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Abstract. The semiclassical limit in a quantum energy-transport model for
semiconductors is proved. The system consists of a nonlinear parabolic fourth-
order equation for the electron density, including temperature gradients; a
degenerate elliptic heat equation for the electron temperature; and the Poisson

equation for the electric potential. The equations are solved in a bounded
domain with periodic boundary conditions. The asymptotic limit is based on
a priori estimates independent of the scaled Planck constant, obtained from
entropy functionals, on the use of Gagliardo-Nirenberg inequalities, and weak

compactness methods.

1. Introduction. Quantum fluid equations may be employed to model and sim-
ulate quantum diffusive effects in nanoscale semiconductor devices [4, 18]. These
models can be derived by applying a moment method to the relaxation-time Wigner
equation and by performing a Chapman-Enskog expansion around the quantum
equilibrium [11]. They are alternatives to dissipative Schrödinger equations [12, 22]
whose numerical solution is generally very time-consuming. The simplest quantum

2000 Mathematics Subject Classification. Primary: 35B25, 35J40, 35Q40; Secondary: 82D37.
Key words and phrases. Quantum energy transport, semiclassical limit, degenerate elliptic

equation, fourth-order equation, semiconductors.
The authors acknowledge partial support from the bilateral Austrian-Chinese Project, financed

by the Austrian Science Fund (FWF), grant I395, and by the National Science Foundation of China.

The first author has been supported by the National Natural Science Foundation of China (grants
10871112 and 11011130029). The second author acknowledges support from the National Science
Foundation (NSF) of the USA, grant DMS 10-11738, the Research Fund for the Doctoral Program
of Higher Education of China (grant 20090005120009), the Fundamental Research Funds for the

Central Universities (grant BUPT2009RC0702), and the Talents Scheme Funds of BUPT. The
last author acknowledges partial support from the FWF, grant P22108; the Austrian-Croatian
Project HR 01/2010; the Austrian-French Project FR 07/2010; and the Austrian-Spanish Project

ES 08/2010 of the Austrian Exchange Service (ÖAD)..
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fluid model are the quantum drift-diffusion or density-gradient equations, which are
popular in engineering applications since they are capable of describing quantum
confinement and tunneling effects and they can be solved numerically in an efficient
way [1, 2]. For mathematical results, we refer to, e.g., [8, 5, 6, 14, 19] and references
therein.

Quantum drift-diffusion models do not take into account heating phenomena,
which may be important even in quantum devices. Temperature effects can be in-
cluded by computing more moments of the Wigner equation, e.g. the energy density,
which leads to quantum energy-transport equations. Grubin and Kreskovsky seem
to be the first who have proposed a quantum energy-balance system [15]. Later, a
nonlocal quantum energy-transport model has been derived by Degond et al. from
a Wigner equation [9]. In the O(~4) approximation (where ~ is the reduced Planck
constant), the equations become local, but their mathematical structure is still un-
clear. Another quantum energy-transport model has been studied by Chen and Liu
[7]. Their model consists of a quantum drift-diffusion-type equation for the particle
density, coupled to an energy equation.

In [20], a simplified quantum energy-transport model has been formally derived in
the large-time and small-velocity limit from the quantum hydrodynamic equations
[17], and the existence of global-in-time weak solutions has been proved. Compared
to previous models, the proposed system contains temperature gradients in the con-
tinuity equation for the particle density, which do not allow for the use of standard
tools developed for the classical drift-diffusion equations [23]. In this paper, we
continue the analysis initiated in [20] by performing the semiclassical limit. This
limit has been performed in the quantum drift-diffusion equations [5, 6] but it is
open in the simplified quantum energy-transport model.

More precisely, we consider the following scaled equations for the electron density
n, electron temperature θ, and electric potential V ,

nt + div

(

ε2

6
n∇

(∆
√
n√
n

)

−∇(nθ) + n∇V
)

= 0, (1)

− div(n∇θ) =
n

τe
(θL(x) − θ), (2)

λ2∆V = n− C(x) in T
d, t > 0,

∫

Td

V dx = 0, (3)

with the initial conditions

n(·, 0) = n0 in T
d, (4)

where T
d ⊂ R

d is the d-dimensional torus. In the above equations, ε > 0 is the scaled
Planck constant, τe > 0 is the energy relaxation time, and λ > 0 is the scaled Debye
length. The given functions 0 < mL ≤ θL(x) ≤ ML and C(x) model the space-
dependent lattice temperature and the semiconductor doping profile, respectively.

Equation (1) contains the diffusive part −θ∇n, the drift part n∇(V − θ), and
the quantum correction involving the Bohm potential ∆

√
n/

√
n. Equation (2) is

derived from the energy balance equation of the quantum hydrodynamic model
[20]. It contains the heat conductivity κ = n. In applications, κ usually depends
on the temperature, for instance, κ = nθ. In [20], the simplification κ = n has
been proposed since the expression κ∇θ = nθ∇θ cannot be easily handled in the
analysis, due to the quadratic structure in θ. We remark that the case κ = nθL

has been considered in [7]. When the temperature is constant, θ = 1, we recover
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the quantum drift-diffusion equations. If, additionally, the quantum term vanishes,
ε = 0, we obtain the semiclassical drift-diffusion equations.

We consider periodic boundary conditions in order to avoid technical problems
with boundary integrals occuring in the derivation of the a priori estimates. Com-
pared to the quantum drift-diffusion equations, the quantum energy-transport sys-
tem is of degenerate type due to the term div(n∇θ) in (2). Together with the
nonlinear fourth-order quantum term, their treatment is the main difficulty in the
analysis. The simplified model (1)-(4) serves as a first step to understand analyt-
ically the interplay between diffusive effects, induced by the electron temperature,
and quantum phenomena, modeled by the Bohm potential.

Formally, in the limit ε → 0, system (1)-(3) reduces to the energy-transport
model

nt = div(∇(nθ) − n∇V ), (5)

− div(n∇θ) =
n

τe
(θL(x) − θ), (6)

λ2∆V = n− C(x) in T
d, t > 0,

∫

Td

V dx = 0, (7)

Energy-transport models have been derived from the semiconductor Boltzmann
equation by Ben Abdallah and Degond [3], and they are analytically studied in,
for instance, [10]. The above system is a simplified version of the class of energy-
transport models derived in [3] since only the Fourier term contributes to the heat
flux. In this paper, we make the limit ε→ 0 rigorous and prove, as a by-product, the
existence of global weak solutions to (5)-(7). Before we explain and state our main
results, we recall the existence result of [20] in order to make precise the regularity
of the solutions.

Theorem 1.1 (Theorem 1 in [20]). Let d ≤ 3, ε, λ, τe > 0, C, θL ∈ L∞(Td)
such that 0 < mL ≤ θL(x) ≤ ML for x ∈ T

d. Let the initial datum n0 ∈ L1(Td)
satisfy n0 ≥ 0 in T

d,
∫

Td n0 log n0dx < ∞, and
∫

Td(n0 − C)dx = 0. Then there
exists a global weak solution (nε, θε, Vε) satisfying nε ≥ 0 and 0 < mL ≤ θ ≤ML in
T

d × (0,∞) and

√
nε ∈ L2

loc(0,∞;H2(Td)) ∩ L∞
loc(0,∞;L2(Td)), nε ∈W

1,11/10
loc (0,∞;H−2(Td)),

√
nεθε ∈ L2

loc(0,∞;H1(Td)), nεθε ∈ L
8/7
loc (0,∞;W 1,4/3(Td)),

Vε ∈ L2
loc(0,∞;H2(Td)).

The solution satisfies the equations

∂tnε +
ε2

6
∇2 :

(√
nε∇2√nε −∇√

nε ⊗∇√
nε

)

= div(∇(nεθε) − nε∇Vε), (8)

− div
(√
nε∇(

√
nεθε) −

√
nεθε∇

√
nε

)

=
nε

2τe
(θL(x) − θε), (9)

λ2∆Vε = nε − C(x) in T
d (10)

in the sense of distributions.

Here, “∇2” denotes the Hessian, the double points “:” signify summation over
both matrix indices, and a⊗ b is the matrix with components aibj . Notice that the
lack of regularity makes it necessary to write (1) and (2) in the form (8) and (9),
respectively.
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Our main tools to prove the asymptotic limit ε→ 0 are entropy estimates inde-
pendent of ε and Gagliardo-Nirenberg inequalities. Indeed, introduce the logarith-
mic entropy

E1(n) =

∫

Td

φ1(n)dx =

∫

Td

(

n(log n− 1) + 1
)

dx.

A formal computation, which will be made rigorous in the proof of Proposition 1,
shows that

dE1

dt
+
ε2

12

∫

Td

n|∇2 log n|2dx+ 4

∫

Td

θ|∇
√
n|2dx

= −2

∫

Td

√
n∇

√
n · ∇θdx− 1

λ2

∫

Td

(n− C(x))ndx

≤
∫

Td

θ|∇
√
n|2dx+

∫

Td

n

θ
|∇θ|2dx+

1

4λ2

∫

Td

C(x)2dx, (11)

using Young’s inequality. The first integral on the right-hand side can be absorbed
by the last integral on the left-hand side. By the maximum principle, θ is bounded
from below, and the second integral on the right-hand side can be estimated from
above by

1

mL

∫

Td

n|∇θ|2dx,

where mL = minTd θ > 0 is independent of ε. In order to estimate this integral, we
take θ as a test function in the weak formulation of (2):
∫

Td

n|∇θ|2dx =
1

τe

∫

Td

n(θL(x) − θ)θdx ≤ − 1

2τe

∫

Td

nθ2dx+
‖θL‖L∞(Td)

2τe

∫

Td

ndx.

The last integral is bounded since the total mass
∫

Td ndx is constant in time. Putting
the above estimates together shows that

dE1

dt
+
ε2

12

∫

Td

n|∇2 log n|2dx+ 4mL

∫

Td

|∇
√
n|2dx ≤ K1,

where K1 > 0 depends on n0, θL etc. but not on ε. This provides an ε-uniform
H1 bound for

√
n which is the starting point for further estimates derived from

Gagliardo-Nirenberg inequalities. Since no gradient bounds for θ are available,
equation (2) has to be interpreted in the sense of (9).

Our first main result is as follows.

Theorem 1.2. Let the assumptions of Theorem 1.1 hold. Let (nε, θε, Vε) be a
weak solution to (4), (8)-(10), guaranteed by Theorem 1.1. Then there exists a
subsequence (not relabeled) such that, for any T > 0 and p < 3/2,

nε → n strongly in L2(0, T ;Lp(Td)), (12)
√
nε ⇀

√
n weakly in L2(0, T ;H1(Td)), (13)

∂tnε ⇀ nt weakly in L8/7(0, T ;H−3(Td)), (14)

θε ⇀
∗ θ weakly∗ in L∞(0, T ;L∞(Td)), (15)

Vε ⇀ V weakly in L2(0, T ;H2(Td)). (16)

The limit (n, θ, V ) solves the energy-transport model (4)-(7). More precisely, it pos-
sesses the regularity properties n ∈W 1,8/7(0, T ;H−3(Td)),

√
n ∈ L2(0, T ;H1(Td)),
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θ ∈ L∞(0, T ; L∞(Td)),
√
nθ ∈ L2(0, T ;H1(Td)), nθ ∈ L8/7(0, T ;W 1,4/3(Td)), and

V ∈ L2(0, T ;H2(Td)), and solves (5)-(7) in the following weak sense:
∫ T

0

〈∂tn, φ〉H−3,H3dt = −
∫ T

0

∫

Td

(

∇(nθ) − n∇V
)

· ∇φdx dt (17)

∫ T

0

∫

Td

(√
n∇(

√
nθ) −

√
nθ∇

√
n
)

· ∇φdx dt =

∫ T

0

∫

Td

n

2τe
(θL(x) − θ)φdx dt,

(18)

λ2

∫ T

0

∫

Td

∇V · ∇φdx dt =

∫ T

0

∫

Td

(n− C(x))φdx dt (19)

for all φ ∈ L∞(0, T ;H3(Td)). The initial condition (4) is satisfied in the sense of
H−3(Td).

We expect that the solutions of the energy-transport model (5)-(7) are smooth if
C(x) and θL(x) are smooth. Indeed, by Stampacchia truncations and the maximum
principle, strict positivity of n and θ is expected. Then, by elliptic and parabolic
regularity, smoothness of n, θ, and V follows. Therefore, one may expect that
the limit ε → 0 preserves the H2 regularity of nε. Due to the highly nonlinear
structure of the quantum term in (1), it is, however, not clear how to prove this.
The reason is that both models require different test functions to derive H2-type a
priori estimates, namely an entropy estimate for the quantum model and classical
regularity theory and maximum principle arguments for the classical model.

In one space dimension, we can improve this result since the second entropy
functional

E0(n) =

∫

Td

φ0(n)dx =

∫

Td

(n− log n)dx

provides additional estimates. Indeed, after a formal calculation (see the proof of
Proposition 2 for details):

dE0

dt
+
ε2

12

∫

T

(log n)2xxdx+

∫

T

θ(log n)2xdx

= −
∫

T

θx(log n)xdx− 1

λ2

∫

T

n log ndx+

∫

Td

C(x) log ndx. (20)

The third integral on the right-hand side is estimated by E0(n); the second integral
is bounded since −x log x ≤ 1/e for x > 0; and the first integral can be treated
similarly as above by employing the temperature equation, which is tested with
−1/n:

−
∫

T

θx(log n)xdx = −
∫

T

nθx

(

− 1

n

)

x
dx =

1

τe

∫

T

(θ − θL)dx ≤ K2

for some constant K2 > 0 which is independent of ε. Hence, by the Gronwall
lemma, we derive a uniform H1 bound for logn. Using this information, the test
function θ/n in the temperature equation provides an H1 bound for θ which helps
to define the product nθx in (2). As a consequence, in the one-dimensional case, the
heat equation can be written in the usual way (2). Hence, we obtain the following
theorem.

Theorem 1.3. Let the assumptions of Theorem 1.1 hold and let d = 1. Let
(nε, θε, Vε) be a weak solution to (4), (8)-(10), guaranteed by Theorem 1.1. Then
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there exists a subsequence (not relabeled) such that (12)-(16) hold for any T > 0
and p <∞ and, moreover,

θε ⇀ θ weakly in L2(0, T ;H1(T)) as ε→ 0.

The limit (n, θ, V ) solves the energy-transport model (4)-(7) in the usual weak sense.

The proof of this theorem shows that the same result holds when we replace the
periodic boundary conditions by

n = 1, nx = 0 on ∂Ω, t > 0,

where Ω ⊂ R is an interval (see [21]). These boundary conditions have been used
in numerical simulations of tunneling diodes. Also non-homogeneous boundary
conditions for nx can be allowed in the analysis, see [16].

The paper is organized as follows. In Section 2, we prove Theorem 1.2. Compared
to the results in [20], we need an additional estimate on nε, which can be only
obtained through the approximation procedure proposed in [20]. Therefore, we
sketch the approximate problem and derive the needed a priori estimates. Section 3
is devoted to the proof of Theorem 1.3. Here, the approximative problem simplifies
which allows us to derive the gradient bound on θε.

2. Proof of Theorem 1.2. For the semiclassical limit ε → 0, we need a priori
estimates which are independent of ε. These estimates are derived from the entropy
inequality (11). In order to make the calculations rigorous, we have to use the
approximation procedure proposed in [20].

Proposition 1. Let the assumptions of Theorem 1.1 hold. Then there exists a
weak solution (nε, θε, Vε) to (8)-(10) and (4) satisfying the following bounds for all
T > 0:

‖nε log nε‖L∞(0,T ;L1(Td)) + ‖√nε‖L2(0,T ;H1(Td)) + ‖nε‖L2(0,T ;L2(Td)) ≤ K, (21)

ε‖√nε‖L2(0,T ;H2(Td)) ≤ K, (22)

‖θε‖L∞(0,T ;L∞(Td)) + ‖√nεθε‖L2(0,T ;H1(Td)) ≤ K, (23)

where the constant K > 0 is independent of ε.

Compared to [20], the uniform bound for (nε) in L2(0, T ;L2(Td)) is new here. It
cannot be derived from the gradient bounds for (nε) which yield only an estimate
in L2(0, T ;L3/2(Td)) (from (32) below).

Proof. By Lemma 2 of [20], there exists a weak solution (ρk, θk, Vk) ∈ H2(Td) ×
L∞(Td) ×H2(Td), satisfying ρk ≥ κτ > 0 and 0 < mL ≤ θτ ≤ ML in T

d for some
constant κτ > 0 to the approximate problem in T

d

1

τ

(

ρ2
τ − στ (ρ2

τ )
)

+
ε2

12
∇2 : (ρ2

τ∇2 log ρ2
τ ) + δ(∆2 log ρ2

τ + log ρ2
τ )

= div
(

∇(ρ2
τθτ ) − ρ2

τ∇Vτ

)

, (24)

− div(ρ2
τ∇θτ ) =

ρ2
τ

τe
(θL(x) − θτ ), λ2∆Vτ = στ (ρ2

τ ) − C(x),

∫

Td

Vτdx = 0, (25)

where ρτ (x, t) = ρk(x), θτ (x, t) = θk(x), and Vτ (x, t) = Vk(x) for x ∈ T
d and

t ∈ ((k − 1)τ, kτ ], k ∈ N, are piecewise constant functions in time, approximating
√

n(x, t), θ(x, t), and V (x, t) at t = kτ , respectively. Furthermore, (στ (ρ2
τ ))(·, t) =

ρ2
τ (·, t− τ) for τ ≤ t ≤ T is a shift operator. This approximate problem is inspired
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from [19, 21]. The solution satisfies the discrete entropy estimate (see (26) and the
preceding estimates in [20])

1

τ

∫

Td

(

φ1(ρ
2
τ ) − φ1(στ (ρ2

τ ))
)

dx+
ε2

12

∫

Td

ρ2
τ |∇2 log ρ2

τ |2dx+ δ

∫

Td

(∆ log ρ2
τ )2dx

+
δ

2

∫

Td

(log ρ2
τ )2dx+ 2mL

∫

Td

|∇ρτ |2dx+ λ−2

∫

Td

ρ2
τστ (ρ2

τ )dx ≤ K,

where φ1(s) = s(log s − 1) + 1 and K > 0 is here and in the following a generic
constant independent of τ , δ, and ε. Lemma 2.2 in [19] shows that there exists a
constant K0 > 0 only depending on the space dimension d such that

K0

∫

Td

(∆ρτ )2dx ≤
∫

Td

ρ2
τ |∇2 log ρ2

τ |2dx,

which, together with the above entropy estimate, provides a uniform H2-bound for
ερτ . Furthermore, the following bound holds [20, p. 1039]

∫ T

0

∫

Td

ρ2
τ |∇θτ |2dx ds ≤ K(T ). (26)

In view of the uniform L∞-bound for θτ , this and the above entropy estimate imply
that

∫ T

0

∫

Td

|∇(ρτθτ )|2dx ds ≤ 2

∫ T

0

∫

Td

(

ρ2
τ |∇θτ |2 + θ2τ |∇ρτ |2

)

dx ds ≤ K(T ). (27)

Hence, (ρτθτ ) is bounded in L2(0, T ;H1(Td)). By the Gagliardo-Nirenberg inequal-
ity, with α = d/(4 + d),

‖ρτ‖8/d+2

L8/d+2(0,T ;L8/d+2(Td))
≤ K

∫ T

0

‖ρτ‖(8+2d)α/d

H2(Td)
‖ρτ‖(8+2d)(1−α)/d

L2(Td)
ds

≤ K‖ρτ‖(8+2d)(1−α)/d

L∞(0,T ;L2(Td))

∫ T

0

‖ρτ‖2
H2(Td)dx ds ≤ Kε−2.

Thus, (ρ2
τ ) is bounded in L4/d+1(0, T ;L4/d+1(Td)) uniformly in τ and δ (but not in

ε), and the same holds for the time-shifted sequence (στ (ρ2
τ )).

It is proved in [20] that, as (τ, δ) → 0, a subsequence of (ρ2
τ , θτ , Vτ ), which is

not relabeled, converges to a weak solution (n, θ, V ), which still depends on ε, to
(8)-(10) in the following sense:

ρτ →
√
n strongly in L2(0, T ;W 1,4(Td)), (28)

ρ2
τ − στ (ρ2

τ ) → 0 strongly in L11/10(0, T ;H−2(Td)), (29)

∇2ρτ ⇀ ∇2
√
n weakly in L2(0, T ;L2(Td)),

θτ ⇀
∗ θ weakly∗ in L∞(0, T ;L∞(Td)). (30)

The above bounds on (ρ2
τ ) and (στ (ρ2

τ )) show that, up to subsequences,

ρ2
τ ⇀ n, στ (ρ2

τ ) ⇀ z weakly in L4/d+1(0, T ;L4/d+1(Td)).

In view of (29), we can identify z = n, and because of (28), ρ2
τ → n a.e. in T

d, t > 0.
This and the above weak convergence of ρ2

τ to n imply that, since 4/d + 1 > 2 for
d ≤ 3,

ρ2
τ → n strongly in L2(0, T ;L2(Td)).

Hence,
ρ2

τστ (ρ2
τ ) ⇀ n2 weakly in L1(0, T ;L1(Td)).
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By (30), we infer that ρτθτ ⇀
√
nθ weakly in L2(0, T ;L2(Td)). Then (27) implies

that, up to a subsequence,

ρτθτ ⇀
√
nθ weakly in L2(0, T ;H1(Td)).

By the weakly lower semicontinuity of the convex function φ1(s) = s(log s−1)+1
and of the Sobolev norms, we find that

∫

Td

φ1(n(·, t))dx+K0
ε2

12

∫ T

0

∫

Td

(∆
√
n)2dx ds+ 2mL

∫ T

0

∫

Td

|∇
√
n|2dx ds

+ λ−2

∫ T

0

∫

Td

n2dx ds

≤ lim inf
(τ,δ)→0

(

∫

Td

φ1(ρ
2
τ )dx+K0

ε2

12

∫ T

0

∫

Td

(∆ρτ )2dx ds

+ 2mL

∫ T

0

∫

Td

|∇ρτ |2dx ds+ λ−2

∫ T

0

∫

Td

ρ2
τστ (ρ2

τ )dx ds
)

≤ K.

Furthermore, the bounds (23) hold. This proves the proposition.

From the estimates of Proposition 1 we derive more bounds.

Lemma 2.1. The following uniform estimates hold for all T > 0:

‖nεθε‖L8/7(0,T ;W 1,4/3(Td)) + ‖Vε‖L2(0,T ;H2(Td)) ≤ K, (31)

‖nε‖L2(0,T ;W 1,1(Td)) + ‖∂tnε‖L8/7(0,T ;H−3(Td)) ≤ K. (32)

Proof. First, we prove some bounds on
√
nεθε and nε in Lebesgue spaces. By the

Gagliardo-Nirenberg inequality with α = d/4, we find that

‖√nεθε‖8/d

L8/d(0,T ;L4(Td))
≤ K

∫ T

0

‖√nεθε‖8α/d

H1(Td)
‖√nεθε‖8(1−α)/d

L2(Td)
ds

≤ K‖√nε‖8(1−α)/d

L∞(0,T ;L2(Td))
‖θε‖8(1−α)/d

L∞(0,T ;L∞(Td))

×
∫ T

0

‖√nεθε‖2
H1(Td)ds

≤ K,

using (21) and (23). Moreover, by (21) and (23) again, we obtain for d ≤ 3,

‖∇(nεθε)‖L8/7(0,T ;L4/3(Td)) ≤ ‖√nε‖L8/3(0,T ;L4(Td))‖∇(
√
nεθε)‖L2(0,T ;L2(Td))

+ ‖√nεθε‖L8/3(0,T ;L4(Td))‖∇
√
nε‖L2(0,T ;L2(Td)) ≤ K.

Because of the uniform L2-bound on nεθε, this shows that (nεθε) is bounded in
L8/7(0, T ; W 1,4/3(Td)). We remark that the L2-bound on nε and elliptic regularity
imply that (Vε) is bounded in L2(0, T ;H2(Td)). This proves (31).

Next, since (
√
nε) is bounded in L∞(0, T ;L2(Td)) and (∇√

nε) is bounded in

L2(0, T ;L2(Td)), the sequence ∇nε = 2
√
nε∇

√
nε is uniformly bounded in L2(0, T ;

L1(Td)). As a consequence, we conclude the bound on (nε) in L2(0, T ;W 1,1(Td)).
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Furthermore, by the Gagliardo-Nirenberg inequality with α = d/12,

‖√nε‖8
L8(0,T ;L12/5(Td)) ≤ K

∫ T

0

‖√nε‖8α
H1(Td)‖

√
nε‖8(1−α)

L2(Td)
ds

≤ ‖√nε‖8(1−α)

L∞(0,T ;L2(Td))

∫ T

0

‖√nε‖2d/3

H1(Td)
ds ≤ K,

by taking into account the bound (21) and 2d/3 ≤ 2. Then, by the Hölder inequality,

‖nε‖L8/3(0,T ;L3/2(Td)) ≤ ‖√nε‖L4(0,T ;L4(Td))‖
√
nε‖L8(0,T ;L12/5(Td)) ≤ K. (33)

It remains to estimate ∂tnε. We observe that, by the Gagliardo-Nirenberg in-
equality with α = (d+ 12)/24 and (22),

‖∇√
nε‖16/5

L16/5(0,T ;L12/5(Td))
≤ K

∫ T

0

‖√nε‖16α/5

H2(Td)
‖√nε‖16(1−α)/5

L2(Td)
ds

≤ K‖√nε‖16(1−α)/5

L∞(0,T ;L2(Td))

∫ T

0

‖√nε‖2(d+12)/15

H2(Td)
ds

≤ K‖nε‖8(1−α)/5

L∞(0,T ;L1(Td))
‖√nε‖2(d+12)/15

L2(0,T ;H2(Td))

≤ Kε−2(d+12)/15,

and by the Gagliardo-Nirenberg inequality with α = d/12 and (22),

‖√nε‖8
L8(0,T ;L3(Td)) ≤ K

∫ T

0

‖√nε‖8α
H2(Td)‖

√
nε‖8(1−α)

L2(Td)
ds

≤ K‖√nε‖8(1−α)

L∞(0,T ;L2(Td))
‖√nε‖2d/3

L2(0,T ;H2(Td))

≤ Kε−2d/3.

Both estimates yield

ε(d+12)/24‖∇√
nε‖L16/5(0,T ;L12/5(Td)) + εd/12‖√nε‖L8(0,T ;L3(Td)) ≤ K.

Therefore, taking into account (21) and (22),

ε2‖√nε∇2√nε −∇√
nε ⊗∇√

nε‖L8/5(0,T ;L6/5(Td))

≤ ε(12−d)/12‖εd/12√nε‖L8(0,T ;L3(Td))‖ε
√
nε‖L2(0,T ;H2(Td))

+ ε(12−d)/12‖ε(d+12)/24∇√
nε‖2

L16/5(0,T ;L12/5(Td))

≤ Kε(12−d)/12. (34)

Furthermore, using (31), (33), and the continuous embedding H2(Td) →֒W 1,6(Td)
for d ≤ 3,

‖∇(nεθε) − nε∇Vε‖L8/7(0,T ;L6/5(Td)) ≤ ‖∇(nεθε)‖L8/7(0,T ;L6/5(Td))

+ ‖nε‖L8/3(0,T ;L3/2(Td))‖∇Vε‖L2(0,T ;L6(Td)) ≤ K.

Since the continuous embedding H1(Td) →֒ L6(Td) (for d ≤ 3) implies that the
embedding L6/5(Td) = (L6(Td))′ →֒ H−1(Td) is also continuous, we estimate ∂tnε
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as follows:

‖∂tnε‖L8/7(0,T ;H−3(Td)) ≤
ε2

6
‖√nε∇2√nε −∇√

nε ⊗∇√
nε‖L8/7(0,T ;H−1(Td))

+ ‖∇(nεθε) − nε∇Vε‖L8/7(0,T ;H−2(Td))

≤ ε2K‖√nε∇2√nε −∇√
nε ⊗∇√

nε‖L8/7(0,T ;L6/5(Td))

+ ‖∇(nεθε) − nε∇Vε‖L8/7(0,T ;L6/5(Td))

≤ K.

Hence, (∂tnε) is bounded in L8/7(0, T ;H−3(Td)).

Now, we are able to prove Theorem 1.2, i.e. to pass to the limit ε→ 0 in (8)-(10).
Estimate (32) allows us to apply the Aubin lemma [24, Corollary 4] (also see [13])
to conclude the existence of a subsequence of (nε), which is not relabeled, such that,
as ε→ 0,

nε → n strongly in L2(0, T ;Lp(Td)) for all p < 3
2 . (35)

Here, we have used the compact embedding W 1,1(Td) →֒ Lp(Td) for p < 3/2.
Furthermore, by (21) and (32), for the same subsequence,

√
nε ⇀

√
n weakly in L2(0, T ;H1(Td)),

∂tnε ⇀ ∂tn weakly in L8/7(0, T ;H−3(Td)).

The uniform bounds in (23) and (31) lead to (up to subsequences)

θε ⇀
∗ θ weakly∗ in L∞(0, T ;L∞(Td)), (36)

∇Vε ⇀ ∇V weakly in L2(0, T ;L6(Td)),

since H2(Td) embeddes continuously into W 1,6(Td) for d ≤ 3. We infer that

nε∇Vε ⇀ n∇V weakly in L1(0, T ;L6p/(6+p)(Td)),

nεθε ⇀ nθ weakly in L2(0, T ;Lp(Td)).

We remark that 6p/(6 + p) > 1 if p > 6/5 which is possible since we can choose
p ∈ [1, 3/2). Estimate (31) implies that, up to a subsequence,

∇(nεθε) ⇀ ∇(nθ) weakly in L8/7(0, T ;L4/3(Td)). (37)

Furthermore, for test functions ψ ∈ L8/3(0, T ;W 2,6(Td)), by (34),

ε2
∫ T

0

∫

Td

(√
nε∇2√nε −∇√

nε ⊗∇√
nε

)

: ∇2ψdx ds

≤ ε2‖√nε∇2√nε −∇√
nε ⊗∇√

nε

∥

∥

L8/5(0,T ;L6/5(Td))
‖ψ‖L8/3(0,T ;W 2,6(Td))

≤ ε(12−d)/12K‖ψ‖L8/3(0,T ;W 2,6(Td)) → 0 as ε→ 0.

The above convergence results are sufficient to pass to the limit in the mass balance
equation (8) and in the linear Poisson equation (10).

Next, the convergences (35) and (36) imply that

√
nεθε ⇀

√
nθ weakly in L4(0, T ;L2p(Td)), p <

3

2
.

This, together with the second bound in (23), yields

∇(
√
nεθε) ⇀ ∇(

√
nθ) weakly in L2(0, T ;L2(Td)).
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Since, by (35),
√
nε → √

n strongly in L4(0, T ;L2p(Td)) for p < 3/2, we infer that

√
nε∇(

√
nεθε) ⇀

√
n∇(

√
nθ) weakly in L4/3(0, T ;L1(Td)). (38)

Convergences (37) and (38) allow us to perform the limit ε→ 0 in the temperature
equation (9) ending the proof.

3. Proof of Theorem 1.3. First, we prove some a priori estimates derived from
the entropy expression (20).

Proposition 2. Let the assumptions of Theorem 1.1 hold and let d = 1. Then
there exists a weak solution (nε, θε, Vε) to (8)-(10) and (4) satisfying the following
bounds for all T > 0:

‖nε − log nε‖L∞(0,T ;L1(T)) + ε‖ log nε‖L2(0,T ;H2(T)) + ‖ log nε‖L2(0,T ;H1(T)) ≤ K,
(39)

‖θε‖L2(0,T ;H1(T)) ≤ K, (40)

where the constant K > 0 is independent of ε.

Proof. The idea of the proof is to semi-discretize equation (8) in time as in the proof
of Proposition 1. In one space dimension, we do not need the regularizing δ-terms
(see (24)). Instead, we solve the problem in T

1

τ
(ρ2

τ − στ (ρ2
τ )) +

ε2

12

(

ρ2
τ (log ρ2

τ )xx

)

xx
=

(

(ρ2
τθτ )x − ρ2

τ (Vτ )x

)

x
, (41)

−
(

ρ2
τ (θτ )x

)

x
=
ρ2

τ

τe
(θL(x) − θτ ), λ2(Vτ )xx = στ (ρ2

τ ) − C(x),

∫

T

Vτdx = 0. (42)

The proof of the existence of a weak solution (ρτ , θτ , Vτ ) to this problem is performed
similarly as in Step 2 of the proof of Lemma 2 in [20] by applying the Leray-Schauder
fixed-point theorem. For this, we need a uniform estimate for log ρ2

τ in H1(T). This
is achieved by employing 1 − ρ−2

τ as a test function in (41):

1

τ

∫

T

(

ρ2
τ − στ (ρ2

τ )
)

(1 − ρ−2
τ )dx+

ε2

12

∫

T

ρ2
τ (log ρ2

τ )xx(1 − ρ−2
τ )xxdx

= −
∫

T

(

(ρ2
τθτ )x − ρ2

τ (Vτ )x

)

(1 − ρ−2
τ )xdx. (43)

The convexity of the function φ0(s) = s−log s implies that φ0(s)−φ0(t) ≤ φ′0(s)(s−
t) = (1 − s−1)(s− t) for all s, t > 0, and the first integral is estimated as follows

1

τ

∫

T

(

ρ2
τ − στ (ρ2

τ )
)

(1 − ρ−2
τ )dx

≥ 1

τ

∫

T

(

φ0(ρ
2
τ )dx− φ0(στ (ρ2

τ ))
)

dx =
1

τ

(

E0(ρ
2
τ ) − E0(στ (ρ2

τ ))
)

The second integral in (43) can be written as

ε2

12

∫

T

(log ρ2
τ )xx

(

(log ρ2
τ )xx − (log ρ2

τ )2x
)

dx

=
ε2

12

∫

T

(

(log ρ2
τ )2xx − 1

3

(

(log ρ2
τ )3x

)

x

)

dx =
ε2

12

∫

T

(log ρ2
τ )2xxdx,
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using the periodic boundary conditions (this is also true when assuming homoge-
neous Neumann boundary conditions). The right-hand side of (43) is formulated
as

∫

T

(

− θτ (log ρ2
τ )2x − (θτ )x(log ρ2

τ )x + (Vτ )x(log ρ2
τ )x

)

dx.

In order to estimate these terms, we employ −ρ−2
τ as a test function in the first

equation of (42):

−
∫

T

(θτ )x(log ρ2
τ )xdx = − 1

τe

∫

T

(θL(x) − θτ )dx ≤ K,

since θτ is uniformly bounded in L∞(0, T ;L∞(T)), by the maximum principle. Fur-
thermore, the test function log ρ2

τ in the Poisson equation in (42) leads to
∫

T

(Vτ )x(log ρ2
τ )xdx = − 1

λ2

∫

T

(

στ (ρ2
τ ) − C(x)

)

log ρ2
τdx

= − 1

λ2

∫

T

στ (ρ2
τ ) log ρ2

τdx+
1

λ2
‖C‖L∞(T)

∫

T

| log ρ2
τ |dx.

We need to estimate the integral over στ (ρ2
τ ) log ρ2

τ . To this end, we employ log ρ2
τ

as a test function in (41) and use the first equation in (42):

1

τ

∫

T

(

ρ2
τ − στ (ρ2

τ )
)

log ρ2
τdx+

∫

T

ρ2
τ (log ρ2

τ )2xxdx

= −
∫

T

ρ2
τ (θτ )x(log ρ2

τ )xdx− 1

λ2

∫

T

(ρ2
τ − C(x)) log ρ2

τdx

= − 1

τe

∫

T

ρ2
τ (θL(x) − θ) log ρ2

τdx− 1

λ2

∫

T

(ρ2
τ − C(x)) log ρ2

τdx

≤ K

∫

T

|ρ2
τ log ρ2

τ |dx+K

∫

T

| log ρ2
τ |dx.

Hence, using |x log x| ≤ x2 + 1 and | log x| ≤ x− log x for x > 0,

−1

τ

∫

T

στ (ρ2
τ ) log ρ2

τdx ≤ K +K

∫

T

ρ4
τdx+KE0(ρ

2
τ ) ≤ K(1 + E0(ρ

2
τ )),

by (21). Putting the above estimates together, we arrive at

1

τ

(

E0(ρ
2
τ ) − E0(στ (ρ2

τ ))
)

+
ε2

12

∫

T

(log ρ2
τ )2xxdx ≤ K(1 + E0(ρ

2
τ )),

and the discrete Gronwall lemma implies the desired bound for log ρ2
τ in H2(T). We

infer the existence of a weak solution (ρτ , θτ , Vτ ) to (41)-(42).
Employing the test function θτ/ρ

2
τ in the first equation of (42), we find that

∫

T

(θτ )x

(

(θτ )x − θτ (log ρ2
τ )x

)

dx =
1

τe

∫

T

(θL(x) − θτ )θτdx.

By Young’s inequality, it follows that

1

2

∫

T

(θτ )2x ≤ 1

2

∫

T

θ2τ (log ρ2
τ )2xdx+

1

2τe

∫

T

θ2Ldx+K.

In view of the uniform L∞ bound for θτ and the uniform H1 bound for log ρ2
τ , the

right-hand side is uniformly bounded. Thus, (θτ ) is bounded in L2(0, T ;H1(T)).
We can pass to the limit τ → 0 in (41)-(42) to conclude the existence of a solution

(nε, θε, Vε) to (8)-(10) and (4) satisfying the estimates (39)-(40).



SIMPLIFED QUANTUM ENERGY-TRANSPORT MODEL 13

Now, we can prove Theorem 1.3. The limit ε→ 0 can be performed as in the proof
of Theorem 1.2. The only difference is the treatment of the term involving nε(θε)x.
The estimate (32) and Aubin’s lemma provide the existence of a subsequence (not
relabeled) such that, as ε→ 0,

nε → n strongly in L2(0, T ;L4(T)).

Furthermore, the uniform bound (40) on θε leads, up to a subsequence, to

(θε)x ⇀ θx weakly in L2(0, T ;L2(T)).

Hence, we have

nε(θε)x ⇀ nθx weakly in L1(0, T ;L1(T)).

This ends the proof.
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