Quantum Navier—Stokes equations

Ansgar dingel and Josipa-Pina Msic

Abstract Compressible Navier—Stokes models for quantum fluids arewed.
They are derived from a collisional Wigner equation by a mommethod and a
Chapman—-Enskog expansion around the quantum equilibtiunoducing a new
velocity variable, the barotropic quantum Navier-Stokeslei can be reformulated
as a viscous quantum Euler system, which possesses a neurloyafenergy) func-
tional. This functional provides a priori estimates whick axploited to prove the
global-in-time existence of weak solutions for generdlahdata. Furthermore, new
numerical results for the isothermal model are presented.

1 Introduction

Quantum fluid modeling has become very attractive due tolreymerimental dis-
coveries in Bose—Einstein condensation. Recently, diserd superfluids and, in
particular, the interplay between superfluidity and thesbo$ dissipative processes
has been investigated [10]. Typically, the dynamics of tbedensate is modeled
by a nonlinear Scliddinger equation involving dissipative terms [3]. The natm
component of the Bose—Einstein gas at low temperature maedeibed by using
kinetic equations, such as the Wigner equation [1]. This@ggh has the advantage
that dissipation can be included in a rather natural way eiléston operators on the
right-hand side of the Wigner equation. Examples, usedrric@ductor modeling,
are the Caldeira—Leggett scattering operator, the Foktanek operator, or BGK-
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type operators (named after Bhatnagar, Gross, and Kroe&)[22] for a detailed
description.

The hydrodynamic dynamics of a superfluid may be modeled &yMmadelung
equations, which are derived from the Satlinger equation via the Madelung trans-
form [30]. The model consists of the Euler equations for aptél flow involv-
ing the quantum Bohm potential as a third-order derivafNee quantum Euler or
guantum hydrodynamic equations have been also used tdluetioe carrier trans-
portin open quantum systems such as semiconductor heteroses and tunneling
diodes [16, 22]. An alternative derivation is based on thgwr equation by em-
ploying the moment method and the maximum entropy prindip8. Quantum
hydrodynamic models have the advantages that they alloarfafficient numeri-
cal discretization and that macroscopic boundary congitio open systems may
be imposed.

In this review, we summarize recent progress in the deawaind mathematical
analysis of certain dissipative quantum hydrodynamic #gos, hamelyquantum
Navier—Stokes modelSuch systems have been already proposed in the 1960s [19].
The first derivation from a Wigner—BGK equation has beenqeréd by Brull
and Mehats [9] for constant temperature. In [27], the full quamtNavier—Stokes
system, including the energy equation, has been derivechanttrically solved.
The existence of weak solutions to the barotropic model leas Ishown in [14, 20,
23] (see Theorem 2 below).

In the physical literature, quantum Navier—Stokes systamestypically mo-
tivated from the classical model by using a chemical po&rgbtained from
the Thomas—Fermi—Dirac—We#sker density functional theory (see, e.g., [32]).
Clearly, in this situation, the viscous correction is eqtmathe classical one and
often, constant viscosity coefficients are assumed. Theadien from the Wigner—
BGK equation leads toonconstanviscosity coefficients depending on the particle
density and temperature (see Theorem 1 below). Densitgrilmt viscosities may
generate vacuum, which leads to mathematical difficultiethe analysis of the
equations (see, e.g., [5,29]).

This review is organized as follows. In Section 2, followify], the deriva-
tion of the quantum Navier—Stokes system from a Wigner—-B@Kag&ion using
a Chapman-Enskog expansion of the Wigner function arouadjtiantum equi-
librium is sketched. Section 3 is concerned with the analg$ithe compressible
barotropic model (density-dependent pressure functibing. existence analysis is
based on the formulation of the model as a viscous quanturer Byktem via a
new variable, the so-called effective velocity, first usediscous Korteweg mod-
els [6]. Finally, in Section 4, the isothermal equationsn&ant temperature) are
numerically discretized by central finite differences ire@pace dimension, and
new numerical simulations for a tunneling diode are presgnt
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2 Derivation

The quantum Navier—Stokes equations are derived from a &4@GK model us-
ing the moment method and a Chapman—Enskog expansion. Begah [12] have
proposed the Wigner—BGK equation

1
Wi+ p-Dw+ B[VIw= — (M| —w), (x.,p) € R3xR3, t >0, 1)

where w(x, p,t) is the Wigner function in the phase-space variakilep) and
timet > 0, anda > 0 is the scaled mean free path. The potential oper@fdt

is a pseudo-differential operator modeling the influencehef electric potential
V =V (x,t); see [22] for a definition. The kernel of the potential opera of quan-
tum mechanical nature and contains the scaled Planck cdrgst&he right-hand
side of (1) describes a relaxation process towards the gomatuilibriumM|w].
The equilibrium is defined as the formal maximizer of the Weumann entropy
(or quantum free energy) under the constraint that its mésnée. the integrals
Jr3aM W]k (p)d pfor some vector-valued functian(p), are the same as those for the
given functionw. This concept has been introduced by Degond and Ringhadgr [1
Denoting the Lagrange multipliers By(x,t), the quantum equilibrium reads as

MIw](x, p,t) = Exp(A (x,1) - K (P)),

where the so-called quantum exponential is given by(&xp= W (expW 1 (w)), W

is the Wigner transformiy—1 its inverse, and exp is the operator exponential. When
the collision operatoQ(w) = (M[w] —w)/a conserves mass, we prescribe the lo-
cal particle density, and the quantum equilibrium becoiMés] = Exp(A(x,t) —
|p|?/2) for some Lagrange multiplie&(x,t). The existence and uniqueness of this
maximizer has been proved in [31] in a one-dimensionalrggtiVhen scattering
conserves mass, momentum, and energy (thus, wextgike= (1, p,|p|?/2)), we

have 0P
Mw] = Exp (A(x,t) _lp—vOeOF p2_TV((>:(7t))| ) :

where nowA, v, andT are Lagrange multipliers. The expressions for the equilibr
distributions look similar to the corresponding classidaixwell distributions [28].
However,M|w] is anonlocaloperator, which expresses the nonlocal nature of quan-
tum mechanics, and the Lagrange multipliersndbcorrespond to the moments as
in the classical model. For instansegquals the mean velocity only up to terms of
orderO(&?). We derive macroscopic equations by multiplying the Wigeguation

(1) by the weight vectok (p) = (1, p, % |p|?). To simplify the notation, we introduce
the notation( f (p)) = (21€) 3 s f(p)d p, wheref (p) is a function. The collisions
are assumed to conserve mass, momentum, and ex@idw] —w)k (p)) =0. Then

the moment equations become
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Jt(w) + divx(pw) + (6[V]w)

3 (pw) + divk(p® pw) + (pB[V]w)
& (3 |pl?w) + divy (2 pl pPw) + (3[p?6[V]W)

)

0
0,
0

)

wherep ® p denotes a matrix with componentsp (j,k = 1,2,3), governing the
evolution of the particle density, the momenturmu, and the energy densitye,
defined by

n=(w), nu=(pw), ne= (3[p/*w).

The variableu = (nu)/n is the macroscopic velocity arel= (ne)/n the macro-
scopic energy. The integrals involving the potential carekpressed in terms of
the moments, nu, andne (see [27] for details). It remains to compute the higher-
order momentgp® pw) and<% p|p|?w). For this, we employ the Chapman—Enskog
expansiorw = M{w| + ag.

Introducing the quantum stress tenBot ((p—u) ® (p—u)M[w]) and the quan-
tum heat fluxq = <%(p— u)|p — u[M[w]), a straight-forward computation leads to
the following moment equations:

nt + divy(nu) = 0,
(nu); 4 divk(P+nu®u) — nOyV = —adivy(p® pg),
(ne); + divy ((P+ nel)u) +divkg — nu- 0V = —adivy(2 p|p|°g),

wherel is the unit matrix inR3*3, In order to calculate the momentsgfwe take
advantage of the simple structure of the collision operatitmwing us to specify
explicitly. Indeed, inserting the Wigner equation and Ghap—Enskog expansion,
we find thatg = —(M[w] —w)/a = —M[w]; — p- OxM[w] — 8[V]M[w] +O(a), where
O(a) contains terms of ordex. More explicit expressions are obtained by expand-
ing the moments of[w] in powers of the squared scaled Planck constdnThe
quantum heat flux becomes= —g—in(AXquZDXdivxu) +0(&%), and the quantum

stress tensor expands accordingPte: nT 1 — %nmi logn+ O(e*), where[J2logn
is the Hessian of log, Furthermore, a tedious computation shows that (see [27])

—adivx(p® pg) = adivyS, —adivx<%p| p|%g) = adivy(Su) + gnTDXT,

whereS=2nT D(u) — %anivquJr O(g?+ a) can be interpreted as a viscous stress

tensor. HereD(u) = (Oxu+Oyxu'")/2. The termgnTDxT is the Fourier heat term,
and it adds to the quantum heat flux. This shows the followasylit [27].

Theorem 1.Assume that A1) = (Ou— Ou')/2 = O(?) and OlogT = O(&?).
Then, up to terms of order @2 + a&? + €*), the moment equations of the Wigner
equation read as
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n; + div(nu) =0, 2

2
(nu)¢ +div(nu®@u) + 0(nT) — i—zdiv(nmzlog n)—nOV = adivs, (3)

2
ne); +div((ne+nT)u —g—div n(0%logn)u) +divoe — nu- OV = adiv(Su),
12

where @ = g+ 3nTOT is the total heat flux and S 2nT D(u) — 3nTdivyul is the
viscous stress tensor.

For later use, we remark that the third-order quantum temrbeawritten equiv-
alently as a self-interacting force term, involving the BopotentialA/n/+/n,

div(nO?logn) = 2nD(Af?>. (4)

When the collisions conserve mass and momentum only, thetguagquilibrium
becomedM[w] = Exp(A— |p—V|?/2). In this situation, a Chapman—Enskog expan-
sion has been carried out by Brull andeRhts [9]. They obtain equations (2)-(3)
with T = 1 andS= 2nD(u).

3 Analysis

System (2)-(3) withT = 1 possesses a surprising property which has been exploited
in [23] to prove the existence of solutions. More precisely,consider the system

n+div(nu) =0, xeT9 t>0, (5)
(nu); +div(nu®u) + Op(n) — %ZnD <A\}T> —nV = 2adiv(nD(u)),  (6)
n(-,0)=no, (nu)(-,0)=noup inTY, 7)

whereT? is thed-dimensional torusd < 3). The functionp(n) = n¥ with y > 1 is
the pressure. Compared to (3), the quantum term is refotetulasing (4). In the
treatment of (5)-(7), we need to overcome several matheaiatifficulties.

The first problem lies in the strongly nonlinear third-ordéferential operator
and the dispersive structure of the momentum equation. ticpkar, as the maxi-
mum principle is not applicable, it is not clear how to obttie positivity or non-
negativity of the particle density. In the literature, soiteas have been developed
to overcome this problem. For instance, some artificialudiin has been added
to the mass equation such that the maximum principle can fleedd15]. Another
idea is to introduce an additional pressure with negativegps of the density, which
allows one to derive ah® bound for ¥n[7].

The second problem is the density-dependent viscgsity = an which de-
generates at vacuum. In fact, most results for the NaviekeStequations in the
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literature are valid for constant viscositiggn) = a only, since this enables one
to deriveH?! estimates for the velocity. Recently, some works have beanerned
with density-dependent viscosities, see, e.g., [5, 29]rafetences therein.

The third problem is the lack of suitable a priori estimatadeed, let us define
the energy of (5)-(6) by the sum of the kinetic, internal, gndntum energies,

Eee(n) = | (9|u|2+H<n>+5—2\M|2)dx, ®)
ety Td \ 2 6
whereH (n) =nY/(y—1) if y> 1 andH(n) =n(logn— 1) if y= 1. A formal com-
putation shows that, without electric field/ = 0,

dE,.
dt

(nu)+a /;Td nD(u)[2dx = 0.

This provides arH! estimate for,/n, but this seems to be insufficient to obtain
compactness for (an approximate sequencél@ff needed to define the quantum
term in a weak or distributional sense.

Our main idea to solve these problems is to transform thetgoaNavier—Stokes
system by means of the so-calleffiective velocity

w=u-+allogn, (9)

The termadlogn has been called in [19] the “kinematical quasivelocity”. #nt-
putation shows [23] that the system (5)-(6) can be equitigi@ritten as

ne + div(nw) = aAn, (10)

(nw); +div(hw® w) + Op(n) — %OnD <A\}T) —nOV = aA(nw), (11)
wherewp = up + allogng and &g = €2 — 12a2. This formulation has two ad-

vantages. The first advantage is that it allows for an additienergy estimate if
€2 > 12a2. Indeed, if0V = 0, we compute

dE,
dt

(n,w) + a/ (n|DW\2 +H'(n)|On|? + @n||]2|0gn|2) dx=0.  (12)
Td 12
The inequality [24]
/ 02/A2dx< C / n| T2 logn|%dx (13)
Td Td

with some constar@ > 0 provides an.2 (0, ; H2(T%)) bound for,/n. This bound
is the key argument of the global existence analysis. Thergkadvantage is that
we may apply the maximum principle to the parabolic equafid) to deduce strict

positivity of the densityn if ng is strictly positive and the velocity is smooth.
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The viscous quantum Euler model (10)-(11) is of interest$slf. Indeed, it has
been derived from a Wigner—Fokker—Planck equation by a mommethod [18].
The viscous term&xAn and aA(nw) arise from the moments of the Fokker—
Planck collision operator. This operator also provides rifmmentum relaxation
term —nw/1 to the right-hand side of the momentum equation, wiereO is the
relaxation time. For existence results for the viscous trarktuler system, we refer
to[11,17,18, 26].

Neglecting the viscous terms (= 0), the two systems (5)-(6) and (10)-(11) re-
duce to the so-called quantum hydrodynamic model, seg,[£6322]. First math-
ematical results have been concerned with the local existefn solutions or the
global existence of near-equilibrium solutions. For tretienary problem, only the
existence of “subsonic” solutions has been achieved s@14r Recently, the global
existence of weak transient solutions for general initethchas been shown by An-
tonelli and Marcati [2].

Interestingly, the effective velocity (9) has been used alselated models. First,
Bresch and Desjardins employed it to derive new entropynegés for viscous
Korteweg-type and shallow-water equations [6]. Brenngrsjgggested the modi-
fied Navier—Stokes model

ne+div(nw) =0, (nu); +div(nu@w)+ 0Op(n) =divS

The variablesu andw are interpreted as the volume and mass velocities, respec-
tively, and they are related by the constitutive equatierw = a[Jlogn with a phe-
nomenological constamt > 0. The variablenaw = nu+ o [0n was employed in [26]

to prove the existence of solutions to the one-dimensidagibsary viscous quan-
tum Euler problem with physical boundary conditions.

The strategy of the existence proof for (5)-(7) is as followsst, the viscous
quantum Euler system (10)-(11) is approximated by a prigjeadf the infinite-
dimensional momentum equation onto a finite system of orgidéferential equa-
tions on a Faedo-Galerkin space with dimendigrfollowing the ideas of Feireisl
in [15] and generalizing the one-dimensional approach #j.[¥Ve need a second
approximation paramete¥ by adding the termd(Aw — w) to the right-hand side
of (11), which allows one to derive ai® estimate fow. The global existence of
approximate solutionsng, wy) follows from the energy estimate (12), which also
provides some Sobolev estimates independer(tNoD). The limits N — c and
d — 0 then give the following existence result; for a proof weereb [23].

Theorem 2.Letd< 3, ¢, a >0, p(n) =nY withy >3ifd=3andy > 1ifd =2,
[V € L®(0,00; L°(T9)), and (ng, Up) is such that g > 0 and E (no, U + alogno)
is finite. Then there exists a weak soluti@anu) to (5)-(7) with the regularity

VA€ Lise(0,00,HY(TY)) NLE(0,00;H¥(TY)), n>0in T,

N € Hb (0,00, L2(T%)) L3 (0, 00 LY (T)) ML (0,00, WE3(TY)),

Vvhue LR:(0,00;L2(T9)), nue L2 (0,00, W¥2(T9)),

n|0u] € Lo (0,00, L%(TY)),
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satisfying(5) pointwise and, for all § > 0 and for all smooth test functions satisfy-
ing ¢(-,To) =0,

.
f/Td nduo - @(-,0)dx = /o O/Td (nzu-q} —n?div(u)u- @+ nuenu: Og

+ yTyler“divcp— 26%A/n(2y/n0n- @+ % ?div )

+n?0V - @—vnD(u) : (nDg+ On® (p))dxdt (14)

In the above theorem, the produd B’ means summation over both indices
of the matricesA andB. In order to control the behavior of the solutions when
the particle density vanishes, we need to define test functions for the momentum
equation, which are, in some sense, supported on thgnset0}. In fact, we have
chosen in the weak formulation (14) as in [8] test functiohthe formng, where
@ is some smooth function, in order to deal with the convectawm.

The restrictiony > 3 is needed to improve the uniforb? bound forn (obtained
from theH* bound for,/n) to anLY bound. This property helps us in the lindit— 0
to achieve a suitable weak convergence result (see [23Etaild).

Theorem 2 is proved in [23] for the casé > 12a. This condition is necessary
to obtainH? bounds for,/n via the viscous quantum Euler model from the new
energy estimate (12). In the case< 12a?, we loose theH? control on/n. The
limiting cases? = 12a2 has been treated recently by Dong [14]. Indeed, using (an
approximation of) the test functiofi,/n/+/nin (10) leads to

d 2 a 2 2 1 2
— — <
|t/ ‘D\/ﬁ| dx+ / n\D Iogn| dx / n|DW‘ dx (15)

In view of the energy inequality (12), the right-hand sideméformly bounded. By
(13), this shows the desired? bound for\/n. Jiang and Jiang [20] have combined
the inequalities (12) and (15) to treat the remaining e&se 12a2. Let gy = 2 —
12a? < 0 and define

F(nw) — /Td (g|w|2+H(n) - %>|sz> dx> 0.

Then we use (12) and (15) to conclude

dFidEgO 802

dt — dt  3dt /e

' 1 2 2 2
< —a/Td (@(120{ — &)n|0Ow|~+H'(n)|On| )dxg 0.

|0v/nfPdx

Since 121° — gy = €2 > 0, we obtain arl.? estimate for,/n|Ow|. Going back to
(15), we see that the right-hand side is bounded, which gesvanL? bound for
v/N|O?logn| and hence, by (13), the desireid bound for,/n.
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4 Numerical simulation

In this section we present the results from our numericalikition of a simple
resonant tunneling diode, computed from the one-dimeasietationary quan-
tum Navier—Stokes model (5)-(6) witih = 1, coupled to the Poisson equation
A%V = n—C(x), x € (0,1), whereA is the Debye length an@(x) is the dop-
ing concentration. The geometry of the diode is as follovs Ength of the diode
is 75 nm. It consists of two highly doped 25 nm GaAs regions tieacontacts and
a lightly doped 25 nm middle region. The middle region camtaa quantum well
of 5nm length sandwiched between two 5 nmy &ba 7As barriers. This double
barrier heterostructure is placed between two 5 nm GaAsspayers. The barrier
heightB is incorporated in the model by replacivgby V + B in the momentum
equation. The effective electron mass in GaAsyg = 0.067- my (Mg = 1031kg)
and we have chosem = ¢. For the unscaled model and the other physical parame-
ters, we refer to [27]. The boundary conditions are

n(0)=C(0), n(1)=C(1), n(0)=n(1)=0,
U(0) = (1) =0, T(O)=T()=To, V(0)=0, V(1)=U,

whereTy = 77 K is the lattice temperature akidis the applied voltage.

We have discretized the stationary quantum Navier—Sté@sson system using
central finite differences on a uniform mesh wiNh= 500 points. Compared to pre-
viously approximated quantum fluid models [25, 26], we donestd any numerical
stabilization. The resulting nonlinear discrete systersolsed by the (undamped)
Newton method, together with a continuation in the applieithge with the voltage
stepAV =1mV.

Figure 1 shows the dependence of the current-voltage diaistics on the num-
ber of the discretization points. As expected, there is a region of negative differ-
ential resistance (NDR) in which the current density desesalthough the applied
voltage increases. It seems that the characteristics mgve some “limit curve”
asN — oo, thus confirming numerical stability. The influence of thieefive mass
mesr and the barrier heigh is depicted in Figure 2. As observed in other quantum
hydrodynamic simulations [25, 26], there is no NDR regiomggshe physical ef-
fective mass, but the NDR effect is more pronounced for laf@gephysical) values.
Furthermore, larger barrier heights enhance NDR.

Finally, we present the dependence of the model on the \sgoatameter; see
Figure 3. Whero is much smaller thasg, several NDR regions occur, whereas for
a larger thane, we observe only one NDR region. The electron density degelo
“wiggles” at the right barrier which are due to the NDR effaotd which have been
observed in the quantum hydrodynamic model waitk- 0.

A more complete numerical study and a numerical comparigtimather quan-
tum hydrodynamic models can be found in the work [27] in white full quantum
Navier—Stokes—Poisson system is solved.
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