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ANSGAR JÜNGEL AND INGRID VIOLET

Abstract. A logarithmic fourth-order parabolic equation in one space di-
mension with periodic boundary conditions is analyzed. Using a new semi-
discrete approximation in time, a first-order entropy–entropy dissipation
inequality is proved. Passing to the limit of vanishing time discretization
parameter, some regularity results are deduced. Moreover, it is shown that
the solution is strictly positive for large time if it does so initially.
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1. Introduction

Nonlinear fourth-order equations, whose solution signifies some nonnegative
physical quantity, have attracted the attention of mathematicians since several
years. The lack of a maximum principle for those equations makes necessary
the development of new analytical tools in order to obtain a priori estimates
and the nonnegativity or positivity of solutions. A famous example is the thin-
film equation which is of degenerate parabolic type (see, e.g. [2, 3]). Another
example is the nonlinear logarithmic equation

(1) ut + (u(log u)xx)xx = 0 for x ∈ T, t > 0, u(·, 0) = u0,

where T is the circle parametrized by a variable x satisfying 0 ≤ x ≤ 1. This
equation has been first derived by Derrida, Lebowitz, Speer, and Spohn [8, 9],
and we shall therefore refer to (1) as the Derrida-Lebowitz-Speer-Spohn equation
or simply the DLSS equation. Derrida et al. studied in [8, 9] interface fluctu-
ations in a two-dimensional spin system, the so-called (time-discrete) Toom
model. In a suitable scaling limit, a random variable u related to the devia-
tion of the interface from a straight line satisfies the one-dimensional equation
(1). This equation also appears in quantum semiconductor modeling as the
zero-temperature, zero-field limit of the quantum drift-diffusion model [1, 7].
The variable u describes the electron density in a microelectronic device or in
a quantum plasma. In both applications, u is a nonnegative variable.

The authors acknowledge partial support from the German-French DAAD-Procope Pro-
gram and from the Deutsche Forschungsgemeinschaft, grant JU359/7. This research is also
part of the ESF program “Global and geometrical aspects of nonlinear partial differential
equations (GLOBAL)”.
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The first analytical result for (1) has been shown in [4]. There, the existence
of positive solutions with H1 initial data has been proved. Lacking suitable a
priori estimates, the existence result holds only locally in time. The global (in
time) existence of solutions was related to strict positivity: if a classical solution
breaks down at a certain time t∗, then the limit profile limtրt∗ u(x, t) is still an
H1 function but vanishes at some point in T. This motivated the authors in [16]
to study nonnegative weak solutions instead of positive classical solutions. The
global existence of solutions was shown with initial data having finite generalized
entropy

∫

T
(u0 − log u0)dx and with physically motivated boundary conditions.

The global existence of weak solutions to the DLSS equation (1) with periodic
boundary conditions was proved in [10]. Equation (1) has been also considered
with non-homogeneous boundary conditions [12], and the exponential fast decay
of its solutions was shown [5, 6, 10, 12, 14, 17]. For results on the existence of
solutions to the corresponding multi-dimensional DLSS equation, we refer to
[11, 15].

In the paper [14], the following so-called entropy–entropy dissipation inequal-
ity has been formally derived:

(2)
d

dt

∫

T

(uα/2)2xdx + µ

∫

T

(

(uα/2)2xxx + (uα/6)6x
)

dx ≤ 0,

where α lies in between the two roots of 53α2 −100α+20, i.e. 2
53(25−6

√
10) <

α < 2
53(25 + 6

√
10), and µ > 0 is some constant depending on α. The integral

∫

T
(uα/2)2xdx is called a first-order entropy, whereas we refer to the other integral

in (2) as the corresponding entropy dissipation term. The derivation in [14] is
only formal, since the manipulations require positive smooth solutions. The
idea was to reformulate the necessary integration by parts leading to (2) as a
decision problem for polynomial systems which can be solved by a computer
algebra system.

The goal of this paper is to make the inequality (2) rigorous, to conclude
some regularity properties, and to show that the solution stays positive at least
for large time if it does so initially. For small time, the positivity of solutions
has been already shown in [4]. We are not interested in proving regularity for
the solution u itself, since it is well known that u is a classical solution to (1),
at least locally in time and for positive solutions, if the initial data is strictly
positive and lies in H1(T) [4]. Here, we are rather interested in showing that

the powers of the nonnegative solution uα/2 are regular.
For α = 1, inequality (2) has been justified in [10]. The idea was to discretize

(1) in time and to consider the elliptic problem

(3)
1

τ
(uk − uk−1) +

(

uk(log uk)xx

)

xx
= 0,

where k ∈ N, τ > 0 is the time step and uk is the Euler approximation of
u(·, τk). The advantage of this discretization is that it is possible to show that
there exists a strictly positive smooth solution uk to (3) which allows to make
the manipulations leading to a discrete version of (2) with α = 1 rigorous. In
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fact, multiplying (3) by −u
α/2−1
k (u

α/2
k )xx and integrating over T gives

−1

τ

∫

T

(uk − uk−1)u
α/2−1
k (u

α/2
k )xxdx(4)

−
∫

T

(

uk(log uk)xx

)

xx
u

α/2−1
k (u

α/2
k )xxdx = 0.

Since

(5) −
∫

T

(uk − uk−1)u
α/2−1
k (u

α/2
k )xxdx ≥

∫

T

(

(u
α/2
k )2x − (u

α/2
k−1)

2
x

)

dx if α = 1,

and the second integral in (4) can be bounded from above by
∫

T
((
√

uk)
2
xxx +

( 6
√

uk)
6
x)dx if α = 1 (see section 3), we obtain

1

τ

∫

T

(

(
√

uk)
2
x − (

√
uk−1)

2
x

)

dx + µ

∫

T

(

(
√

uk)
2
xxx + ( 6

√
uk)

6
x

)

dx ≤ 0.

The first integral is the discrete time derivative of (
√

u)2x. Then the limit τ → 0
gives (2) for α = 1.

Unfortunately, this argument does not work for general α. The problem is
that (5) cannot be proved for α 6= 1. In order to circumvent this problem, we
choose another semi-discretization in time: we rewrite the time derivative ut as
u1−α(uα)t/α and consider the semi-discretization

(6)
1

ατ

(

uα
k − uα

k−1

)

+ uα−1
k

(

uk(log uk)xx

)

xx
= 0.

Then it is possible to show that a discrete entropy–entropy dissipation inequality
holds leading to (2) in the limit τ → 0.

The semi-discretization (6) is new in this context. It is chosen in such a way
that an inequality similar to (5) can be proved. The difficulty is to deal with
the expression

uα−1
(

u(log u)xx

)

xx
,

since we have no control on uα−1 whose exponent may be negative. Therefore,
we rewrite this expression in terms of the variable w = uα/4 for which we can
derive enough regularity. Hence, we define the weak solution in terms of uα/4

instead of u as it is done in [16], for instance. More precisely, we call u a weak
solution to (1) if

(uα)t ∈ L3/2(0, T ; H−2(T)), u ∈ L∞(T × (0, T )),(7)

uα/2, uα/4 ∈ L2(0, T ; H2(T)),(8)

is satisfied and if the following equation for w = uα/4 holds in L1(0, T ; H−2(T)):

(w4)t = −2
(

4 − 4

α

)

[

wwxx(w2)xx − 4ww2
xwxx + 4

(

wwx(wwxx − w2
x)

)

x

]

− 4
(

4 − 4

α

)(

3 − 4

α

)

w2
x(wwxx − w2

x) − 4
(

w2(wwxx − w2
x)

)

xx
.(9)

Notice that (7)-(8) implies that w = uα/4 ∈ L4(0, T ; W 1,4(T)), by the Gagliardo-
Nirenberg inequality (see below). Thus the right-hand side of (9) is well defined
in L1(0, T ; H−2(T)). It is not difficult to see that any positive smooth solution

u = w4/α also solves (1).
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It is well known that it may be more convenient to formulate (1) in another
variable than u. For instance, the existence of solutions to the multi-dimensional
DLSS equation is shown for the variable

√
u [11, 15].

Our first main result of this paper is contained in the following theorem.

Theorem 1. Let 0 < u0 ∈ H1(T), T > 0, and α ∈ (α0, 1], where α0 =
2
53(25−6

√
10). Then there exists a nonnegative weak solution u to (1) satisfying

uα/2 ∈ L2(0, T ; H3(T)) ∩ L∞(0, T ; H1(T)) ∩ C0([0, T ];C0,1/2(T)),

uα/6 ∈ L6(0, T ; W 1,6(T)), log u ∈ L2(0, T ; H2(T)),

the L1 norm of u is bounded by the L1 norm of u0, and there exists βα > 0 such
that

(10) ‖(uα/2)x‖L2(T) ≤ ‖(uα/2
0 )x‖L2(T)e

−βαt, t > 0.

Notice that α0 = 0.2274 . . . The lower bound on α comes from the entropy
construction method of [14] which consists in reformulating the a priori esti-
mates as a solution of a decision problem for polynomial systems. This decision
problem is solved by the computer algebra system Mathematica which gives an
exact solution. The decay estimate (10) generalizes Theorem 5.1 in [10]. Our
second main result concerns the strict positivity of solutions.

Theorem 2. Let 0 < u0 ∈ H1(T) and let u be the (continuous) solution
constructed in Theorem 1 for α = 1. Set M = ‖(√u0)x‖L2(T) and β1 =

π4(103 +
√

214)/9 = 1273.12 . . . Then the L1 norm of u is conserved and

u(x, t) > 0 for all x ∈ T, t > (log M)/β1.

In particular, if M < 1 then

u(x, t) > 0 for all x ∈ T, t ≥ 0.

It is not known if Theorem 2 is optimal. In fact, there are nonnegative
smooth solutions to (1) which vanish at some points in T if the initial data is only
nonnegative [15]. Close to the points x0 where u(x0, t) = 0, the solution u seems
to behave like (x−x0)

2. Numerical experiments indicate that the solution stays
strictly positive if the initial datum satisfies u0 > 0 [4, 16]. However, we are not
able to prove that u(x, t) > 0 for all t > 0 and for general initial data. Theorem
1 shows that if the solution vanishes at some point x0, given a positive initial
datum, then it behaves close to x0 like (x− x0)

γ where γ > 5/α0 = 21.9868 . . .

This comes from the fact that (uα/2)2xxx with u(x) ∼ (x − x0)
γ is integrable if

and only if 2(γα/2 − 3) > −1 or γ > 5/α.
The idea of the proof of Theorem 2 is based on the decay estimate (10).

Indeed, for large time t, the solution u(x, t) is expected to be ”close” to the
homogeneous steady state

∫

T
u0dx. Since this steady state is strictly positive,

so does u(x, t).
The paper is organized as follows. In section 2 we show the existence of

classical solutions to (6). The discrete entropy inequality corresponding to (2)
is proved in section 3. In order to pass to the limit τ → 0 in (6), we need further
estimates on the discrete time derivative of uα and on the spatial derivatives
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of uα/4 which are proved in section 4. The limit τ → 0 in (6) is performed in
section 5. Finally, Theorem 2 is shown in section 6.

For convenience, we recall the Gagliardo-Nirenberg inequality [13, 19].

Lemma 3. Let m, k ∈ N0 with 0 ≤ k ≤ m, 0 ≤ θ < 1, 1 ≤ p, q, r ≤ ∞, and
let f ∈ Wm,q(T) ∩ Lr(T). If both

k − 1

p
≤ θ

(

m − 1

q

)

+ (1 − θ)
(

− 1

r

)

and
1

p
≤ θ

q
+

1 − θ

r

holds then f ∈ W k,p(T), and there exists a constant c > 0 independent of f
such that

(11) ‖f‖W k,p(T) ≤ c‖f‖θ
W m,q(T)‖f‖1−θ

Lr(T).

Moreover, if

k − 1

p
= θ

(

m − 1

q

)

+ (1 − θ)
(

− 1

r

)

holds then

(12) ‖Dαf‖Lp(T) ≤ c‖f‖θ
W m,q(T)‖f‖1−θ

Lr(T),

where Dα is a differential operator of order |α| = k, and k/m ≤ θ ≤ 1 is allowed
if m − k − 1/q 6∈ N0.

2. Existence of discrete solutions

In this section we solve the semi-discrete problem (6). For this, let T > 0 be
the terminal time, N ∈ N the number of grid points, τ = T/N the time step,
and let tk = kτ , k = 0, . . . , N . Furthermore, let α > 0. For yk−1 ∈ H1(T), we
consider the following recursive sequence of equations,

(13)
1

ατ
e(1−α)yk

(

eαyk − eαyk−1
)

+
(

eykyk,xx

)

xx
= 0, k ∈ N,

and y0 = log u0.

Lemma 4. Given yk−1 ∈ H1(T), there exists a solution yk ∈ C∞(T) to (13).

Proof. We employ ideas from [10]. Set z = yk−1 and y = yk. We consider first
for given ε > 0 the elliptic fourth-order equation

(14) (eyyxx)xx − εyxx + εy =
1

ατ
e(1−α)y(eαz − eαy)

with periodic boundary conditions. In order to show the existence of solutions
to this problem, we use the Leray-Schauder fixed-point theorem. Let w ∈ H1(T)
and σ ∈ [0, 1] be given and consider

(15) a(y, φ) = F (φ) for all φ ∈ H2(T),

where

a(y, φ) =

∫

T

(ewyxxφxx + εyxφx + εyφ)dx,

F (φ) =
σ

ατ

∫

T

e(1−α)w(eαz − eαw)φdx.
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The bilinear form a is continuous and coercive on H2(T), and F is linear and
continuous on H2(T). Thus, by Lax-Milgram’s lemma, there exists a unique
solution y ∈ H2(T) to (15). This defines a fixed-point operator S : H1(T) ×
[0, 1] → H1(T), (w, σ) 7→ y. It holds S(w, 0) = 0 for all w ∈ H1(T). Moreover,
the functional S is continuous and compact, observing that the embedding
H2(T) →֒ H1(T) is compact. We need to prove a uniform bound for all fixed
points of S(·, σ).

Let y be a fixed point of S(·, σ), i.e., y ∈ H2(T) solves for all φ ∈ H2(T)
∫

T

(eyyxxφxx + εyxφx + εyφ)dx =
σ

ατ

∫

T

e(1−α)y(eαz − eαy)dx.

With the test function φ = 1 − e−y we obtain
∫

T

y2
xxdx−

∫

T

yxxy2
xdx + ε

∫

T

e−yy2
xdx + ε

∫

T

y(1 − e−y)dx

=
σ

ατ

∫

T

e(1−α)y(eαz − eαy)(1 − e−y)dx.

(Here and in the following, the expression y2
x means (yx)2, compared to (y2)x =

2yyx. Expressions like y2
xx etc. are understood in a similar way.) The second

term on the left-hand side vanishes since
∫

yxxy2
xdx =

∫

y3
xdx/3 = 0. The

third and fourth terms on the left-hand side are nonnegative. We employ the
elementary inequalities 1 − ex ≤ −x for all x ∈ R and ξα − 1 ≤ α(ξ − 1) for all
ξ ≥ 0 and α ∈ (0, 1]. Then, for x = α(z − y) and ξ = ez−y,

1 − eα(z−y) ≤ −α(z − y), ey(eα(z−y) − 1) ≤ α(ez − ey),

and hence,

σ

ατ

∫

T

e(1−α)y(eαz − eαy)(1 − e−y)dx

=
σ

ατ

∫

T

[

ey(eα(z−y) − 1) + (1 − eα(z−y))
]

dx

≤ σ

τ

∫

T

[

(ez − z) − (ey − y)
]

dx.

Here, we need the condition α ≤ 1. Thus, we conclude that

(16)
σ

τ

∫

T

(ey − y)dx +

∫

T

y2
xxdx ≤ σ

τ

∫

T

(ez − z)dx.

The two integrals on the left-hand side (and Poincaré’s inequality) show that
y is uniformly bounded in H2(T), independently of σ. The Leray-Schauder
fixed-point theorem ensures the existence of a solution y = yε ∈ H2(T) to (14).

Next, we perform the limit ε → 0. Estimate (16) also provides a bound for yε

in H2(T) independently of ε. Hence, yε converges, up to a subsequence which
is not relabeled, to y weakly in H2(T) and strongly in H1(T). This is enough
to perform the limit ε → 0 in (14), showing that y is a solution to (13).
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It remains to prove that y ∈ C∞(T). For this, let u = ey. Then u is strictly
positive in T and solves, in the distributional sense,

(17) uxxxx =
(2uxxux

u
− u3

x

u2

)

x
− 1

ατ
u1−α(u − eαyk−1).

Since y ∈ H2(T) →֒ W 1,∞(T), we have u ∈ H2(T) ∩ W 1,∞(T) and, by the
strict positivity of u, also 1/u ∈ L∞(T). This shows that uxxux/u ∈ L2(T) and
u3

x/u2 ∈ L∞(T). From (17) follows that uxxxx ∈ H−1(T) and then u ∈ H3(T).
Using this regularity and taking into account (17), it follows uxxxx ∈ L2(T) and
thus u ∈ H4(T). By bootstrapping, we find that u ∈ Hn(T) for all n ∈ N,
which shows that u ∈ C∞(T). Since u is strictly positive, y = log u ∈ C∞(T),
completing the proof of Lemma 4. �

Let y(N)(x, t) = yk(x) for x ∈ T and t ∈ (tk−1, tk]. For notational conve-

nience, we also set uN = exp(y(N)). Then the proof of Lemma 4 shows the
following estimate.

Lemma 5. There exists a constant c > 0 independent of N such that

(18) ‖y(N)‖L∞(0,T ;L1(T)) + ‖uN‖L∞(0,T ;L1(T)) + ‖y(N)‖L2(0,T ;H2(T)) ≤ c.

Proof. From (16) follows that y(N) and uN are uniformly bounded in L∞(0, T ;

L1(T)) and that y
(N)
xx is uniformly bounded in L2(0, T ; L2(T)). Then, by Poin-

caré’s inequality, for some constant c > 0,

(19)
∥

∥

∥
yk −

∫

T

ykdx
∥

∥

∥

L2(T)
≤ c‖yk,x‖L2(T) ≤ c‖yk,xx‖L2(T),

we conclude that y(N) is uniformly bounded in L2(0, T ; H2(T)). �

3. The first-order entropy estimate

In this section, we derive the first-order entropy estimate for the solution eyk

to (13). Recall that y(N)(·, t) = yk for t ∈ (tk−1, tk] and uN = exp(y(N)).

Lemma 6. Let uN be a classical solution to (6) corresponding to α0 < α < α1,
where α0/1 = 2

53(25 ± 6
√

10). Then there exists a constant c > 0 independent
of N such that

(20) ‖uα/2
N ‖L∞(0,T ;H1(T)) + ‖uα/2

N ‖L2(0,T ;H3(T)) + ‖uα/6
N ‖L6(0,T ;W 1,6(T)) ≤ c.

We remark that we have proved the existence of a solution uk to (6) only for
α ≤ 1. However, the first-order entropy estimate is valid for a larger class of
values α.

Proof. Let, by a slight abuse of notation, uk = eyk . Then the lemma is a
consequence of the following entropy–entropy dissipation inequality,

(21)

∫

T

(u
α/2
k )2xdx + αµ

k
∑

j=1

τ

∫

T

(

(u
α/2
j )2xxx + (u

α/6
j )6x

)

dx ≤
∫

T

(u
α/2
0 )2xdx,

and Poincaré’s inequality (19), where µ > 0 is some constant. In order to
show this inequality, we multiply (13) by a test function, integrate over T and
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integrate by parts. The integration by parts is done in a systematic way as

described in [14]. Multiplication of (13) by −u
α/2−1
k (u

α/2
k )xx and integration

over T gives

− 1

ατ

∫

T

u1−α
k (uα

k − uα
k−1)u

α/2−1
k (u

α/2
k )xxdx(22)

−
∫

T

(uk(log uk)xx)xxu
α/2−1
k (u

α/2
k )xxdx = 0.

The first integral can be rewritten as

− 1

ατ

∫

T

u1−α
k (uα

k − uα
k−1)u

α/2−1
k (u

α/2
k )xxdx

=
1

ατ

∫

T

[

(u
α/2
k )2x − (u

α/2
k−1)

2
x

]

dx

+
1

ατ

∫

T

[

(u
α/2
k−1)

2
x − (uα

k−1u
−α/2
k )x(u

α/2
k )x

]

dx

=
1

ατ

∫

T

[

(u
α/2
k )2x − (u

α/2
k−1)

2
x

]

dx +
α

4τ

∫

T

uα
k−1

(uk−1,x

uk−1
− uk,x

uk

)2
dx

≥ 1

ατ

∫

T

[

(u
α/2
k )2x − (u

α/2
k−1)

2
x

]

dx.(23)

The second integral in (22) becomes, after integration by parts,

I =

∫

T

(uk(log uk)xx)x

(

u
α/2−1
k (u

α/2
k )xx

)

x
dx

=

∫

T

uα
k

(uk,xxx

uk
− 2

uk,xxuk,x

u2
k

+
u3

k,x

u3
k

)

×
(

α

2

uk,xxx

uk
+ 2α

(α

2
− 1

)uk,xxuk,x

u2
k

+
α

2

(α

2
− 1

)

(α − 3)
u3

k,x

u3
k

)

dx.

We wish to compare this integral with the integrals

J1 =

∫

T

(u
α/2
k )2xxxdx

=

∫

T
uα

k

(

α

2

uk,xxx

uk
+

3α

2

(α

2
− 1

)uk,xxuk,x

u2
k

+
α

2

(α

2
− 1

)(α

2
− 2

)u3
k,x

u3
k

)2

dx,

J2 =

∫

T

(u
α/6
k )6xdx =

(α

6

)6
∫

T

uα
k

u6
k,x

u6
k

dx.
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Integration by parts is reformulated, according to [14], as the integral identities

K1 =

∫

T

( u5
k,x

u5−α
k

)

x
dx =

∫

T

uα
k

(

5
uk,xxu4

k,x

u5
k

− (5 − α)
u6

k,x

u6
k

)

dx = 0,

K2 =

∫

T

(uk,xxu3
k,x

u4−α
k

)

x
dx

=

∫

T

uα
k

(

3
u2

k,xxu2
k,x

u4
k

+
uk,xxxu3

k,x

u4
k

− (4 − α)
uk,xxu4

k,x

u5
k

)

dx = 0.

We wish to find constants µ > 0 and c1, c2 ∈ R such that

(24) I − µJ1 − µJ2 + c1K1 + c2K2 ≥ 0.

Since K1 = K2 = 0, this is equivalent to I ≥ µ(J1 + J2).
The main idea now is to identify the quotients uk,x/uk, uk,xx/uk etc. with

polynomial variables ξ1, ξ2 etc., and to write the integrand of I (up to the factor
uα

k ) as the following polynomial in the variables ξ = (ξ1, ξ2, ξ3),

P (ξ) = (ξ3 − 2ξ1ξ2 + ξ3
1)

(α

2
ξ3 + 2α

(α

2
− 1

)

ξ2ξ1 +
α

2

(α

2
− 1

)

(α − 3)ξ3
1

)

=
α

2

(α

2
− 1

)

(α − 3)ξ6
1 − α

2
(α − 2)(α − 5)ξ4

1ξ2 +
α

4
(α2 − 5α + 8)ξ3

1ξ3

− 4α
(α

2
− 1

)

ξ2
1ξ

2
2 + α(α − 3)ξ1ξ2ξ3 +

α

2
ξ2
3

the integrands of J1 and J2, respectively, as

Q1(ξ) =
(α

2
ξ3 +

3α

2

(α

2
− 1

)

ξ1ξ2 +
α

2

(α

2
− 1

)(α

2
− 2

)

ξ3
1

)2

=
α2

4

(α

2
− 1

)2(α

2
− 2

)2
ξ6
1 + 3

α2

2

(α

2
− 1

)2(α

2
− 2

)

ξ4
1ξ2

+
α2

2

(α

2
− 1

)(α

2
− 2

)

ξ3
1ξ3 +

9α2

4

(α

2
− 1

)2
ξ2
1ξ

2
2

+
3α2

2

(α

2
− 1

)

ξ1ξ2ξ3 +
α2

4
ξ2
3 ,

Q2(ξ) =
(α

6

)6
ξ6
1 ,

and finally, the integrands of K1 and K2 as

T1(ξ) = −(5 − α)ξ6
1 + 5ξ4

1ξ2,

T2(ξ) = −(4 − α)ξ4
1ξ2 + 3ξ2

1ξ
2
2 + ξ3

1ξ3.

Thus, we can reformulate the task of determining constants µ, c1, and c2 such
that (24) holds as the following decision problem: Find µ > 0, c1, c2 ∈ R such
that for all ξ ∈ R

3,

(25) P (ξ) − µQ1(ξ) − µQ2(ξ) + c1T1(ξ) + c2T2(ξ) ≥ 0.

If this problem is solved, we obtain the inequality

1

ατ

∫

T

(

(u
α/2
k,x )2x − (u

α/2
k−1,x)2x

)

dx + µ

∫

T

(

(u
α/2
k )2xxx + (u

α/6
k,x )6x

)

dx ≤ 0,
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from which (21) follows by taking the sum over all k.
Actually, the decision problem (25) can be solved by quantifier elimination.

For this, we write (25) in the following way:

0 ≤ (P − µQ1 − µQ2 + c1T1 + c2T2)(ξ)(26)

= a1ξ
6
1 + a2ξ

4
1ξ2 + a3ξ

3
1ξ3 + a4ξ

2
1ξ

2
2 + a5ξ1ξ2ξ3 + a6ξ

2
3 ,

where

a1 =
α

2

(α

2
− 1

)

(α − 3) − µ
α2

4

(α

2
− 1

)2(α

2
− 2

)2
− µ

(α

6

)6
− c1(5 − α),

a2 = −α

2
(α − 2)(α − 5) − µ

3α2

2

(α

2
− 1

)2(α

2
− 2

)

+ 5c1 − c2(4 − α),

a3 =
α

4
(α2 − 5α + 8) − µ

α2

2

(α

2
− 1

)(α

2
− 2

)

+ c2,

a4 = −4α
(α

2
− 1

)

− µ
9α2

4

(α

2
− 1

)2
+ 3c2,

a5 = α(α − 3) − µ
3α2

2

(α

2
− 1

)

,

a6 =
α

2
− µ

α2

4
.

By Lemma 12 of [14], (26) holds if the coefficients satisfy a6 > 0, 4a4a6 − a2
5 =

2a2a6−a3a5 = 0, and 4a1a6−a2
3 ≥ 0. In the case α = 1 this system of nonlinear

equations can be solved explicitly [10]. The general case is much more involved.
However, the solution of this system can be obtained by the computer algebra
system Mathematica which provides an exact solution. The computer program
ensures the existence of constants µ > 0, c1, and c2 (depending on α) such that
(26) holds for all ξ ∈ R

3 under the condition 2
53(25−6

√
10) < α < 2

53(25+6
√

10).

Moreover, if α = 1, we can choose µ = (103 +
√

214)/72 [10]. �

4. Further a priori estimates

From Lemmas 5 and 6 we are able to derive more a priori estimates. As in
the previous section, we assume that yk ∈ C∞(T) is a solution to (13) and we

set uN = exp(y(N)) > 0.
We will need the following ”parabolic” Gagliardo-Nirenberg-type inequality.

Let f ∈ L2(0, T ; H3(T)) ∩ L∞(0, T ; H1(T)). Then

‖fxx‖2
L2(T) = (fxx, fxx)L2(T) = −(fxxx, fx)L2(T) ≤ ‖f‖H3(T)‖f‖H1(T),

‖f‖2
H1(T) ≤ ‖f‖H2(T)‖f‖H1(T)

and hence
‖f‖H2(T) ≤

√
2‖f‖1/2

H3(T)
‖f‖1/2

H1(T)
.

This gives

‖f‖4
L4(0,T ;H2(T)) ≤

∫ T

0
‖f‖2

H3(T)‖f‖2
H1(T)dt

≤ 4‖f‖2
L2(0,T ;H3(T))‖f‖2

L∞(0,T ;H1(T)).(27)
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Lemma 7. There exists a constant c > 0 independent of N such that

‖uα
N‖L2(0,T ;H3(T)) ≤ c.

Proof. Set v = u
α/2
N . We have to show that v2 is uniformly bounded in

L2(0, T ; H3(T)). Since H1(T) →֒ L∞(T), the estimate (20) shows that v
is uniformly bounded in L∞(0, T ; L∞(T)). In particular, v2 is bounded in
L2(0, T ; L2(T)). Then, by (20),

‖(v2)x‖L2(0,T ;L2(T)) ≤ 2‖v‖L∞(0,T ;L∞(T))‖vx‖L2(0,T ;L2(T)) ≤ c

and

‖(v2)xx‖L2(0,T ;L2(T)) ≤ 2‖vx‖2
L4(0,T ;L4(T))

+ 2‖v‖L∞(0,T ;L∞(T))‖vxx‖L2(0,T ;L2(T)) ≤ c.

Here and in the following, c > 0 denotes a generic constant. We have used the

fact that, by (27), v = u
α/2
N is uniformly bounded in L4(0, T ; H2(T)) and hence

also in L4(0, T ; W 1,4(T)). Furthermore, since H3(T) embeddes continuously
into W 2,∞(T),

‖(v2)xxx‖L2(0,T ;L2(T)) ≤ 6‖vx‖L∞(0,T ;L2(T))‖vxx‖L2(0,T ;L∞(T))

+ 2‖v‖L∞(0,T ;L∞(T))‖vxxx‖L2(0,T ;L2(T)) ≤ c.

This proves the lemma. �

Lemma 8. There exists a constant c > 0 independent of N such that

‖uα/4
N ‖L2(0,T ;H2(T)) ≤ c.

Proof. It is clear from the L∞ bound on uN that u
α/4
N is uniformly bounded in

L2(0, T ; L2(T)). Furthermore, since u
α/6
N is bounded in L6(0, T ; W 1,6(T)) (see

Lemma 6),

‖(uα/4
N )x‖L2(0,T ;L2(T)) ≤ c‖uα/12

N (u
α/6
N )x‖L2(0,T ;L2(T))

≤ c‖uα/2
N ‖1/6

L∞(0,T ;L∞(T))‖u
α/6
N ‖L2(0,T ;H1(T)) ≤ c.

For the second derivative of u
α/4
N we obtain

‖(uα/4
N )xx‖2

L2(0,T ;L2(T)) ≤
∫ T

0

∫

T

(α

4
eαy(N)/4y(N)

xx +
(α

4

)2
eαy(N)/4(y(N)

x )2
)2

dxdt

≤ c‖uN‖α/2
L∞(0,T ;L∞(T))‖y

(N)
xx ‖2

L2(0,T ;L2(T))

+ c

∫ T

0

∫

T

eαy(N)/2(y(N)
x )4dxdt.
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The first term is uniformly bounded by Lemmas (5) and 6. For the second term
we apply Hölder’s inequality,

∫ T

0

∫

T

eαy(N)/2(y(N)
x )4dxdt ≤ c

∫ T

0

∫

T

y(N)
x (eαy(N)/6)3xdxdt

≤ c

∫ T

0
‖y(N)

x ‖L2(T)‖(eαy(N)/6)x‖3
L6(T)dt

≤ c‖y(N)‖L2(0,T ;H1(T))‖eαy(N)/6‖3
L6(0,T ;W 1,6(T)) ≤ c.

The above estimates show that u
α/4
N = eαy(N)/4 is uniformly bounded in L2(0, T ;

H2(T)). �

For the compactness argument, we also need a priori estimates for the discrete
time derivative of uα

N . For this we introduce the shift operator (σN (uα
N ))(x, t) =

(σN exp(αy(N)))(x, t) = exp(αyk−1(x)) for x ∈ T and t ∈ (tk−1, tk].

Lemma 9. There exists a constant c > 0 independent of N and τ such that

‖uα
N − σN (uα

N )‖L3/2(0,T ;H−2(T)) ≤ cτ.

Proof. The function uN = exp(y(N)) satisfies

1

τ
(uα

N − σN (uα
N )) = −αuα−1

N (uN (log uN )xx)xx.

We need to estimate the right-hand side of this equation. Since we have uniform

bounds for uα
N and u

α/2
N rather than for uN , we formulate the right-hand side

in terms of u
α/k
N where k = 1, 2, 3, 4:

αuα−1
N (uN (log uN )xx)xx = 2(uα

N (log uα
N )xx)xx − (uα

N )xxxx +
4

α
((u

α/2
N )2x)xx

− c1(α)(u
α/2
N )2xx − c2(α)((u

α/3
N )3x)x + c3(α)(u

α/4
N )4x,

where

c1(α) =
4

α
(1 − α),

c2(α) =
α

3
(1 − α)(3α − 1),

c3(α) =
64

3α2
(−3α2 + 7α − 4).

This gives

τ−1‖uα
N − σN (uα

N )‖L3/2(0,T ;H−2(T))

≤ 2α‖uα
Ny(N)

xx ‖L3/2(0,T ;L2(T)) + ‖(uα
N )xx‖L3/2(0,T ;L2(T))

+
4

α
‖(uα/2

N )2x‖L3/2(0,T ;L2(T)) + |c1(α)| ‖(uα/2
N )2xx‖L3/2(0,T ;H−2(T))

+ |c2(α)| ‖(uα/3
N )3x‖L3/2(0,T ;H−1(T))

+ |c3(α)| ‖(uα/4
N )4x‖L3/2(0,T ;H−2(T))

= I1 + · · · + I6.
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By (27), applied to f = u
α/2
N , and Lemmas 5 and 6, we obtain

I1 ≤ ‖uN‖α
L∞(0,T ;L∞(T))‖y(N)

xx ‖L3/2(0,T ;L2(T)) ≤ c,

I2 = 2‖(uα/2
N )2x + u

α/2
N (u

α/2
N )xx‖L3/2(0,T ;L2(T))

≤ 2‖uα/2
N ‖2

L3(0,T ;W 1,4(T)) + 2‖uα/2
N ‖L∞(0,T ;L∞(T))‖uα/2

N ‖L3/2(0,T ;H2(T)) ≤ c,

I3 = ‖uα/2
N ‖2

L3(0,T ;W 1,4(T)) ≤ c‖uα/2
N ‖2

L4(0,T ;H2(T)) ≤ c,

I4 ≤ c‖(uα/2
N )2xx‖L3/2(0,T ;L1(T)) = c‖(uα/2

N )xx‖2
L3(0,T ;L2(T))

≤ c‖uα/2
N ‖2

L3(0,T ;H2(T)) ≤ c,

I5 ≤ c‖(uα/3
N )3x‖L2(0,T ;L2(T)) ≤ c‖uα/6

N (u
α/6
N )x‖3

L6(0,T ;L6(T))

≤ c‖uα/2
N ‖L∞(0,T ;L∞(T))‖uα/6

N ‖3
L6(0,T ;W 1,6(T)) ≤ c,

I6 ≤ c‖(uα/4
N )4x‖L3/2(0,T ;L3/2(T)) ≤ c‖uα/3

N (u
α/6
N )4x‖L3/2(0,T ;L3/2(T))

≤ c‖uα/2
N ‖2/3

L∞(0,T ;L∞(T))‖u
α/6
N ‖4

L6(0,T ;W 1,6(T)) ≤ c.

The expressions in I1, . . . , I5 could be bounded also in L2 but the expression
in I6 can be only bounded in L3/2. Putting together the above inequalities, we
conclude the proof. �

5. Proof of Theorem 1

We perform the limit τ → 0 (or N → ∞) in

1

ατ

(

uα
N − σN (uα

N )
)

+ uα−1
N

(

uNy(N)
xx

)

xx
= 0.

Let φ ∈ L∞(0, T ; H2(T)). Then the weak formulation of this equation reads as

1

ατ

∫

QT

(

uα
N − σN (uα

N )
)

φdxdt = −
∫

QT

uNy(N)
xx

(

uα−1
N φ

)

xx
dxdt,

where we recall that QT = T × (0, T ). In the following, we set wN = u
α/4
N . We

wish to write the right-hand side of the above equation in terms of wN , wN,x

and wN,xx. A calculation shows that

1

ατ

∫

QT

(

uα
N − σN (uα

N )
)

φdxdt

= − 2

α

(

4 − 4

α

)

(
∫

QT

wN,xx(w2
N )xxwNφdxdt

− 4

∫

QT

wN,xxw2
N,xwNφdxdt

+ 4

∫

QT

wN,xxwN,xw2
Nφxdxdt − 4

∫

QT

w3
N,xwNφxdxdt

)

(28)
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− 4

α

(

4 − 4

α

)(

3 − 4

α

)

(
∫

QT

wN,xxw2
N,xwNφdxdt −

∫

QT

w4
N,xφdxdt

)

− 4

α

(
∫

QT

wN,xxw3
Nφxxdxdt −

∫

QT

w2
N,xw2

Nφxxdxdt

)

.

The uniform bounds on uα
N in L2(0, T ; H3(Ω)) (Lemma 7) and in L∞(0,

T ; H1(T)) (Lemma 6) and the bound on the discrete time derivative of uα
N in

L3/2(0, T ; H−2(T)) (Lemma 9) allow to apply the Aubin lemma [18], providing
the existence of subsequences of uα

N and uN , which are not relabeled, such that

uα
N → v strongly in L2(0, T ; W 2,q(T)),(29)

τ−1(uα
N − σN (uα

N )) ⇀ vt weakly in L3/2(0, T ; H−2(T)),(30)

uN → u strongly in L∞(0, T ; L∞(T)) as N → ∞,(31)

and the limit function u lies in C0([0, T ];C0,1/2(T)). Here, we have used the
fact that H3(T) embeddes compactly into W 2,q(T) for all q < ∞ and that

H1(T) embeddes compactly into L∞(T) and continuously into C0,1/2(T). Since
we have in particular pointwise convergence of the sequence (uα

N ), we obtain
uα

N → v in L1(0, T ; L1(T)), and v = uα. Moreover, we conclude from Lemma 6
for a subsequence, that

y(N) ⇀ y weakly in L2(0, T ; H2(T)).

We claim that u = ey which shows u ≥ 0 a.e. in QT . Let χ be a smooth
function. The monotonicity of the exponential function implies that

∫ T

0

∫

T

(uα
N − eαχ)(y(N) − χ)dxdt =

∫ T

0

∫

T

(eαy(N) − eαχ)(y(N) − χ)dxdt ≥ 0.

Passing to the limit N → ∞ yields
∫ T

0

∫

T

(v − eαχ)(y − χ)dxdt ≥ 0 for all smooth χ.

Thus, by the monotonicity of x 7→ ex, v = eαy. Since v = uα, this implies
u = ey.

We collect now some convergence results for the sequence (wN ) which allow
to pass to the limit N → ∞ in (28). Lemma 8 shows that, for a subsequence,

(32) wN ⇀ w weakly in L2(0, T ; H2(T)).

We claim that (maybe for a subsequence)

(33) w2
N → w2 strongly in L2(0, T ; H2(T)).

By (31), we clearly have w2
N → w2 in L∞(0, T ; L∞(T)). Then the Gagliardo-

Nirenberg inequality (12) shows that

‖w2
N − w2‖2

L2(0,T ;H2(T)) ≤ c

∫ T

0
‖w2

N − w2‖6/5
H3(T)

‖w2
N − w2‖4/5

L∞(T)dt

≤ c‖w2
N − w2‖4/5

L∞(0,T ;L∞(T))‖u
α/2
N − uα/2‖6/5

L2(0,T ;H3(T))

→ 0,
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since the second factor is bounded and the first factor converges to zero. Since

uN = w
4/α
N converges pointwise to u, we have u = w4/α.

In a similar way, we can prove that, again for a subsequence,

(34) wN → w strongly in L4(0, T ; W 1,4(T)).

Indeed, employing the Gagliardo-Nirenberg inequality (11), we obtain

‖wN − w‖4
L4(0,T ;W 1,4(T)) ≤ c

∫ T

0
‖wN − w‖2

H2(T)‖wN − w‖2
L∞(T)dt

≤ c‖wN − w‖2
L∞(0,T ;L∞(T))‖wN − w‖2

L2(0,T ;H2(T)) → 0,

since the second factor is bounded, by Lemma 8, and the first factor converges
to zero. The convergence (34) implies that

w2
N,x → w2

x strongly in L2(0, T ; L2(T)),(35)

w3
N,x → w3

x strongly in L4/3(0, T ; L4/3(T)).(36)

The above convergence results (32)-(36) are sufficient to pass to the limit in
(28). Then the function w satisfies

1

α

∫ T

0
〈∂t(u

α), φ〉H−2,H2dt

= − 2

α

(

4 − 4

α

)[

∫

QT

wxx(w2)xxwφdxdt − 4

∫

QT

wxxw2
xwφdxdt

+ 4

∫

QT

wxw(wxxw − w2
x)φxdxdt

]

− 4

α

(

4 − 4

α

)(

3 − 4

α

)

∫

QT

w2
x(wxxw − w2

x)φdxdt

− 4

α

∫

QT

w2(wxxw − w2
x)φxxdxdt.

Next, we show that the L1 norm of the weak solution u to (1) is bounded,

(37)

∫

T

u(x, t)dx ≤
∫

T

u0(x)dx.

The function f(x) = x1/(1−α) is convex for α < 1, i.e., for all x, y > 0,

f(x) − f(y) ≤ f ′(x)(x − y) =
1

1 − α
xα/(1−α)(x − y).

Hence, for x = u1−α
k−1 and y = u1−α

k , we have

∫

T

(uk−1 − uk)dx ≤ 1

1 − α

∫

T

uα
k−1(u

1−α
k−1 − u1−α

k )dx
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and, multiplying (6) by u1−α
k and integrating over T,

0 =

∫

T

u1−α
k (uα

k − uα
k−1)dx =

∫

T

(uk − uk−1)dx +

∫

T

uα
k−1(u

1−α
k−1 − u1−α

k )dx

≥
∫

T

(uk − uk−1)dx + (1 − α)

∫

T

(uk−1 − uk)dx

= α

∫

T

(uk − uk−1)dx.

This gives
∫

T

ukdx ≤
∫

T

uk−1dx ≤ · · · ≤
∫

T

u0dx

and
∫

T

uN (·, t)dx ≤
∫

T

u0dx,

The limit N → ∞ leads to (37). If α = 1, the L1 norm of u is conserved, see
the proof of Theorem 2 below.

Finally, we need to verify (10). By the Poincaré inequality
∫

T

(uα/2)2xdx ≤ 1

4π2

∫

T

(uα/2)2xxdx ≤ 1

16π4

∫

T

(uα/2)2xxxdx

with optimal constant, we obtain from (21)
∫

T

(u
α/2
k )2xdx + 16π4αµτ

∫

T

(u
α/2
k )2xdx ≤

∫

T

(u
α/2
k−1)

2
xdx.

Solving this recursive inequality gives, for t ∈ (tk−1, tk], tk = kτ ,
∫

T

(u
α/2
k )2xdx ≤ 1

(1 + 16π4αµτ)k

∫

T

(u
α/2
0 )2xdx

=
1

(1 + 16π4αµτ)tk/τ

∫

T

(u
α/2
0 )2xdx

≤ 1

(1 + 16π4αµτ)t/τ

∫

T

(u
α/2
0 )2xdx.

The limit τ → 0 or N → ∞ yields
∫

T

(uα/2)2x(x, t)dx ≤ e−16π4αµt

∫

T

(u
α/2
0 )2xdx.

This is equal to (10) with βα = 8π4αµ (we remark that also µ depends on α),
finishing the proof of Theorem 1.

6. Proof of Theorem 2

First, we show that the L1 norm of u is conserved:

(38)

∫

T

u(x, t)dx =

∫

T

u0dx.
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The discrete solution wN = u
1/4
N satisfies (28) for α = 1 which is in (tk−1, tk]

equal to

1

τ

∫

T

(uk − uk−1)φdx = −4

∫

T

(

u
1/4
k,xxu

3/4
k − u

1/2
k,xu

1/2
k

)

φxxdx,

where φ ∈ H2(T) is a test function. Choosing φ = 1 gives
∫

T

(uk − uk−1)dx = 0,

and hence
∫

T

ukdx =

∫

T

uk−1dx = · · · =

∫

T

u0dx.

Then, after passing to the limit N → ∞, we conclude (38).
Next, we employ the decay estimate (10) to prove the strict positivity of u.

For this, we remark that in the case α = 1, we have µ = (103 +
√

214)/72 [10].
This gives β1 = π4(103 +

√
214)/9. Let ū =

∫

u0dx and M = ‖(√u0)x‖L2(T).
Employing the Poincaré-type inequality with optimal constant,

‖f − f̄‖L∞(T) ≤
1

2
‖fx‖L1(T)

for f ∈ W 1,1(T), where f̄ =
∫

T
fdx, and inequality (10), we obtain

‖u(·, t) − ū‖L∞(T) ≤
1

2
‖ux‖L1(T) =

∫

T

|
√

u(
√

u)x|dx

≤ ‖
√

u‖L2(T)‖(
√

u)x‖L2(T) = ‖u‖L1(T)‖(
√

u)x‖L2(T)

= ūMe−β1t,

observing (38) in the last equality, and thus

u(·, t) ≥ ū − ūMe−β1t = ū(1 − Me−β1t), t > 0.

Hence, u(·, t) is strictly positive if t > (log M)/β1. Furthermore, if M < 1 then
u(·, t) is strictly positive for all t ≥ 0.
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[5] M. Cáceres, J. Carrillo, and G. Toscani. Long-time behavior for a nonlinear fourth order
parabolic equation. Trans. Amer. Math. Soc. 357 (2005), 1161-1175.

[6] J.A. Carrillo, J. Dolbeault, I. Gentil, and A. Jüngel. Entropy-energy inequalities and
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