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Abstract Compressible Navier–Stokes models for quantum fluids are reviewed.
They are derived from a collisional Wigner equation by a moment method and a
Chapman–Enskog expansion around the quantum equilibrium.Introducing a new
velocity variable, the barotropic quantum Navier-Stokes model can be reformulated
as a viscous quantum Euler system, which possesses a new Lyapunov (energy) func-
tional. This functional provides a priori estimates which are exploited to prove the
global-in-time existence of weak solutions for general initial data. Furthermore, new
numerical results for the isothermal model are presented.

1 Introduction

Quantum fluid modeling has become very attractive due to novel experimental dis-
coveries in Bose–Einstein condensation. Recently, disordered superfluids and, in
particular, the interplay between superfluidity and the onset of dissipative processes
has been investigated [10]. Typically, the dynamics of the condensate is modeled
by a nonlinear Schrödinger equation involving dissipative terms [3]. The normal
component of the Bose–Einstein gas at low temperature may bedescribed by using
kinetic equations, such as the Wigner equation [1]. This approach has the advantage
that dissipation can be included in a rather natural way via collision operators on the
right-hand side of the Wigner equation. Examples, used in semiconductor modeling,
are the Caldeira–Leggett scattering operator, the Fokker–Planck operator, or BGK-
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type operators (named after Bhatnagar, Gross, and Krook); see [22] for a detailed
description.

The hydrodynamic dynamics of a superfluid may be modeled by the Madelung
equations, which are derived from the Schrödinger equation via the Madelung trans-
form [30]. The model consists of the Euler equations for a potential flow involv-
ing the quantum Bohm potential as a third-order derivative.The quantum Euler or
quantum hydrodynamic equations have been also used to describe the carrier trans-
port in open quantum systems such as semiconductor heterostructures and tunneling
diodes [16, 22]. An alternative derivation is based on the Wigner equation by em-
ploying the moment method and the maximum entropy principle[13]. Quantum
hydrodynamic models have the advantages that they allow foran efficient numeri-
cal discretization and that macroscopic boundary conditions in open systems may
be imposed.

In this review, we summarize recent progress in the derivation and mathematical
analysis of certain dissipative quantum hydrodynamic equations, namelyquantum
Navier–Stokes models. Such systems have been already proposed in the 1960s [19].
The first derivation from a Wigner–BGK equation has been performed by Brull
and Méhats [9] for constant temperature. In [27], the full quantum Navier–Stokes
system, including the energy equation, has been derived andnumerically solved.
The existence of weak solutions to the barotropic model has been shown in [14,20,
23] (see Theorem 2 below).

In the physical literature, quantum Navier–Stokes systemsare typically mo-
tivated from the classical model by using a chemical potential obtained from
the Thomas–Fermi–Dirac–Weizsäcker density functional theory (see, e.g., [32]).
Clearly, in this situation, the viscous correction is equalto the classical one and
often, constant viscosity coefficients are assumed. The derivation from the Wigner–
BGK equation leads tononconstantviscosity coefficients depending on the particle
density and temperature (see Theorem 1 below). Density-dependent viscosities may
generate vacuum, which leads to mathematical difficulties in the analysis of the
equations (see, e.g., [5,29]).

This review is organized as follows. In Section 2, following[27], the deriva-
tion of the quantum Navier–Stokes system from a Wigner–BGK equation using
a Chapman–Enskog expansion of the Wigner function around the quantum equi-
librium is sketched. Section 3 is concerned with the analysis of the compressible
barotropic model (density-dependent pressure function).The existence analysis is
based on the formulation of the model as a viscous quantum Euler system via a
new variable, the so-called effective velocity, first used in viscous Korteweg mod-
els [6]. Finally, in Section 4, the isothermal equations (constant temperature) are
numerically discretized by central finite differences in one space dimension, and
new numerical simulations for a tunneling diode are presented.
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2 Derivation

The quantum Navier–Stokes equations are derived from a Wigner–BGK model us-
ing the moment method and a Chapman–Enskog expansion. Degond et al. [12] have
proposed the Wigner–BGK equation

wt + p·∇xw+θ [V]w =
1
α

(M[w]−w), (x, p) ∈ R
3×R

3, t > 0, (1)

where w(x, p, t) is the Wigner function in the phase-space variables(x, p) and
time t > 0, andα > 0 is the scaled mean free path. The potential operatorθ [V]
is a pseudo-differential operator modeling the influence ofthe electric potential
V =V(x, t); see [22] for a definition. The kernel of the potential operator is of quan-
tum mechanical nature and contains the scaled Planck constant ε. The right-hand
side of (1) describes a relaxation process towards the quantum equilibriumM[w].
The equilibrium is defined as the formal maximizer of the von-Neumann entropy
(or quantum free energy) under the constraint that its moments, i.e. the integrals
∫

R3 M[w]κ(p)dp for some vector-valued functionκ(p), are the same as those for the
given functionw. This concept has been introduced by Degond and Ringhofer [13].
Denoting the Lagrange multipliers byλ (x, t), the quantum equilibrium reads as

M[w](x, p, t) = Exp(λ (x, t) ·κ(p)),

where the so-called quantum exponential is given by Exp(w) =W(expW−1(w)), W
is the Wigner transform,W−1 its inverse, and exp is the operator exponential. When
the collision operatorQ(w) = (M[w]−w)/α conserves mass, we prescribe the lo-
cal particle density, and the quantum equilibrium becomesM[w] = Exp(A(x, t)−
|p|2/2) for some Lagrange multiplierA(x, t). The existence and uniqueness of this
maximizer has been proved in [31] in a one-dimensional setting. When scattering
conserves mass, momentum, and energy (thus, we takeκ(p) = (1, p, |p|2/2)), we
have

M[w] = Exp

(

A(x, t)− |p−v(x, t)|2
2T(x, t)

)

,

where nowA, v, andT are Lagrange multipliers. The expressions for the equilibrium
distributions look similar to the corresponding classicalMaxwell distributions [28].
However,M[w] is anonlocaloperator, which expresses the nonlocal nature of quan-
tum mechanics, and the Lagrange multipliers donot correspond to the moments as
in the classical model. For instance,v equals the mean velocity only up to terms of
orderO(ε2). We derive macroscopic equations by multiplying the Wignerequation
(1) by the weight vectorκ(p) = (1, p, 1

2|p|2). To simplify the notation, we introduce
the notation〈 f (p)〉= (2πε)−3∫

R3 f (p)dp, wheref (p) is a function. The collisions
are assumed to conserve mass, momentum, and energy,〈(M[w]−w)κ(p)〉= 0. Then
the moment equations become
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∂t〈w〉+divx〈pw〉+ 〈θ [V]w〉 = 0,

∂t〈pw〉+divx〈p⊗ pw〉+ 〈pθ [V]w〉 = 0,

∂t〈1
2|p|

2w〉+divx〈1
2 p|p|2w〉+ 〈1

2|p|
2θ [V]w〉 = 0,

wherep⊗ p denotes a matrix with componentsp j pk ( j,k = 1,2,3), governing the
evolution of the particle densityn, the momentumnu, and the energy densityne,
defined by

n = 〈w〉, nu= 〈pw〉, ne= 〈1
2|p|

2w〉.
The variableu = (nu)/n is the macroscopic velocity ande = (ne)/n the macro-
scopic energy. The integrals involving the potential can beexpressed in terms of
the momentsn, nu, andne (see [27] for details). It remains to compute the higher-
order moments〈p⊗ pw〉 and〈1

2 p|p|2w〉. For this, we employ the Chapman–Enskog
expansionw = M[w]+αg.

Introducing the quantum stress tensorP= 〈(p−u)⊗(p−u)M[w]〉 and the quan-
tum heat fluxq = 〈1

2(p−u)|p−u|2M[w]〉, a straight-forward computation leads to
the following moment equations:

nt +divx(nu) = 0,

(nu)t +divx(P+nu⊗u)−n∇xV = −αdivx〈p⊗ pg〉,
(ne)t +divx

(

(P+neI)u
)

+divxq−nu·∇xV = −αdivx〈1
2 p|p|2g〉,

whereI is the unit matrix inR3×3. In order to calculate the moments ofg, we take
advantage of the simple structure of the collision operator, allowing us to specifyg
explicitly. Indeed, inserting the Wigner equation and Chapman–Enskog expansion,
we find thatg=−(M[w]−w)/α =−M[w]t −p·∇xM[w]−θ [V]M[w]+O(α), where
O(α) contains terms of orderα. More explicit expressions are obtained by expand-
ing the moments ofM[w] in powers of the squared scaled Planck constantε2. The

quantum heat flux becomesq = − ε2

24n(∆xu+2∇xdivxu)+O(ε4), and the quantum

stress tensor expands according toP = nT I− ε2

12n∇2
x logn+ O(ε4), where∇2

x logn
is the Hessian of logn, Furthermore, a tedious computation shows that (see [27])

−αdivx〈p⊗ pg〉 = αdivxS, −αdivx〈1
2 p|p|2g〉 = αdivx(Su)+

5
2

nT∇xT,

whereS= 2nTD(u)− 2
3nTdivxuI+O(ε2+α) can be interpreted as a viscous stress

tensor. Here,D(u) = (∇xu+ ∇xu⊤)/2. The term5
2nT∇xT is the Fourier heat term,

and it adds to the quantum heat flux. This shows the following result [27].

Theorem 1.Assume that A(u) = (∇u− ∇u⊤)/2 = O(ε2) and ∇ logT = O(ε2).
Then, up to terms of order O(α2 + αε2 + ε4), the moment equations of the Wigner
equation read as
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nt +div(nu) = 0, (2)

(nu)t +div(nu⊗u)+∇(nT)− ε2

12
div(n∇2 logn)−n∇V = αdivS, (3)

(ne)t +div
(

(ne+nT)u
)

− ε2

12
div

(

n(∇2 logn)u
)

+divq0−nu·∇V = αdiv(Su),

where q0 = q+ 5
2nT∇T is the total heat flux and S= 2nTD(u)− 2

3nTdivxuI is the
viscous stress tensor.

For later use, we remark that the third-order quantum term can be written equiv-
alently as a self-interacting force term, involving the Bohm potential∆

√
n/
√

n,

div(n∇2 logn) = 2n∇
(∆

√
n√

n

)

. (4)

When the collisions conserve mass and momentum only, the quantum equilibrium
becomesM[w] = Exp(A−|p−v|2/2). In this situation, a Chapman–Enskog expan-
sion has been carried out by Brull and Méhats [9]. They obtain equations (2)-(3)
with T = 1 andS= 2nD(u).

3 Analysis

System (2)-(3) withT = 1 possesses a surprising property which has been exploited
in [23] to prove the existence of solutions. More precisely,we consider the system

nt +div(nu) = 0, x∈ T
d, t > 0, (5)

(nu)t +div(nu⊗u)+∇p(n)− ε2

6
n∇

(

∆
√

n√
n

)

−n∇V = 2αdiv(nD(u)), (6)

n(·,0) = n0, (nu)(·,0) = n0u0 in T
d, (7)

whereT
d is thed-dimensional torus (d ≤ 3). The functionp(n) = nγ with γ ≥ 1 is

the pressure. Compared to (3), the quantum term is reformulated using (4). In the
treatment of (5)-(7), we need to overcome several mathematical difficulties.

The first problem lies in the strongly nonlinear third-orderdifferential operator
and the dispersive structure of the momentum equation. In particular, as the maxi-
mum principle is not applicable, it is not clear how to obtainthe positivity or non-
negativity of the particle density. In the literature, someideas have been developed
to overcome this problem. For instance, some artificial diffusion has been added
to the mass equation such that the maximum principle can be applied [15]. Another
idea is to introduce an additional pressure with negative powers of the density, which
allows one to derive anL∞ bound for 1/n [7].

The second problem is the density-dependent viscosityµ(n) = αn which de-
generates at vacuum. In fact, most results for the Navier–Stokes equations in the
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literature are valid for constant viscositiesµ(n) = α only, since this enables one
to deriveH1 estimates for the velocity. Recently, some works have been concerned
with density-dependent viscosities, see, e.g., [5,29] andreferences therein.

The third problem is the lack of suitable a priori estimates.Indeed, let us define
the energy of (5)-(6) by the sum of the kinetic, internal, andquantum energies,

Eε2(n,u) =

∫

Td

(n
2
|u|2 +H(n)+

ε2

6
|∇
√

n|2
)

dx, (8)

whereH(n) = nγ/(γ −1) if γ > 1 andH(n) = n(logn−1) if γ = 1. A formal com-
putation shows that, without electric field∇V = 0,

dEε2

dt
(n,u)+α

∫

Td
n|D(u)|2dx= 0.

This provides anH1 estimate for
√

n, but this seems to be insufficient to obtain
compactness for (an approximate sequence of)∇

√
n needed to define the quantum

term in a weak or distributional sense.
Our main idea to solve these problems is to transform the quantum Navier–Stokes

system by means of the so-calledeffective velocity

w = u+α∇ logn, (9)

The termα∇ logn has been called in [19] the “kinematical quasivelocity”. A com-
putation shows [23] that the system (5)-(6) can be equivalently written as

nt +div(nw) = α∆n, (10)

(nw)t +div(nw⊗w)+∇p(n)− ε0

6
n∇

(

∆
√

n√
n

)

−n∇V = α∆(nw), (11)

where w0 = u0 + α∇ logn0 and ε0 = ε2 − 12α2. This formulation has two ad-
vantages. The first advantage is that it allows for an additional energy estimate if
ε2 > 12α2. Indeed, if∇V = 0, we compute

dEε0

dt
(n,w)+α

∫

Td

(

n|∇w|2 +H ′(n)|∇n|2 +
ε0

12
n|∇2 logn|2

)

dx= 0. (12)

The inequality [24]
∫

Td
|∇2√n|2dx≤C

∫

Td
n|∇2 logn|2dx (13)

with some constantC > 0 provides anL2
loc(0,∞;H2(Td)) bound for

√
n. This bound

is the key argument of the global existence analysis. The second advantage is that
we may apply the maximum principle to the parabolic equation(10) to deduce strict
positivity of the densityn if n0 is strictly positive and the velocityw is smooth.
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The viscous quantum Euler model (10)-(11) is of interest by itself. Indeed, it has
been derived from a Wigner–Fokker–Planck equation by a moment method [18].
The viscous termsα∆n and α∆(nw) arise from the moments of the Fokker–
Planck collision operator. This operator also provides themomentum relaxation
term−nw/τ to the right-hand side of the momentum equation, whereτ > 0 is the
relaxation time. For existence results for the viscous quantum Euler system, we refer
to [11,17,18,26].

Neglecting the viscous terms (α = 0), the two systems (5)-(6) and (10)-(11) re-
duce to the so-called quantum hydrodynamic model, see, e.g., [16, 22]. First math-
ematical results have been concerned with the local existence of solutions or the
global existence of near-equilibrium solutions. For the stationary problem, only the
existence of “subsonic” solutions has been achieved so far [21]. Recently, the global
existence of weak transient solutions for general initial data has been shown by An-
tonelli and Marcati [2].

Interestingly, the effective velocity (9) has been used also in related models. First,
Bresch and Desjardins employed it to derive new entropy estimates for viscous
Korteweg-type and shallow-water equations [6]. Brenner [4] suggested the modi-
fied Navier–Stokes model

nt +div(nw) = 0, (nu)t +div(nu⊗w)+∇p(n) = divS.

The variablesu andw are interpreted as the volume and mass velocities, respec-
tively, and they are related by the constitutive equationu−w= α∇ logn with a phe-
nomenological constantα > 0. The variablenw= nu+α∇n was employed in [26]
to prove the existence of solutions to the one-dimensional stationary viscous quan-
tum Euler problem with physical boundary conditions.

The strategy of the existence proof for (5)-(7) is as follows. First, the viscous
quantum Euler system (10)-(11) is approximated by a projection of the infinite-
dimensional momentum equation onto a finite system of ordinary differential equa-
tions on a Faedo-Galerkin space with dimensionN, following the ideas of Feireisl
in [15] and generalizing the one-dimensional approach in [17]. We need a second
approximation parameterδ by adding the termδ (∆w−w) to the right-hand side
of (11), which allows one to derive anH1 estimate forw. The global existence of
approximate solutions(nδ ,wδ ) follows from the energy estimate (12), which also
provides some Sobolev estimates independent of(N,δ ). The limits N → ∞ and
δ → 0 then give the following existence result; for a proof we refer to [23].

Theorem 2.Let d≤ 3, ε, α > 0, p(n) = nγ with γ > 3 if d = 3 andγ ≥ 1 if d = 2,
∇V ∈ L∞(0,∞;L∞(Td)), and(n0,u0) is such that n0 ≥ 0 and Eε(n0,u0 +α∇ logn0)
is finite. Then there exists a weak solution(n,u) to (5)-(7)with the regularity

√
n∈ L∞

loc(0,∞;H1(Td))∩L2
loc(0,∞;H2(Td)), n≥ 0 in T

d,

n∈ H1
loc(0,∞;L2(Td))∩L∞

loc(0,∞;Lγ(Td))∩L2
loc(0,∞;W1,3(Td)),

√
nu∈ L∞

loc(0,∞;L2(Td)), nu∈ L2
loc(0,∞;W1,3/2(Td)),

n|∇u| ∈ L2
loc(0,∞;L2(Td)),
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satisfying(5) pointwise and, for all T0 > 0 and for all smooth test functions satisfy-
ing φ(·,T0) = 0,

−
∫

Td
n2

0u0 ·φ(·,0)dx=
∫ T0

0

∫

Td

(

n2u·φt −n2div(u)u·φ +nu⊗nu : ∇φ

+
γ

γ +1
nγ+1divφ −2ε2∆

√
n
(

2
√

n∇n·φ +n3/2divφ
)

+n2∇V ·φ −νnD(u) :
(

n∇φ +∇n⊗φ
)

)

dxdt. (14)

In the above theorem, the product “A : B” means summation over both indices
of the matricesA and B. In order to control the behavior of the solutions when
the particle densityn vanishes, we need to define test functions for the momentum
equation, which are, in some sense, supported on the set{n > 0}. In fact, we have
chosen in the weak formulation (14) as in [8] test functions of the formnφ , where
φ is some smooth function, in order to deal with the convectionterm.

The restrictionγ > 3 is needed to improve the uniformL3 bound forn (obtained
from theH1 bound for

√
n) to anLγ bound. This property helps us in the limitδ → 0

to achieve a suitable weak convergence result (see [23] for details).
Theorem 2 is proved in [23] for the caseε2 > 12α2. This condition is necessary

to obtainH2 bounds for
√

n via the viscous quantum Euler model from the new
energy estimate (12). In the caseε2 ≤ 12α2, we loose theH2 control on

√
n. The

limiting caseε2 = 12α2 has been treated recently by Dong [14]. Indeed, using (an
approximation of) the test function∆

√
n/

√
n in (10) leads to

d
dt

∫

Td
|∇
√

n|2dx+
α
4

∫

T3
n|∇2 logn|2dx≤ 1

4α

∫

R3
n|∇w|2dx. (15)

In view of the energy inequality (12), the right-hand side isuniformly bounded. By
(13), this shows the desiredH2 bound for

√
n. Jiang and Jiang [20] have combined

the inequalities (12) and (15) to treat the remaining caseε2 < 12α2. Let ε0 = ε2−
12α2 < 0 and define

F(n,w) =
∫

Td

(n
2
|w|2 +H(n)− ε0

6
|∇
√

n|2
)

dx≥ 0.

Then we use (12) and (15) to conclude

dF
dt

=
dEε0

dt
− ε0

3
d
dt

∫

Td
|∇
√

n|2dx

≤−α
∫

Td

( 1
12α2 (12α2− ε0)n|∇w|2 +H ′(n)|∇n|2

)

dx≤ 0.

Since 12α2 − ε0 = ε2 > 0, we obtain anL2 estimate for
√

n|∇w|. Going back to
(15), we see that the right-hand side is bounded, which provides anL2 bound for√

n|∇2 logn| and hence, by (13), the desiredH2 bound for
√

n.
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4 Numerical simulation

In this section we present the results from our numerical simulation of a simple
resonant tunneling diode, computed from the one-dimensional stationary quan-
tum Navier–Stokes model (5)-(6) withγ = 1, coupled to the Poisson equation
λ 2Vxx = n−C(x), x ∈ (0,1), whereλ is the Debye length andC(x) is the dop-
ing concentration. The geometry of the diode is as follows. The length of the diode
is 75 nm. It consists of two highly doped 25 nm GaAs regions near the contacts and
a lightly doped 25 nm middle region. The middle region contains a quantum well
of 5 nm length sandwiched between two 5 nm Al0.3Ga0.7As barriers. This double
barrier heterostructure is placed between two 5 nm GaAs spacer layers. The barrier
heightB is incorporated in the model by replacingV by V + B in the momentum
equation. The effective electron mass in GaAs ismeff = 0.067·m0 (m0 = 10−31 kg)
and we have chosenα = ε. For the unscaled model and the other physical parame-
ters, we refer to [27]. The boundary conditions are

n(0) = C(0), n(1) = C(1), nx(0) = nx(1) = 0,

ux(0) = ux(1) = 0, T(0) = T(1) = T0, V(0) = 0, V(1) = U,

whereT0 = 77 K is the lattice temperature andU is the applied voltage.
We have discretized the stationary quantum Navier–Stokes–Poisson system using

central finite differences on a uniform mesh withN = 500 points. Compared to pre-
viously approximated quantum fluid models [25,26], we do notneed any numerical
stabilization. The resulting nonlinear discrete system issolved by the (undamped)
Newton method, together with a continuation in the applied voltage with the voltage
step△V = 1 mV.

Figure 1 shows the dependence of the current-voltage characteristics on the num-
ber of the discretization pointsN. As expected, there is a region of negative differ-
ential resistance (NDR) in which the current density decreases although the applied
voltage increases. It seems that the characteristics converge to some “limit curve”
asN → ∞, thus confirming numerical stability. The influence of the effective mass
meff and the barrier heightB is depicted in Figure 2. As observed in other quantum
hydrodynamic simulations [25, 26], there is no NDR region using the physical ef-
fective mass, but the NDR effect is more pronounced for larger (unphysical) values.
Furthermore, larger barrier heights enhance NDR.

Finally, we present the dependence of the model on the viscous parameterα; see
Figure 3. Whenα is much smaller thanε, several NDR regions occur, whereas for
α larger thanε, we observe only one NDR region. The electron density develops
“wiggles” at the right barrier which are due to the NDR effectand which have been
observed in the quantum hydrodynamic model withα = 0.

A more complete numerical study and a numerical comparison with other quan-
tum hydrodynamic models can be found in the work [27] in whichthe full quantum
Navier–Stokes–Poisson system is solved.
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Fig. 1 Current-voltage characteristics for various values of the numberN of discretization points.
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Fig. 2 Current-voltage characteristics for different effective massesmeff and barrier heightsB.
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27. A. J̈ungel and J.-P. Milǐsić. Full compressible Navier-Stokes equations for quantum fluids:

derivation and numerical solution. Preprint, Vienna University of Technology, Austria, 2010.
28. C. D. Levermore. Moment closure hierarchies for kinetic theory. J. Stat. Phys.83 (1996),

1021-1065.
29. H.-L. Li, J. Li, and Z. Xin. Vanishing of vacuum states and blow-up phenomena of the com-

pressible Navier-Stokes equations.Commun. Math. Phys.281 (2008), 401-444.
30. E. Madelung. Quantentheorie in hydrodynamischer Form.Z. Physik40 (1927), 322-326.
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