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Abstract. The Maxwell-Stefan equations for the molar fluxes, supplemented by the in-
compressible Navier-Stokes equations governing the fluid velocity dynamics, are analyzed
in bounded domains with no-flux boundary conditions. The system models the dynamics
of a multicomponent gaseous mixture under isothermal conditions. The global-in-time
existence of bounded weak solutions to the strongly coupled model and their exponential
decay to the homogeneous steady state are proved. The mathematical difficulties are due
to the singular Maxwell-Stefan diffusion matrix, the cross-diffusion terms, and the differ-
ent molar masses of the fluid components. The key idea of the proof is the use of a new
entropy functional and entropy variables, which allows for a proof of positive lower and
upper bounds of the mass densities without the use of a maximum principle.

1. Introduction

The dynamics of a multicomponent gaseous mixture can be described by the Navier-
Stokes equations, which represent the balance of mass, momentum, and energy, and the
Maxwell-Stefan equations, which model the diffusive transport of the components of the
mixture. Applications arise, for instance, from physics (sedimentation, astrophysics),
medicine (dialysis, respiratory airways), and chemistry (electrolysis, ion exchange, chemi-
cal reactors) [23]. The understanding of the analytical structure of coupled Navier-Stokes-
Maxwell-Stefan systems is of great importance for an accurate modeling and efficient nu-
merical simulation of these applications. In this paper, we make a step forward to this
understanding by proving the global-in-time existence of weak solutions and their long-
time behavior for Navier-Stokes-Maxwell-Stefan systems for incompressible fluids under
natural assumptions.
More precisely, we consider a multicomponent fluid consisting of N+1 components with

the mass densities ρi, molar masses Mi, and velocities ui. As in [6], we prescribe a system
of partial mass balances together with a common mixture momentum balance, where the
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diffusive fluxes are given by the Maxwell-Stefan relations. The partial mass balances for
the molar concentrations ci = ρi/Mi read as

∂tci + div(ji + ciu) = 0, i = 1, . . . , N + 1,

where the barycentric velocity u and the total mass density ρ∗ of the fluid are defined
by ρ∗u =

∑N+1
i=1 ρiui and ρ∗ =

∑N+1
i=1 ρi, and the molar mass fluxes ji are given by ji =

ci(ui − u). By definition of ji, it holds that
∑N+1

i=1 Miji = 0, and therefore, one of the
partial mass balances can be replaced by the continuity equation ∂tρ

∗+div(ρ∗u) = 0. The
mixture momentum balance equations are

∂t(ρ
∗u) + div(ρ∗u⊗ u− S) +∇p = ρ∗f,

where p is the pressure, the force density equals ρ∗f =
∑N+1

i=1 ρifi, and the viscous stress
tensor is S = ν∗(∇u+∇u⊤), where ν∗ is the viscosity constant. In this paper, we suppose
that fi = f and, as in [18], we consider the incompressible, isothermal case,

ρ∗ = const., div u = 0.

For simplicity, we set ρ∗ = 1 and ν∗ = 1.
The above equations are closed by relating the molar mass fluxes ji to the molar con-

centrations ci by the Maxwell-Stefan equations

−
N+1∑

k=1

xkji − xijk
Dik

= ci∇µi − yi∇p− ρi(fi − f), i = 1, . . . , N + 1,

where xi = ci/c with c =
∑N+1

k=1 ci are the molar fractions, yi = ρi/ρ
∗ = ρi are the mass

fractions, µi are the molar-based chemical potentials, and Dik = Dki > 0 for i 6= k are the
diffusion coefficients. Our second assumption is that the mixture of gases is ideal such that
the chemical potentials can be written as µi = ln xi + µ0i(p) with dµ0i/dp = φi/ci, where
φi is the volume fraction (see [6, Section 1.1]). Since fi = f , this implies that

−
N+1∑

k=1

xkji − xijk
Dik

=
ci
xi

∇xi + (φi − yi)∇p = c∇xi + (φi − yi)∇p.

We assume further that the volume and mass fractions are comparable such that the
contribution (φi−yi)∇p can be neglected. The general case will be investigated in a future
work. For a discussion of the above equation as well as the incompressibility condition in
the context of fluid mixtures, we refer to [5, Sections 14-16]. This gives the desired closure
relations

−
N+1∑

k=1

xkji − xijk
Dik

= c∇xi, i = 1, . . . , N + 1.

These relations, together with the mass balance equations, can also be derived from a
system of kinetic equations with BGK-type collision operator in the Chapman-Enskog
expansion [3].
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Setting Ji = Miji, the incompressible Navier-Stokes-Maxwell-Stefan system analyzed in
this paper reads as

∂tρi + div(Ji + ρiu) = 0, in Ω, t > 0,(1)

∂tu+ (u · ∇)u−∆u+∇p = f, div u = 0,(2)

∇xi = −
N+1∑

k=1

ρkJi − ρiJk
c2MiMkDik

, i = 1, . . . , N + 1,(3)

where xi and ρi are related by xi = ρi/(cMi) with c =
∑N+1

i=1 ρi/Mi and Ω ⊂ R
d (d ≤ 3)

is a bounded domain. Note that ρ∗ = 1 implies that
∑N+1

i=1 ρi =
∑N+1

i=1 xi = 1. The initial
and boundary conditions are

(4) ρi(·, 0) = ρ0i , u(·, 0) = u0 in Ω, ∇ρi · ν = 0, u = 0 on ∂Ω,

where i = 1, . . . , N + 1 and ν is the normal exterior unit vector on ∂Ω.
Note that the fluid velocity u is solely determined by the incompressible Navier-Stokes

equations (2) with the corresponding initial and boundary conditions, for given force f .
The mathematical difficulties of the above system are as follows.
First, the molar mass fluxes are not explicitly given as a linear combination of the mass

density gradients, which makes necessary to invert the flux-gradient relations (3). However,
as the Maxwell-Stefan equations are linearly dependent, we need to invert on a subspace.
In the engineering literature, this inversion is usually done in an approximate way [2].
Giovangigli [10] suggested an iterative procedure using the Perron-Frobenius theory. A
general inversion result was proved by Bothe [4], again based on the Perron-Frobenius
theory.
Second, because of the cross-diffusion coupling in (1) and (3), standard tools like max-

imum principles and regularity theory are not available. In particular, it is not clear how
to prove positive lower and upper bounds for the mass densities ρi and even the local
existence of solutions is not trivial.
Third, we need to find suitable a priori estimates for the coupled system. Difficulties

arise from the facts that the molar masses Mi are generally different, which complicates the
analysis, and that the velocity does not need to be bounded such that the term div(ρiu)
in (1) needs to be treated carefully.
In view of these difficulties, it is not surprising that there exist only partial results on such

systems in the literature. First results were concerned with the Maxwell-Stefan equations
(1) and (3) with vanishing velocity u = 0 and equal molar massesM = Mi. Griepentrog [13]
and later Bothe [4] derived a local existence theory; Giovangigli [11, Theorem 9.4.1] proved
the global existence of solutions with initial data sufficiently close to the equilibrium state;
Boudin, Grec, and Salvarani [7] investigated a particular two-component model; Jüngel
and Stelzer [16] presented general global existence results; and Herberg et al. [14] prove
locally well-posedness in an Lp-setting and exponential stability for the mass-based model.
The Maxwell-Stefan system with given bounded velovity u 6= 0 was analyzed by Mucha,
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Pokorný, and Zatorska [20]. They imposed a special diffusion matrix which avoids the
inversion problem.
Other papers were concerned with the full coupled system but in particular situations.

For instance, Zatorska [24] proved the existence of weak solutions to the stationary com-
pressible model with three fluid components and special isobaric pressures. She also proved
the sequential stability of weak solutions to the two-component system on the three-
dimensional torus [25]. Mucha, Pokorný, and Zatorska [19] showed a global existence
result for a regularized compressible system for two components. The Navier-Stokes equa-
tions contain artificial higher-order differential operators which regularize the problem. In
[17], the global existence for the incompressible Navier-Stokes-Maxwell-Stefan system was
announced but not proved. For numerical approximations using a finite-volume method,
we refer to [1].
After this article was completed, we learned of the paper [18] in which the global existence

of solutions to the coupled system (1)-(4) is proved. The main idea in [18] is to modify the
flux-gradient system equivalently in such a way that it becomes invertible. This yields a
particular structure of the diffusion coefficients aij in Ji =

∑N+1
j=1 aij∇xj, allowing for the

use of the classical maximum principle.
In this paper, we present a global existence result for the full system (1)-(4), allow-

ing for different molar masses Mi, using a different approach than in [18], namely an
entropy-dissipation method. We remove the last component of the fluid by setting ρN+1 =
1−
∑N

i=1 ρi, thus obtaining a directly invertible flux-gradient system [4]. By “symmetrizing”
the diffusion system via an introduction of so-called entropy variables, we solve an equiva-
lent diffusion system whose solution defines nonnegative densities ρi satisfying

∑N
i=1 ρi ≤ 1

without the use of a maximum principle. This idea was first employed in [16] for the
Maxwell-Stefan system with u = 0. Compared to [16], we have to overcome some addi-
tional difficulties detailed below. In contrast to [18], we are able to prove the exponential
decay of the weak solutions to equilibrium by using the entropy-dissipation method.
In order to state our main results, we introduce the following spaces (see [21, Chapter

I]). Let Ω ⊂ R
d be a bounded domain with ∂Ω ∈ C1,1 and let

(5)

H = {u ∈ L2(Ω;Rd) : div u = 0, u · ν|∂Ω = 0},
V = {u ∈ H1

0 (Ω;R
d) : div u = 0}, V2 = V ∩H2(Ω;Rd),

H̃2(Ω;RN ) = {q ∈ H2(Ω;RN) : ∇q · ν|∂Ω = 0}.

We define similarly the space H̃2(Ω). We recall that functions u ∈ L2(Ω;Rd) with div u ∈
L2(Ω) satisfy u · ν|∂Ω ∈ H−1/2(∂Ω) such that the space H is well defined [21, Theorem
I.1.2].

Theorem 1 (Global existence). Let d = 1, 2, 3, T > 0, and Dij = Dji > 0 for i, j =
1, . . . , N +1, i 6= j. Suppose that f ∈ L2(0, T ;V ′), u0 ∈ H, and let ρ01, . . . , ρ

0
N+1 ∈ L1(Ω) be

nonnegative functions which satisfy
∑N+1

i=1 ρ0i = 1 and h(ρ0) < +∞, where ρ0 = (ρ01, . . . , ρ
0
N)

and h is defined in (7) below. Then there exists a global weak solution (u, ρ1, . . . , ρN+1) to
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(1)-(4) (in the sense of (27)-(28) below) such that ρi ≥ 0,
∑N+1

j=1 ρi = 1 in Ω× (0, T ), and

u ∈ L∞(0, T ;H) ∩ L2(0, T ;V), ∂tu ∈ L2(0, T ;V ′
2),

ρi ∈ L2(0, T ;H1(Ω)), ∂tρi ∈ L2(0, T ; H̃2(Ω)′), i = 1, . . . , N + 1.

Remark 2. For a given force f , the velocity u is solely determined by the Navier-Stokes
equations (2) with initial and boundary conditions. In the analysis, we may first solve
(2), then plug the velocity u into the continuity equation (1), and hence solve (1) and (3).
Therefore, Theorem 1 also applies to any velocity field which enjoys the regularity for the
weak solutions of the incompressible Navier-Stokes equations.

We stress the fact that although the diffusion coefficients Dij are constant, the diffusion
matrix of the inverted Maxwell-Stefan system (see (6) below) depends on the mass densities
in a nonlinear way. Note that the same existence result holds when we allow for reaction
terms in (1) which are locally Lipschitz continuous and quasi-positive; see [4, 16].
The key ideas of the proof are as follows. First, we write (3) more compactly as ∇x =

A(ρ)J , where x = (x1, . . . , xN+1), ρ = (ρ1, . . . , ρN+1), J = (J1, . . . , JN+1), and A(ρ) is a
matrix. Using the Perron-Frobenius theory, Bothe [4] proved that A(ρ) can be inverted on
its image. As in [16], it turns out that it is more convenient to work with the system in N
components by eliminating the last equation in (1). We set x′ = (x1, . . . , xN) and similarly
for the other vectors. Then, inverting ∇x′ = −A0(ρ)J

′ (Lemma 4), (1) becomes

(6) ∂tρ
′ + (u · ∇)ρ′ − div(A0(ρ)

−1∇x′) = 0.

This equation can be analyzed by exploiting its entropy structure. Indeed, we associate to
this system the entropy density (or, more precisely, Gibbs free energy)

(7) h(ρ′) = c
N+1∑

i=1

xi(ln xi − 1) + c,

where ρN+1 = 1 −∑N
i=1 ρi is interpreted as a function of the other mass densities. We

“symmetrize” (6) by introducing the entropy variables

(8) wi =
∂h

∂ρi
=

ln xi

Mi

− ln xN+1

MN+1

, i = 1, . . . , N,

and set w = (w1, . . . , wN). The second equality in (8) is shown in Lemma 5 below. Denoting
by D2h(ρ′) the Hessian of h with respect to ρ′, (6) is equivalent to

(9) ∂tρ
′ + (u · ∇)ρ′ − div(B(w)∇w) = 0,

where B(w) = A−1
0 (ρ′)(D2h)−1(ρ′) is symmetric and positive definite (Lemma 9). This

formulation reveals the parabolic structure of the equations. The mass density vector ρ′ is
interpreted as a function of w. If all molar masses are equal, Mi = M , this function can
be written as ρi(w) = exp(Mwi)(1 +

∑N
j=1 exp(Mwj))

−1 [16], showing that

(10) 0 < ρ′ < 1 and
N∑

i=1

ρi < 1.
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This formulation is no longer possible if the molar masses are different. In this situation,
ρ′ is implicitly given as a function of w; there is no explicit formula anymore. However,
we are able to show that the mapping ρ′ 7→ w, defined by (8) and xi = ρi/(cMi), can
be inverted and that (10) still holds (Corollary 8). We emphasize that this property is
obtained without the use of a maximum principle. The idea is to prove the existence of
weak solutions w to (9) and to conclude (10) directly from the inverted relation ρ = ρ(w).
The entropy H(ρ′) =

∫
Ω
h(ρ′)dz provides suitable a priori estimates. Indeed, using w as

a test function in (9), a computation (see Lemma 12 and the proof of Theorem 1) shows
the entropy-dissipation inequality

(11)
dH

dt
= −

∫

Ω

∇w : B(w)∇wdz ≤ −CB

N+1∑

i=1

∫

Ω

|∇√
xi|2dz,

where the constant CB > 0 only depends on the diffusion coefficients Dij and the molar
masses Mi and the double point “:” signifies summation over both matrix indices. The
key point is that the integral

∫
Ω
((u ·∇)ρ′) ·wdz in (9) vanishes (Lemma 11). This property

allows us to “separate” the solution’s behavior of the Maxwell-Stefan system and the given
velocity of Navier-Stokes equations. It yields H1 estimates for

√
xi from which we conclude

H1 bounds for ρi (Lemma 15). We note that a diffusion inequality which directly implies
the above entropy-dissipation inequality was first established in [12, Section 4].
The proof of Theorem 1 is based on a semi-discretization in time of both the Navier-

Stokes equations (2) and Maxwell-Stefan equations (9) with time step τ > 0, together with
a regularization using the operator ε(∆2w + w) in (9), which guarantees the coercivity
in w. The existence of a solution to the approximate problem is shown by means of
the Leray-Schauder fixed-point theorem. The discrete analogon of the entropy-dissipation
inequality (11) provides bounds uniform in the approximation parameters τ and ε. By
weak compactness and the Aubin lemma, this allows us to perform the limit (τ, ε) → 0.
System (1)-(3) admits the homogeneous steady state ρ̄0i = meas(Ω)−1‖ρ0i ‖L1(Ω) or x̄

0
i =

ρ̄0i /(c̄
0Mi), where c̄0 =

∑N+1
i=1 ρ̄0i /Mi. We prove that the solution to (1)-(3), constructed in

Theorem 1, converges exponentially fast to this stationary state. For this, we introduce
the relative entropy

(12) H∗(ρ) =
N+1∑

i=1

∫

Ω

cxi ln
xi

x̄0
i

dz.

Theorem 3 (Exponential decay). Let the assumptions of Theorem 1 hold. We assume
that there exists 0 < η < 1 such that ρ0i ≥ η for i = 1, . . . , N + 1. Let (u, ρ) be the weak
solution, whose existence is guaranteed by Theorem 1. Then there exist constants C > 0,
only depending on ρ0i and Mi, and λ > 0, only depending on Ω and Mi, such that for all
t > 0 and i = 1, . . . , N + 1,

‖xi(·, t)− x̄0
i ‖L1(Ω) ≤ Ce−λt

√
H∗(ρ0),

where xi = ρi/(cMi) with c =
∑N+1

i=1 ρi/Mi and x̄0
i = ρ0i /(c̄

0Mi) with c̄0 =
∑N+1

i=1 ρ̄0i /Mi.
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The proof is based on the entropy-dissipation inequality (11) by relating the entropy
dissipation with the entropy via the logarithmic Sobolev inequality [15, Remark 3.7]. Sim-
ilarly as in [16], the difficulty of the proof is that the approximate solution does not conserve
the L1 norm because of the presence of the regularizing ε-terms. The estimations of these
terms make the proof rather technical.
Compared to our previous work [16], the main novelty in this paper is the treatment of

the molar masses Mi, which may be not equal. Therefore, we need to distinguish between
the mass densities ρi and the molar fractions xi, which makes necessary to derive some
additional estimates. In particular, the proof of the positive definiteness of the Hessian of
h, which implies the positive definiteness of B(w), is rather involved (see Lemma 9).
The paper is organized as follows. In Section 2, we prove some auxiliary results needed

for the main proofs. In particular, we show properties of the relations between w, ρ, and
x and of the matrices D2h and B(w). The proofs of Theorems 1 and 3 are presented in
Sections 3 and 4, respectively.

2. Preparations

In this section, we show some auxiliary results which are used in the proofs of the main
theorems.

2.1. Equivalent formulation of (1) and (3). We recall the notation ρ = (ρ′, ρN+1),
ρ′ = (ρ1, . . . , ρN) and similarly for x and J , defined by xi = ρi/(cMi) and Ji = Miji
(i = 1, . . . , N + 1). The matrix ∇ρ consists of the elements ∂ρi/∂zj (1 ≤ i ≤ N + 1,
1 ≤ j ≤ d), and we define similarly ∇x and ∇w. Then we can formulate (1) and (3) more
compactly as

(13) ∂tρ+ (u · ∇)ρ+ div J = 0, ∇x = AJ,

where the (N + 1)× (N + 1) matrix A = A(ρ) = (Aij) is defined by

(14)

Aij = dijρi if i 6= j, i, j = 1, . . . , N + 1,

Aij = −
N+1∑

k=1, k 6=i

dikρk if i = j = 1, . . . , N + 1,

and dij = 1/(c2MiMjDij). It is shown in [16, Section 2] that the system of N+1 equations
∇x = AJ can be reduced to the first N components, leading to

(15) ∂tρ
′ + (u · ∇)ρ′ + div J ′ = 0, ∇x′ = A0J

′,

where the N ×N matrix A0 = A0(ρ
′) = (A0

ij) is given by

(16)

A0
ij = −(dij − di,N+1)ρi if i 6= j, i, j = 1, . . . , N,

A0
ij =

N∑

k=1, k 6=i

(dik − di,N+1)ρk + di,N+1 if i = j = 1, . . . , N.

Lemma 4. The matrix A0 is invertible and the elements of its inverse A−1
0 are uniformly

bounded in ρ1, . . . , ρN ∈ [0, 1].
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Proof. The definition c =
∑N+1

i=1 ρi/Mi and the property 0 ≤ ρi ≤ 1 imply that

(17)

(
max

1≤i≤N+1
Mi

)−1

≤ c ≤
(

min
1≤i≤N+1

Mi

)−1

.

Hence, the coefficients dij = 1/(c2MiMjDij) are bounded uniformly in ρk ∈ [0, 1]. There-
fore, the proof of Lemma 2.3 in [16] applies, proving the result. �

2.2. Entropy variables. We recall the relations xi = ρi/(cMi), c =
∑N+1

i=1 ρi/Mi, and∑N+1
i=1 ρi = 1. Since

xN+1 =
ρN+1

cMN+1

=
1

cMN+1

(
1−

N∑

i=1

ρi

)
, c =

N∑

i=1

ρi
Mi

+
1

MN+1

(
1−

N∑

i=1

ρi

)
,

we may interpret the entropy density (7) as a function of ρ′ = (ρ1, . . . , ρN), which gives

h(ρ′) = c
N∑

i=1

xi(ln xi − 1) + cxN+1(ln xN+1 − 1) + c

=
N∑

i=1

ρi
Mi

(
ln

ρi
Mi

− 1

)
+

ρN+1

MN+1

(
ln

ρN+1

MN+1

− 1

)
− c(ln c− 1),(18)

First, we prove that the entropy variables can be written as in (8).

Lemma 5. The entropy variables wi = ∂h(ρ′)/∂ρi are given by

(19) wi =
ln xi

Mi

− ln xN+1

MN+1

, i = 1, . . . , N.

Proof. The proof is just a computation. Indeed, we infer from

∂c

∂ρi
=

∂

∂ρi

(
N∑

k=1

ρk
Mk

+
1

MN+1

(
1−

N∑

k=1

ρk

))
=

1

Mi

− 1

MN+1

for i = 1, . . . , N that

∂h

∂ρi
(ρ′) =

1

Mi

ln
ρi
Mi

− 1

MN+1

ln
ρN+1

MN+1

−
(

1

Mi

− 1

MN+1

)
ln c

=
1

Mi

ln
ρi
cMi

− 1

MN+1

ln
ρN+1

cMN+1

,

and since ρi/(cMi) = xi, the conclusion follows. �

We claim that we can invert the mapping x′ 7→ w, defined by (19).

Lemma 6. Let w = (w1, . . . , wN) ∈ R
N be given. Then there exists a unique (x1, . . . , xN ) ∈

(0, 1)N satisfying
∑N

i=1 xi < 1 such that (19) holds with xN+1 = 1−∑N
i=1 xi. In particular,

the mapping R
N → (0, 1)N , x′(w) = (x1, . . . , xN), is bounded.
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Proof. Introduce the function f(s) =
∑N

i=1(1 − s)Mi/MN+1 exp(Miwi) for s ∈ [0, 1]. Then

f is strictly decreasing in [0, 1] and 0 = f(1) < f(s) < f(0) =
∑N

i=1 exp(Miwi) for
s ∈ (0, 1). By continuity, there exists a unique fixed point s0 ∈ (0, 1), f(s0) = s0. Defining

xi = (1 − s0)
Mi/MN+1 exp(Miwi) for i = 1, . . . , N , we infer that xi > 0 and

∑N
i=1 xi =

f(s0) = s0 < 1. Hence, in view of xN+1 = 1− s0, (19) holds. �

Given ρ, we can define xi = ρi/(cMi), where c =
∑N+1

i=1 ρi/Mi. The following lemma
ensures that this mapping is invertible.

Lemma 7. Let x′ = (x1, . . . , xN) ∈ (0, 1)N and xN+1 = 1 −∑N
i=1 xi > 0 be given and

define for i = 1, . . . , N + 1,

ρi(x
′) = ρi = cMixi, where c =

1
∑N+1

k=1 Mkxk

.

Then (ρ1, . . . , ρN) ∈ (0, 1)N is the unique vector satisfying ρN+1 = 1 − ∑N
i=1 ρi > 0,

xi = ρi/(cMi) for i = 1, . . . , N + 1, and c =
∑N+1

k=1 ρk/Mk.

The proof follows immediately from
∑N+1

k=1 ρk/Mk =
∑N+1

k=1 cxk = c, and the fact that

ρi/Mixi =
∑N+1

k=1 ρk/Mk for i = 1, 2, ..., N have unique solutions ρi = Mixi/
∑N+1

k=1 Mkxk

for i = 1, 2, ..., N by applying Cramer’s rule.
Combining Lemmas 6 and 7, we infer the following result.

Corollary 8. Let w = (w1, . . . , wN) ∈ R
N be given. Then there exists a unique vector

(ρ1, . . . , ρN) ∈ (0, 1)N satisfying
∑N

i=1 ρi < 1 such that (19) holds for ρN+1 = 1 −
∑N

i=1 ρi
and xi = ρi/(cMi) with c =

∑N+1
i=1 ρi/Mi. Moreover, the mapping R

N → (0, 1)N , ρ′(w) =
(ρ1, . . . , ρN), is bounded.

2.3. Hessian of the entropy density. We prove some properties of the Hessian (Hij) =
(∂2h(ρ′)/∂ρi∂ρj)1≤i,j≤N = (∂wi/∂ρj)1≤i,j≤N and the matrix (Gij) = (∂wi/∂xj)1≤i,j≤N . Dif-
ferentiating (18) gives

Hij =
δij
Miρi

+
1

MN+1ρN+1

− 1

c

(
1

Mi

− 1

MN+1

)(
1

Mj

− 1

MN+1

)
, i, j = 1, . . . , N,

where δij denotes the Kronecker delta.

Lemma 9. The matrix (Hij) is symmetric and positive definite for all ρ1, . . . , ρN > 0

satisfying
∑N

i=1 ρi < 1.

Proof. We claim that the principal minors detHk of (Hij) satisfy

(20) detHk >
2

cMN+1

∏k
ℓ=1 Mℓ

(
k∑

i,j=1, i<j

1

ρN+1

∏k
ℓ=1, ℓ6=i,j ρℓ

+
k∑

j=1

1
∏k

ℓ=1, ℓ6=j ρℓ

)
> 0

for k = 1, . . . , N . Then the positive definiteness of (Hij) follows from Sylvester’s criterion.
It remains to prove (20). Since each column of Hk can be written for j = 1, 2, ..., k, as the
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difference


δ1j(M1ρ1)

−1 + (MN+1ρN+1)
−1

...
δkj(Mkρk)

−1 + (MN+1ρN+1)
−1


− 1

c

(
1

Mj

− 1

MN+1

)


M−1

1 −M−1
N+1

...
M−1

k −M−1
N+1


 ,

a calculation shows that

detHk =
1

∏k
ℓ=1 Mℓρℓ

(
k∑

j=1

Mjρj
MN+1ρN+1

+ 1

)

− 1

c

k∑

j=1

(
1

Mj

− 1

MN+1

)
1

∏k
ℓ=1, ℓ6=j Mℓρℓ

×
(

k∑

i=1, i 6=j

Miρi
MN+1ρN+1

(
1

Mj

− 1

Mi

)
+

(
1

Mj

− 1

MN+1

))
.

Multiplying this expression by c and rearranging the terms, we find that

c detHk =

(
k∑

j=1

c

MN+1ρN+1

∏k
ℓ=1, ℓ6=j Mℓρℓ

+
c

∏k
ℓ=1 Mℓρℓ

)

−
k∑

j=1

(
1

Mj

− 1

MN+1

)2
1

∏k
ℓ=1, ℓ6=j Mℓρℓ

−
k∑

j=1

(
1

Mj

− 1

MN+1

) k∑

i=1, i 6=j

(
1

Mj

− 1

Mi

)
Miρi

MN+1ρN+1

∏k
ℓ=1, ℓ6=j Mℓρℓ

= I1 + I2 + I3.

Recalling that c =
∑N+1

ℓ=1 ρℓ/Mℓ, we can estimate as follows:

I1 >
k∑

j=1

∑k
i=1, i 6=j ρi/Mi + ρN+1/MN+1

MN+1ρN+1

∏k
ℓ=1, ℓ6=j Mℓρℓ

+

∑k
j=1 ρj/Mj
∏k

ℓ=1 Mℓρℓ

=
k∑

j=1

(
k∑

i=1, i 6=j

1

M2
i MN+1ρN+1

∏k
ℓ=1, ℓ6=i,j Mℓρℓ

+
1

M2
N+1

∏k
ℓ=1, ℓ6=j Mℓρℓ

)

+
k∑

j=1

1

M2
j

∏k
ℓ=1, ℓ6=j Mℓρℓ

=
k∑

i,j=1, i<j

M−2
i +M−2

j

MN+1ρN+1

∏k
ℓ=1, ℓ6=i,j Mℓρℓ

+
k∑

j=1

M−2
j +M−2

N+1∏k
ℓ=1, ℓ6=j Mℓρℓ

.
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Using
∑

i,j bij(aj −a)(aj −ai) =
∑

i<j bij(aj −ai)
2 for numbers a, ai ∈ R and bij = bji ∈ R,

the last term I3 can be formulated as

I3 = −
k∑

j=1

k∑

i=1, i 6=j

(M−1
j −M−1

N+1)(M
−1
j −M−1

i )

MN+1ρN+1

∏k
ℓ=1, ℓ6=i,j Mℓρℓ

= −
k∑

i,j=1, i<j

(M−1
i −M−1

j )2

MN+1ρN+1

∏k
ℓ=1, ℓ6=i,j Mℓρℓ

.

Therefore, we infer that

c detHk >

k∑

i,j=1, i<j

2M−1
i M−1

j

MN+1ρN+1

∏k
ℓ=1, ℓ6=i,j Mℓρℓ

+
k∑

j=1

2M−1
j M−1

N+1∏k
ℓ=1, ℓ6=j Mℓρℓ

=
2

MN+1

∏k
ℓ=1 Mℓ

(
k∑

i,j=1, i<j

1

ρN+1

∏k
ℓ=1, ℓ6=i,j ρℓ

+
k∑

j=1

1
∏k

ℓ=1, ℓ6=j ρℓ

)
,

and (20) follows. �

The coefficients Gij = ∂wi/∂xj are given by

(21) Gij =
1

MN+1xN+1

+
δij

Mixi

= c

(
1

ρN+1

+
δij
ρi

)
, i, j = 1, . . . , N,

since xi = ρi/(cMi). We recall that w(ρ′) is computed in (19).

Lemma 10. It holds for all ρ1, . . . , ρN > 0 satisfying ρN+1 = 1−∑N
i=1 ρi > 0:

(i) The matrix G(ρ′) = (Gij) and its inverse G−1(ρ′) are positive definite.
(ii) ∇w(ρ′) = G(ρ′)∇x′(ρ′).
(iii) The elements of the N × N matrix dρ′/dx′ = (∂ρi/∂xk) are bounded by a constant

which depends only on the molar masses Mi.
(iv) The N × N matrix B(ρ′) = A−1

0 (ρ′)G−1(ρ′) is symmetric, positive definite, and its
elements are uniformly bounded.

Proof. (i) The explicit expression (21) shows that G(ρ′) is symmetric. Since all principal
minors detGk of G(ρ′),

detGk =

∑k
i=1 Mixi +MN+1xN+1

(
∏k

i=1 Mixi)MN+1xN+1

, k = 1, . . . , N,

are positive, Sylvester’s criterion implies that G(ρ′) is positive definite. Consequently, also
G−1(ρ′) is positive definite.
(ii) We infer from (19) that

∇wi =
∇xi

Mixi

+
N∑

j=1

∇xj

MN+1xN+1

=
N∑

j=1

Gij∇xj, i = 1, 2, . . . , N,

and hence ∇w = G(ρ′)∇x′.
(iii) By Lemma 7, it follows that

(22)
∂ρi
∂xk

= cMiδik − c2Mixi(Mk −MN+1), i, k = 1, . . . , N,
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where c = 1/
∑N+1

j=1 Mjxj. The claim follows from the inequalities 0 < xi < 1 and the

bounds (17).
(iv) We set G(ρ′) = cK(ρ′), where the elementsKij ofK(ρ′) are given byKij = 1/ρN+1+

δij/ρi for i, j = 1, . . . , N . In view of part (i) of the proof, the matrix K(ρ′) is symmetric
and positive definite, hence invertible. Then, by Lemma 2.4 in [16], A−1

0 (ρ′)K−1(ρ′) is
symmetric and positive definite and its elements are uniformly bounded. Consequently,
the same holds for B(ρ′) = c−1A−1

0 (ρ′)K−1(ρ′). This ends the proof. �

From Lemma 10 follows that

(23) A−1
0 (ρ′)∇x′(ρ′) =

(
A−1

0 (ρ′)G−1(ρ′)
)
(G(ρ′)∇x′(ρ′)) = B(ρ′)∇w(ρ′).

We have shown at the end of Section 2.2 that ρ′ can be interpreted as a function of w.
Therefore, setting B(w) := B(ρ′(w)), (6) can be written as

(24) ∂tρ
′(w) + (u · ∇)ρ′(w)− div(B(w)∇w) = 0.

The boundary conditions are given by

(25) ∇wi · ν = 0 on ∂Ω, t > 0, i = 1, . . . , N,

since ∇ρj · ν = 0 on ∂Ω for all j implies that

∇xi · ν = ∇ ρi
cMi

· ν =
∇ρi · ν
cMi

−
N+1∑

j=1

ρi∇ρj · ν
c2MiMj

= 0

and thus ∇wi · ν = (G(ρ′)∇x)i · ν = 0 on ∂Ω.

2.4. Some estimates. We show two results which are needed in the proof of the existence
theorem.

Lemma 11. Let u ∈ V and w ∈ H1(Ω). Then
∫

Ω

((u · ∇)ρ′(w)) · wdz = 0.

Proof. Using div u = 0, the characterization (19) of wi, and ρi/Mi = cxi, we obtain after
an integration by parts,

∫

Ω

((u · ∇)ρ′(w)) · wdz =
N∑

i=1

∫

Ω

(u · ∇ρi(w))widz = −
N∑

i=1

∫

Ω

(u · ∇wi)ρi(w)dz

= −
N∑

i=1

∫

Ω

ρi(w)u ·
( ∇xi

Mixi

− ∇xN+1

MN+1xN+1

)
dz

= −
N∑

i=1

∫

Ω

cu · ∇xidz +

∫

Ω

N∑

i=1

ρi
u · ∇xN+1

MN+1xN+1

dz.
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Because of
∑N

i=1 ρi = 1− ρN+1 and ρN+1/(MN+1xN+1) = c, the last integral equals
∫

Ω

1− ρN+1

MN+1xN+1

u · ∇xN+1dz =
1

MN+1

∫

Ω

u · ∇(ln xN+1)dz −
∫

Ω

cu · ∇xN+1dz

=
N∑

i=1

∫

Ω

cu · ∇xidz,

where we integrated by parts and used div u = 0 and xN+1 = 1−∑N
i=1 xi. This shows the

lemma. �

In the following, we employ the notation f(x) = (f(x1), . . . , f(xN+1)) for vectors x =
(x1, . . . , xN+1) and arbitrary functions f .

Lemma 12. Let w ∈ H1(Ω). Then there exists a constant CB > 0, only depending on the
coefficients Dij and Mi such that

∫

Ω

∇w : B(w)∇wdz ≥ CB

∫

Ω

|∇
√
x|2dz.

Proof. We follow the proof of Lemma 3.2 in [16]. In contrast to that proof, we have to
take into account the different molar masses Mi which complicates the analysis. First, we
claim that

∇w : B(w)∇w = ∇s : (−Ã)−1∇x,

where s = (ln x1/M1, . . . , ln xN+1/MN+1) and Ã = A|im(A). To prove this claim, we set

r′ = (r1, . . . , rN)
⊤ = B(w)∇w ∈ R

N×d and rN+1 = −∑N
i=1 ri ∈ R

d. Then, by (19),

(26) ∇w : B(w)∇w =
N∑

i=1

(∇ ln xi

Mi

− ∇ ln xN+1

MN+1

)
· ri =

N+1∑

i=1

∇ ln xi

Mi

· ri = ∇s : r,

where r = (r′, rN+1)
⊤. By (23), ∇x′ = A0r

′, and the definitions (14) and (16) of A and
A0, respectively, we obtain for i = 1, . . . , N ,

∇xi =
N∑

j=1, j 6=i

(dij − di,N+1)(ρjr
⊤
i − ρir

⊤
j ) + di,N+1r

⊤
i = (−Ar)i = (−Ãr)i,

since im(A) = (span(1, . . . , 1))⊥ and each column of r is an element of im(A). Moreover,

each column of Ãr is also an element of im(A), so that

(−Ãr)N+1 = −
N∑

i=1

(−Ãr)i = −
N∑

i=1

∇xi = ∇xN+1.

Therefore, ∇x = −Ãr. It is shown in [16, Lemma 2.2] that Ã is invertible. Thus, r =

(−Ã)−1∇x, and inserting this expression into (26) proves the claim.

Next, we introduce the symmetric matrix ÃS = P−1/2ÃP 1/2, where

P 1/2 = diag((M1x1)
1/2, . . . , (MN+1xN+1)

1/2).
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Then (−ÃS)
−1 = P−1/2(−Ã)−1P 1/2. Arguing similarly as in [16, Lemma 2.2], we find that

(−ÃS)
−1 is a self-adjoint endomorphism whose smallest eigenvalue is bounded from below

by some positive constant, say C0 > 0, which depends only on (Dij). This gives

∇w : B(w)∇w = ∇s : (−Ã)−1∇x

= 4∇
√
x : diag

(
M−1

1 x
−1/2
1 , . . . ,M−1

N+1x
−1/2
N+1

)
(−Ã)−1diag

(
x
1/2
1 , . . . , x

1/2
N+1

)
∇
√
x

= 4∇
√
x :
(
diag

(
M−1

1 x
−1/2
1 , . . . ,M−1

N+1x
−1/2
N+1

)
P 1/2

)
(P−1/2(−Ã)−1P 1/2)

×
(
P−1/2diag

(
x
1/2
1 , . . . , x

1/2
N+1

))
∇
√
x

= 4∇
√
x : diag

(
M

−1/2
1 , . . . ,M

−1/2
N+1

)
(−ÃS)

−1diag
(
M

−1/2
1 , . . . ,M

−1/2
N+1

)
∇
√
x

≥ C0

∣∣diag
(
M

−1/2
1 , . . . ,M

−1/2
N+1

)
∇
√
x
∣∣2

≥ CB|∇
√
x|2,

where CB = C0(max1≤i≤N+1 Mi)
−1/2. �

3. Proof of Theorem 1

We say that (u, ρ) is a weak solution to (1)-(4) if for any v ∈ C∞
0 (Ω × [0, T );Rd) with

div v = 0,

−
∫ T

0

∫

Ω

u · ∂tvdz dt+
∫ T

0

∫

Ω

((u · ∇)u) · vdz dt+
∫ T

0

∫

Ω

∇u : ∇vdz dt

=

∫ T

0

〈f, v〉dt+
∫

Ω

u0 · v(·, 0)dz,(27)

where 〈·, ·〉 denotes the duality pairing between V ′ and V ; and if for any q ∈ C∞
0 (Ω ×

[0, T );RN ) with ∇q · ν|∂Ω = 0,

−
∫ T

0

∫

Ω

ρ′ · ∂tqdz dt+
∫ T

0

∫

Ω

∇q : A−1
0 (ρ′)∇x′(ρ′)dz dt+

∫ T

0

∫

Ω

((u · ∇)ρ′) · qdz dt

=

∫

Ω

(ρ0)′ · q(·, 0)dz.(28)

The proof of Theorem 1 is divided into several steps.
First, by standard theory of the incompressible Navier-Stokes equations [21], there exists

a divergence-free weak solution to (27), satisfying

(29) ‖u‖L∞(0,T ;L2(Ω))∩L2(0,T ;H1(Ω)) ≤ C(u0, f),

and enjoying the regularity stated in Theorem 1. Thus, in the following, we only need to
solve (28).
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3.1. Approximate problem. Let M ∈ N and set τ = T/M . Let k ∈ {1, . . . ,M}. Given
wk−1 ∈ L∞(Ω;RN ), we solve a regularized approximate problem for (1) and (3): For any

q ∈ H̃2(Ω;RN ):
∫

Ω

ρ′(wk)− ρ′(wk−1)

τ
· qdz +

∫

Ω

∇q : A−1
0 (ρ′(wk))∇x′(ρ′(wk))dz(30)

+

∫

Ω

((u · ∇)ρ′(wk)) · qdz + ε

∫

Ω

(∆wk ·∆q + wk · q)dz = 0,

where ρ′(wk) is defined in Corollary 8. Because of (23), equation (30) is equivalent to
∫

Ω

ρ′(wk)− ρ′(wk−1)

τ
· qdz +

∫

Ω

∇q : B(wk)∇wkdz

+

∫

Ω

((u · ∇)ρ′(wk)) · qdz + ε

∫

Ω

(∆wk ·∆qk + wk · q)dz = 0,(31)

Define for 0 < η < 1 the space of bounded, strictly positive functions

Yη =
{
q = (q1, . . . , qN) ∈ L∞(Ω;RN) : qi ≥ η for i = 1, . . . .N, qN+1 = 1−

N∑

i=1

qi ≥ η
}
.

Lemma 13. Let ηk−1 ∈ (0, 1) and ρk−1 ∈ Yηk−1 with ρk−1 = ρ′(wk−1). Then there exist

ηk ∈ (0, 1) and wk ∈ H̃2(Ω;RN) which solves (30) satisfying ρ′(wk) ∈ Yηk .

Proof. Step 1. Let w̄ ∈ L∞(Ω;RN ). Let σ ∈ [0, 1]. We prove that there exists a unique

w ∈ H̃2(Ω;RN ) to

(32) a2(w, q) = F2(q) for q ∈ H̃2(Ω;RN),

where for w, q ∈ H̃2(Ω;RN ),

a2(w, q) = ε

∫

Ω

(∆w ·∆q + w · q)dz +
∫

Ω

∇q : B(w̄)∇wdz

F2(q) = −σ

τ

∫

Ω

(ρ′(w̄)− ρk−1) · qdz + σ

∫

Ω

((u · ∇)q) · ρ′(w̄)dz.

We infer from Lemma 10 (iv) that a2(·, ·) is a bounded bilinear form on H̃2(Ω;RN ), and
from the positive definiteness of B(w̄) (see also Lemma 10 (iv)) follows that

a2(w,w) ≥ ε

∫

Ω

(|∆w|2 + |w|2)dz ≥ C‖w‖2H2(Ω).

Since ρ′(w̄) is a bounded function, by Corollary 8, we infer that F2 is bounded on H̃2(Ω;RN).

Then the Lax-Milgram lemma provides the existence of a unique solution w ∈ H̃2(Ω;RN )
to (32).
Step 2. This defines the fixed-point mapping S : L∞(Ω;RN) × [0, 1] → L∞(Ω;RN ),

S(w̄, σ) = w, where w solves (32). By construction, S(w̄, 0) = 0 for all w ∈ L∞(Ω;RN ).
Since the embedding H2(Ω) →֒ L∞(Ω) is compact, standard arguments show that S is
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continuous and compact. It remains to prove that there exists a constant C > 0 such that
‖w‖L∞(Ω) ≤ C for all (w, σ) ∈ L∞(Ω;RN )× [0, 1] satisfying w = S(w, σ).
Let w ∈ L∞(Ω;RN ) be such a fixed point. Then it solves (32) with w̄ replaced by w.

Taking w ∈ H̃2(Ω;RN) as a test function, it follows from Lemma 11 that

σ

τ

∫

Ω

(ρ′(w)− ρ′(wk−1)) · wdz +
∫

Ω

∇w : B(w)∇wdz + ε

∫

Ω

(|∆w|2 + |w|2)dz = 0.

By Lemma 9, the entropy density h, defined in (7), is convex. This implies that h(ρ′(w))−
h(ρk−1) ≤ (dh/dρ′) · (ρ′(w)− ρk−1) = w · (ρ′(w)− ρk−1) (see Lemma 5). We infer from the
positive definiteness of B(w) (see Lemma 10 (iv)) that

σ

∫

Ω

h(ρ′(w))dz + ετ

∫

Ω

(|∆w|2 + |w|2)dz ≤ σ

∫

Ω

h(ρk−1)dz.

This yields the desired uniform H2 bound and hence uniform L∞ bound for w. By

the Leray-Schauder fixed-point theorem, there exists a solution w ∈ H̃2(Ω;RN) to (31).
According to Corollary 8, we can define ρ1(w), . . . , ρN(w) > 0 satisfying ρN+1(w) :=
1−

∑
i=1 ρi(w) > 0, and we set ηk = min1≤i≤N+1 ess infΩρi(w) > 0. Then, by construction,

ρ′(w) ∈ Yηk . �

3.2. Uniform estimates. Let ρ0 = (ρ01, . . . , ρ
0
N+1) satisfing ρ0i ≥ 0 for i = 1, . . . , N + 1

and
∑N+1

i=1 ρ0i = 1. Let 0 < η0 ≤ 1/(2(N + 1)) and define

ρη
0

i =
ρ0i + 2η0

1 + 2η0(N + 1)
, i = 1, . . . , N + 1.

Then ρη
0

i ≥ η0 for all i = 1, . . . , N + 1 and
∑N+1

i=1 ρη
0

i = 1. Finally, let w0 ∈ L∞(Ω;RN )
be defined by (19). Applying Lemma 13 iteratively, we obtain a sequence of approximate

solutions wk ∈ H̃2(Ω;RN ) to (30) such that ρ′(wk) ∈ Yηk , where ηk ∈ (0, 1). For the
following, we set ρk = ρ′(wk) for k ≥ 0, slightly abusing our notation.

Lemma 14. For any 1 ≤ k ≤ M and sufficiently small η0 > 0, it holds that

∫

Ω

h(ρk)dz + CBτ

k∑

j=1

‖∇
√

x(ρj)‖2L2(Ω) + ετ

k∑

j=1

∫

Ω

(|∆wj|2 + |wj|2)dz ≤
∫

Ω

h(ρ0)dz + 1,

(33)

where
√

x(ρj) = (
√

x1(ρj), . . . ,
√

xN+1(ρj)), xi(ρ
j) = ρji/(cMi) for i = 1, . . . , N + 1,

c =
∑N+1

k=1 ρjk/Mk, and CB > 0 is obtained from Lemma 12.

Proof. Lemma 12 and Step 3 of the proof of Lemma 13 imply after summation over j =
1, . . . , k that

∫

Ω

h(ρk)dz + CBτ

k∑

j=1

‖
√
x(ρj)‖2L2(Ω) + ετ

k∑

j=1

∫

Ω

(|∆wj|2 + |wj|2)dz ≤
∫

Ω

h(ρη
0

)dz.
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By dominated convergence,

lim
η0→0

∫

Ω

h(ρη
0

)dz =

∫

Ω

h(ρ0)dz,

and hence, for sufficiently small η0 > 0,
∫

Ω

h(ρη
0

)dz ≤
∫

Ω

h(ρ0)dz + 1.

This proves (33). �

Lemma 15. It holds that

τ
M∑

k=1

‖∇x(ρk)‖2L2(Ω) + τ
M∑

k=1

‖∇ρk‖2L2(Ω) + τ
M∑

k=1

∥∥∥∥
ρk − ρk−1

τ

∥∥∥∥
2

H̃2(Ω)′
≤ C(u0, ρ0, f),(34)

Proof. Since xi(ρ
k) = ρki /(cMi) with c =

∑N+1
k=1 ρk/Mk is bounded by one, we find that

‖∇x(ρk)‖L2(Ω) ≤ 2‖
√

x(ρk)‖L2(Ω)‖∇
√
x(ρk)‖L2(Ω) ≤ 2‖∇

√
x(ρk)‖L2(Ω).

Thus, by (33),

τ
M∑

k=1

‖∇x(ρk)‖2L2(Ω) ≤ C(ρ0).

Then it follows from Lemma 10 (iii) that |∇ρk| ≤ C|∇x′(ρk)|. Hence,

τ

M∑

k=1

‖∇ρk‖2L2(Ω) ≤ Cτ

M∑

k=1

‖∇x′(ρk)‖2L2(Ω) ≤ C(ρ0).

We deduce from (30), the boundedness of the elements of A−1
0 (ρk) (see Lemma 4), and the

uniform estimate for u in L2 (see (29)) that for q ∈ H̃2(Ω;RN),
∣∣∣∣
1

τ

∫

Ω

(ρk − ρk−1) · qdz
∣∣∣∣

≤ ‖A−1
0 (ρk)‖L∞(Ω)‖∇x′(ρk)‖L2(Ω)‖q‖L2(Ω)

+ ‖u‖L2(Ω)‖∇ρk‖L2(Ω)‖q‖L∞(Ω) + ε(‖∆wk‖L2(Ω) + ‖wk‖L2(Ω))‖q‖L2(Ω)

≤ C(u0, f)
(
‖∇x′(ρk)‖L2(Ω) + ‖∇ρk‖L2(Ω) + ε‖wk‖H2(Ω)

)
‖q‖H2(Ω).

Taking into account the above uniform estimates for ∇x′(ρk) and ∇ρk in L2 and the
estimate (33) for

√
εwk in H2, it follows that

τ

M∑

k=1

∥∥∥∥
ρk − ρk−1

τ

∥∥∥∥
2

H̃2(Ω)′
≤ C(u0, f)τ

M∑

k=1

(
‖∇x′(ρk)‖2L2(Ω) + ‖∇ρk‖2L2(Ω) + ε2‖wk‖2H2(Ω)

)

≤ C(u0, ρ0, f).

This ends the proof. �
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3.3. Proof of Theorem 1. Define the piecewise constant function ρ(τ)(x, t) = ρ(x) and
the difference quotient

∂τ
t ρ

(τ)(x, t) =
ρk(x)− ρk−1(x)

τ

for x ∈ Ω, (k − 1)τ < t ≤ kτ , k = 1, . . . ,M . Similarly, we define f (τ) and w(τ). Lemmas
14 and 15 imply immediately the following uniform estimates:

‖x′(ρ(τ))‖L∞(0,T ;L∞(Ω)) + ‖x′(ρ(τ))‖L2(0,T ;H1(Ω)) ≤ C,(35)

‖ρ(τ)‖L∞(0,T ;L∞(Ω)) + ‖ρ(τ)‖L2(0,T ;H1(Ω)) + ‖∂τ
t ρ

(τ)‖L2(0,T ;H̃2(Ω)′) ≤ C,(36)
√
ε‖w(τ)‖L2(0,T ;H2(Ω)) ≤ C.(37)

The weak formulation (30) can be written for any q ∈ C∞
0 (Ω×[0, T );RN ) with∇q·ν|∂Ω =

0 as follows:
∫ T

0

∫

Ω

∂τ
t ρ

(τ) · qdz dt+
∫ T

0

∫

Ω

∇q : A−1
0 (ρ(τ))∇x′(ρ(τ))dz dt+

∫ T

0

∫

Ω

((u · ∇)ρ(τ)) · qdz dt

= −ε

∫ T

0

∫

Ω

(∆w(τ) ·∆q + w(τ) · q)dz dt.(38)

Estimates (36) for (ρ(τ)) allow us to apply Aubin-Lions’s lemma in the version of [9] which
yields the existence of subsequences of (ρ(τ)) (not relabeled) such that, as (ε, τ) → 0,

ρ(τ) → ρ′ strongly in L2(0, T ;L2(Ω)).

Furthermore, the strong convergence of (ρ(τ)) and the boundedness of the elements of A−1
0

and x′ yield A−1
0 (ρ(τ)) → A−1

0 (ρ′), x′(ρ(τ)) → x′(ρ′) strongly in Lp(0, T ;Lp(Ω)) for any
p < ∞. Together with the weak convergence (again up to a subsequence) of (∇x′(ρ(τ))),
we infer that

∇x′(ρ(τ)) ⇀ ∇x′(ρ) weakly in L2(0, T ;L2(Ω)).

Finally, we note that εw(τ) → 0 strongly in L2(0, T ;H2(Ω)) as (ε, τ) → 0. These conver-
gences are sufficient to pass to the limit (ε, τ) → 0 in (38) yielding a global solution ρ′ to
(28). In view of the a priori estimates uniform in η0 and the finiteness of the initial entropy,
we can perform the limit η0 → 0 and hence conclude the existence result for general initial
data. The theorem is proved.

4. Proof of Theorem 3

Let wk be a solution to (31). First, we prove L1 bounds for ρki = ρi(w
k) and ck =∑N+1

i=1 ρki /Mk.

Lemma 16 (Uniform L1 norms for ρk). There exist constants γ0 > 0, depending on ρ0,
and ε0 > 0 such that for all 0 < γ < min{1, γ0} and 0 < ε < ε0,

∣∣‖ρki ‖L1(Ω) − ‖ρ0i ‖L1(Ω)

∣∣ ≤ γ‖ρ0i ‖L1(Ω), i = 1, . . . , N,(39)
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∣∣‖ρkN+1‖L1(Ω) − ‖ρ0N+1‖L1(Ω)

∣∣ ≤ γ

N∑

I=1

‖ρ0i ‖L1(Ω).(40)

Furthermore, ‖ρkN+1‖L1(Ω) ≥ 1
2
‖ρ0N+1‖L1(Ω) > 0.

Proof. The proof is similar to the proof of Lemma 4.1 in [16]. The main difference is that
the entropy differs from that of [16] which makes some changes necessary. We recall that
τ = T/M with T > 0 and M ∈ N. Using the test function q = ei in (31), where ei is the
ith unit vector of RN , and observing that∫

Ω

((u · ∇)ρ′(wk)) · eidz = −
∫

Ω

div(uk)ρi(w
k)dz = 0,

we have ∫

Ω

ρki dz =

∫

Ω

ρk−1
i − ετ

∫

Ω

wk
i dz, i = 1, . . . , N.

Solving this recursion, we deduce that

(41)

∫

Ω

ρki dz =

∫

Ω

ρ0i dz − ετ

k∑

j=1

∫

Ω

wj
i dz, i = 1, . . . , N.

Thus, we need to bound the L1 norm of wj
i . Recalling that H(ρk) =

∫
Ω
h(ρ′(wk))dz, we

infer from Step 3 of the proof of Lemma 13 that

H(ρk) + ετ

∫

Ω

|wk
i |2dz ≤ H(ρk−1)

or, solving the recursion,

(42) H(ρk) + ετ

k∑

j=1

∫

Ω

|wj
i |2dz ≤ H(ρ0).

It follows from the definition of the entropy and estimate (17) that the entropy can be
bounded from below:

H(ρk) =

∫

Ω

ck
N+1∑

j=1

(
xk
i (ln x

k
i − 1) + 1

)
−N

∫

Ω

ckdz ≥ −C1 := −Nmeas(Ω)M−1
∗ ,

where ck =
∑N+1

i=1 ρki /Mi, x
k
i = ρki /(c

kMi), and M∗ = min1≤i≤N+1 Mi. Therefore, (42)
implies that

ετ
k∑

j=1

∫

Ω

|wj
i |2dz ≤ H(ρ0)−H(ρk) ≤ H(ρ0) + C1.

The L1 norm of wk
i can be estimated by its L2 norm by applying the Cauchy-Schwarz

inequality:

ετ

k∑

j=1

∫

Ω

|wj
i |dz ≤ ετ

√
meas(Ω)

k∑

j=1

‖wj
i ‖L2(Ω) ≤ ετ

√
kmeas(Ω)

(
k∑

j=1

‖wj
i ‖2L2(Ω)

)1/2
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=
√

ετkmeas(Ω)

(
ετ

k∑

j=1

‖wj
i ‖2L2(Ω)

)1/2

≤
√

εTmeas(Ω)(H(ρ0) + C1),

where we used τk ≤ T . We conclude from (41) that
∣∣‖ρki ‖L1(Ω) − ‖ρ0i ‖L1(Ω)

∣∣ ≤
√

εTmeas(Ω)(H(ρ0) + C1).

Given 0 < γ < 1, let ε > 0 satisfy

(43)
√
ε ≤

γmin1≤j≤N ‖ρ0j‖L1(Ω)√
Tmeas(Ω)(H(ρ0) + C1)

.

This proves (39).
For i = N + 1, we estimate

∣∣‖ρkN+1‖L1(Ω) − ‖ρ0N+1‖L1(Ω)

∣∣ =
∣∣∣∣∣

∫

Ω

(
1−

N∑

i=1

ρki

)
dz −

∫

Ω

(
1−

N∑

i=1

ρ0i

)
dz

∣∣∣∣∣

≤
N∑

i=1

∣∣‖ρki ‖L1(Ω) − ‖ρ0i ‖L1(Ω)

∣∣ ≤ γ
N∑

i=1

‖ρ0i ‖L1(Ω)

which proves (40). From this estimate follows that

‖ρkN+1‖L1(Ω) ≥ ‖ρ0N+1‖L1(Ω) − γ

N∑

i=1

‖ρ0i ‖L1(Ω).

Hence, defining

(44) γ0 =
‖ρ0N+1‖L1(Ω)

2
∑N

i=1 ‖ρ0i ‖L1(Ω)

and choosing 0 < γ < min{1, γ0}, we deduce that ‖ρkN+1‖L1(Ω) ≥ 1
2
‖ρ0N+1‖L1(Ω). �

Lemma 17 (Uniform L1 norms for ck). With γ as in Lemma 16, it holds that
∣∣‖ck‖L1(Ω) − ‖c0‖L1(Ω)

∣∣ ≤ M0γ‖c0‖L1(Ω),

where M0 = max1≤i≤N |1−Mi/MN+1|.

Proof. We employ the definitions ck =
∑N+1

i=1 ρki /Mi and
∑N+1

i=1 ρki = 1 and the estimate
(39) to obtain

∣∣‖ck‖L1(Ω) − ‖c0‖L1(Ω)

∣∣ =
∣∣∣∣∣

N+1∑

i=1

1

Mi

∫

Ω

(ρki − ρ0i )dz

∣∣∣∣∣

=

∣∣∣∣∣

N∑

i=1

(
1

Mi

− 1

MN+1

)∫

Ω

(ρki − ρ0i )dz

∣∣∣∣∣ ≤ M0

N∑

i=1

1

Mi

∣∣‖ρki ‖L1(Ω) − ‖ρ0i ‖L1(Ω)

∣∣
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≤ M0γ

N∑

i=1

‖ρ0i ‖L1(Ω)

Mi

≤ M0γ‖c0‖L1(Ω).

which finishes the proof. �

Now, we turn to the proof of Theorem 3 which is divided into several steps.

Step 1: Relative entropy dissipation inequality. Let wk ∈ H̃2(Ω;RN ) be a solution to
(31) which exists according to Lemma 13. We introduce the following notation:

ρk = (ρk1, . . . , ρ
k
N+1) = (ρ1(w

k), . . . , ρN+1(w
k)), wk = (wk

1 , . . . , w
k
N),

ρ̄k = (ρ̄k1, . . . , ρ̄
k
N+1), x̄k = (x̄k

1, . . . , x̄
k
N+1), w̄k = (w̄k

1 , . . . , w̄
k
N),

where ρ̄ki = meas(Ω)−1‖ρki ‖L1(Ω), c̄k = meas(Ω)−1‖ck‖L1(Ω), x̄k
i = ρ̄ki /(c̄

kMi) for i =
1, . . . , N + 1, and w̄k

i = ln(x̄k
i )/Mi − ln(x̄k

N+1)/MN+1 for i = 1, . . . , N . It holds that

c̄k =
N+1∑

i=1

ρ̄ki
Mi

,

N+1∑

i=1

ρ̄ki =
N+1∑

i=1

x̄k
i = 1.

With the test function wk − w̄k in (31) we obtain

1

τ

∫

Ω

(ρ′(wk)− ρ′(wk−1)) · (wk − w̄k)dz +

∫

Ω

∇wk : B(wk)∇wkdz

+

∫

Ω

((u · ∇)ρ′(wk)) · (wk − w̄k)dz + ε

∫

Ω

(|∆wk|2 + wk · (wk − w̄k))dz = 0.(45)

If k = 1, we write (ρ1, . . . , ρN) instead of ρ′(wk−1) in the first integral. The second integral
can be estimated according to Lemma 12 and the third integral vanishes in view of Lemma
11. Furthermore, using wk ·(wk− w̄k) ≥ 1

2
(|wk|2−|w̄k|)2, the fourth integral can be written

as ∫

Ω

(|∆wk|2 + wk · (wk − w̄k))dz ≥ 1

2

∫

Ω

(|wk|2 − |w̄k|2)dz ≥ −1

2

∫

Ω

|w̄k|2dz.

It remains to treat the first integral in (45). For this, we employ the formulation (19) of

wk and ρkN+1 = 1−∑N
i=1 ρ

k
i :

(ρ′(wk)− ρ′(wk−1)) · wk =
N∑

i=1

(ρki − ρk−1
i )

(
ln xk

i

Mi

− ln xk
N+1

MN+1

)
=

N+1∑

i=1

(ρki − ρk−1
i )

ln xk
i

Mi

=
N+1∑

i=1

(ckxk
i − ck−1xk−1

i ) ln xk
i = (ckxk − ck−1xk−1) · ln xk.

Similarly, (ρ′(wk)− ρ′(wk−1)) · w̄k = (ckxk − ck−1xk−1) · ln x̄k. Therefore, the first integral
becomes

∫

Ω

(ρ′(wk)− ρ′(wk−1)) · (wk − w̄k)dz =

∫

Ω

(ckxk − ck−1xk−1) · ln xk

x̄k
dz
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=

∫

Ω

(ckxk − ck−1xk−1) · ln xk

x̄0
dz +

∫

Ω

(ckxk − ck−1xk−1) · ln x̄0

x̄k
dz = I1 + I2.

First, we estimate I1 . To this end, we use the convexity of h(ρ′):

(46) h(ρ′(wk))− h(ρ′(wk−1)) ≤ wk · (ρ′(wk)− ρ′(wk−1)) = (ckxk − ck−1xk−1) · ln xk.

Then definitions (12) of the relative entropy H∗ and (7) of the entropy density h(ρ′) give

H∗(ρk)−H∗(ρk−1) =
N+1∑

i=1

∫

Ω

(ckxk
i ln x

k
i − ck−1xk−1

i ln xk−1
i )dz

−
∫

Ω

(ckxk − ck−1xk−1) · ln x̄0dz

=

∫

Ω

(
h(ρ′(wk))− h(ρ′(wk−1))

)
dz +

N+1∑

i=1

∫

Ω

(ckxk
i − ck−1xk−1

i )dz

−
∫

Ω

(ck − ck−1)dz −
∫

Ω

(ckxk − ck−1xk−1) · ln x̄0dz.

Since
∑N+1

i=1

∫
Ω
ckxk

i dz =
∫
Ω
ckdz, the second and third integrals on the right-hand side

cancel. We employ (46) to find that

H∗(ρk)−H∗(ρk−1) ≤
∫

Ω

(ckxk − ck−1xk−1) · ln xkdz −
∫

Ω

(ckxk − ck−1xk−1) · ln x̄0
i dz = I1.

Next, we estimate I2. Let 0 < γ < min{1
2
, γ0, (2M0)

−1}, where M0 is defined in Lemma
17. We infer from Lemmas 16 and 17 and from the definition (44) of γ0 the following
bounds:

1−M0γ

1 + γ
≤ x̄0

i

x̄k
i

=
‖ρ0i ‖L1(Ω)‖ck‖L1(Ω)

‖ρki ‖L1(Ω)‖c0‖L1(Ω)

≤ 1 +M0γ

1− γ
, i = 1, . . . , N,(47)

1−M0γ

1 + γ/(2γ0)
≤ x̄0

N+1

x̄k
N+1

=
‖ρ0N+1‖L1(Ω)‖ck‖L1(Ω)

‖ρkN+1‖L1(Ω)‖c0‖L1(Ω)

≤ 1 +M0γ

1− γ/(2γ0)
.(48)

Thus, taking into account
∑N+1

i=1 xk
i = 1, we obtain

I2 ≥
N∑

i=1

∫

Ω

ckxk
i dz ln

1−M0γ

1 + γ
+

∫

Ω

ckxk
N+1dz ln

1−M0γ

1 + γ/(2γ0)

−
N∑

i=1

∫

Ω

ck−1xk−1
i dz ln

1 +M0γ

1− γ
−
∫

Ω

ck−1xk−1
N+1dz ln

1 +M0γ

1− γ/(2γ0)

≥
∫

Ω

ckdz ln
1−M0γ

(1 + γ)(1 + γ/(2γ0))
−
∫

Ω

ck−1dz ln
1 +M0γ

(1− γ)(1− γ/(2γ0))
.
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Because of ck ≤ (min1≤i≤N+1 Mi)
−1 = M−1

∗ (see (17)), we conclude that

(49) I2 ≥ −C2(γ) := −meas(Ω)M−1
∗ ln

(1 +M0γ)(1 + γ)(1 + γ/(2γ0))

(1−M0γ)(1− γ)(1− γ/(2γ0))
.

Therefore, the first integral in (45) is bounded as follows:
∫

Ω

(ρ′(wk)− ρ′(wk−1)) · (wk − w̄k)dz ≥ H∗(ρk)−H∗(ρk−1)− C2(γ).

Summarizing, (45) can be estimated as

(50) H∗(ρk)−H∗(ρk−1) + CBτ

∫

Ω

‖∇
√
xk‖2dz ≤ ετ

2

∫

Ω

|w̄k|2dz + C2(γ).

Step 2: Estimate of the relative entropy. We split the relative entropy into two integrals:

H∗(ρk) =
N+1∑

i=1

∫

Ω

ckxk
i ln

xk
i

x̄k
i

dz +
N+1∑

i=1

∫

Ω

ckxk
i ln

x̄k
i

x̄0
i

dz = J1 + J2.

It follows from (47) and (48) that

J2 ≤
N∑

i=1

∫

Ω

ckxk
i dz ln

1 + γ

1−M0γ
+

∫

Ω

ckxk
N+1dz ln

1 + γ/(2γ0)

1−M0γ

≤ C3(γ) := meas(Ω)M−1
∗ ln

(1 + γ)(1 + γ/(2γ0)

1−M0γ
.(51)

The integral J1 is also split into two parts:

J1 =
N+1∑

i=1

∫

Ω

ckxk
i ln

ckxk
imeas(Ω)

‖ckxk
i ‖L1(Ω)

dz +
N+1∑

i=1

∫

Ω

ckxk
i ln

‖ckxk
i ‖L1(Ω)

ckx̄k
imeas(Ω)

dz = J11 + J12.

Inserting the definitions xk
i = ρki /(c

kMi) and x̄k
i = ρ̄ki /(c̄

kMi) and using Jensen’s inequality
for the convex function s 7→ s ln s (s > 0), we obtain

J12 =
N+1∑

i=1

∫

Ω

ckxk
i ln

c̄k

ck
dz =

∫

Ω

ck ln
c̄k

ck
dz = ‖ck‖L1(Ω) ln c̄

k − ‖ck ln ck‖L1(Ω) ≤ 0.

The estimate of J11 is more involved. We employ the logarithmic Sobolev inequality
∫

Ω

v2 ln
v2

v̄2
dz ≤ CL

∫

Ω

|∇v|2dz, v̄2 =
1

meas(Ω)

∫

Ω

v2dz,

where v ∈ H1(Ω) and CL > 0 depends only on Ω [15]. Then

J11 ≤ CL

N+1∑

i=1

∫

Ω

|∇
√
ckxk

i |2dz.
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Since
N+1∑

i=1

|∇
√
ckxk

i |2 ≤ 2
N+1∑

i=1

xk
i |∇

√
ck|2 + 2

N+1∑

i=1

ck|∇
√
xk
i |2 = 2|∇

√
ck|2 + 2ck‖∇

√
xk‖2,

we obtain

J11 ≤ 2CL

∫

Ω

|∇
√
ck|2dz + 2CLM

−1
∗

∫

Ω

‖∇
√
xk‖2dz.

We claim that the first integral can be estimated by a multiple of the second one. Indeed,
by the Cauchy-Schwarz inequality, the definition of ck according to Lemma 7, and the
bound (17), it follows that

|∇
√
ck|2 = 1

4ck

∣∣∣∣∣
−∑N+1

i=1 Mi∇xk
i

(
∑N+1

i=1 Mixk
i )

2

∣∣∣∣∣

2

= (ck)3

∣∣∣∣∣

N+1∑

i=1

Mi

√
xk
i∇
√
xk
i

∣∣∣∣∣

2

≤ (ck)3
N+1∑

i=1

M2
i x

k
i

N+1∑

i=1

|∇
√
xk
i |2 ≤ M−3

∗ M∗2‖∇
√
xk‖2,

recalling that M∗ = min1≤i≤N+1 Mi and setting M∗ = max1≤i≤N+1 Mi. Thus, we can
estimate J11 as follows:

J11 ≤ 2CLM
−1
∗ (M−2

∗ M∗2 + 1)

∫

Ω

‖∇
√
xk‖2dz.

Combining the above estimates, we conclude that

H∗(ρk) ≤ C3(γ) + 2CLM
−1
∗ (M−2

∗ M∗2 + 1)

∫

Ω

‖∇
√
xk‖2dz.

Step 3: End of the proof. Replacing the entropy dissipation term involving
√
xk in (50)

by the above estimate for H∗(ρk), we find that

(52) (1 + C4τ)H
∗(ρk) ≤ H∗(ρk−1) +

ετ

2

∫

Ω

|w̄k|2dz + Cγ,

where C4 =
1
2
CBC

−1
L M∗(M

−2
∗ M∗2+1)−1 and Cγ = C2(γ)+

1
2
C3(γ)C

−1
L M∗(M

−2
∗ M∗2+1)−1.

Note that according to definitions (49) and (51), we have Cγ → 0 as γ → 0.
We need to estimate the integral involving wk. For this, we observe that (47)-(48) and

the upper bound for γ imply that 1
3
≤ x̄0

i /x̄
k
i ≤ 3 for i = 1, . . . , N + 1. This provides some

uniform bounds for x̄k
i ,

0 <
M∗ min1≤i≤N+1 ‖ρ0i ‖L1(Ω)

3M∗
∑N+1

i=1 ‖ρ0i ‖L1(Ω)

≤ x̄0
i

3
≤ x̄k

i ≤ 3x̄0
i ≤ 3, i = 1, . . . , N + 1,

which allow us to estimate wk:
∫

Ω

|w̄k|2dz ≤
N∑

i=1

∫

Ω

(∣∣∣∣
ln x̄k

i

Mi

∣∣∣∣+
∣∣∣∣
ln x̄k

N+1

MN+1

∣∣∣∣
)2

dz ≤ C5,
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where C5 > 0 depends on Ω, ρ0, M∗, and M∗. Hence, (52) becomes

H∗(ρk) ≤ (1 + C4τ)
−1H∗(ρk−1) +

(ετ
2
C5 + Cγ

)
(1 + C4τ)

−1.

Solving this recursion, we infer that

H∗(ρk) ≤ (1 + C4τ)
−1H∗(ρ0) +

(ετ
2
C5 + Cγ

) k∑

i=1

(1 + C4τ)
−i.

Using
∑k

i=1(1 + C4τ)
−i ≤ 1/(C4τ), it follows that

H∗(ρ(τ)(·, t)) ≤ (1 + C4τ)
−t/τH∗(ρ0) +

εC5

2C4

+
Cγ

C4τ
, 0 < t < T.

Now, we take τ = τ(γ) =
√

Cγ and ε = ε(γ) according to (43). In the limit γ → 0,

it follows that Cγ/τ(γ) → 0, ε(γ) → 0, and τ(γ) → 0 so that ρ
(τ)
i → ρi strongly in

L2(0, T ;L2(Ω)) for i = 1, . . . , N + 1. This gives in the limit γ → 0

(53) H∗(ρ(·, t)) ≤ e−C4tH∗(ρ0), t ≥ 0,

and, taking into account Lemmas 16 and 17, we conclude the L1 conservation for ρi and c:
∫

Ω

ρidz =

∫

Ω

ρ0i dz,

∫

Ω

cdz =

∫

Ω

c0dz,

where c0 =
∑N+1

j=1 ρ0j/Mj and i = 1, . . . , N + 1.

It remains to estimate xi − x̄0
i in the L1 norm. Defining

fi =
cxi∫

Ω
c0x0

i dz
, gi =

c∫
Ω
c0dz

,

the entropy H∗(ρ) =
∑N+1

i=1

∫
Ω
cxi ln(xi/x̄

0
i )dz can be written as

H∗(ρ) =
N+1∑

i=1

∫

Ω

c0x0
i dz

∫

Ω

fi ln
fi
gi
dz,

where we employed the identity

fi
gi

=
xi

∫
Ω
c0dz∫

Ω
c0x0

i dz
=

Mixi

∫
Ω
c0dz∫

Ω
ρ0i dz

=
Mixic̄

0

ρ̄0i
=

xi

x̄0
i

.

Finally, using

cx̄0
i =

cρ̄0i
c̄0Mi

=
c
∫
Ω
ρ0i dz∫

Ω
c0dzMi

=
c
∫
Ω
c0x0

i dz∫
Ω
c0dz

=

∫

Ω

c0x0
i dz gi

and the Csiszár-Kullback inequality with constant CK > 0 (see, e.g., [15, 22]), we find that

‖cxi − cx̄0
i ‖2L1(Ω) =

(∫

Ω

c0x0
i dz

)2

‖fi − gi‖2L1(Ω) ≤
∫

Ω

c0x0
i dz

(∫

Ω

ρ0i
Mi

dz

)
CK

∫

Ω

fi ln
fi
gi
dz

≤ M−1
i CK‖ρ0i ‖L1(Ω)H

∗(ρ).
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Together with (53), the conclusion of the theorem follows.
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