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Abstract. A simplified bipolar energy-transport model for a metal-oxide-semiconductor
diode (MOS) with nonconstant lattice temperature is considered. The particle current den-
sities vanish in the diode but the particle temperatures may be large. The existence of weak
solutions to the system of quasilinear elliptic equations with nonlinear boundary conditions
is proved using a Stampacchia trunction technique and maximum principle arguments. Fur-
ther, an asymptotic analysis for the one-dimensional MOS diode is presented, which shows
that only the boundary temperature influences the capacitance-voltage characteristics of the
device. The analytical results are underlined by numerical experiments.
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1. Introduction

MOS (metal-oxide-semiconductor) diodes are important devices in solid-state electronics
[10]. They are utilized as voltage-dependent capacitors, charge-coupled devices, and photo
detectors. Another application is their use in on-chip temperature sensors [11]. Usually, MOS
diode models are based on the drift-diffusion equations [8, 9] or, in the case of MOS tunneling
diodes, on the quantum drift-diffusion equations [15, 16].

In this paper, we analyze and approximate numerically a MOS diode model including
thermal effects. For this aim, we propose a stationary bipolar energy-transport model for
the particle densities and the particle temperatures, coupled to the Poisson equation for the
electric potential and to a heat equation for the lattice temperature. Since there is no current
flow in a MOS diode, the energy-transport model can be reduced, under some assumptions
detailed in Section 2, to the following system of equations:

λ2div(T∇ log n) = n − p − 1,(1)

λ2div(T∇ log p) = −(n − p − 1),(2)

λ2∆V = n − p − 1,(3)

div((n + p)∇T ) =
2

3µn
Wn(n, T, TL) +

2

3µp
Wp(p, T, TL),(4)

div(κ∇TL) = −(Wn(n, T, TL) + Wp(p, T, TL)).(5)
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Figure 1. Geometry of the MOS diode.

The unknowns are the electron and hole densities n and p, the particle and lattice temper-
atures T and TL, respectively, and the electric potential V . The scaled physical parameters
are the Debye length λ, the electron and hole mobilities µn and µp, respectively, and the heat
conductivity κ(x). The energy relaxation terms are given by

(6) Wn(n, T, TL) =
3

2

n(T − TL)

τn
, Wp(p, T, TL) =

3

2

p(T − TL)

τp
,

where τn and τp are the relaxation times.

Equations (1)-(5) are solved in the semiconductor domain Ω ⊂ R
d (d ∈ N). In the oxide

region Ωox, we assume that ∆V = 0. The domain boundary consists of an insulating part
ΓN , the bulk contact ΓB, the gate contact near the oxide ΓG, and the interface ΓI between
the oxide and the semiconductor, i.e., ΓI = Ω∩Ωox (see Figure 1). In Section 2 the following
boundary conditions are motivated:

∇n · ν = ∇p · ν = ∇T · ν = ∇TL · ν = ∇V · ν = 0 on ΓN ,(7)

V = VD on ΓB ∪ ΓG,(8)

n = δeV/TD , p = δe−V/TD , T = TD, TL = TD on ΓB ∪ ΓI ,(9)

where δ is the intrinsic density, ν the exterior unit normal on the boundary, VD the boundary
potential, and TD the boundary temperature. Notice that the boundary condition for n and
p on ΓI involve the unknown potential V and are therefore nonlinear.

Adding equations (1) and (2) for the particle densities leads to div(T∇ log(np)) = 0 in Ω
with the boundary conditions ∇ log(np) · ν = 0 on ΓN and log(np) = log(δ2) on ΓB ∪ ΓI .
Therefore, the particle densities are related by np = δ2, and one of the equations (1) or (2)
can be dropped.

In this paper, we derive the simplified model equations in Section 2 and prove the existence
of weak solutions to the above nonlinear boundary-value problem in Section 3 by means of
Stampacchia’s trunction technique and maximum principle arguments, assuming that δ > 0 is
sufficiently small. Further, we perform in Section 4 an asymptotic analysis (for λ → 0) of the
one-dimensional model for the MOS diode and present finally, in Section 5, some numerical
tests underlining our analytical results.



AN ENERGY-TRANSPORT MODEL FOR A MOS DIODE 3

2. Modeling

We consider the following (scaled) stationary bipolar energy-transport model taken from
[2]:

divJn = R(n, p), Jn = ∇
(
µ̃n(TL)TLn)

)
− µ̃n(TL)TL

n

Tn
∇V

)
,(10)

divJp = R(n, p), Jp = ∇
(
µ̃p(TL)TLp)

)
+ µ̃p(TL)TL

p

Tp
∇V

)
,(11)

divSn = ∇V · Jn + Wn(n, Tn, TL) +
3

2
TnR(n, p),(12)

Sn = ∇
(3

2
µ̃n(TL)TLTnn

)
−

3

2
µ̃n(TL)TLn∇V,(13)

divSp = −∇V · Jp + Wp(p, Tp, TL) +
3

2
TpR(n, p),(14)

Sp = ∇
(3

2
µ̃p(TL)TLTpp

)
+

3

2
µ̃p(TL)TLp∇V,(15)

λ2∆V = n − p − C(x),(16)

where Tn and Tp are the electron and hole temperatures, respectively, Sn and Sp are the
energy fluxes, µ̃n and µ̃p are the temperature-dependent mobility functions, C(x) is the
doping concentration, and the Shockley-Read-Hall recombination-generation term is given by

R(n, p) =
np − δ2

τ0(n, p)
,

where τ0(n, p) is some positive function. The energy-transport equations are coupled to the
Poisson equation (3) and to the heat equation

(17) div(κ∇TL) = −(Wn + Wp) − R(n, p)
(
Eg +

3

2
(Tn + Tp)

)
,

where Eg > 0 is the energy gap of the semiconductor material.
The energy-transport equations can be derived from the semiconductor Boltzmann equation

in the diffusion limit [1]. The above model corresponds to the so-called Chen model, which
is characterized by a special choice for the elastic collision rate (see [7] for details). The
heat equation for the lattice temperature follows from thermodynamic principles, neglecting
radiation effects and the space dependency of the energy band; see, e.g., [2, Formula (9)] and
[14].

For the analysis of the above model, we impose some simplifying assumptions. First, we
assume that

µ̃n(TL) =
µn

TL
, µ̃p(TL) =

µp

TL
,

where µn, µp > 0.

Remark 1. In the physical literature, the electron mobility is often given by µ̃n(TL) =
µn/Tα

L , where α lies in between 1.5 and 2.3 depending on the semiconductor material and
the temperature range [5]. The above assumption still takes into account that the mobility
decreases as the temperature increases. The special choice of α = 1 simplifies our analysis.

Second, we suppose that the scaled intrinsic density δ is independent of the lattice temper-
ature. This condition is approximately satisfied if the lattice temperature variations are not
too large.
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The third assumption is that there is no current flow, Jn = Jp = 0 in Ω, and the doping
concentration is constant, C(x) = 1. These conditions are natural for a MOS diode and they
are also employed in, e.g., [9]. Then equations (10) and (11) reduce to R(n, p) = 0 or np = δ2

and

(18) Tn∇ log n = ∇V and Tp∇ log p = −∇V in Ω.

Since np = δ2 implies that ∇ log n + ∇ log p = 0, the sum of the above equations yields

(Tn − Tp)∇ log n = 0.

Clearly, this does not imply that Tn = Tp in Ω. However, both temperatures coincide in
domains in which n is not constant. This motivates the fourth assumption

Tn = Tp = T.

Since the particle temperatures are mainly influenced by the lattice temperature, this assump-
tion seems to be reasonable. We remark that also for the general energy-transport model in
[3], a common particle temperature for all species was considered.

With the above assumptions, we can simplify the nonisothermal energy-transport model.
The equations in (18) give

λ2div(T∇ log n) = λ2∆V = n − p − 1, λ2div(T∇ log p) = −(n − p − 1),

which equal (1) and (2). In view of (18), equations (12)-(13) and (14)-(15) simplify to

3

2
µndiv(n∇T ) = Wn(n, T, TL),

3

2
µpdiv(p∇T ) = Wp(p, T, TL),

whose sum is (4). Finally, the heat equation (17) becomes

div(κ∇TL) = −(Wn + Wp).

As explained in the introduction, the boundary of Ω∗ = Ω ∪ Ωox is assumed to consist of
an insulating part ΓN , the bulk contact ΓB, and the gate contact ΓG. Furthermore, we set
ΓI = Ω ∩ Ωox, the interface between the semiconductor and the oxide part. We assume no-
flux boundary conditions at the insulating boundary, which gives (7). The electric potential
is assumed to be given at the gate and bulk contacts, which is (8). We suppose that, on
ΓB ∪ΓI , the particle temperature is equal to the lattice temperature and that TL is constant
on each boundary segment, T = TL = TD on ΓB and T = TL = TD on ΓI . Then (18) can be
integrated on the boundary, log n − V/TD = const. on ΓB and log n − V/TD = const. on ΓI .
Because of (18), the constants coincide and can be fixed by defining a reference point for the
electric potential, log n − V/TD = log δ. This implies that

n = δeV/TD and p = δe−V/TD on ΓB ∪ ΓI .

It is convenient to introduce the variable u by n = δeu. Then p = δe−u and equations
(1)-(9) become

λ2div(T∇u) = 2δ sinhu − 1,(19)

λ2∆V = 2δ sinhu − 1,(20)

div(cosh u∇T ) =
1

2

( eu

µnτn
+

e−u

µpτp

)
(T − TL),(21)

div(κ∇TL) = −
3δ

2

(eu

τn
+

e−u

τp

)
(T − TL) in Ω,(22)
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as well as ∆V = 0 in Ωox. The boundary conditions read as

∇u · ν = ∇T · ν = ∇TL · ν = ∇V · ν = 0 on ΓN ,(23)

V = VD on ΓB ∪ ΓG,(24)

u = V/TD, T = TD, TL = TD on ΓB ∪ ΓI .(25)

Clearly, every bounded weak solution to (19)-(25) provides a solution to (1)-(9) via n = δeu

and p = δe−u.

Remark 2. The above model is designed in such a way that in thermal equilibrium (TD|ΓB
=

TD|ΓI
= const.), a solution to the above system is given by T = TL = TD, n = δeV/TD ,

p = δe−V/TD in Ω, and V is the unique solution to

λ2∆V = 2δ sinhV − 1 in Ω, ∆V = 0 in Ωox,

V = VD on ΓB ∪ ΓG, ∇V · ν = 0 on ΓN .

Thus, our model is consistent with the thermal equilibrium state for the temperature inde-
pendent standard drift-diffusion model [9].

3. Existence analysis

This section is devoted to the proof of the existence of solutions to the boundary-value
problem (19)-(25). For the proof we use a Stampacchia truncation method and a fixed-point
argument. We consider first the following truncated system:

λ2div([T ]∇u) = 2δ sinh[u] − 1,(26)

λ2∆V = 2δ sinh[u] − 1,(27)

div(cosh[u]∇T ) =
( e[u]

µnτn
+

e−[u]

µpτp

)
(T − [TL]),(28)

div(κ∇TL) = −
3δ

2

(e[u]

τn
+

e−[u]

τp

)
([T ] − TL) in Ω,(29)

and ∆V = 0 in Ωox, where

[T ] = min{T0, max{T1, T}},

[TL] = min{T0, max{T1, TL}},

[u] = min{u0, max{u1, u}}.

The constants are defined by

(30)

T0 = infΓB∪ΓI
TD, T1 = supΓB∪ΓI

TD,
V0 = infΓB∪ΓG

VD, V1 = supΓB∪ΓG
VD,

u0 = min
{

V0

T0
, V0

T1

}
, u1 = sinh−1

(
1
2δ

)
.

In order to ensure that u0 ≤ u1, we let δ0 > 0 be such that

(31) min
{V0

T0
,
V0

T1

}
≤ sinh−1

( 1

2δ0

)
,

and we choose 0 < δ ≤ δ0.
We are able to deduce a priori estimates if the scaled intrinsic density δ is sufficiently

small. The scaled intrinsic density δ is the quotient of the physical intrinsic density ni and
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the maximal doping concentration CM . Since typically, ni is of the order 1010 cm−3 and
CM is of the order 1016 cm−3, we have δ ≈ 10−6. Thus, in applications, δ is indeed a small
parameter (compared to one). In particular, since V and T are of order one in the scaled
model, condition (31) is satisfied.

Lemma 3. Let 0 < κ0 ≤ κ(x) ≤ κ1 for x ∈ Ω and let (u, T, TL, V ) ∈ H1(Ω)3 × H1(Ω∗) be a

weak solution to (26)-(29) with boundary conditions (23)-(25). Then there exist δ0 > 0 and

c > 0 such that for all 0 < δ ≤ δ0,

T0 ≤ T, TL ≤ T1, u0 ≤ u ≤ u1 in Ω, V0 ≤ V ≤ V δ in Ω∗,

‖u‖H1(Ω) + ‖T‖H1(Ω) + ‖TL‖H1(Ω) + ‖V ‖H1(Ω∗) ≤ c.

The lower and upper bounds are defined in (30) and V δ is defined in (32).

Proof. We set in the following z+ = max{0, z} and z− = min{0, z} for z ∈ R.
Step 1: Lower and upper bounds for T and TL. The test function (T −T1)

+ is admissible in
the weak formulation of (28) since (T − T1)

+ = (TD − T1)
+ = 0 on ΓB ∪ΓI , by the definition

of T1. Then, since cosh[u] ≥ 1,

∫

Ω
|∇(T − T1)

+|2dx ≤ −
1

2

∫

Ω

( e[u]

µnτn
+

e−[u]

µpτp

)
(T − [TL])(T − T1)

+dx

≤ −
1

2

∫

Ω

( e[u]

µnτn
+

e−[u]

µpτp

)
(T − T1)(T − T1)

+dx ≤ 0,

and hence T ≤ T1 in Ω. Similarly, using (T − T0)
− as an admissible test function, it follows

that T ≥ T0 in Ω. In an analogous way, we obtain the bounds T0 ≤ TL ≤ T1 in Ω.
Step 2: Lower bounds for V and u. The test function (V −V0)

− in (27) is admissible since
it vanishes on ΓB ∪ ΓG. This gives

λ2

∫

Ω∗

|∇(V − V0)
−|2dx =

∫

Ω
(2δ sinh[u] − 1)[−(V − V0)

−]dx

≤

∫

Ω
(2δ sinhu1 − 1)[−(V − V0)

−]dx = 0,

using the definitions of [u] and u1. This implies that V ≥ V0 in Ω∗.
Next, we observe that, on Ω,

V

T
≥ inf

Ω

V

T
≥ min

{ infΩ V

infΩ T
,
infΩ V

supΩ T

}
= min

{V0

T0
,
V0

T1

}
= u0.

This estimate also holds on ΓB ∪ ΓI . Hence, (u − u0)
− = (V/T − u0)

− = 0 on ΓB ∪ ΓI , and
we can employ this function in the weak formulation of (26):

λ2

∫

Ω
T |∇(u − u0)

−|2dx =

∫

{u≤u0}
(2δ sinh[u] − 1)[−(u − u0)

−]dx

≤

∫

{u≤u0}
(2δ sinhu0 − 1)[−(u − u0)

−]dx = 0,

since 2δ sinhu0 ≤ 2δ sinhu1 = 1 by (31). As T ≥ T0 > 0 in Ω, we infer that u ≥ u0 in Ω.
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Step 3: Upper bounds for V and u. We employ (V − V1)
+ as (admissible) test function in

the weak formulation of (27). Since sinh[u] ≥ sinhu0, we have

λ2

∫

Ω∗

|∇(V − V1)
+|2dx =

∫

Ω
(1 − 2δ sinh[u])(V − V1)

+dx

≤ (1 − 2δ sinhu0)

∫

Ω∗

(V − V1)
+dx

≤ cp(1 − 2δ sinhu0)‖∇(V − V1)
+‖L2(Ω∗)(meas(V > V1))

1/2,

where cp > 0 is the Poincaré constant. Let r > 2 be such that the embedding H1(Ω∗) →֒
Lr(Ω∗) is continuous. It is well known [12, Chap. 4] that for W > V1, it holds

(meas(V > W ))1/r(W − V1) ≤ c(Ω∗, d)‖∇(V − V1)
+‖L2(Ω∗),

where c(Ω∗, d) > 0 is a constant only depending on Ω∗ and d. Thus

meas(V > W ) ≤
(
c(Ω∗, d)cpλ

−2(1 − 2δ sinhu0)
)r (meas(V > V1))

r/2

(W − V1)r
.

Since r/2 > 1, we can apply Stampacchia’s lemma (see [12, Chap. 4] or [13, Lemma 2.9]) to
conclude that V ≤ V δ in Ω∗, where

(32) V δ = V1 + c(Ω∗, d)cpλ
−2(1 − 2δ sinhu0).

We impose a second condition on the choice of δ0 (and δ):

(33) max
{V δ0

T0
,
V δ0

T1

}
≤ sinh−1

( 1

2δ0

)
.

Such a δ0 exists since V δ0 is bounded as δ0 → 0, whereas sinh−1(1/2δ0) tends to +∞ as
δ0 → 0. This inequality also holds for all δ ≤ δ0. Hence, on Ω,

V

T
≤ sup

Ω

V

T
≤ max

{supΩ V

infΩ T
,
supΩ V

supΩ T

}
≤ max

{V δ

T0
,
V δ

T1

}
≤ sinh−1

( 1

2δ

)
= u1.

This inequality holds true on ΓB ∪ ΓI as well such that

(u − u1)
+ =

(V

T
− u1

)+
= 0 on ΓB ∪ ΓI .

As a consequence, the test function (u − u1)
+ is admissible in (26) and we obtain

λ2

∫

Ω
T |∇(u − u1)

+|2dx =

∫

{u≥u1}
(1 − 2δ sinh[u])(u − u1)

+dx

=

∫

{u≥u1}
(1 − 2δ sinhu1)(u − u1)

+dx = 0,

by the definition of u1. We conclude that u ≤ u1 in Ω.
Step 4: H1 estimates. In view of the L∞ estimates for T and TL, the H1 bounds for T and

TL follow immediately after employing T −TD and TL−TD as test functions in (28) and (29),
respectively. The right-hand side of the Poisson equation (27) is bounded in Ω∗; therefore, V
can be bounded in H1(Ω) and the bound depends on the L∞ bound for u and the H1 bound
for VD. The same argument applies to u. �
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Theorem 4 (Existence of solutions). Let λ, µi, τi > 0 (i = n, p), 0 < κ0 ≤ κ(x) ≤ κ1 for x ∈
Ω, and VD ∈ H1(Ω∗)∩L∞(Ω∗), TD ∈ H1(Ω)∩L∞(Ω). Furthermore, let 0 < δ ≤ δ0, where δ0

is defined in (31) and (33). Then there exists a weak solution (u, T, TL) ∈ (H1(Ω)∩L∞(Ω))3,
V ∈ H1(Ω∗) ∩ L∞(Ω∗) to (19)-(25).

Proof. The proof is based on the Leray-Schauder fixed-point theorem [4]. For the definition
of the fixed-point operator, let w ∈ L2(Ω) and σ ∈ [0, 1]. Then, let V ∈ H1(Ω) ∩ L∞(Ω) be
the unique solution to the linear problem

λ2∆V = 2δ sinh[w] − 1 in Ω, ∆V = 0 in Ωox,

∇V · ν = 0 on ΓN , V = VD on ΓB ∪ ΓG;

let TL ∈ H1(Ω) be the unique solution to the linear problem

div(κ∇TL) = −
3δ

2

(e[w]

τn
+

e−[w]

τp

)
(T − [TL]) in Ω,

∇TL · ν = 0 on ΓN , TL = TD on ΓB ∪ ΓI ;

and let T ∈ H1(Ω) be the unique solution to

div(cosh[w]∇T ) =
σ

2

( e[w]

µnτn
+

e−[w]

µpτp

)
(T − [TL]) in Ω,

∇T · ν = 0 on ΓN , T = σTD on ΓB ∪ ΓI .

Finally, let u ∈ H1(Ω) be the unique solution to

λ2div([T ]∇u) = σ(2δ sinh[w] − 1) in Ω,

∇u · ν = 0 on ΓN , u = σV/TD on ΓB ∪ ΓG.

This defines the fixed-point operator S : L2(Ω) × [0, 1] → L2(Ω), S(w, σ) = u. Clearly,
S(w, 0) = 0. Furthermore, by standard arguments, S is continuous and, since u lies in H1(Ω)
which embeddes compactly into L2(Ω), also compact. Lemma 3 provides uniform H1(Ω)
bounds for u. In fact, Lemma 3 only settles the case σ = 1 but the proof for σ ≤ 1 is similar.
Thus, by the Leray-Schauder theorem, we conclude the existence of a fixed point of S(·, 1),
i.e., a solution to (19)-(25). �

4. Asymptotic analysis

Next, we investigate the model (19)-(25) using asymptotic analysis in one spatial dimension.
In particular, we want to study the influence of the boundary temperature on the capacitance-
voltage characteristics of the MOS diode depicted in Figure 1. The simple device geometry
allows for the restriction to one space dimension, such that the model equations stated on
Ω = (0, 1) simplify to

λ2∂x(T∂xu) = 2δ sinhu − 1,(34)

λ2∂xxV = 2δ sinhu − 1,(35)

∂x(cosh u ∂xT ) =
1

2

( eu

µnτn
+

e−u

µpτp

)
(T − TL),(36)

∂xxTL = −
3δ

2

(eu

τn
+

e−u

τp

)
(T − TL),(37)
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where we assumed for notational simplicity that κ ≡ 1. Since ∂xxV = 0 in Ωox = (−d, 0),
V is linear, V (x) = ∂xV (0)x + V (0) for x ∈ [−d, 0]. The choice x = −d leads to the Robin
boundary condition

(38) d∂xV (0) = V (0) − VD(−d)

at x = 0. Hence, it is sufficient to consider the Poisson equation on the interval (0, 1) only,
with the boundary conditions V (1) = VD(1) and (38). The other boundary conditions reduce
to

(39) u = V/TD, T = TD, TL = TD on {0, 1}.

The potential is defined up to an additive constant only; hence, we may choose VD(1) =
TD(1) sinh−1(1/2δ) and VD(−d) = TD(1) sinh−1(1/2δ) + U , where U = VD(−d) − VD(1) is
the applied voltage. This yields u(1) = V (1)/TD(1) = sinh−1(1/2δ).

We are interested in the behavior of the solution for small λ. First, we consider the reduced
problem, which we obtain after setting λ = 0 in (34)-(37):

2δ sinh ū − 1 = 0, ∂x(T̄ ∂xū − ∂xV̄ ) = 0,

∂x(cosh ū∂xT̄ ) =
1

2

( eū

µnτn
+

e−ū

µpτp

)
(T̄ − T̄L),

∂xxT̄L = −
3δ

2

(eū

τn
+

e−ū

τp

)
(T̄ − T̄L), x ∈ (0, 1).

The first equation implies that ū = sinh−1(1/2δ). Then the second equation, which is obtained
from the difference of (34) and (35), implies that V̄ is linear and the choice V̄ = TD(1)ū is
compatible with the boundary condition u = V/TD at x = 1. Moreover, we may choose
T̄ (x) = T̄L(x) = TD(0) + (TD(1)−TD(0))x, which solves the last two equations as well as the
boundary conditions (39).

It is obvious that the reduced solution cannot fulfill all boundary conditions at x = 0, such
that we can expect that a boundary layer will occur. We introduce the scaled layer variable
ξ = x/λ and write the variables as W (x, ξ, λ) = W̄ (x)+Ŵ (ξ)+O(λ) (as λ → 0). Introducing
this ansatz and performing the limit λ → 0 in (34)-(37) yields the layer problem

∂ξ((T̄ (0) + T̂ )∂ξû) = 2δ sinh(ū + û) − 1,(40)

∂ξξV̂ = 2δ sinh(ū + û) − 1,(41)

∂ξ(cosh(ū + û)∂ξT̂ ) = 0,(42)

∂ξξT̂L = 0, ξ ∈ (0,∞).(43)

Here, we have used ∂xx = λ−2∂ξξ and x = λξ → 0 as λ → 0 for fixed ξ. This system is
supplemented with the boundary conditions

∂ξV̂ = 0, û = V̂ /TD(0), T̂ = 0, T̂L = 0 at ξ = 0,

û = 0, V̂ = 0, T̂ = 0, T̂L = 0 for ξ → ∞.

From (42) and (43) together with the above boundary conditions, we immediately deduce

that no layer in the temperature occurs, i.e., T̂ = T̂L = 0. Hence, we can simplify (40) to

TD(0) ∂ξξû = 2δ sinh(ū + û) − 1 in (0,∞).



10 A. JÜNGEL, R. PINNAU, AND E. RÖHRIG

The boundary conditions allow for the choice û = V̂ /TD(0), such that the whole layer problem
reduces to the solution of

∂ξξV̂ = 2δ sinh(ū(0) + V̂ /TD(0)) − 1 in (0,∞)

supplemented with the boundary conditions

∂ξV̂ (0) = 0, V̂ (+∞) = 0.

This layer equation coincides up to the appearance of TD(0) with the layer equation derived
from the drift-diffusion model (compare [9]). Hence, we obtain the analoguous asymptotic
device characteristics apart from the scaling factor introduced by the left boundary temper-
ature TD(0). Since the whole device characteristics is determined by the boundary layer for
the densities, it is reasonable that only the boundary temperature enters here. This addi-
tional factor has the effect that an increase of the left boundary temperature yields a decrease
of the overall capacitance of the device and vice versa. Here, the capacitance is defined by

C = ∂Q/∂U , where Q =
∫ 1
0 (n−p−1)dx. These analytical results are underlined by numerical

tests which are presented in the next section.

5. Numerical approximation

In this section we are presenting some numerical results for a one-dimensional MOS diode.
We consider the one-dimensional system on the unit interval for different parameter sets.
The equations are discretized using standard finite differences on an equidistant grid of 400
points, and the resulting nonlinear systems are solved using a Newton method. In all of the
following numerical results we assumed that the (scaled) oxide thickness is d = 0.1 and we
choose κ ≡ 1. The mobilities are set to µn = 0.14, µp = 0.045 and the relaxation times
are given by τn = 0.474 and τp = 7.4510−4. For the computation of the capacitance-voltage
characteristics (CVCs) we use a voltage continuation method, starting from the equilibrium
state and increasing the applied voltage step by step. This reduces significantly the number
of Newton iterations on each voltage level.

First, we study the current-voltage characteristics of the MOS diode. We are in particular
interested in the influence of the boundary temperature. In Figure 2 we present the CVCs for
a fixed value of δ = 10−3 and two values of λ. The right boundary temperature TD(1) = T1 is
set equal to one and the left boundary temperature TD(0) = T0 attains the values 0.9, 1, and
1.1. For T0 = 1 we obtain the solution of the standard drift-diffusion model. In accordance
with our asymptotic analysis in Section 4, we observe that the value T0 of the left boundary
has an influence in the inversion regime only. A larger boundary temperature yields a lower
capacitance, while a smaller temperature has the opposite effect.

The influence of the intrinsic density δ on the CVC is depicted in Figure 3. Here, we choose
λ = 0.065, T0 = 0.9 and T1 = 1. The behavior is exactly the same as in the drift-diffusion
case, where a decrease of δ yields an increase of the capacitance in the inversion region.

The state variables, i.e., the electron density (in logarithmic scale), the electrostatic po-
tential, the electron temperature, and the lattice temperature, are depicted in Figure 4 (for
T0 = 1) and Figure 5 (for T0 = 0.9), for various applied voltages U . In both cases, we used
the scaled parameters λ = 0.078, δ = 10−3, and T1 = 1. The case T0 = T1 = 1 in Figure 4
corresponds to the standard drift-diffusion case. In particular, the temperatures are constant
in the device. We notice that the electron and the lattice temperature almost coincide, except
for large negative values of the applied voltage.
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Figure 2. Capacitance-voltage characteristics for various values of T0 =
TD(0) and λ (δ = 10−3).

6. Conclusions

We presented a new simplified bipolar energy-transport model for a MOS diode with non-
constant lattice temperature. The model, consisting of a system of quasilinear elliptic equa-
tions with nonlinear boundary conditions, has a weak solution for small values of the intrinsic
density. An asymptotic analysis for the one-dimensional MOS diode shows that only the
boundary temperature influences the capacitance-voltage characteristics of the MOS diode,
which is confirmed by the numerical results.
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Figure 4. State variables for various applied voltages (T0 = T1 = 1). The
electron density is depicted in logarithmic scale.
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Figure 5. State variables for applied different voltages (T0 = 0.9). The elec-
tron density is depicted in logarithmic scale.


