FIRST-ORDER ENTROPIES FOR THE
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ABSTRACT. A logarithmic fourth-order parabolic equation in one space di-
mension with periodic boundary conditions is analyzed. Using a new semi-
discrete approximation in time, a first-order entropy—entropy dissipation
inequality is proved. Passing to the limit of vanishing time discretization
parameter, some regularity results are deduced. Moreover, it is shown that
the solution is strictly positive for large time if it does so initially.
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1. INTRODUCTION

Nonlinear fourth-order equations, whose solution signifies some nonnegative
physical quantity, have attracted the attention of mathematicians since several
years. The lack of a maximum principle for those equations makes necessary
the development of new analytical tools in order to obtain a priori estimates
and the nonnegativity or positivity of solutions. A famous example is the thin-
film equation which is of degenerate parabolic type (see, e.g. [2, 3]). Another
example is the nonlinear logarithmic equation

(1) ut + (u(logu)zz)ze =0 forz e T, t >0, wu(-,0)=up,

where T is the circle parametrized by a variable x satisfying 0 < < 1. This
equation has been first derived by Derrida, Lebowitz, Speer, and Spohn [8, 9],
and we shall therefore refer to (1) as the Derrida-Lebowitz-Speer-Spohn equation
or simply the DLSS equation. Derrida et al. studied in [8, 9] interface fluctu-
ations in a two-dimensional spin system, the so-called (time-discrete) Toom
model. In a suitable scaling limit, a random variable u related to the devia-
tion of the interface from a straight line satisfies the one-dimensional equation
(1). This equation also appears in quantum semiconductor modeling as the
zero-temperature, zero-field limit of the quantum drift-diffusion model [1, 7).
The variable u describes the electron density in a microelectronic device or in
a quantum plasma. In both applications, u is a nonnegative variable.

The authors acknowledge partial support from the German-French DAAD-Procope Pro-
gram and from the Deutsche Forschungsgemeinschaft, grant JU359/7. This research is also
part of the ESF program “Global and geometrical aspects of nonlinear partial differential
equations (GLOBAL)”.
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The first analytical result for (1) has been shown in [4]. There, the existence
of positive solutions with H'! initial data has been proved. Lacking suitable a
priori estimates, the existence result holds only locally in time. The global (in
time) existence of solutions was related to strict positivity: if a classical solution
breaks down at a certain time ¢*, then the limit profile lim; ~¢ u(z,t) is still an
H! function but vanishes at some point in T. This motivated the authors in [16]
to study nonnegative weak solutions instead of positive classical solutions. The
global existence of solutions was shown with initial data having finite generalized
entropy fT(UO —logup)dz and with physically motivated boundary conditions.
The global existence of weak solutions to the DLSS equation (1) with periodic
boundary conditions was proved in [10]. Equation (1) has been also considered
with non-homogeneous boundary conditions [12], and the exponential fast decay
of its solutions was shown [5, 6, 10, 12, 14, 17]. For results on the existence of
solutions to the corresponding multi-dimensional DLSS equation, we refer to
[11, 15].

In the paper [14], the following so-called entropy—entropy dissipation inequal-
ity has been formally derived:

d

(2) i (uo‘/Q)idl’"‘ M/ ((ua/2)imﬁ + (Ua/6)2)d:[ <0,
T

T

where « lies in between the two roots of 53a — 100a + 20, i.e. %(25 —6/10) <
a < %(25 +64/10), and p > 0 is some constant depending on a. The integral
fT(uo‘/ 2)2dx is called a first-order entropy, whereas we refer to the other integral
in (2) as the corresponding entropy dissipation term. The derivation in [14] is
only formal, since the manipulations require positive smooth solutions. The
idea was to reformulate the necessary integration by parts leading to (2) as a
decision problem for polynomial systems which can be solved by a computer
algebra system.

The goal of this paper is to make the inequality (2) rigorous, to conclude
some regularity properties, and to show that the solution stays positive at least
for large time if it does so initially. For small time, the positivity of solutions
has been already shown in [4]. We are not interested in proving regularity for
the solution w itself, since it is well known that u is a classical solution to (1),
at least locally in time and for positive solutions, if the initial data is strictly
positive and lies in H!(T) [4]. Here, we are rather interested in showing that
the powers of the nonnegative solution u®/? are regular.

For a = 1, inequality (2) has been justified in [10]. The idea was to discretize
(1) in time and to consider the elliptic problem

(3) %(uk —up—1) + (ur(logug)es),, =0,

where k € N, 7 > 0 is the time step and wj is the Euler approximation of
u(+, 7k). The advantage of this discretization is that it is possible to show that
there exists a strictly positive smooth solution wuy to (3) which allows to make
the manipulations leading to a discrete version of (2) with o = 1 rigorous. In
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fact, multiplying (3) by —uz/ 2_1(Ug/2)xx and integrating over T gives
1 _
(4) - /T (g — up )ul > (W) pnda

- /T (uk(log Uk)m)muZmil(ug/Z)mdx =0.
Since
(5) — /< — )y (e > /T<<u:/2>i— (w3 de ifa=1,

and the second integral in (4) can be bounded from above by [.((v/uk)2,, +
(&ur)8)dx if a =1 (see section 3), we obtain

1/ (Vur)s = (Vur—1)3)da + u/ (Vug)2se + (Yug)8)dz < 0.
T T

T

The first integral is the discrete time derivative of (y/u)2. Then the limit 7 — 0
gives (2) for a = 1.

Unfortunately, this argument does not work for general . The problem is
that (5) cannot be proved for o # 1. In order to circumvent this problem, we
choose another semi-discretization in time: we rewrite the time derivative u; as
ul=%(u®);/a and consider the semi-discretization

1
(6) —(uf = wiy) o (uk(log un)an) ,, = 0.

Then it is possible to show that a discrete entropy—entropy dissipation inequality
holds leading to (2) in the limit 7 — 0.

The semi-discretization (6) is new in this context. It is chosen in such a way
that an inequality similar to (5) can be proved. The difficulty is to deal with
the expression

ut (u(log u)sz)
since we have no control on u®~! whose exponent may be negative. Therefore,
we rewrite this expression in terms of the variable w = u®/* for which we can
derive enough regularity. Hence, we define the weak solution in terms of u®/4
instead of u as it is done in [16], for instance. More precisely, we call u a weak
solution to (1) if

zx’

(7) (u) € LY2(0,T; H-2(T)), we L*(T x (0,T)),

(8) w2 ut € L2(0,T; HX(T)),

is satisfied and if the following equation for w = u®/* holds in L' (0, T; H=%(T)):
4

4 2 2 2
(w*) = —2(4 — a) [wwm(w oz — AWWS Wy + 4(wwx(wwm — wx))x}

4 4y o 2 2 2

9) — 4(4 - a) (3 — a)zuyc(wwm —wy) — 4(w (Wwyy — wx))m

Notice that (7)-(8) implies that w = u®/* € L*(0, T; W4(T)), by the Gagliardo-
Nirenberg inequality (see below). Thus the right-hand side of (9) is well defined
in L1(0,7; H=2(T)). It is not difficult to see that any positive smooth solution

u = w** also solves (1).
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It is well known that it may be more convenient to formulate (1) in another
variable than u. For instance, the existence of solutions to the multi-dimensional
DLSS equation is shown for the variable y/u [11, 15].

Our first main result of this paper is contained in the following theorem.

Theorem 1. Let 0 < ug € HYT), T > 0, and a € (g, 1], where ag =
2(25—61/10). Then there exists a nonnegative weak solution u to (1) satisfying

u®? e L2(0,T; H3(T)) N L>(0, T; H(T)) n ¢°([0, T]; C*Y/2(T)),
u®% e 190, T; W'S(T)), logu € L*(0,T; H*(T)),

the L' norm of u is bounded by the L' norm of ug, and there exists 3, > 0 such
that

(10) 1)l g2y < N(g")allzame™", ¢ > 0.

Notice that ag = 0.2274... The lower bound on « comes from the entropy
construction method of [14] which consists in reformulating the a priori esti-
mates as a solution of a decision problem for polynomial systems. This decision
problem is solved by the computer algebra system Mathematica which gives an
exact solution. The decay estimate (10) generalizes Theorem 5.1 in [10]. Our
second main result concerns the strict positivity of solutions.

Theorem 2. Let 0 < ug € HY(T) and let u be the (continuous) solution
constructed in Theorem 1 for a = 1. Set M = |[[(\/uo)z|/r2(r) and B =

74(103 4+ /214) /9 = 1273.12... Then the L' norm of u is conserved and
u(z,t) >0 forallzeT, t> (logM)/p.
In particular, if M <1 then
u(z,t) >0 forallzeT, t>0.

It is not known if Theorem 2 is optimal. In fact, there are nonnegative
smooth solutions to (1) which vanish at some points in T if the initial data is only
nonnegative [15]. Close to the points x¢ where u(zg,t) = 0, the solution u seems
to behave like (x —z0)?. Numerical experiments indicate that the solution stays
strictly positive if the initial datum satisfies ug > 0 [4, 16]. However, we are not
able to prove that u(z,t) > 0 for all ¢ > 0 and for general initial data. Theorem
1 shows that if the solution vanishes at some point xg, given a positive initial
datum, then it behaves close to xg like (x — x¢)” where v > 5/ap = 21.9868.. . .
This comes from the fact that (u®/?)2,, with u(z) ~ (x — 20)7 is integrable if
and only if 2(ya/2 —3) > —1 or v > 5/av.

The idea of the proof of Theorem 2 is based on the decay estimate (10).
Indeed, for large time ¢, the solution u(x,t) is expected to be ”close” to the
homogeneous steady state fT ugdz. Since this steady state is strictly positive,
so does u(x,t).

The paper is organized as follows. In section 2 we show the existence of
classical solutions to (6). The discrete entropy inequality corresponding to (2)
is proved in section 3. In order to pass to the limit 7 — 0 in (6), we need further
estimates on the discrete time derivative of u® and on the spatial derivatives
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of u®/* which are proved in section 4. The limit 7 — 0 in (6) is performed in
section 5. Finally, Theorem 2 is shown in section 6.

For convenience, we recall the Gagliardo-Nirenberg inequality [13, 19].

Lemma 3. Let m, k € Ng with0 < k<m,0<0<1,1<p,q, r<o0, and
let f € W™4(T) N L"(T). If both
1 1 1 1 606 1-0
L o(m- Do) wma 1<y
p q r p q r
holds then f € W¥*P(T), and there exists a constant ¢ > 0 independent of f
such that

(11) ||f”W1W(T) < CHfH?/Vm,q(T)HfH}—;(eT)‘
Moreover, if
1 1 1
b=s=o(m—_)+a-0(-7)
holds then
12) 1D Fllzacr) < el fymaqn) 1711y

where D% is a differential operator of order |a| =k, and k/m < 0 < 1 is allowed
ifm—Fk—1/q ¢ Np.

2. EXISTENCE OF DISCRETE SOLUTIONS

In this section we solve the semi-discrete problem (6). For this, let 7' > 0 be
the terminal time, N € N the number of grid points, 7 = T'/N the time step,
and let t, = k7, k = 0,..., N. Furthermore, let o > 0. For y,_1 € H'(T), we
consider the following recursive sequence of equations,

(13) ie(l—a)yk (eayk _ eayk_l) + (eykyk’m)

=0, keN,
rxr
and yo = log ug.

Lemma 4. Given y,_1 € HY(T), there exists a solution y, € C®(T) to (13).

Proof. We employ ideas from [10]. Set z = yx_1 and y = y,. We consider first
for given € > 0 the elliptic fourth-order equation

1
(14) (eyyzm)xx — EYgx T EY = 76(1_06)3/(60“ — eay)
T

with periodic boundary conditions. In order to show the existence of solutions
to this problem, we use the Leray-Schauder fixed-point theorem. Let w € H'(T)
and o € [0,1] be given and consider

(15) a(y,8) = F(¢) for all ¢ € H*(T),

where

a(y7 ¢) = /E(ewymx¢xx + ny% + €y¢)dl‘,

g

F(gb) _ /Ee(l—a)w(eaz _ eaw)¢d$.

aT
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The bilinear form a is continuous and coercive on H?(T), and F is linear and
continuous on H?(T). Thus, by Lax-Milgram’s lemma, there exists a unique
solution y € H?(T) to (15). This defines a fixed-point operator S : H'(T) x
[0,1] — HYT), (w,o) — y. It holds S(w,0) = 0 for all w € H*(T). Moreover,
the functional S is continuous and compact, observing that the embedding
H?(T) — HY(T) is compact. We need to prove a uniform bound for all fixed
points of S(-, o).
Let y be a fixed point of S(-,0), i.e., y € H(T) solves for all ¢ € H*(T)

/(eyym(bm + eYp by + cyd)da = 9 / e(l—a)y(eaz — e™)da.
T aT Jr

With the test function ¢ = 1 — e™¥ we obtain

/yﬁxdx—/ymygda:—l—e/eyygd:c—i—a/y(l—ey)dx
T T T T

= L [ el=ehv(eoz — co)(1 — ¢¥)da.
aT JT

(Here and in the following, the expression 32 means (y,)?, compared to (y?), =
2yy.. Expressions like y2, etc. are understood in a similar way.) The second
term on the left-hand side vanishes since [ y,,y2dz = [y3dz/3 = 0. The
third and fourth terms on the left-hand side are nonnegative. We employ the
elementary inequalities 1 — e” < —z for all x € R and £€* — 1 < (£ — 1) for all
¢ >0and a € (0,1]. Then, for z = a(z —y) and £ = *7Y,

11— < —a(z—y), (V) —1) <ale® —eY),

and hence,
U/e(l_a)y(eo‘z—eo‘y)(l—e_y)da:
T JT
-2 (==Y _ 1) £ (1 =9\1d
Z [ lene )+ (1 - 6] da
<7 [ [e =2 - (@ = ).
T

Here, we need the condition a < 1. Thus, we conclude that

(16) g /(ey —y)dx + / Y2 dr < 7 /(ez — z)dz.
TJT T TJT

The two integrals on the left-hand side (and Poincaré’s inequality) show that
y is uniformly bounded in H?(T), independently of o. The Leray-Schauder
fixed-point theorem ensures the existence of a solution y = y. € H%(T) to (14).

Next, we perform the limit € — 0. Estimate (16) also provides a bound for .
in H%(T) independently of e. Hence, y. converges, up to a subsequence which
is not relabeled, to y weakly in H?(T) and strongly in H'(T). This is enough
to perform the limit £ — 0 in (14), showing that y is a solution to (13).
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It remains to prove that y € C°°(T). For this, let u = €Y. Then u is strictly
positive in T and solves, in the distributional sense,

2u$$u$ ui 1 11—« «
rrTr — - 5 - — - k=1).
(17) U ( 2) w Y (u — eMr-1)
u u T T

Since y € H?(T) — WH°(T), we have u € H*(T) N WH*(T) and, by the
strict positivity of u, also 1/u € L°(T). This shows that u,u,/u € L?(T) and
ul /u? € L®°(T). From (17) follows that u;.., € H~(T) and then u € H3(T).
Using this regularity and taking into account (17), it follows 4z, € L?(T) and
thus u € H*(T). By bootstrapping, we find that v € H™(T) for all n € N,
which shows that u € C°°(T). Since u is strictly positive, y = logu € C*°(T),
completing the proof of Lemma 4. O

Let y™)(x,t) = yp(x) for 2 € T and t € (t_1,t]. For notational conve-
nience, we also set uy = exp(yY)). Then the proof of Lemma 4 shows the
following estimate.

Lemma 5. There exists a constant ¢ > 0 independent of N such that
(18) ”y(N)HLOO(O,T;Ll(']I)) + lun |l zoe 0,721 (1)) + Hy(N)HLQ(O,T;HQ(T)) <ec

Proof. From (16) follows that y™¥) and uy are uniformly bounded in L>(0, T’;

LY(T)) and that ygg) is uniformly bounded in L?(0,T; L*(T)). Then, by Poin-

caré’s inequality, for some constant ¢ > 0,

(19 o= [ e

we conclude that y) is uniformly bounded in L?(0,T; H?(T)). O

o <cllykzllzecry < cllykaellLzcr),

3. THE FIRST-ORDER ENTROPY ESTIMATE

In this section, we derive the first-order entropy estimate for the solution e
o (13). Recall that y™)(-,#) =y, for t € (t4_1,t;] and uy = exp(y™).

Lemma 6. Let un be a classical solution to (6) corresponding to ap < o < vy,
where oy = %(25 + 6410). Then there exists a constant ¢ > 0 independent
of N such that

a/2 a/2 a/6
(20) H“N/ [ Loe (0,751 (1) + H“N/ | 220,713 () + HUN/ s o,msws(Ty) <

We remark that we have proved the existence of a solution uy to (6) only for
a < 1. However, the first-order entropy estimate is valid for a larger class of
values a.

Proof. Let, by a slight abuse of notation, ug = eY. Then the lemma is a
consequence of the following entropy—entropy dissipation inequality,

k
(21) /T (w)2dz + apy /T ()2, + (/9)8) i < /T (w2'2)2de,
j=1

and Poincaré’s inequality (19), where g > 0 is some constant. In order to
show this inequality, we multiply (13) by a test function, integrate over T and
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integrate by parts. The integration by parts is done in a systematic way as
described in [14]. Multiplication of (13) by _UZ/ 271(ug/ Q)M and integration
over T gives

1 _ -
(22) —o fuk g —uf_y ) (W) de

_/<uk<loguk)mm)zxuz/2 1( a/2)mxd.%'—0
T

The first integral can be rewritten as

1

o Lk - ) @)
= [l - a2 s
o 057 = (e )] e
_ alT T[( 2/2) o, a/2 d1:+/uk ) u;k 1150 u::>2dx
@) > (R - w2

The second integral in (22) becomes, after integration by parts,

I = /(uk(loguk)m)x(uz/z l(UZ/Q)m)xda:
T

3
N o Ukzzx 2uk,:c:cuk,:c U o
= [ Uk - 7 T3
T U ui up

3
% 9M+2a<9_1)m2“’w+2(8_1)(a_3)“k,x d.
2 ug 2 u, 2 U

We wish to compare this integral with the integrals

Jl :/(ug/Q)xmcdm.
T
JQ—/T(UZM dxz(%) /Tug ks
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Integration by parts is reformulated, according to [14], as the integral identities

5 4 6
U Ty—) U
Klz/( =) dwz/u%<5“2’”—(5—a> ’“(f)d:vzo,
T Uk x T u u
3

k k

2 3 4
u u u u u u
o k,xx Vk,x karxr o ka2
= /1ruk (3 Tt 1 -4-a)———" |dz=0.

g, U U
We wish to find constants > 0 and ¢;, c2 € R such that
(24) I —pdy—pda+c Ky + Ko > 0.

Since K1 = Ky = 0, this is equivalent to I > u(J; + J2).

The main idea now is to identify the quotients wy ,/ug, ug z2/ui etc. with
polynomial variables &1, & etc., and to write the integrand of I (up to the factor
uj) as the following polynomial in the variables { = (£1,£2,§3),

Pe) = (& - 266 +) (56 +2(5 - 1)ea + 5 (5 -1)(@-3)¢)
«

= 2(5 1)@ =3)8 - Sa - 2)(a - 5)eer + T(a? — ba+8)¢ley

@ @
—4a(5 —1)88 +ala - 3)a s + 56
the integrands of J; and Js, respectively, as

o0 - (o (5 - e 55 1) (5 - )

S (E ) s (B (8 2)dde

P (552 + 2 (5 ) e

+ 3(;2<§ - 1)515253 + %532,7
@0 =)

and finally, the integrands of K7 and K5 as
T1(§) = —(5 — )&} +5¢2,
Ty(6) = —(4 — @)1 + 3E1E5 + €163

Thus, we can reformulate the task of determining constants u, ¢1, and ¢y such
that (24) holds as the following decision problem: Find p > 0, ¢1, ¢2 € R such
that for all £ € R3,

(25) P(§) = pQ1(§) — pQ2(§) + a1Ti(§) + c2T2(€) > 0.
If this problem is solved, we obtain the inequality
1 [0 (03 (0% (03
o 22 = @ 2de [ () + ) <0,

aT
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from which (21) follows by taking the sum over all k.
Actually, the decision problem (25) can be solved by quantifier elimination.
For this, we write (25) in the following way:

(26) 0 < (P —pQ1—pQ2+ Ty + c2T2)(§)
= 1€y + ao€iba + az€its + as€l&s + asé1&26s + apés,

where
2

=559 (5 1) (52 (3 a6

ag = —g(oz —2)(a—5) — ugaQ(a - 1)2<g - 2) +5c1 — c2(4 — «),

2 2 \2 2
2
=5 PACRDICE)
=2(a? - (2 o) (20
as 4(a S5a + 8) o5 5 + ca,
9o 2
(3 ) b (5 v
302 /a
o9 s (5 1),
as = a(a —3) P55
a o?
ag = — — p—-.
Ty

By Lemma 12 of [14], (26) holds if the coefficients satisfy ag > 0, 4asa6 — a2 =
2asa6—aszas = 0, and 4ajag —a% > 0. In the case o = 1 this system of nonlinear
equations can be solved explicitly [10]. The general case is much more involved.
However, the solution of this system can be obtained by the computer algebra
system Mathematica which provides an exact solution. The computer program
ensures the existence of constants p > 0, ¢1, and ¢ (depending on «) such that
(26) holds for all ¢ € R? under the condition % (25—6v10) < a < Z(2546v/10).
Moreover, if a = 1, we can choose = (103 + 1/214)/72 [10]. O

4. FURTHER A PRIORI ESTIMATES

From Lemmas 5 and 6 we are able to derive more a priori estimates. As in
the previous section, we assume that y;, € C°°(T) is a solution to (13) and we
set uy = exp(yM)) > 0.

We will need the following ”parabolic” Gagliardo-Nirenberg-type inequality.
Let f € L?(0,T; H3(T)) N L>=(0,T; H*(T)). Then

||fx:c||%2('ﬂ‘) = (faws foz)2(1) = = (fazz, fo)r2ery < |l @s )l fllmr ey,
Hf||%11(1r) < Nl 1 f 11 e emy

and hence o 12
1 £ll2cry < V211 sy | 1 ey
This gives

T
sy < | W ol oyt

(27) < 4Hf||%2(0,T;H3(’]I‘))Hf”%OO(O,T;Hl(’]I‘))'
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Lemma 7. There exists a constant ¢ > 0 independent of N such that
w2 (0,m;m3(T)) < C-

Proof. Set v = u?v/ >, We have to show that v? is uniformly bounded in
L?(0,T; H3(T)). Since H'(T) < L°(T), the estimate (20) shows that v
is uniformly bounded in L°(0,7; L>°(T)). In particular, v? is bounded in
L?(0,T; L*(T)). Then, by (20),

||(U2)x||L2(0,T;L2(T)) < 2|l o (0,115 (1) vz | 20, 7:22(T)) < €

and

H (UZ)JTJ?HLZ(O,T;LQ(’]I‘)) < 2”'033 “%4(0’7-;[/4(']1-))

+ ZHUHLOO(O,T;LOC(T))vaHm(o,T;L?(T)) <c

Here and in the following, ¢ > 0 denotes a generic constant. We have used the
fact that, by (27), v = U?V/Q is uniformly bounded in L*(0, T'; H*(T)) and hence
also in L*(0,T; WH4(T)). Furthermore, since H3(T) embeddes continuously
into W?2°°(T),

||(U2)xm”L2(0,T;L2(T)) < 6”UxHL°°(O,T;L2(']1')) ”UxIHLQ(D,T;LOO(T))
+ 2||UHL°°(0,T;L00(T))||U:c:cacHL2(o,T;L2(1r)) <c

This proves the lemma. O

Lemma 8. There exists a constant ¢ > 0 independent of N such that

4
”ﬁ\/ 20,7 m2(T)) < €

/4

Proof. 1t is clear from the L°° bound on uy that u% is uniformly bounded in

L?(0,T; L*(T)). Furthermore, since u?‘v/(ﬁ is bounded in L5(0,T; W6(T)) (see
Lemma 6),
a/l2, «a
1N all s20rz2my < elluyy ™ (uy el oz:aey
a/2,1/6 a/6
< elluty* 112 o ripee oy 168 2oz () <

/4

For the second derivative of u?v we obtain

a4 oy a2 )
I(u /mumwm_// VLN 4 (3) e )2

2
< cllunlIF5 o e oy W 1320 en2 0

te / / oy /2 (NYA g it
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The first term is uniformly bounded by Lemmas (5) and 6. For the second term
we apply Hoélder’s inequality,

r (N) T (N)
/ /eay P2y NN dadt < c/ /yg(cN)(eo‘y /63 daedt
o Jr o Jr

T
o)
<e / 1S 2oy 8™ 18 2

ay(N)/G <e

< clly™ |l 20,10 (1 e 176 0mwr0(m))

The above estimates show that u?v/ b= e ™/ g uniformly bounded in L?(0, T}
H?(T)). O

For the compactness argument, we also need a priori estimates for the discrete
time derivative of u%;. For this we introduce the shift operator (on (u%))(z,t) =

(on exp(ayN)))(z,t) = exp(ayp_1(z)) for x € T and t € (t_1,tx].

Lemma 9. There exists a constant ¢ > 0 independent of N and T such that
Juf — UN(U?V)HLE*/Q(O,T;H*?(’]I‘)) < cr.

Proof. The function uy = exp(y™)) satisfies

1 _
;(U% —on(uf)) = —au " (un (10g un )z )z

We need to estimate the right-hand side of this equation. Since we have uniform

bounds for u%, and u%/ ? rather than for u ~, we formulate the right-hand side

in terms of u%/k where k =1,2,3,4:

a— « o « 4 a/2
QU pr 1(UN(10g UN)w:p)zz = Q(UN(IOE; uN)x:r)xac - (UN):L":E:MU + a((UN/ )i)x:p

— (@) (Y2, — ea(@) (uy)2)e + es(a)(uyy M),

where
4
a(a) = ~(1-a),
!
e2(a) = (1 - a)(Ba - 1),
64
c3(a) = @(—30(2 + 7o —4).
This gives

7 — on (i)l a0 -2 (m)
< 20‘”“?\7%(02])||L3/2(0,T;L2(’]1‘)) + ”(u?\/)mHLSN(o,T;H(T))

4 a/2 a/2
+ 5”(“1\/ )i“L3/2(O,T;L2(’E)) + [e1 ()] H(“N/ )azcoc”L3/2(0,T;H*2(’IF))

+ lea(@)] 12l o2 0.r1-1my)

a/d
+les(@)] 11w 2l o2 0.mm-2my)
= Il + -+ 16-
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. 2 .
By (27), applied to f = u?v/ , and Lemmas 5 and 6, we obtain

Iy < ||UN”%OO(0,T;LO<>(T))||yg)||L3/2(0,T;L2(1r)) <
I = 2| (uf )2 + w3 () aall o0 mi2my)
< 2”“?\[/2“%3(0,T;W1’4(T)) + 2||U?V/2||L°°(O,T;L°°(T))HU?V/QHL3/2(O,T;H2('J1‘)) < ¢
Is = lugy |25 o rariary < clluy 1 2aormeem) < c
Iy < | ()2l 20 ey = €l Dazll 20 i)
< c”“?V/QH%:”(QT;H?(’H‘)) <c
I < ell(@®)2l 2 0mn2my < el S @ )aldo oz n0my)

2 6
< elluy s o,rszeeop 1y * s o rawroqmy < e

454 3 614
Is < ell (u§f )2l o zizoracry) < elluy Vel wosaqo rizorony
a/22/3 a/64
< CHUN HLoo(o,T;Loo(qr))HuN HL6(O,T;W1’6(’]I‘)) <c.
The expressions in I, ..., Is could be bounded also in L? but the expression
in Ig can be only bounded in L3/2. Putting together the above inequalities, we
conclude the proof. O

5. PROOF OF THEOREM 1

We perform the limit 7 — 0 (or N — o0) in

1 _
o (8 = o (i) + o (uwyls),, = 0.

Let ¢ € L°°(0,T; H*(T)). Then the weak formulation of this equation reads as

1 uy — on(uy))pdedt = — uny™ (w5 19)  dadt,
N N T N Tx

at JQr T

where we recall that Q7 =T x (0,7"). In the following, we set wy = “?\/4' We

wish to write the right-hand side of the above equation in terms of wy, wy
and wy z,. A calculation shows that

1
o o (uS — on(uf)) pdadt
2 4
== 4_7) 2V sewn pddt
a( o </TwN,ma:(wN) wy ¢dx
—4/ wMMwJQVJwN(;dedt
T

(28) +4 / WN 22 WN W Gpdrdt — 4 /
T

Qr

wjgv,mngﬁxda:dt)
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_ %(4 — %) (3 — %) (/T wNvmw]zvjwa(bdxdt — /T wjlwx(bdxdt)

— </ wN,mwj?V(bmd:cdt—/ w?v’zw?\,gbmda:dt)
o T Qr

The uniform bounds on u%, in L?(0,7; H3(2)) (Lemma 7) and in L*(0,
T; H'(T)) (Lemma 6) and the bound on the discrete time derivative of u$; in
L3/2(0,T; H=%(T)) (Lemma 9) allow to apply the Aubin lemma [18], providing
the existence of subsequences of u$%; and uy, which are not relabeled, such that

(29) uY — v strongly in L(0,T; W4(T)),
(30) 7 Mu$ — on(uf)) — v, weakly in L32(0,T; H%(T)),
(31) uy — u strongly in L°°(0,7; L>°(T)) as N — oo,

and the limit function u lies in C°([0,T); C%'/2(T)). Here, we have used the
fact that H3(T) embeddes compactly into W24(T) for all ¢ < oo and that
H'(T) embeddes compactly into L>°(T) and continuously into C%'/(T). Since
we have in particular pointwise convergence of the sequence (u%;), we obtain
u$ — v in L'(0,T; LY(T)), and v = u®. Moreover, we conclude from Lemma 6
for a subsequence, that

yN) —~ g weakly in L*(0,T; H*(T)).

We claim that v = €Y which shows v > 0 a.e. in Q7. Let x be a smooth
function. The monotonicity of the exponential function implies that

//uN—e X)dzdt = // ay™ _ gax X) (y™N) = x)dzdt > 0.

Passing to the limit N — oo yields

T
/ /(v — e (y — x)dzdt > 0 for all smooth .
T

Thus, by the monotonicity of x +— €%, v = . Since v = u®, this implies
u=eY.

We collect now some convergence results for the sequence (wy) which allow
to pass to the limit N — oo in (28). Lemma 8 shows that, for a subsequence,

(32) wy — w weakly in L?(0,T; H*(T)).
We claim that (maybe for a subsequence)
(33) w3 — w?  strongly in L?(0,T; H*(T)).

By (31), we clearly have w% — w? in L>(0,7; L°°(T)). Then the Gagliardo-
Nirenberg inequality (12) shows that

T
6/5 4/5
lw} — w1 F20m,m21y) < C/O lw} — w257 o llwi = w?ll ! mdt
2 2114/5 2 2,16/5
< cllwh = w12 o rpee oy 18— 2%

L2(0,T;H3(T))

— 0,
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since the second factor is bounded and the first factor converges to zero. Since

4/

« . .
uy = wy converges pointwise to u, we have u = wh/e.
In a similar way, we can prove that, again for a subsequence,

(34) wy — w  strongly in L*(0, T; WH4(T)).

Indeed, employing the Gagliardo-Nirenberg inequality (11), we obtain

T
lwn = wlza rawragm) < C/O lwn = wlgzmllwn = wilEe mdt
< clwy - U}H%OO(O,T;LOO(’]I‘))HWN - w”%Q(O,T;HQ(T)) — 0,

since the second factor is bounded, by Lemma 8, and the first factor converges
to zero. The convergence (34) implies that

(35) w?\,w — w2 strongly in L*(0,T; L*(T)),

2
(36) w?’v,x — w?  strongly in L*3(0,T; LY3(T)).

The above convergence results (32)-(36) are sufficient to pass to the limit in
(28). Then the function w satisfies

T
L / (O (u), &) -2 grodt

(0%

= 2 (4 — é) [/ Wae (W) grwpdrdt — 4/ Wepwwpdrdt

Qo o T Qr

+ 4/ Wy (Wygw — w%)gbwdwdt}
T

4 (4 _ é) (3 - é) / w2 (Wepw — w)pdadt

o (07 T

— / w2(wmw - wi)qudxdt.
@ JQr

Next, we show that the L! norm of the weak solution u to (1) is bounded,

(37) /T w(w, t)dz < / o () da.

T
The function f(z) = 21/(=9) {5 convex for o < 1, i.e., for all z, y > 0,

(@) - fy) < F@)( —y) = ——ao/0- (g — ).

1l -«

Hence, for z = u,lﬁj‘ and y = u}c_o‘, we have

1
/(Ukl —up)dx <
T 1

—

/Tuz‘_l(u}c:‘i‘ - u,{:_o‘)dm
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and, multiplying (6) by u}cfo‘ and integrating over T,
0= / up Y (uf — uf ) )dr = /(uk — Up_1)dx + / uf g (up=$ —upY)dw
T T T
> /(Uk —up—1)dz + (1 — ) /(%—1 — uy)dx
T T
= a/(uk — Up_1)dx.
T

This gives
/ukd:n < /uk_ldx <. . < /uod:z:
T T T

/uN(-,t)dazg/uodaz,
T T

The limit N — oo leads to (37). If @ = 1, the L! norm of u is conserved, see
the proof of Theorem 2 below.
Finally, we need to verify (10). By the Poincaré inequality

1 1
a/2\2 a/2\2 a/2\2

with optimal constant, we obtain from (21)

/T(uz/z)id:c—i— 167r4aﬂ7'/1r(“(1:/2)?;dx < /T(uZﬁ)idx.

and

Solving this recursive inequality gives, for t € (tp_1, ], tx = k7,

/22 5 1 / a/2y2 5
/]I‘(Uk )xda:— (1+167T406,LL7')]€ T(UO ):1: £

1 a/2\2
pr— d
(1 + 16m4aur)te/ /’[r(uo Jed

1 a/2\2
= (1 + 167taur)t/ /T(uo Jadz.

The limit 7 — 0 or N — oo yields

2w e < oo [ g 2a,

This is equal to (10) with 8, = 87*au (we remark that also 4 depends on «),
finishing the proof of Theorem 1.

6. PROOF OF THEOREM 2

First, we show that the L! norm of u is conserved:

(38) Au(m,t)dmzAuodx.
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The discrete solution wy = u}\& satisfies (28) for @ = 1 which is in (tx_1, tx]
equal to

1
- /T(uk — ug_1)pdxr = —4[E (u/,lf’/;lmui/4 — ui{fuiﬁ)qﬁmd%

T

where ¢ € H?(T) is a test function. Choosing ¢ = 1 gives

/(uk — up_1)dx =0,
T

/ukdaz = / Up_1de = -+ = / updr.
T T T

Then, after passing to the limit N — oo, we conclude (38).
Next, we employ the decay estimate (10) to prove the strict positivity of w.
For this, we remark that in the case o = 1, we have p = (103 4 v/214)/72 [10].

This gives 81 = 74(103 + v/214)/9. Let @ = [wugdz and M = I (v/10) x|l L2 (T)-
Employing the Poincaré-type inequality with optimal constant,

- 1
1f = Fllzoecry < Sl felloren)
for f € WHL(T), where f = Jp fdz, and inequality (10), we obtain

el = /T V() |de

and hence

lu(-,t) =l poo(ry < 3
IVull 2oyl (V) L2ery = lull oy (V) el 2y
= ﬂMeiﬁlt,

IN

observing (38) in the last equality, and thus
u(-,t) > a—aMe Pt = a(1 — Me™P1Y), > 0.

Hence, u(-,t) is strictly positive if ¢ > (log M)/f1. Furthermore, if M < 1 then
u(+,t) is strictly positive for all ¢ > 0.
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