ C is
an equilibrium solution iff u minimizes the functional E:

E(u) = inf
v∈C

E(v).

Here we do not discuss the existence or uniqueness of equilibrium solutions
and whether or not equilibrium solutions are weak solutions of (8). Instead we
are interested in the following maximum principle.

Proposition 14. Let (A1)-(A8) and (C1)-(C3) hold and let u be an equilibrium
solution of (8). Then

sup
Ω

u ≤ max{sup
ΓD

uD,M0},

with the convention supΓD uD = −∞ whenever ΓD has zero measure.

Proof. Indirect. We assume supΩ u > K := max{supΓD uD,M0}. Then there
exists ε > 0 such that Ωε := {u > K + ε} has non-zero measure. We introduce
uε(x) := u(x) − (u(x) − (K + ε))+ = min{u(x), K + ε} for x ∈ Ω. Then uε = u
on Ω\Ωε and uε = K + ε < u on Ωε.

We claim that uε ∈ C. Clearly, uε ∈ uD + H1
0 (Ω ∪ ΓD). Since u ∈ C,

G(·, u) ∈ L1(Ω). Moreover, by assumption (C2), G(·, K + ε) ∈ L1(Ω). Therefore
−G(·, uε) = min{−G(·, u),−G(·, K + ε)} ∈ L1(Ω). Thus uε ∈ C and E(u) ≤
E(uε).

Now we calculate

E(uε)− E(u) =
1

2

d
∑

i,j=1

∫

Ωε

aij((∂iuε)(∂juε)− (∂iu)(∂ju))dx

−
∫

Ωε

(G(x, uε)−G(x, u))dx

= −1

2

d
∑

i,j=1

∫

Ωε

aij(∂iu)(∂ju) dx−
∫

Ωε

(G(x,K + ε)−G(x, u))dx

< 0,
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since (aij(x)) is positive semi-definite and G(x, ·) is strictly decreasing on (K +
ε,∞).

We illustrate Proposition 14 by two examples.

Example 15. Consider the equation (3) with (for the sake of simplicity) homo-
geneous Dirichlet boundary conditions:

−δ2∆u = −u(log u+ f(x)) in Ω, u = 0 on ΓD, uν = 0 on ΓN .

It can be seen that this problem has an equilibrium solution u minimizing the
function

E1(v) =
δ2

2

∫

Ω

|∇v|2dx+
1

4

∫

Ω

(v+)2(2 log(v+)− 1 + 2f(x))dx

in the set

C1 = {v ∈ H1
0 (Ω) : (v

+)2(log(v+)− 1 + 2f ∈ L1(Ω)} = H1
0 (Ω).

Since g(x, s) := −(s)+(log(s)+ + f(x)) < 0 for x ∈ Ω and s > exp(− infΩ f), we
deduce from Proposition 14:

sup
Ω

u ≤ exp(− inf
Ω
f).

This result can be also obtained from standard Stampacchia estimates for weak
solutions (using (u−M)+ for appropriate M ∈ R as a test function in the weak
formulation).

Example 16. A rather extreme case concerns the choice aij = 0 for all i, j.
Proposition 14 also applies in this situation. The crucial point, however, is the
existence of equilibrium solutions. Let us consider

0 = exp(u)− 1

1 + x2
, u ∈ H1

0 (0, 1), (20)

with corresponding energy functional

E2(v) =
1

2

∫ 1

0

(

exp(v(x))− 1− v(x)

1 + x2

)

dx,

to be minimized in C2 = H1
0 (0, 1). E2 has no minimizer in C2, because each

minimizer has to satisfy (20), i.e. u(x) = − log(1+x2), which does not belong to
H1
0 (0, 1). Hence Proposition 14 does not yield any information in this situation.
However, if we consider the problem

0 = exp(u)− 1

1 + x2
, u+ x log 2 ∈ H1

0 (0, 1)

then E2 remains to be the corresponding energy functional but now to be mini-
mized in

C ′2 = uD +H1
0 (0, 1), uD(x) = −x log 2.

In this case, u(x) = − log (1 + x2) is the unique minimizer of E2 in C ′2 and we
obtain u ≤ 0 from Proposition 14.
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4.2 The discrete case

In this subsection we are concerned with a discrete version of the maximum
principle for equilibrium solutions. We assume in addition to (C1)-(C3) of the
previous subsection:

(C4) There is a function g0 ∈ C0(R) with primitive G0 such that g(x, s) ≤ −g0(s)
for x ∈ Ω and s ∈ R, G0(M0) = sups<M0

G0(s), and G0 is strictly increasing
on (M0,∞), where M0 is defined in (C3).

(C5) For each A > 0 there is a function gA ∈ L1(Ω) such that |g(x, s)| ≤ gA(x)
for x ∈ Ω and −A ≤ s ≤ A.

If g0(s) is positive for all s > M0, then (C4) is satisfied. Assumption (C5) is
needed in order to apply Lebesgue’s dominated convergence theorem.

Now we introduce the discrete analogue of equilibrium solutions.

Definition 17. Let (A1)-(A8) and (C1)-(C3) hold and let E be as in (19). We
set

Ch := {vh ∈ uD,h + Vh : G(x, vh) ∈ L1(Ω)}.
Then uh is an Xh-equilibrium solution of (1) iff

uh ∈ Ch and E(uh) = inf
vh∈Ch

E(vh).

Under the condition (C5) each Xh-equilibrium solution is a finite-element
solution:

Proposition 18. Let (A1)-(A8) and (C1)-(C3), (C5) hold. Then each Xh-
equilibrium solution uh of (1) is a solution of (9).

Proof. Since uh ∈ Ch, we have uh − uD,h ∈ Vh. It remains to be proved that uh

satisfies the equation in (9). Since uh is a minimizer of E, E(uh+εvh)−E(uh) ≥ 0
for all vh ∈ Ch and ε > 0 and therefore

0 ≤ lim inf
ε→0

1

ε
(E(uh + εvh)− E(uh))

= a0(uh, vh)− lim sup
ε→0

1

ε

∫

Ω

(G(x, uh + εvh)−G(x, uh))dx.

Since

lim
ε→0

1

ε
(G(x, uh(x) + εvh(x))−G(x, uh(x))) = g(x, uh(x))vh(x)

and due to (C5),
∣

∣

∣

∣

1

ε
(G(x, uh(x) + εvh(x))−G(x, uh(x)))

∣

∣

∣

∣

= |g(x, uh(x) + εθ(ε, x)vh(x))|

≤ gA(x) ∈ L1(Ω),
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for some θ(x, ε) ∈ (0, 1). Thus Lebesgue’s dominated convergence Theorem ap-
plies and we deduce

0 ≤ a0(vh, vh)−
∫

Ω

g(x, uh(x))vh(x)dx.

This inequality will also hold if we replace vh by −vh. Thus uh solves (9).

Theorem 19. Let (A1)-(A8) and (C1)-(C4) hold and let uh be a Xh-equilibrium
solution of (1). Then

max
Ω

uh ≤ max{M0,max
ΓD

uD,h}.

Proof. Indirect. We assume maxΩ uh > K := max{M0,maxΓD uD,h}. Similar
to the proof of Proposition 14 we consider for fixed ε ∈ (0,maxΩ uh − K) the
projected function

uε
h := uh − [uh − (K + ε)]+.

We shall prove E(uε
h) < E(uh).

For this, we introduce

T ∗h = {τ ∈ Th : max
x∈τ

uh(x) > K + ε}, Ωε =
⋃

τ∈T ∗

h

τ.

Clearly, T ∗h 6= ∅. Since uε
h = uh on Ω\Ωε, we obtain

E(uε
h)− E(uh) =

1

2

(

a0(u
ε
h, u

ε
h)− a0(uh, uh)

)

−
∑

τ∈T ∗

h

∫

τ

(G(x, uε
h)−G(x, uh)) dx.

From assumption (C1) and Lemma 3 we deduce via a0(K+ε, ·) = a0(·, K+ε) = 0,

a0(u
ε
h, u

ε
h)

= a0(uh − (K + ε)− [uh − (K + ε]+, uh − (K + ε)− [uh − (K + ε]+)

= a0([uh − (K + ε)]−, [uh − (K + ε)]−)

≤ a0(uh, uh).

Therefore

E(uε
h)− E(uh) ≤ −

∑

τ∈T ∗

h

∫

τ

(G(x, uε
h)−G(x, uh)) dx,

and we shall prove for all τ ∈ T ∗h ,
∫

τ

G(x, uε
h(x))dx >

∫

τ

G(x, uh(x))dx. (21)
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We write

uh|τ =
d+1
∑

j=1

m
(τ)
j φ

(τ)
j ,

where uh|τ is the restriction of uh to τ , x
(τ)
1 , . . . , x

(τ)
d+1 are the vertices of τ , and

φ
(τ)
1 , . . . , φ

(τ)
d+1 are the finite-element basis elements restricted to τ (see section 2).

Then

uε
h|τ =

d+1
∑

j=1

[m
(τ)
j ]φ

(τ)
j ,

where [m
(τ)
j ] = min{m(τ)

j , K + ε}. We set

J+ = {j ∈ {1, . . . , d+ 1} : m(τ)
j > K + ε}.

For τ ∈ T ∗h , J
+ is non-empty. Let x ∈ τ . We calculate, using (C4) and uε

h(x) ≤
uh(x),

G(x, uε
h(x))−G(x, uh(x)) = −

∫ uh(x)

uε
h
(x)

g(x, s)ds ≥
∫ uh(x)

uε
h
(x)

g0(s)ds

= G0(uh(x))−G0(u
ε
h(x)).

It remains to prove
∫

τ
G0(u

ε
h)dx <

∫

τ
G0(uh)dx. For this, we introduce the aux-

iliary function

H0 : Rd+1 → R, H0(c1, . . . , cd+1) =

∫

τ

G0

(

d+1
∑

j=1

cjφ
(τ)
j

)

dx.

Setting [m] := ([m
(τ)
1 ], . . . , [m

(τ)
d+1]) and m := (m

(τ)
1 , . . . ,m

(τ)
d+1), we have to show

H0([m]) < H0(m).
Since G0 is strictly increasing on (M0,∞) (by assumption (C4)), the inequal-

ity H0([m]) < H0(m) is immediate if min{[m(τ)
1 ], . . . , [m

(τ)
d+1]} = max{[m(τ)

1 ], . . . ,

[m
(τ)
d+1]} = K+ε, since in this case, uε

h < uh holds in the interior of τ . We assume

therefore that min{[m(τ)
1 ], . . . , [m

(τ)
d+1]} < max{[m(τ)

1 ], . . . , [m
(τ)
d+1]} = K + ε. In

particular, J+ 6= {1, . . . , d + 1}. The function H0 is continuously differentiable
with

∂H0

∂cα
(c1, . . . , cd+1) =

∫

τ

g0

(

d+1
∑

j=1

cjφ
(τ)
j

)

φ(τ)α dx.

It holds [m
(τ)
j ] = m

(τ)
j for all j 6∈ J+, hence

H0(m)−H0([m]) =

∫ 1

0

∇H0(sm+ (1− s)[m]) · (m− [m])ds (22)

=
∑

j∈J+

∫ 1

0

∂H0

∂cj
(sm+ (1− s)[m])(m

(τ)
j − [m

(τ)
j ])ds.
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Set cj = sm
(τ)
j + (1 − s)[m

(τ)
j ]. We assume without loss of generality that the

vertices are numbered in such a way that c1 = max{c1, . . . , cd+1} and cd+1 =
min{c1, . . . , cd+1}. Then c1 > cd+1 since J+ is neither empty nor the whole set
{1, . . . , d+ 1}. With this numbering, 1 ∈ J+ and

c1 = sm
(τ)
1 + (1− s)[m

(τ)
1 ] = sm

(τ)
1 + (1− s)(K + ε) > K + ε > M0.

As G0 is strictly increasing on (M0,∞), this implies

G0(c1) > G0(M0) = sup
σ<M0

G0(σ) ≥
1

c1 − cd+1

∫ c1

cd+1

G0(σ)dσ. (23)

Introducing barycentric coordinates (see [6]) we can reformulate

H0(c1, . . . , cd+1)

= meas(τ)

∫

(0,1)d
G0(c1λ1 + · · ·+ cdλd + cd+1(1− λ1 − · · · − λd))d(λ1, . . . , λd)

=
meas(τ)

c1 − cd+1

∫ c1

cd+1

G0(σ)dσ,

where σ = (σ1, . . . , σd), σ2 = λ2, . . . , σd = λd and

σ1 = c1λ1 + · · ·+ cdλd + cd+1(1− λ1 − · · · − λd).

Thus, by (23),

∂H0

∂c1
(c1, . . . , cd+1) =

meas(τ)

c1 − cd+1

(

G0(c1)−
1

c1 − cd+1

∫ c1

cd+1

Go(σ)dσ

)

> 0.

Finally, we obtain from (22):

H0(m)−H0([m]) > 0.

4.3 Discussion

We re-consider the finite element discretizations of Examples 15 and 16.It is
assumed that (A1)-(A8) hold. The verification of (C1)-(C3) is left to the reader.

Example 15 (revisited). The proof of existence of a Xh-equilibrium solution
uh is as straight forward as in the “continuous” case. Choosing

g◦(s) = s+
(

log(s+) + inf
Ω
f
)

,

we easily check (C4) with G◦(s) = 1
4
(s+)2 (2 log(s+)− 1 + 2 infΩ f), and M0 =√

e exp (− infΩ f). We obtain an estimate on max uh which is a bit worse (more
precisely, a factor

√
e larger) than in the “continuous” case.

Example 16 (revisited). Certainly each constant function uc = c ∈ (−∞, 10]
is a Xh-equilibrium solution of (20). The verification of (C4) is easy for g(x, s) =
g0(s) = (s− 10)+. Hence uh ≤ 10 for each Xh-equilibrium solutions of (20).
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