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Abstract. A class of strongly coupled parabolic systems, modeling the energy transport
of electrons in semiconductors, is analyzed. The variables are the electron density and
the thermal energy. First, some Lyapunov functionals are derived, which yields the weak
sequential stability for smooth solutions in the sense of Feireisl, using weak compactness
results. Second, by the H−1 method, the uniqueness of bounded weak solutions is proved.

1. Introduction

The semiconductor Boltzmann equation describes the evolution of the electron distri-
bution function in a semiconductor crystal subject to elastic electron-phonon, inelastic
electron-phonon, and electron-electron scattering. Ben Abdallah and Degond [3] have
shown that a Chapman-Enskog expansion of the distribution function around the thermal
equilibrium leads to a system of diffusive equations for the electron density n and the ther-
mal energy 3

2
nθ (with the electron temperature θ). The so-called energy-transport model

consists of strongly coupled parabolic equations which, without relaxation, read as

nt = div Jn,
3

2
(nθ)t = div Je − Jn · ∇V, t > 0,(1)

Jn = ∇(nθ1/2−β) − nθ−1/2−β∇V,(2)

Je = (2 − β)
(

∇(nθ3/2−β) − nθ1/2−β∇V
)

in Ω, t > 0,(3)

n(·, 0) = n0, (nθ)(·, 0) = n0θ0 in Ω,(4)

where Jn and Je are the particle and energy current densities, respectively, V is the electric
potential, Ω ⊂ R

d (d ≤ 3) is the bounded semiconductor domain, and β < 2 is a parameter
which appears in the elastic scattering rate. In fact, the scattering rate is assumed to be
proportional to Eβ, with E being the semiconductor band energy.

The main assumptions in the derivation are that the elastic collisions are dominant, that
the semiconductor energy band is of parabolic type, and that the semiconductor material
is non-degenerate such that Maxwell-Boltzmann statistics can be employed. We refer to
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[3, 11, 17] for details of the derivation. For a rigorous derivation of energy-transport models
in a linear framework, we refer to [4].

Certain values of β have been used in the physics literature. For instance, β = 1
2

gives
the so-called Chen model [5], β = 0 leads to the Lyumkis model [19], and β = −1

2
appears

in the diffusion approximation of the hydrodynamic semiconductor model [17].
System (1)-(3) possesses some interesting mathematical features. First, it can be written

in a “symmetric” form by introducing the so-called dual entropy variables w1 = (µ−V )/θ
and w2 = −1/θ, where the chemical potential µ is defined by n = θ3/2 exp(µ/θ) [9, 17].
This formulation eliminates the terms involving the electric field −∇V . Second, when
appropriate boundary conditions are imposed, the above system possesses a Lyapunov
functional, namely the entropy

(5) H =

∫

Ω

n log
n

θ3/2
dx,

i.e., it holds that dH/dt ≤ 0 along positive smooth solutions, for all t > 0. We notice
that these two properties – the existence of an entropy functional and the symmetrization
property – are strongly related, see [17] for details.

There are only a few analytical results for (1)-(4) with appropriate boundary conditions,
mainly due to the strong nonlinear coupling in the equations and the lack of a maximum
principle which might provide the positivity or boundedness of the physical variables. In
earlier works, drift-diffusion equations with temperature-dependent mobilities but without
temperature gradients [22] (also see [15]) or with nonisothermal systems containing simpli-
fied thermodynamic forces [2] have been studied. Later, existence results for the complete
energy-transport equations have been achieved, see [12, 14] for stationary solutions near
thermal equilibrium, [6, 7, 8] for transient solutions close to equilibrium, and [9, 10] for
systems with uniformly positive definite diffusion matrices. Furthermore, the nonlinear
stability of classical bounded solutions to the one-dimensional equations was investigated
[1]. All these results give only partial answers to the well-posedness problem, and a com-
plete global existence result for any data and with physical transport coefficients is still
missing.

In view of these difficulties, we analyze in this paper only a simplification of (1)-(4),
namely without electric field and subject to periodic boundary conditions:

nt = ∆
(

nθ1/2−β
)

, t > 0, n(·, 0) = n0 in T
d,(6)

3

2
(nθ)t = (2 − β)∆

(

nθ3/2−β
)

, t > 0, (nθ)(·, 0) = n0θ0 in T
d,(7)

where T
d is the d-dimensional torus. We will prove three results.

The first result is the derivation of certain Lyapunov functionals which are of the form
(5) or H =

∫

Td naθbdx for certain (a, b); see Section 2. The corresponding dissipation
terms −dH/dt yield gradient estimates for the solutions and allow us, as a second result,
to prove in Section 3 the weak sequential stability in the sense of Feireisl [13]. Weak
sequential stability means that, given a sequence of (smooth) solutions to a system of
equations, there exists a subsequence which converges to a (weak) solution to this problem.
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Typically, the sequence of solutions solves an approximate system of equations, obtained
from the original one by a Galerkin scheme or a semidiscretization in time, for instance,
and the index of the sequence is related to the approximation parameter. Then weak
stability implies that the limiting solution is a solution to the original system. Although
the construction of the sequence of approximating solutions is an open problem, the weak
sequential stability constitutes an important step in the global existence analysis of the
energy-transport equations. The weak sequential stability for the case β = −1

2
has been

treated in [18]. The case β = 1
2

(Chen model) is trivial here since this choice decouples the

system (6)-(7). In this paper, we will consider the range −1
2

< β < 1
2
.

The third result (Section 4) is the proof of the uniqueness of bounded weak solutions,
which is based on the observation that (6)-(7) can be written as

ρ(u)t = ∆a(u) in T
d, t > 0,

where the primal entropy variables are given by u = (u1, u2) = (log(nθ−3/2),−θ−1) and

ρ(u) = (−u2)
−3/2eu1

(

1
−3

2
u−1

2

)

, a(u) = (−u2)
−(2−β)eu1

(

1
−(2 − β)u−1

2

)

.

In fact, the above formulation allows us to apply the H−1 method to prove the uniqueness
result. We remark that the H−1 method has been also employed to show the unique-
ness of solutions to (1)-(4) subject to truncated diffusion coefficients in [16]. The above
formulation, however, is new.

2. Lyapunov functionals

We begin by proving that the entropy (5) is a Lyapunov functional, and we estimate its
entropy dissipation.

Lemma 1. Let (nε, θε) be a positive smooth solution to (6)-(7) and let β < 2. Then there
exists a constant κ > 0 depending on β but not on ε > 0 such that

d

dt

∫

Td

nε log(nεθ
−3/2
ε )dx + κ

∫

Td

(

n−1
ε θ1/2−β

ε |∇nε|2 + nεθ
−3/2−β
ε |∇θε|2

)

dx ≤ 0.

Proof. We differentiate as follows:

d

dt

∫

Td

nε log(nεθ
−3/2
ε )dx =

d

dt

∫

Td

(5

2
nε log nε −

3

2
nε log(nεθε)

)

dx

=

∫

Td

(5

2
log
( nε

θ
3/2
ε

)

∂tnε −
3

2

1

θε

∂t(nεθε)
)

dx

= −
∫

Td

nεθ
1/2−β
ε

(

A
∣

∣

∣

∇nε

nε

∣

∣

∣

2

+ 2B
∇nε

nε

· ∇θε

θε

+ C
∣

∣

∣

∇θε

θε

∣

∣

∣

2
)

dx,

where

A = 1, B =
1

2
(1 − 2β), C = β2 − 2β +

9

4
.

Now, we use the following result: If A > 0 and AC −B2 > 0, then there exists κ > 0 such
that for all x, y ∈ R

d, A|x|2 + 2Bx · y + C|y|2 ≥ κ(|x|2 + |y|2). For the above choice of A,
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B, and C, the assumptions A > 0 and AC −B2 = 2− β > 0 are satisfied. Thus, choosing

x = n
−1/2
ε θ

1/4−β/2
ε ∇nε and y = n

1/2
ε θ

−3/4−β/2
ε ∇θε, we infer that

d

dt

∫

Td

nε log(nεθ
−3/2
ε )dx ≤ −κ

∫

Td

(

n−1
ε θ1/2−β

ε |∇nε|2 + nεθ
−3/2−β
ε |∇θε|2

)

dx,

which shows the lemma. �

The following lemma shows that there exist Lyapunov functionals of the form
∫

Td naθbdx
for certain choices of (a, b). To this end, define the set Mβ of all (a, b) ∈ R

2 such that

C1a
4 + C2a

3b + C3a
2b2 + C4ab3 + C5b

4 + C6a
3

+ C7a
2b + C8ab2 + C9b

3 + C10a
2 + C11ab + C12b

2 > 0 and(8)

a2 − a +
1

3
(1 − 2β)ab +

1

3
(−1 + 2β)b > 0,(9)

where

C1 = − 1

16
(2β − 1)2, C2 =

1

24
(2β − 3)(2β − 1)2,

C3 = − 1

144
(4β2 − 12β − 3)(2β − 1)2, C4 = − 1

36
(2β − 3)(2β − 1)2,

C5 = − 1

36
(2β − 1)2, C6 =

1

8
(2β − 1)2,

C7 = −2

3
β3 +

4

3
β2 − 1

6
β − 7

6
, C8 =

1

72
(2β − 3)(8β3 − 12β2 − 6β − 31),

C9 =
1

36
(2β − 1)3, C10 = − 1

16
(2β − 1)2,

C11 =
1

3
β3 − 1

2
β2 − 5

12
β +

31

24
, C12 = −1

9
β4 +

2

9
β3 − 1

6
β2 +

13

18
β − 193

144
.

The set Mβ is illustrated in Figure 1 for various values of β.

Lemma 2. Let (nε, θε) be a positive smooth solution to (6)-(7) and let −1/2 < β < 1/2,
(a, b) ∈ Mβ. Then there exists a constant κ > 0 depending on β but not on ε > 0 such that

d

dt

∫

Td

na
εθ

b
εdx + κ

∫

Td

(

na−2
ε θ1/2+b−β

ε |∇nε|2 + na
εθ

−3/2+b−β
ε |∇θε|2

)

dx ≤ 0.

It holds that

(2, β − 1
2
), (2, 3 − 2β), (2, 5), (6

5
, β − 1

2
) ∈ Mβ for all − 1

2
< β <

1

2
.

We notice that (a, 0), (1, 1) 6∈ Mβ for all a > 0 and β < 2. Indeed, by mass and energy
conservation, the integrals

∫

Td nεdx and
∫

Td nεθεdx are constant in time, and the dissipation
vanishes. The choice (a, b) = (2, β − 1/2) yields an estimate for ∇nε in L2. Unfortunately,
the choice (a, b) = (2, 3/2 + β) for −1/2 < β < 1/2, which would give a bound for ∇(nεθε)
in L2, is not admissible.
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Figure 1. The gray regions represent all (a, b) ∈ Mβ for different choices of β.

Proof. We differentiate:

d

dt

∫

Td

na
εθ

b
εdx =

∫

Td

(

(a − b)na−1
ε θb

ε∂tnε + bna−1
ε θb−1

ε ∂t(nεθε)
)

dx

= −
∫

Td

(

A
∣

∣

∣

∇nε

nε

∣

∣

∣

2

+ 2B
∇nε

nε

· ∇θε

θε

+ C
∣

∣

∣

∇θε

θε

∣

∣

∣

2
)

dx,

where

A = (a − 1)
(

a +
b

3
(1 − 2β)

)

,

B =
1

2

(1

2
− β

)

a2 − 1

2

(1

2
− β

)

a +

(

1

2
(2 − β)

(

1 − 2

3
β
)

+
1

4
+

1

2
β

)

ab

−
(

5

12
+

1

6
β +

1

2
(2 − β)

(

1 − 2

3
β
)

)

b +
1

3

(1

2
− β

)

b2,
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C = b

(

(1

2
− β

)

(a − b) + (2 − β)
(

1 − 2

3
β
)

(b − 1)

)

.

The result follows for all choices of (a, b) and β for which AC −B2 > 0 and A > 0 (see the
proof of Lemma 1). A tedious computation shows that AC − B2 > 0 is equivalent to (8)
and A > 0 is equivalent to (9), which shows the first statement.

It remains to consider the special cases for (a, b):

• a = 2 and b = β − 1/2:

AC − B2 =
77

48
− 59

12
β +

149

36
β2 − 4

9
β3 − 3β4 +

20

9
β5 − 4

9
β6 > 0

for
1

2
−
√

3 < β <
1

2
,

A =
2

3

(

3 −
(

β − 1

2

)2
)

> 0 for
1

2
−
√

3 < β <
1

2
+
√

3.

• a = 2 and b = 3 − 2β:

AC − B2 =
63

16
− 51

4
β +

413

36
β2 − 22

9
β3 − 3β4 +

20

9
β5 − 4

9
β6 > 0

for − 1.728 < β <
1

2
,

A =
4

3

(

(β − 1)2 +
5

4

)

> 0 for all β ∈ R.

• a = 2 and b = 5:

AC − B2 =
2519

144
− 47

18
β − 1

6
β2 − 70

9
β3 − 25

9
β4 > 0 for − 3.092 < β <

11

10
,

A =
10

3

(11

10
− β

)

> 0 for β <
11

10
.

• a = 6/5 and b = β − 1/2:

AC − B2 =
6557

30000
− 1489

2500
β +

109

2500
β2 +

412

375
β3 − 183

125
β4 +

4

5
β5 − 4

25
β6 > 0

for − 0.635 < β < 1/2,

A =
2

15

(

9

5
−
(

β − 1

2

)2
)

> 0 for
1

2
− 3

5

√
5 < β <

1

2
+

3

5

√
5.

Under these conditions, we have A|x|2 + 2Bx · y + C|y|2 ≥ κ(|x|2 + |y|2) for all x, y ∈ R
d

and for some κ > 0, and the proof continues analogously to the proof of Lemma 1. �

3. Weak sequential stability

We assume that there exists a sequence (nε, θε), ε > 0, of positive smooth solutions
to (6)-(7). The lower bound for nε and θε may depend on the approximation parameter,
nε ≥ c(ε) > 0 and θε ≥ c(ε) > 0 in T

d. Our aim is to show that (nε, θε) converges to a
weak solution to (6)-(7). The main result is as follows.
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Theorem 3. Let d ≤ 3, T > 0, and let (nε, θε) be a sequence of positive smooth solutions
to (6)-(7). Then there exists a subsequence (which is not relabeled) such that

nε → n, nεθε → nθ strongly in L2(0, T ; L6(Td)),

nεθε → nθ strongly in L4(0, T ; Lp(Td)),

nεθ
1/2−β ⇀ nθ1/2−β weakly in L4/(1+2β)(0, T ; L4/(3−2β)(Td)),

nεθ
3/2−β ⇀∗ z weakly* in L∞(0, T ; L2(Td)),

and z = nθ3/2−β in {n > 0}.
More precisely, we will prove that n1/2−β(z − nθ3/2−β) = 0 in T

d, t > 0. It is an open
problem if z = nθ3/2−β = 0 in {n = 0}. We know (see the proof below) that nθ = 0 in
{n = 0} but the difficulty is that we do not have any control on higher exponents of θ.
For the proof of this theorem, we show first some a priori estimates, based on the results
of the previous section.

Lemma 4. The following uniform estimates hold:

‖nε‖L2(0,T ;H1(Td)) + ‖∂tnε‖L2(0,T ;H−s(Td)) ≤ C,

where C > 0 is here and in the following a generic constant independent of ε and s ≥
2 + d/2.

Proof. Lemma 2 with a = 2 and b = β − 1/2 gives that ∇nε is uniformly bounded in
L2(0, T ; L2(Td)). Moreover, by mass conservation,

∫

Td nεdx is constant for all t ≥ 0, thus

nε is uniformly bounded in L∞(0, T ; L1(Td)). Therefore, by the Poincaré inequality, nε is
uniformly bounded in L2(0, T ; H1(Td)).

By conservation of the thermal energy, (nεθε) is bounded in L∞(0, T ; L1(Td)). In par-
ticular, (nεθε)

1/2−β is uniformly bounded in L∞(0, T ; L2/(1−2β)(Td)) for β < 1/2. Since

(nε) is bounded in L2(0, T ; L2(Rd)) and, as a consequence, n
1/2+β
ε is uniformly bounded

L4/(1+2β)(0, T ; L4/(1+2β)(Td)), we infer that

nεθ
1/2−β
ε = n1/2+β

ε (nεθε)
1/2−β

is uniformly bounded in L4/(1+2β)(0, T ; L4/(3−2β)(Td)) and, in particular, in L2(0, T ; L1(Td))
when −1/2 < β < 1/2. Hence,

‖∂tnε‖L2(0,T ;W−2,1(Td)) = ‖∆(nεθ
1/2−β
ε )‖L2(0,T ;W−2,1(Td)) ≤ ‖nεθ

1/2−β
ε ‖L2(0,T ;L1(Td)) ≤ C.

The continuous embedding W 2,−1(Td) →֒ H−s(Td) for s ≥ 2 + d/2 finishes the proof. �

Lemma 5. The following uniform estimates hold:

‖nεθε‖L2(0,T ;W 1,10/7(Td)) + ‖∂t(nεθ)‖L∞(0,T ;H−2(Td)) ≤ C.

Proof. We apply Lemma 2 with a = 2 and b = 3 − 2β: (n2
εθ

3−2β
ε ) is bounded in L∞(0, T ;

L1(Td)) and, in particular, nεθ
3/2−β
ε is uniformly bounded in L∞(0, T ; L2(Td)). Hence,

‖∂t(nεθε)‖L∞(0,T ;H−2(Td)) ≤ (2 − β)‖nεθ
3/2−β
ε ‖L∞(0,T ;L2(Td)) ≤ C.
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In order to estimate ∇(nεθε), we first observe that, by Lemma 2, with a = 6/5 and b =

β−1/2, n
−4/5
ε |∇nε|2 and n

6/5
ε θ−2

ε |∇θε|2 are uniformly bounded in L1(0, T ; L1(Td)). Further-
more, by Lemma 2, with a = 2 and b = 5, n2

εθ
5
ε is uniformly bounded in L∞(0, T ; L1(Td))

and n
2/5
ε θε is uniformly bounded in L∞(0, T ; L5(Td)). Hence,

∇(nεθε) = n2/5
ε θε

(

n−2/5
ε ∇nε + n3/5

ε θ−1
ε ∇θε

)

is the product of an L∞(0, T ; L5(Td)) function with an L2(0, T ; L2(Td)) function, which
implies that ∇(nεθε) ∈ L2(0, T ; L10/7(Td)). Since (nεθε) is bounded in L∞(0, T ; L1(Td)),
by the Poincaré inequality, we conclude that (nεθε) is bounded in L2(0, T ; W 1,10/7(Td)). �

The uniform estimates in Lemmas 4 and 5 allow us to apply the Aubin lemma [21,
Corollary 4], yielding for ε → 0, up to subsequences, the strong convergences

nε → n strongly in L2(0, T ; Lp(Td)),

nεθε → w strongly in L2(0, T ; Lq(Td))

for all 1 ≤ p < 6, 1 ≤ q < 33/10 (and d ≤ 3). Moreover, up to subsequences,

∂tnε ⇀ nt weakly in L2(0, T ; H−s(Td)),

∂t(nεθε) ⇀∗ wt weakly* in L∞(0, T ; H−2(Td)).

In the proof of Lemma 4 we have shown that nεθ
1/2−β
ε is uniformly bounded in L4/(1+2β)(0, T ;

L4/(3−2β)(Td)). Then, up to a subsequence,

nεθ
1/2−β
ε ⇀ y weakly in L4/(1+2β)(0, T ; L4/(3−2β)(Td)).

In the proof of Lemma 5 we have shown that nεθ
3/2−β is uniformly bounded in L∞(0, T ;

L2(Td)). Thus, up to a subsequence,

nεθ
3/2−β
ε ⇀∗ z weakly* in L∞(0, T ; L2(Td)).

In the following, we wish to identify w with nθ, y with nθ1/2−β, and z with nθ3/2−β. We
employ ideas from [20]. By the Fatou lemma and the a.e. convergence of (subsequences
of) (nε) and (nεθε), we infer that (for −1/2 < β < 1/2)

∫

Td

lim inf
ε→0

(nεθε)
3/2−β

n
1/2−β
ε

dx ≤ lim inf
ε→0

∫

Td

nεθ
3/2−β
ε dx < ∞,

in view of the uniform L∞(0, T ; L2(Td)) bound for nεθ
3/2−β
ε . This shows that w = 0 in

{n = 0}. We define θ := w/n for n > 0 and θ := 0 if n = 0. Then w = nθ.

The decomposition nεθ
1/2−β
ε = n

1/2+β
ε (nεθε)

1/2−β shows, after passing to the limit ε → 0,
that

y = n1/2+βw1/2−β = n1/2+β(nθ)1/2−β = nθ1/2−β.

The strong convergence of (nε) in L2(0, T ; Lp(Td)) (p < 6) and the weak* convergence

of (nεθ
3/2−β
ε ) in L∞(0, T ; L2(Td)) imply that

(nεθε)
3/2−β = n1/2−β

ε (nεθ
3/2−β
ε ) ⇀ n1/2−βz weakly in L2(0, T ; L1(Td)).
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On the other hand, (nεθε)
3/2−β converges a.e. to w3/2−β = (nθ)3/2−β. This shows that

n1/2−β(z − nθ3/2−β) = 0 a.e. Thus, z = nθ3/2−β if n > 0.
We can pass to the limit in the energy-transport equations to obtain Theorem 3.

4. Uniqueness of positive weak solutions

We prove the following result:

Theorem 6. There exists at most one bounded weak solution (n, θ) to (6)-(7) in the class
of functions (n, θ) ∈ (H1(0, T ; H−1(Td))∩L2(0, T ; H1(Td)))2 for which there exist constants
0 < m ≤ M such that 0 < m ≤ n, θ ≤ M in T

d × (0, T ).

Proof. The proof is based on the H−1 method. Let (n, θ) and (n̄, θ̄) be two weak solutions
to (6)-(7) with the same initial data (n0, θ0) and with the regularity stated in the theorem.
We define the entropy variables u = (u1, u2) and ū = (ū1, ū2) by

u1 = log(nθ−3/2), u2 = −θ−1,

ū1 = log(n̄θ̄−3/2), ū2 = −θ̄−1,

and the vector-valued functions

ρ(u) =

(

ρ1(u)
ρ2(u)

)

= (−u2)
−3/2eu1

(

1
−3

2
u−1

2

)

,

a(u) =

(

a1(u)
a2(u)

)

= (−u2)
−(2−β)eu1

(

1
−(2 − β)u−1

2

)

.

These functions are well defined since uj and ūj are bounded from below and above by
assumption. Moreover, it holds ρj(u), ρj(ū), aj(u), aj(ū) ∈ L2(0, T ; H1(Td)) for j = 1, 2.
Noticing that ρ(u) = (n, 3

2
nθ)⊤ and a(u) = (nθ1/2−β, nθ3/2−β)⊤, (6)-(7) for (n, θ) and (n̄, θ̄)

respectively, can be equivalently formulated as

ρ(u)t = ∆a(u), t > 0, ρ(u(·, 0)) = ρ(u0) in T
d,(10)

ρ(ū)t = ∆a(ū), t > 0, ρ(ū(·, 0)) = ρ(u0) in T
d,(11)

where u0 = log(n0θ
−3/2
0 ). Furthermore, there exist unique weak solutions w1, w2 ∈

L2(0, T ; H1(Td)) to

−∆wj = ρj(u) − ρj(ū) in T
d,

∫

Td

wjdx = 0, j = 1, 2.

We set w = (w1, w2)
⊤. Notice that w(·, 0) = 0 since ρj(u(·, 0)) − ρj(ū(·, 0)) = 0. Using w

as a test function in the weak formulation of (10)-(11) and taking the difference of both
equations leads to

(12)

∫ t

0

〈(ρ(u) − ρ(ū))t, w〉ds +

∫ t

0

∫

Td

∇(a(u) − a(ū)) · ∇wdxds = 0,
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where 〈·, ·〉 is the dual product between (H−1(Td))2 and (H1(Td))2. The first integral
equals

−
∫ t

0

〈∆wt, w〉ds =

∫ t

0

∫

Td

∇wt · ∇wdxds =
1

2

∫

Td

|∇w(·, t)|2dx.

Taking a(u) − a(ū) as a test function in the weak formulation of the equation for w, we
find that the second integral in (12) equals

∫ t

0

∫

Td

(ρ(u) − ρ(ū)) · (a(u) − a(ū))dxds.

By the mean-value theorem, we infer that

ρ(u) − ρ(ū) = ρ′(ξ)(u − ū), a(u) − a(ū) = a′(η)(u − ū),

where ξ, η ∈ R
2 depend on (x, t) through u and ū and the prime denotes the derivative

with respect to u. Collecting the above equations, (12) becomes

1

2

∫

Td

|∇w(·, t)|2dx +

∫ t

0

∫

Td

(u − ū)⊤(ρ′(ξ)⊤a′(η))(u − ū)dxds = 0.

The components of the matrix product ρ′(ξ)⊤a′(η) read as

2
∑

j=1

∂ρj

∂uk

(ξ)
∂aj

∂uℓ

(η).

Now, the derivatives ρ′ and a′ are

ρ′(ξ) = (−ξ2)
−3/2eξ1

(

1 3
2
(−ξ2)

−1

3
2
(−ξ2)

−1 15
4
(−ξ2)

−2

)

,

a′(η) = (−η2)
−(2−β)eη1

(

1 (2 − β)(−η2)
−1

(2 − β)(−η2)
−1 (3 − β)(2 − β)(−η2)

−2

)

.

Since u and ū are bounded from below and above, these matrices are positive definite (for
β < 2), and we conclude that there exists a constant c > 0 depending on the lower and
upper bounds m and M such that

1

2

∫

Td

|∇w(·, t)|2dx + c

∫ t

0

∫

Td

|u − ū|2dxds ≤ 0.

This implies that w(·, t) = 0 for all t > 0 and hence, ρ(u) = ρ(ū) and n = n̄, nθ = n̄θ̄. �
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[16] A. Jüngel. Regularity and uniqueness of solutions to a parabolic system in nonequilibrium thermody-

namics. Nonlin. Anal. 41 (2000), 669-688.
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