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The existence of global-in-time weak solutions to the one-dimensional viscous quantum
hydrodynamic equations is proved. The model consists of the conservation laws for the
particle density and particle current density, including quantum corrections from the
Bohm potential and viscous stabilizations arising from quantum Fokker-Planck interaction
terms in the Wigner equation. The model equations are coupled self-consistently to the
Poisson equation for the electric potential and are supplemented with periodic boundary
and initial conditions. When a diffusion term linearly proportional to the velocity is
introduced in the momentum equation, the positivity of the particle density is proved.
This term, which introduces a strong regularizing effect, may be viewed as a classical
conservative friction term due to particle interactions with the background temperature.
Without this regularizing viscous term, only the nonnegativity of the density can be
shown. The existence proof relies on the Faedo-Galerkin method together with a priori
estimates from the energy functional.

1. Introduction

Diffusive corrections in quantum models are of great importance in open quantum
systems modeling, for instance, an electron ensemble interacting with a background heat
bath. Applications of such systems include quantum semiconductor structures in which
non-classical diffusive effects may be relevant in some regimes. Caldeira and Leggett [3]
and Diósi [8] have derived closed equations for a dissipative quantum-mechanical system
related to quantum Brownian motion. Their approach was later improved by Castella
et al. [4] and leads to a Wigner equation with Fokker-Planck-type operator modeling
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interactions that may take into account basic quantum and classical mechanisms. Thus,
one may interpret the Wigner-Fokker-Plank equation as a quantum Liouville equation
equated to an interaction operator of quantum Fokker-Planck type.

Motivated by multi-scale modeling and by the fact that computational approaches for
the Wigner-Fokker-Plank equation are expensive, due mainly to its high dimensionality
(see for example [11] and references therein), associated macroscopic models were derived
in an effort to produce asymptotically correct macroscopic reductions. For instance,
employing a moment method and a suitable closure condition to the classical Wigner
equation in the absence of interactions, quantum hydrodynamic equations are obtained [7,
15]. Another derivation comes from the mixed-state Schrödinger system via the Madelung
transform [16].

When particle interactions are taken into account, a non-classical (quantum) Fokker-
Planck interaction operator balances the Wigner equation, with classical and non-classical
second-order derivative terms (that may be interpreted as viscous terms) appearing in
the macroscopic model. We refer to [17,21,23] for a derivation of a non-classical viscous
perturbation due to quantum interactions and to [13,14] for an analysis of stationary
quantum-regularized models with a classical mass-conservative viscous effect. This leads
to a broad class of viscous quantum hydrodynamic equations, which are the subject of this
paper.

The (scaled) viscous quantum hydrodynamic equations in one space dimension for the
particle density ρ, the velocity u, and the electric potential V read as follows:

ρt + (ρu)x = νρxx, (1)

(ρu)t + (ρu2 + p(ρ))x − ρVx −
δ2

2
ρ
((

√
ρ)xx√
ρ

)

x
= ν(ρu)xx + εuxx −

ρu

τ
, (2)

λ2Vxx = ρ− C(x), (3)

The pressure p(ρ) is assumed to depend on the particle density; typical examples are
p(ρ) = p0ρ

α for some p0 > 0 and α ≥ 1. The function C(x) is the doping profile modeling
charged background ions in, for instance, semiconductor crystals. The viscosity ν > 0 is
related to effects depending also on the scaled Planck constant δ > 0 through the well-
known Lindblad condition. This condition guarantees the quantum mechanically correct
evolution of the system and the convergence to the classical Fokker-Planck dynamics
from stochastic calculus as δ → 0 (see [3,8,27]). The parameter τ > 0 models momentum
relaxation time due to classical friction mechanisms, and the parameter ε accounts for
classical mass-conservative viscous effects due to classical particle-particle and particle-
lattice interactions. Finally, λ > 0 is the scaled Debye length of the device.

Equations (1)-(3) are considered on the one-dimensional torus T (with size one) and
are complemented with the initial conditions

ρ(0, ·) = ρ0, (ρu)(0, ·) = ρ0u0 in T. (4)

Equation (1) expresses a mass balance law that becomes mass conservative with respect
to the effective current density J0 = ρu−νρx. The second equation is the classical balance
equation for the particle current density or momentum ρu including the electric force
term ρVx, the relaxation-time term −ρu/τ , and the quantum correction with the Bohm
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potential (
√
ρ)xx/

√
ρ. The electric potential V is self-consistently given by the Poisson

equation (3). In the absence of viscous and quantum effects, i.e. ν = ε = δ = 0, the above
equations represent the hydrodynamic semiconductor equations [2]. When no viscous
effects are present, ν = ε = 0, we obtain the quantum hydrodynamic equations, studied
in, e.g., [13,14,20]. For more recent papers, we refer to [1,19,26,28,29].

The viscous quantum hydrodynamic model for ε = 0 can be derived from the Wigner-
Fokker-Planck equation by a moment method [17,23]. The viscous regularizations arise
from the quantum Fokker-Planck interaction operator. More precisely, the part of the
scattering operator yielding the non-classical viscous terms is proportional to

QQFP(w) = νwxx,

where w(x, k, t) is the Wigner function on the position-wave vector space (x, k), and
ν > 0 depends on the quantum friction. Introducing the moments ρ =

∫

R3 wdk and
ρu =

∫

R3 wkdk gives

∫

R3

QQFP(w)dk = νρxx,

∫

R3

QQFP(w)kdk = ν(ρu)xx,

which are the non-classical viscous terms in the quantum fluid system (1)-(2), respectively.
In this view, they are not artificial regularizations, but coming from the choice of the
quantum interaction operator of Fokker-Plank type in the Wigner equation.

The classical diffusive velocity term proportional to ε > 0 is a heuristic regularization
which allows us to prove the existence of solutions with positive particle densities (see
Theorem 1). In Theorem 2 we perform the limit ε → 0, obtaining nonnegative particle
densities for the system (1)-(3). It is possible to derive the velocity term from the Wigner
equation by introducing the following heuristic quantum interaction operator:

QrQFP(w) = ε∂2
x

( w
∫

R3 wdk

)

.

Indeed, we obtain for the first moments of the operator
∫

R3

QrQFP(w)dk′ = ε∂2
x

∫

R3

w
∫

R3 wdk
dk′ = 0,

∫

R3

QrQFP(w)k′dk′ = ε∂2
x

∫

R3

wk′
∫

R3 wdk
dk′ = ε∂2

x

ρu

ρ
= εuxx,

i.e., the contribution to the momentum equation (2) equals εuxx.

There are only few mathematical results for these viscous quantum hydrodynamic model
due to difficulties coming from the third-order derivatives in the quantum correction.
The existence of classical solutions to the one-dimensional stationary model with ε = 0
and with physical boundary conditions was shown in [23]. The transient equations are
considered in [5,6,9], and the local-in-time existence and exponential stability of solutions
were proved. Global-in-time solutions in one space dimension are obtained if the initial
energy is assumed to be sufficiently small [5]. In [23,24], numerical solutions of the model
and applications to resonant tunneling diodes were presented. We also mention that in
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the inviscid case (ν = ε = 0) there is a recent proof of non-global-in-time existence for
a quantum hydrodynamic equation (corresponding to a reduced model in the absence
of the coupling with the Poisson equation) in bounded domains with prescribed data
corresponding to high boundary and initial energy [12].

However, no global-in-time existence result without smallness conditions seems to be
available up to now for the transient system (1)-(3). In this paper, we prove such a result,
first for the full system with ε > 0 and then, by passing to the limit ε → 0, we obtain a
global existence result for the non-classical viscous quantum hydrodynamic model (1)-(3)
with ε = 0.

The main problem of the existence analysis lies in the strongly nonlinear third-order
differential operator and the dispersive structure of the momentum equation. There are
several attempts in the literature to deal with the quantum term. Integrating the station-
ary momentum equation leads to a second-order differential equation to which maximum
principle arguments can be applied [13]. A fourth-order wave equation is obtained after
differentiating the equation with respect to the spatial variable. This approach was em-
ployed in [25] to prove the existence of global solutions to the quantum hydrodynamic
equations with ν = 0 (and ε = 0), but only for initial data close to thermal equilibrium.
The main idea of [5] was to introduce a bi-Laplacian regularization in the viscous model
and to employ energy estimates to conclude local existence of solutions. Global existence
of solutions to the inviscid model ν = 0 (and ε = 0) with nonnegative particle density
was achieved recently by a wave function polar decomposition method [1].

In this paper, we pursue a different strategy. We employ the Faedo-Galerkin method,
introduced by Feireisl in [10] for the analysis of the classical compressible Navier-Stokes
equations, applied to (1)-(3) for ε > 0 with the initial conditions (4).

The existence proof relies on the following ideas. First, for given u in a finite-dimensional
Galerkin space, we solve (1). Since u is given and (1) is parabolic for ε > 0, a lower bound
for the particle density can be concluded from the maximum principle. Classically, this
bound depends on the L∞ norm of ux which is prohibitive to set up the fixed-point
argument. We prove that the lower bound for ρ depends only on the L2 norm of ux

(Lemma 3).
In the second step we solve the Poisson equation and then the momentum equation in

the Galerkin space, for given ρ, which yields the existence of local-in-time solutions via
Banach’s fixed-point theorem.

A priori bounds (and thus global-in-time existence) are obtained from the energy in-
equality defined as follows. Let the enthalpy function h be defined by h′(y) = p′(y)/y for
y > 0 and h(1) = 0, and let H be a primitive of h. Furthermore, let the energy, consisting
of the internal, kinetic, electric, and quantum energy, be given by

E(ρ, u) =

∫

T

(

H(ρ) +
1

2
ρu2 +

λ2

2
V 2

x +
δ2

2
(
√
ρ)2

x

)

dx. (5)

Then we show that

dE

dt
+ ν

∫

T

(

ρu2
x + δ2(

√
ρ)2

xx

)

dx+ ε

∫

T

u2
xdx ≤ K, (6)

where the constant K > 0 depends only on C(x), ν, and λ. This yields H2 estimates for
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√
ρ and, for fixed ε > 0, L2 estimates for ux, needed in the proof of the lower bound for

ρ.
We consider the one-dimensional equations since we need several times in the proof the

embedding H1(T) →֒ L∞(T) which is valid in one space dimension only. We comment on
the multi-dimensional situation in Remark 6.

Our first main result reads as follows.

Theorem 1. Let T > 0, ε > 0, and C ∈ L2(T). Let the pressure function p ∈ C1([0,∞))
be monotone, and let the primitive H of the enthalpy satisfy H(y) ≥ −h0 for some h0 >
0. Furthermore, let the initial datum (ρ0, u0) ∈ H1(T) × L∞(T) satisfy

∫

T
ρ0(x)dx =

∫

T
C(x)dx, ρ(x) ≥ η0 > 0 for x ∈ T and for some η0 > 0, and E(ρ0, u0) <∞. Then there

exists a constant η > 0 and a weak solution (ρ, u, V ) to (1)-(3) satisfying

ρ(t, x) ≥ η > 0 for t > 0, x ∈ T, V ∈ L∞(0, T ;H2(T)),

ρt ∈ L2(0, T ;L2(T)), (ρu)t ∈ L2(0, T ;H−2(T)),

ρ ∈ L∞(0, T ;H1(T)) ∩ L2(0, T ;H2(T)),

u ∈ L2(0, T ;H1(T)) ∩ L∞(0, T ;L2(T)),

where the lower bound η > 0 depends on ε. The initial conditions (4) are satisfied in the

sense of H−2(T).

The condition H(y) ≥ −h0 is satisfied, for instance, if the pressure is given by p(ρ) =
p0ρ

α, where p0 > 0 and α > 1, since in this case H(y) = (α − 1)−1(yα − αy) + const.,
and the minimum of H is achieved at y = 1. The regularity of ρ and u implies that
ρu ∈ L2(0, T ;H1(T)) and ρu2 ∈ L2(0, T ;W 1,1(T)).

Let (ρε, uε) be a solution to (1)-(3) in the sense of the above theorem. In the limit ε→ 0
we loose the lower bound for ρε since it depends on ε. Furthermore, it is not clear how to
pass to the limit in ρεu

2
ε, since we have only weak convergence of

√
ρεuε in L2. Moreover,

we loose the control on uε and obtain results for the current density J = limε→0 ρεuε only.
In order to overcome these difficulties, we multiply the momentum equation by ρ

3/2
ε and

pass to the limit ε→ 0 in the resulting equation. This allows us to control the convective
part since

ρ3/2
ε (ρεu

2
ε)x =

(√
ρε(ρεuε)

2
)

x
− 3(

√
ρε)x(ρεuε)

2.

Our second main result is summarized in the following theorem.

Theorem 2. Let T > 0 and let the assumptions of Theorem 1 hold. Then, for ε = 0
there exists a weak solution (ρ, J, V ) to (1)-(3) with the regularity

ρ(t, x) ≥ 0 for t > 0, x ∈ T, V ∈ L∞(0, T ;H2(T)),

ρt ∈ L2(0, T ;L2(T)), (ρ3/2J)t ∈ L2(0, T ;H−1(T)),
√
ρ ∈ L∞(0, T ;H1(T)) ∩ L2(0, T ;H2(T)), J ∈ L2(0, T ;H1(T)),

satisfying ρt + Jx = νρxx and λ2Vxx = ρ− C(x) almost everywhere in (0, T ) × T and, for
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all φ ∈ L∞(0, T ; H1(T)),

∫ T

0

〈(ρ3/2J)t, φ〉H−1,H1dt− 3

2

∫ T

0

∫

T

√
ρρtJφdxdt (7)

−
∫ T

0

∫

T

J2
(

3(
√
ρ)xφ+

√
ρφx

)

dxdt+

∫ T

0

∫

T

(

(p(ρ))x − ρVx

)

ρ3/2φdxdt

+
δ2

2

∫ T

0

∫

T

(
√
ρ)xx

(

5ρ3/2(
√
ρ)xφ+ ρ2φx

)

dxdt

= −ν
∫ T

0

∫

T

Jxρ
(

3(
√
ρ)xφ+

√
ρφx

)

dxdt− 1

τ

∫ T

0

∫

T

ρ3/2Jφdxdt.

The initial conditions are fulfilled in the following sense:

ρ(0, ·) = ρ0 in L2(T), (ρ3/2J)(0, ·) = ρ
5/2
0 u0 in H−1(T).

Equation (7) is the weak formulation of

(ρ3/2J)t − (ρ3/2)tJ + (
√
ρJ2)x − 3J2(

√
ρ)x −

δ2

2

(

ρ2(
√
ρ)xx

)

x
+

5δ2

8
(ρ2)x(

√
ρ)xx

− ν(ρ3/2Jx)x + νJx(ρ
3/2)x + ρ3/2

(

(p(ρ))x − ρVx +
J

τ

)

= 0,

which is obtained from (2) after multiplication of ρ3/2 and setting J = ρu. If the limit
density ρ is positive and smooth, we can divide the above equation by ρ3/2 and recover the
original formulation (2). We remark that Chen and Dreher [5] have shown the existence
of global solutions to (1)-(3) which possess more regularity (essentially ρ(·, t) ∈ H3 and
J(·, t) ∈ H2), thus allowing for the original formulation. However, their proof only works
if the doping profile is constant and if the initial energy is sufficiently small. Theorem
2 is valid for any doping profile in L2(T) and for any value of the initial energy, but we
obtain less regular solutions than [5].

The paper is organized as follows. In the next section, we solve, for ε > 0 and given
velocity u, equation (1) for ρ, prove a lower bound for ρ only depending on the L2 norm
of ux, and solve (2) locally in time. In section 3 we show the energy estimates for (5)
and infer a global existence result for the nonlinear Faedo-Galerkin problem. Theorem
1 is proved in section 4, whereas section 5 is concerned with the proof of Theorem 2.
We remark that the a priori estimates derived from the energy functional (5) and its
corresponding energy production were already employed in [5,12,18].

2. Linear Faedo-Galerkin approximation

In this section, we prove the existence of solutions to the linearized viscous quantum
hydrodynamic equations with ε > 0. Let T > 0 and let (en)n∈N be an orthonormal basis
of L2(T) which is also an orthogonal basis of H1(T). For instance, one may take the
eigenfunctions of −∂2

x with eigenvalues µn > 0, given by

e2n(x) =
√

2 cos(2nπx), µ2n = 8n2π2,

e2n+1(x) =
√

2 sin(2nπx), µ2n+1 = 8n2π2, n ∈ N0.
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Introduce the finite-dimensional space Xn = span(e0, . . . , en). We denote by Ck(0, T ;Z)
the space of Ck functions on [0, T ] with values in the Banach space Z. Furthermore,
let (ρ0, u0) ∈ C∞(T)2 be some initial data satisfying ρ0(x) ≥ η0 > 0 for x ∈ T and
∫

T
ρ0dx =

∫

T
C(x)dx. Finally, let v ∈ C0(0, T ;Xn) be given. We notice that v can be

written as

v(t, x) =
n

∑

i=1

λi(t)ei(x), t ∈ [0, T ], x ∈ T,

for some λi(t), and we have

‖v‖C0(0,T ;Xn) = max
t∈[0,T ]

n
∑

i=1

|λi(t)|.

As a consequence, v can be bounded in C0(0, T ;Ck(T)) for any k ∈ N, and there exists a
constant Kk > 0 depending on k such that

‖v‖C0(0,T ;Ck(T)) ≤ Kk‖v‖C0(0,T ;L2(T)).

Now, we define the approximate system. Let ρ be the classical solution to

ρt + (ρv)x = νρxx, x ∈ T, t > 0, (8)

ρ(0, x) = ρ0(x), x ∈ T. (9)

The solution satisfies ρ ∈ C0(0, T ;Ck(T)) for any k ∈ N. Furthermore, it holds
∫

T
ρdx =

∫

T
ρ0dx =

∫

T
C(x)dx. We introduce the operator S : C0(0, T ;Xn) → C0(0, T ;C3(T)) by

S(v) = ρ. Since v is smooth, the maximum principle shows that ρ = S(v) is bounded
from above and below, i.e., for ‖v‖C0(0,T ;L2(T)) ≤ c, there exist positive constants K0(c)
and K1(c) depending on c such that

0 < K0(c) ≤ (S(v))(t, x) ≤ K1(c), t ∈ [0, T ], x ∈ T. (10)

Furthermore, since the equation for ρ is linear, there exists K2 > 0 depending on k and n
such that for all v1, v2 ∈ C0(0, T ;Xn),

‖S(v1) − S(v2)‖C0(0,T ;Ck(T)) ≤ K2‖v1 − v2‖C0(0,T ;L2(T)). (11)

We claim that the lower bound for S(v) only depends on the L2(0, T ;L2(T)) norm of
vx,

ρ = S(v) ≥ η = η(‖vx‖L2(0,T ;L2(T))) > 0 in [0, T ] × T. (12)

This result is a consequence of the following lemma whose proof is presented at the end
of this section.

Lemma 3. Let T > 0 and v ∈ L2(0, T ;H1(T)). Let ρ be the solution to (8)-(9) with

initial datum ρ0 ∈ L∞(T) satisfying ρ0(x) ≥ η0 > 0 for x ∈ T. Then there exists a

constant η > 0 only depending on ν, ρ0, and the L2(0, T ;L2(T)) norm of vx such that

ρ(t, x) ≥ η > 0, t ∈ [0, T ], x ∈ T.
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Next, for given ρ = S(v), we wish to solve the following linear problem on Xn for un:

(ρun)t + (ρvun + p(ρ))x − ρ(V [ρ])x −
δ2

2
ρ
((

√
ρ)xx√
ρ

)

x
(13)

= ν(ρun)xx + ε(un)xx −
ρun

τ
,

where V [ρ] ∈ C0(0, T ;C2(T)) is the unique solution to

λ2(V [ρ])xx = ρ− C(x) in T (14)

satisfying
∫

T
V dx = 0. More explicitly, we are looking for a function un ∈ C0(0, T ; Xn)

verifying, for all test functions φ ∈ C1(0, T ;Xn) with φ(T, ·) = 0,
∫

T

ρunφtdx+

∫

T

(

ρvun + p(ρ)
)

φxdx+

∫

T

ρ(V [ρ])xφdx−
δ2

2

∫

T

(
√
ρ)xx√
ρ

(ρφ)xdx

−
∫

T

(

νρun + εun

)

x
φxdx−

1

τ

∫

T

ρunφdx =

∫

T

ρ0u0φ(0, ·)dx.

For given ρ ∈ Nη = {ρ ∈ L1(T) : infx∈T ρ ≥ η > 0}, we introduce the following family of
operators, following [10]:

M [ρ] : Xn → X∗
n, 〈M [ρ]u,w〉 =

∫

T

ρuwdx, u, w ∈ Xn.

These operators are symmetric and positive definite with the smallest eigenvalue

inf
‖w‖

L2(T)=1
〈M [ρ]w,w〉 = inf

‖w‖
L2(T)=1

∫

T

ρw2dx ≥ inf
x∈T

ρ(x) > η,

employing the bound (12). Hence, as we are working in finite dimensions, the operators
are invertible with

‖M−1[ρ]‖L(X∗

n,Xn) ≤ η−1,

where L(X∗
n, Xn) is the set of bounded linear mappings from X∗

n to Xn. Moreover, similar
as in [10], it holds:

‖M−1[ρ1] −M−1[ρ2]‖L(X∗

n,Xn) ≤ K(n, η)‖ρ1 − ρ2‖L1(T) (15)

for all ρ1, ρ2 ∈ Nη. With these notations, we can rephrase problem (13) as an ordinary
differential equation on the finite-dimensional space Xn:

d

dt

(

M [ρ(t)]un(t)
)

= N [v, un(t)], t > 0, M [ρ0]un(0) = M [ρ0]u0, (16)

where

〈N [v, un], φ〉 =

∫

T

(

−
(

ρvun + p(ρ)
)

x
+
δ2

2

((
√
ρ)xx√
ρ

)

x
+ ρ(V [ρ])x

+ ν(ρun)xx + ε(un)xx −
1

τ
ρun

)

φdx, φ ∈ Xn.
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Recall that ρ = S(v) ∈ C0(0, T ;C3(T)) is bounded from below, so the above integral
is well defined. The operator N [v, ·], defined for every t ∈ [0, T ] as an operator from
Xn to X∗

n, is continuous in time. Then, standard theory of finite-dimensional systems
of differential equations provides the existence of a unique C1 solution of (16). In other
words, there exists a unique solution un ∈ C1(0, T ;Xn) to (13).

Proof of Lemma 3. We introduce the function

L(t, x) = ln
1

ρ

(

t, x+

∫ t

0

∫

T

v(s, y)dyds

)

,

which is a solution to

Lt − νLxx = vx − ṽLx − ν(Lx)
2,

where

ṽ = v −
∫

T

vdx.

Since

|ṽLx| =

∣

∣

∣

∣

∣

√

1

2ν
ṽ
√

2νLx

∣

∣

∣

∣

∣

≤ ṽ2

4ν
+ ν(Lx)

2,

we obtain

Lt − νLxx ≤ vx +
ṽ2

4ν
.

The idea is to show an upper bound for L which only depend on η0, ν, and the L2-norm
of vx and from which the lower bound for ρ follows. This is achieved by estimating the
solution ψ to a certain parabolic problem and using the comparison principle to obtain
L ≤ ψ. We introduce the functions ψ1, which is a solution to

(ψ1)t − ν(ψ1)xx = vx, x ∈ T, t > 0,

ψ1(0, x) = 0, x ∈ T,

and ψ2, which solves

(ψ2)t − ν(ψ2)xx =
ṽ2

4ν
, x ∈ T, t > 0,

ψ1(0, x) = L(0, x) = ln
1

ρ0(x)
, x ∈ T.

First, notice that ṽx = vx and
∫

T
ṽ dx = 0. Hence, by the Poincaré inequality in one space

dimension,

‖ṽ2‖L1(0,T ;L∞(T)) =

∫ T

0

‖ṽ‖2
L∞(T)dt ≤

∫ T

0

‖ṽx‖2
L2(T)dt = ‖vx‖2

L2(0,T ;L2(T)).
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This shows that

ψ2(t, x) ≤
1

4ν
‖vx‖2

L2(L2) + ln
1

η0

, t > 0, x ∈ T. (17)

Multiplying the equation for ψ1 by −(ψ1)xx and integrating over T, we find that

1

2

d

dt

∫

T

(ψ1)
2
xdx+ ν

∫

T

(ψ1)
2
xxdx = −

∫

T

vx(ψ1)xx dx

≤ 1

4ν

∫

T

v2
xdx+ ν

∫

T

(ψ1)
2
xxdx,

from which we conclude that

‖(ψ1)x‖2
L∞(0,T ;L2(T)) ≤

1

2ν
‖vx‖2

L2(0,T ;L2(T)).

Finally, for any t > 0, the integral of ψ1(t, ·) over T vanishes, and an application of the
Poincaré inequality then gives

‖ψ1‖L∞(0,T ;L∞(T)) ≤
1

2ν
‖vx‖2

L2(0,T ;L2(T)). (18)

Consider now the sum ψ = ψ1 + ψ2 which is a solution to

ψt − νψxx = vx +
ṽ2

4ν
, x ∈ T, t > 0,

ψ(0, x) = L(0, x) = ln
1

ρ0(x)
, x ∈ T.

Then, by the comparison principle, L ≤ ψ in [0, T ]×T, and, together with (18) and (17),
we obtain for any t > 0 and x ∈ T:

L(t, x) ≤ 1

ν
‖vx‖2

L2(0,T ;L2(T)) + ln
1

η0

.

This leads to

ρ(t, x) ≥ η0 exp
(

− 1

ν
‖vx‖2

L2(0,T ;L2(T))

)

,

for every x ∈ T, t > 0.

3. Solution of the nonlinear approximate problem

In this section, we show that there exists a solution to the system (8)-(9) and (13) on
T. More precisely, we prove the following result.

Proposition 4. Let the assumptions of Theorem 1 hold and let the initial data be smooth

with positive particle density. Then there exists a solution (ρ, un) ∈ C0(0, T ;C3(T)) ×
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C1(0, T ;Xn) to (8)-(9) and (13), with v = un and ρ = ρn = S(un), satisfying the following

estimates:

ρn(t, x) ≥ η(ε) > 0, t ∈ [0, T ], x ∈ T, (19)

‖√ρn‖L∞(0,T ;H1(T)) + ‖√ρn‖L2(0,T ;H2(T)) ≤ K, (20)

‖√ρnun‖L∞(0,T ;L2(T)) + ‖√ρn(un)x‖L2(0,T ;L2(T)) ≤ K, (21)

ε‖(un)x‖L2(0,T ;L2(T)) ≤ K, (22)

‖V [ρn]‖L∞(0,T ;H1(T)) ≤ K, (23)

where η(ε) > 0 depends on ε, the initial data and the L2(T) norm of C(x), and K > 0
only depends on ν, λ, the initial data, and C(x). The potential V [ρn] is defined by (14)
with ρ = ρn.

Proof. Integrating (16) over (0, t), we can write the problem as the following nonlinear
equation:

un(t) = M−1[(S(un))(t)]
(

M [ρ0](u0) +

∫ t

0

N [un, un(s)]ds
)

in Xn.

Taking into account (11) and (15), this equation can be solved with the fixed-point the-
orem of Banach, at least on a short time interval [0, T ′], where T ′ ≤ T , in the space
C0(0, T ′;Xn). In fact, we obtain even un ∈ C1(0, T ′;Xn). We have to show that we
can choose T ′ = T . It is sufficient to prove that un is bounded in Xn on the whole
interval [0, T ′]. This is achieved by employing the energy estimate. We multiply (8) by
φ = h(ρn) − V [ρn] − u2

n/2 − (δ2/2)(
√
ρn)xx/

√
ρn, use the test function un in (13), with

v = un and ρ = ρn, and add both equations. This leads to

0 =

∫

T

(

(ρn)th(ρn) − (ρn)t
u2

n

2
+ (ρnun)tun

)

dx

+

∫

T

(

− (ρn)tV [ρn] − (ρnun)xV [ρn] + ν(ρn)xxV [ρn] − ρn(V [ρn])xun

)

dx

+

∫

T

(

(ρnun)xh(ρn) + (p(ρn))xun

)

dx

− δ2

2

∫

T

(

(ρnun)x

(
√
ρn)xx√
ρn

+ ρnun

((
√
ρn)xx√
ρn

)

x
+ (ρn)t

(
√
ρn)xx√
ρn

)

dx

+

∫

T

(

− 1

2
(ρnun)xu

2
n + (ρnu

2
n)xun

)

dx

+ ν

∫

T

(

− (ρn)xxh(ρn) +
1

2
(ρn)xxu

2
n +

δ2

2
(ρn)xx

(
√
ρn)xx√
ρn

− (ρnun)xxun

)

dx

− ε

∫

T

un(un)xxdx+
1

τ

∫

T

ρnu
2
ndx

= I1 + · · · + I8.

Notice that at this point, we need a pointwise solution to (8) such that this equation can
be multiplied by φ. If (8) was solved in a Galerkin space only, we could not use φ as a test
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function since it is not admissible. On the other hand, un is an admissible test function
for the Galerkin equation (13).

We estimate the above expression integral by integral. The first integral can be refor-
mulated as

I1 = ∂t

∫

T

(

H(ρ) +
1

2
ρnu

2
n

)

dx,

where we recall that H is a primitive of h. The second integral becomes, after integrating
by parts and employing the Poisson equation,

I2 =

∫

T

(

− λ2(V [ρn])xxtV [ρn] + νρn(V [ρn])xx

)

dx

=

∫

T

(λ2

2
∂t(V [ρn])2

x + νλ−2ρn(ρn − C(x))
)

dx.

Integrating by parts in the first member of the third integral, we see that

I3 =

∫

T

(

ρnunh
′(ρn)(ρn)x + p′(ρn)(ρn)xun

)

dx = 0,

since, by definition, p′(ρn) = ρnh
′(ρn). Again by integrating by parts, the fourth integral

simplifies to

I4 = −δ2

∫

T

(
√
ρn)t(

√
ρn)xxdx =

δ2

2
∂t

∫

T

(
√
ρn)2

xdx.

The fifth integral vanishes since, in view of the periodic boundary conditions,

I5 =
1

2

∫

T

(ρnu
3
n)xdx = 0.

Integrating by parts in the sixth integral gives

I6 = ν

∫

T

(

h′(ρn)(ρn)2
x − (ρn)xun(un)x + δ2(

√
ρn)2

xx +
δ2

3

((
√
ρn)3

x)x√
ρn

+ (ρnun)x(un)x

)

dx

= ν

∫

T

(

(G(ρn))2
x + ρn(un)2

x + δ2(
√
ρn)2

xx +
16

3
δ2( 4

√
ρn)4

x

)

dx,

where G′(y) =
√

h′(y), y ≥ 0. Summarizing, we obtain

∂t

∫

T

(

H(ρn) +
1

2
ρnu

2
n +

λ2

2
(V [ρn])2

x +
δ2

2
(
√
ρn)2

x

)

dx

+ ν

∫

T

(

(G(ρn))2
x + ρn(un)2

x + δ2(
√
ρn)2

xx +
16

3
δ2( 4

√
ρn)4

x

)

dx

+ ε

∫

T

(un)2
xdx+

1

τ

∫

T

ρnu
2
ndx

= − νλ−2

∫

T

ρn(ρn − C(x))dx (24)

≤ ν

2λ2

(

−
∫

T

ρ2
ndx+

∫

T

C(x)2dx
)

. (25)
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From this estimate the uniform bounds (20)-(23) follow. Using (12) and (22), we infer the
lower bound (19). Then, the estimate (21) shows that (un) is bounded in L∞(0, T ;L2(T))
with a bound which depends on ε. Together with the Lipschitz estimates (11) and (15),
this allows us to apply the fixed-point theorem recursively until T ′ = T .

We end this section by proving some estimates uniform in n and ε.

Lemma 5. The following estimates holds:

‖∂tρn‖L2(0,T ;L2(T)) + ‖√ρn‖L6(0,T ;W 1,6(T)) ≤ K, (26)

‖ρn‖L∞(0,T ;H1(T)) + ‖ρn‖L2(0,T ;H2(T)) ≤ K, (27)

‖∂t(ρnun)‖L2(0,T ;H−2(T)) ≤ K, (28)

‖ρα
n∂t(ρnun)‖L2(0,T ;H−1(T)) ≤ K, (29)

for all α ≥ 1/2, where K > 0 is independent of n and ε.

Proof. By the Galiardo-Nirenberg inequality with θ = 1/3, we have

‖(√ρn)x‖6
L6(0,T ;L6(T)) ≤ K

∫ T

0

‖(√ρn)x‖6θ
H1(T)‖(

√
ρn)x‖6(1−θ)

L2(T) dt (30)

≤ K‖√ρn‖4
L∞(0,T ;H1(T))

∫ T

0

‖√ρn‖2
H2(T)dt ≤ K,

taking into account the bound (20). This shows that
√
ρn is bounded in L6(0, T ; W 1,6(T)).

The function ρn solves (8)-(9), with v = un, written as

∂tρn = −√
ρn
√
ρn(un)x − 2

√
ρnun(

√
ρn)x + 2ν

√
ρn(

√
ρn)xx + 2ν(

√
ρn)2

x.

In view of (20), (21), and (30), we infer that ∂tρn ∈ L2(0, T ;L2(T)). Furthermore, by
(30), (ρn)xx = 2

√
ρn(

√
ρn)xx + 2(

√
ρn)2

x is bounded in L2(0, T ;L2(T)).
We claim that ∂t(ρnun) is bounded in L2(0, T ;H−2(T)). We have to verify that all terms

in (13), with ρ = ρn and v = un, except ∂t(ρnun) lie in this space. This is clear for the terms
(p(ρn))x, ρn(V [ρn])x, ε(un)xx, and ρnun/τ . Furthermore, ρnu

2
n = (

√
ρnun)2 is bounded

in L∞(0, T ;L1(T)), by (21), such that (ρnu
2
n)x is bounded in L∞(0, T ;W−1,1(T)) →֒

L∞(0, T ;H−2(T)); ν(ρnun)xx = ν(2
√
ρnun(

√
ρn)x + ρn(un)x)x is bounded in L2(0, T ;

H−1(T)); and

ρn

((
√
ρn)xx√
ρn

)

x
=

(√
ρn(

√
ρn)xx

)

x
− 2(

√
ρn)x(

√
ρn)xx

is bounded in L2(0, T ;H−1). This shows the claim.
Next, let α ≥ 1/2. We want to show that ρα

n∂t(ρnun) is bounded in L2(0, T ; H−1(T)).
The term

ρα
n(ρnu

2
n)x = 2ρα−1/2

n (
√
ρn)xρnu

2
n + 2ρα

n

√
ρnun

√
ρn(un)x

is bounded in L2(0, T ;L1(T)) and hence also in L2(0, T ;H−1(T)). Notice that we have
used here that α ≥ 1/2. If α ≥ 0 only, the bound depends on ε through the lower bound of
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ρn. Furthermore, ρα
n(p(ρn))x, ρ

α+1(V [ρn])x, and ρα+1un/τ are bounded in L2(0, T ;L2(T)).
The first term of

ρα+1
n

((
√
ρn)xx√
ρn

)

x
=

(

ρα+1/2
n (

√
ρn)xx

)

x
− 2(α+ 1)ρα

n(
√
ρn)x(

√
ρn)xx

is bounded in L2(0, T ;H−1(T)), the second term in L2(0, T ;L1(T)), so the sum is bounded
in L2(0, T ;H−1(T)). Similarly, the sequences

ερα
n(un)xx =

(

ρα
nε(un)x

)

x
− 2αρα−1/2

n (
√
ρn)xε(un)x,

ρα
n(ρnun)xx =

(

ρα+1/2
n

√
ρn(un)x

)

x
− 2(α− 1)ρα

n(
√
ρn)x

√
ρn(un)x

+ ρα−1/2
n (ρn)xx

√
ρnun

are bounded in L2(0, T ;H−1(T)).

4. Proof of Theorem 1

In this section, we perform the limit n → ∞, for fixed ε > 0, in the system (8)-(9),
(13), and (14), with ρ = ρn and v = un.

In view of (26), (27), and the compactness of the embeddings H1(T) →֒ L∞(T) and
H2(T) →֒ H1(T), the Aubin lemma provides the existence of a subsequence of (ρn) (not
relabeled) such that, as n→ ∞,

ρn → ρ strongly in L2(0, T ;H1(T)) and L∞(0, T ;L∞(T)),

ρn ⇀ ρ weakly in L2(0, T ;H2(T)),

∂tρn ⇀ ∂tρ weakly in L2(0, T ;L2(T)).

Since (ρn) is bounded from below, (
√
ρn)x converges weakly (up to a subsequence) to

(
√
ρ)x in L2(0, T ;L2(T)). Moreover, since ε > 0 is fixed, by (21) and (22), un converges

weakly to a function u in L2(0, T ;H1(T)). These results show that

∂tρn + (ρnun)x − ν(ρn)xx ⇀ ∂tρ+ (ρu)x − νρxx weakly in L1(0, T ;L2(T))

and that

(p(ρn))x −
δ2

2
ρn

((
√
ρn)xx√
ρn

)

x
− ν(ρnun)xx − ε(un)xx +

1

τ
ρnun

converges weakly in L1(0, T ;H−1(T)) to

(p(ρ))x −
δ2

2
ρ
((

√
ρ)xx√
ρ

)

x
− ν(ρu)xx − εuxx +

1

τ
ρu.

We also have V [ρn] → V [ρ] in L∞(0, T ;H2(T)). In order to pass to the limit in the
convection term, we observe first that ρnun ⇀ ρu weakly* in L2(0, T ;L∞(T)) since (ρn)
converges strongly in L∞(0, T ;L∞(T)) and (un) converges weakly* in L2(0, T ;L∞(T)).
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On the other hand, taking into account (28) and the bound for (ρnun) in L2(0, T ;H1(T)),
Aubin’s lemma implies that ρnun → ρu strongly in L2(0, T ;L∞(T)). Thus,

ρnu
2
n ⇀ ρu2 weakly* in L1(0, T ;L∞(T)).

Thus, passing to the limit n→ ∞ in (13), with ρ = ρn and v = un, shows that (ρ, u, V [ρ])
is a solution to (1)-(3) for ε > 0 . This finishes the proof of Theorem 1.

Remark 6. The construction of approximate solutions of section 2 can be generalized to
the multi-dimensional quantum hydrodynamic equations

ρt + div(ρu) = ν∆ρ, (31)

(ρu)t + div(ρu⊗ u) + ∇p(ρ) − ρ∇V − δ2

2
ρ∇

(∆
√
n√
n

)

= ν∆(ρu) + ε∆u− ρu

τ
, (32)

λ2∆V = ρ− C(x), x ∈ T
d. (33)

Indeed, let Xn be a finite-dimensional space defined, for instance, by the span of the first
n+1 eigenfunctions of −∆ on L2(Td). Further, let ρn be the classical solution to (31) with
u replaced by some given function v ∈ C0(0, T ;Xn), and let V [ρn] be the unique solution
to (33). By the maximum principle, ρn is strictly positive with a bound depending on
the L∞ norm of div v. Finally, we can define un to be the solution to (32), projected on
Xn, in the sense of section 2. The nonlinear finite-dimensional problem then is solved by
employing Banach’s fixed-point theorem, giving a local-in-time solution un ∈ C0(0, T ′;Xn)
on the time interval [0, T ′].

The energy estimate (25) can also be generalized to the multi-dimensional problem (see,
e.g., [5]):

∂t

∫

Td

(

H(ρn) +
1

2
ρn|un|2 +

λ2

2
|∇V [ρn]|2 +

δ2

2
|∇√

ρn|2
)

dx

+ ν

∫

Td

(

|∇G(ρn)|2 + ρn‖∇un‖2 + δ2ρn‖∇2 log ρn‖2
)

dx

+ ε

∫

Td

‖∇un‖2dx+
1

τ

∫

Td

ρn|un|2dx ≤ ν

4λ2

∫

Td

C(x)2dx,

where ‖ · ‖ denotes the ℓ2 norm of a matrix and ∇2 log ρn the Hessian of log ρn. By the
estimate (1.3) of [22] (also see Proposition A.1 in [5]),

∫

Td

ρn‖∇2 log ρn‖2dx ≥ c

∫

Td

‖∇2ρn‖2dx,

for some constant c > 0, which provides a uniform L2(0, T ′;H2(Td)) estimate for
√
ρn.

Moreover,
√
ρn is uniformly bounded in L∞(0, T ′;H1(Td)).

Provided that the lower bound for ρn is independent of n and only depends on the
L2(0, T ′;L2(Td)) norm of ∇un, it is possible to perform the limit n→ ∞. The most diffi-
cult parts are the limits in the third-order expression and the convective term. Similarly
as in the one-dimensional case, we can prove uniform bounds for ρn and ρnun which enable
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us to apply Aubin’s lemma, thus providing the strong convergence of these sequences and
allowing us to pass to the limit n → ∞. The problem, however, is to prove the lower
bound for ρn only depending on the L2(0, T ′;L2(Td)) norm of ∇un. Indeed, the proof of
Lemma 3 relies on certain L∞ estimates for ψi and Sobolev embeddings which are only
valid in one space dimension, and we are not able to extend them to the multi-dimensional
situation.

5. Proof of Theorem 2

Let (ρε, uε, V [ρε]) be the solution to (1)-(3), for ε > 0, constructed in the previous
section. In this section, we will perform the limit ε→ 0.

By the ε-independent estimates (26) and (27), the Aubin lemma gives the existence of
a subsequence (again not relabeled) such that

ρε → ρ strongly in L2(0, T ;H1(T)) and in L∞(0, T ;L∞(T)),

ρε ⇀ ρ weakly in L2(0, T ;H2(T)),

∂tρε ⇀ ∂tρ weakly in L2(0, T ;L2(T)).

Furthermore, by (20), up to a subsequence,

√
ρε ⇀

√
ρ weakly* in L∞(0, T ;H1(T)) and weakly in L2(0, T ;H2(T)).

By (21),

(ρεuε)x = 2(
√
ρε)x

√
ρεuε +

√
ρε
√
ρε(uε)x

is bounded in L2(0, T ;L2(T)), and hence, (ρεuε) is bounded in L2(0, T ;H1(T)). Therefore,

ρεuε ⇀ J weakly in L2(0, T ;H1(T)).

Thus, by (26) and (27), letting ε → 0 in the mass conservation equation (8) with ρ = ρε

and v = uε yields

ρt + Jx = νρxx in L2(0, T ;L2(T)).

In order to let ε → 0 in the momentum equation, we need to multiply (13) by ρ
3/2
ε .

The reason is that we cannot control (uε) but only (ρεuε) which makes it difficult to pass
to the limit in (ρεu

2
ε)x. The L2(0, T ;H1(T)) bound for (ρεuε) together with (28) implies

that, by Aubin’s lemma,

ρεuε → J strongly in L2(0, T ;L∞(T)).

Thus, for any test function φ ∈ L∞(0, T ;H1(T)), as ε→ 0,
∫

T

ρ3/2
ε (ρεu

2
ε)xφdx = −

∫

T

(

3(
√
ρε)xφ+

√
ρεφx

)

(ρεuε)
2dx

→
∫

T

(

3(
√
ρ)xφ+

√
ρφx

)

J2dx.
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By (29), ρ
3/2
ε (ρεuε)t is bounded in L2(0, T ;H−1(T)). Hence, also

(ρ5/2
ε uε)t = ρ3/2

ε (ρεuε)t +
3

2
ρε(ρε)t(

√
ρεuε)

is bounded in this space and we infer that

(ρ5/2
ε uε)t ⇀ (ρ3/2J)t weakly in L2(0, T ;H−1(T)). (34)

Using ρ
3/2
ε φ with φ ∈ L∞(0, T ;H1(T)) as a test function in the weak formulation of (2),

it holds

0 =

∫ T

0

∫

T

ρ3/2
ε (ρεuε)tφdxdt−

∫ T

0

∫

T

(

ρεu
2
ε + p(ρε)

)

(ρ3/2
ε φ)xdxdt

−
∫ T

0

∫

T

ρ5/2
ε (V [ρε])xφdxdt+

δ2

2

∫ T

0

∫

T

(
√
ρε)xx√
ρε

(ρ5/2
ε φ)xdxdt

+ ν

∫ T

0

∫

T

(ρεuε)x(ρ
3/2
ε φ)x + ε

∫ T

0

∫

T

(uε)xφxdxdt

+
1

τ

∫ T

0

∫

T

ρ5/2
ε uεφdxdt

= K1 + · · · +K7.

Employing (34), we have

K1 =

∫ T

0

〈(ρ5/2
ε uε)t, φ〉H−1,H1dt− 3

2

∫ T

0

∫

T

ρ3/2
ε (ρε)tuεφdxdt

→
∫ T

0

〈(ρ3/2J)t, φ〉H−1,H1dt− 3

2

∫ T

0

∫

T

√
ρρtJφdxdt.

For the second integral, we obtain

K2 =

∫ T

0

∫

T

(

(ρεuε)
2 + ρεp(ρε)

)(

3(
√
ρε)xφ+

√
ρεφx

)

dxdt

→
∫ T

0

∫

T

(

J2 + ρp(ρ)
)(

3(
√
ρ)xφ+

√
ρφx

)

dxdt,

since (ρεuε)
2 converges strongly in L1(0, T ;L∞(T)) and (

√
ρε)x converges weakly* in

L∞(0, T ;L2(T)). Furthermore, (V [ρε])x converges weakly* in L∞(0, T ; H1(T)) to V [ρ]:

K3 →
∫ T

0

∫

T

ρ5/2(V [ρ])xφdxdt.

The fourth integral can be written as

K4 =
δ2

2

∫ T

0

∫

T

(
√
ρε)xx

(5

2
ρε(ρε)xφ+ ρ2

εφx

)

dxdt.
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Since ρε converges strongly in L∞(0, T ;L∞(T)) and in L2(0, T ;H1(T)), it follows that

K4 →
δ2

2

∫ T

0

∫

T

(
√
ρ)xx

(

5ρ3/2(
√
ρ)xφ+ ρ2φx

)

dxdt.

The weak convergence of ρεuε in L2(0, T ;H1(T)) and the strong convergences of
√
ρε in

L∞(0, T ;L∞(T)) and of (ρε)x in L2(0, T ;L2(T)) imply that

K5 = ν

∫ T

0

∫

T

(ρεuε)x

(3

2

√
ρε(ρε)xφ+ ρ3/2

ε φx

)

dxdt

→ ν

∫ T

0

∫

T

Jx

(3

2

√
ρρxφ+ ρ3/2φx

)

dxdt = ν

∫ T

0

∫

T

Jx(ρ
3/2φ)xdxdt.

Finally, the estimate (22) shows that K6 → 0, and

K7 →
1

τ

∫ T

0

ρ3/2Jφdxdt.

This proves that (ρ, J, V ) solves the system (1)-(3) for ε = 0 and for smooth initial
data. A standard approximation procedure gives the result for initial data (ρ0, u0) ∈
H1(T)×L∞(T) with positive particle density and finite energy. Theorem 2 is now proven.
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18. M. Gualdani, A. Jüngel, and G. Toscani. Exponential decay in time of solutions of the
viscous quantum hydrodynamic equations. Appl. Math. Lett. 16 (2003), 1273-1278.

19. F. Huang, H.-L. Li, and A. Matsumura. Existence and stability of steady-state of
one-dimensional quantum hydrodynamic system for semiconductors. J. Diff. Eqs. 225
(2006), 1-25.
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