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We propose performance enhancements for the implementation of the conjugate gradient method and the generalized mini-
mum residual method for accelerators such as graphics processing units. Through a minimization of memory transfers from
global memory via pipelining as well as a reduction of the number of compute kernels through kernel fusion, the performance
is improved by up to two-fold when compared to standard implementations based on vendor-tuned routines.
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1 Introduction

With the introduction of massively parallel hardware architectures for general purpose computations such as graphics process-
ing units (GPUs) or Intel’s many integrated cores architecture, a much higher computational power expressed in the number
of floating point operations per second as well as memory bandwidth became available on average workstations. In order to
leverage such computational power for the numerical solution of coupled partial differential equations by means for finite dif-
ference, finite element, or finite volume methods, iterative solvers are the method of choice due to more inherent fine-grained
parallelism as compared to sparse direct solvers. We consider unpreconditioned iterative solvers in this work, as they can still
be competitive with preconditioned variants for medium-sized problems due to better parallel hardware utilization.

2 Improved Formulations and Implementations

As iterative solvers exhibit low arithmetic intensity, i.e. the number of floating point operations per byte, the key to fast
implementations is a minimization of data transfer through the memory bus connecting the execution units with main random
access memory. Following the ideas from vector machines, a direct comparison of the standard conjugate gradient (CG)
method and its pipelined variant for an initial guess x0 is as follows [1]:

Standard CG
p0 = r0 = b−Ax0
For i = 0 until convergence

1. Compute and store Api
2. Compute 〈pi, Api〉
3. αi = 〈ri, ri〉/〈pi, Api〉
4. xi+1 = xi + αipi
5. ri+1 = ri − αiApi
6. Compute 〈ri+1, ri+1〉
7. βi = 〈ri+1, ri+1〉/〈ri, ri〉
8. pi+1 = ri+1 + βipi

Pipelined CG
p0 = r0 = b−Ax0
For i = 1 until convergence

1. If i = 1: Compute α0, β0, Ap0
2. xi = xi−1 + αi−1pi−1

3. ri = ri−1 − αi−1Api
4. pi = ri + βi−1pi−1

5. Compute and store Api
6. Compute 〈Api, Api〉, 〈pi, Api〉, 〈ri, ri〉
7. αi = 〈ri, ri〉/〈pi, Api〉
8. βi = (α2

i 〈Api, Api〉 − 〈ri, ri〉)/〈ri, ri〉
A conventional implementation of the standard CG method is implemented by calling vendor-tuned implementations from
the basic linear algebra subprograms (BLAS) supplemented by suitable sparse matrix-vector product implementations [2].
However, by relying on BLAS routines, data reuse between lines 1 and 2 as well as lines 5 and 6 is not possible other
than through caching effects. The pipelined version of the CG method, which is obtained by making use of the three-term
recursion for computing βi, allows for better data reuse: Not only can the operations in lines 2-4 be computed without loading
the respective values from pi−1 and ri repeatedly, but also the inner product 〈ri, ri〉 can be calculated in the same compute
kernel. Then, the computation of Api as well as 〈Api, Api〉 and 〈pi, Api〉 in lines 5 and 6 is possible within a single kernel.
Summing up, the pipelined CG version only requires two compute kernels and one data transfer between host and compute
device instead of six kernels and two transfers for the standard formulation. We note that these properties are also advantageous
in the strong scaling limit on supercomputers [3].

The generalized minimum residual (GMRES) method does not use the same three-term recurrance as the CG method,
but instead computes projections onto the full Krylov space span{r,Ar, . . . , AN−1r} for some value N typically chosen in
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Fig. 1: Comparison of the performance of the standard CG method and the pipelined version. Left: Execution time per CG iteration. Right:
Execution time per unknown in each CG iteration. The performance gain of using the pipelined version is particularly pronounced below
105 unknowns.
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Fig. 2: Comparison of effective memory bandwidth (number of required bytes read per second, not counting redundant bytes) for the
Gram-Schmidt orthogonalization w ← w −

∑N
i=1〈w, vi〉vi within the GMRES method. Left: Fixed number of N = 50 vectors in the

basis. Right: Fixed vector size of 106 elements.

the range of 20 to 50. Due to the formation of an orthonormal basis by using the Gram-Schmidt method, the computational
expense primarily stems from the computation of multiple inner products with the same vectorw rather than the sparse matrix-
vector product. More precisely, a given orthonormal basis v1, . . . , vN is augmented by a linearly independent vector w by
computing w ← w −

∑N
i=1〈w, vi〉vi followed by a normalization. Using standard BLAS routines, the vector w is loaded

repeatedly in each dot product, reducing the bandwidth available for loading vi by about a factor of two. Fusing multiple inner
products into a single kernel, most unnecessary reads of w can be avoided.

3 Benchmark Results and Conclusion

Our experiments were run on Linux machines equipped with an NVIDIA GeForce GTX 470 using CUDA 5 platform libraries
and an AMD Radeon HD7970 using clAmdBlas 1.10.321. All results presented are obtained using OpenCL and double
precision arithmetics. Our evaluations using CUDA have not shown any significant performance differences on the NVIDIA
GPU and are consequently omitted for the sake of clarity.

Execution times for the CG method applied to a finite difference discretization of the Poisson equation in two spatial
dimensions in Fig. 1 show that pipelined methods are able to provide a two-fold performance improvement over the standard
formulation. Similarly, an almost two-fold performance gain is observed for the Gram-Schmidt orthogonalization for the
GMRES method as depicted in Fig. 2.

Summing up, we have shown that the ideas employed for performance improvements in iterative solvers on large-scale
clusters can also be successfully employed on GPUs. This is achieved through a minimization of data transfer and a reduction
of synchronization points, resulting in up to a two-fold performance gain.
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