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Definition

Highly integrated electric circuits in computer processors mainly consist of semicon-

ductor transistors which amplify and switch electronic signals. Roughly speaking, a

semiconductor is a crystalline solid whose conductivity is intermediate between an in-

sulator and a conductor. The modeling and simulation of semiconductor transistors

and other devices is of paramount importance in the microelectronics industry to re-

duce the development cost and time. A semiconductor device problem is defined by the

process of deriving physically accurate but computationally feasible model equations

and of constructing efficient numerical algorithms for the solution of these equations.

Depending on the device structure, size, and operating conditions, the main transport

phenomena may be very different, caused by diffusion, drift, scattering, or quantum

effects. This leads to a variety of model equations designed for a particular situation or

a particular device. Furthermore, often not all available physical information is neces-
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sary, and simpler models are needed, helping to reduce the computational cost in the

numerical simulation. One may distinguish four model classes: microscopic/mesoscopic

and macroscopic semi-classical models and microscopic/mesoscopic and macroscopic

quantum models (see Figure 1).
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Fig. 1. Hierarchy of some semiconductor models mentioned in the text.

Description

In the following, we detail only some models from the four model classes since the field

of semiconductor device problems became extremely large in recent years. For instance,

we ignore compact models, hybrid model approaches, lattice heat equations, transport

in subbands and magnetic fields, spintronics, and models for carbon nanotube, graphen,

and polymer thin-film materials. For technological aspects, we refer to [9].

Microscopic semi-classical models

We are interested in the evolution of charge carriers moving in an electric field. Their

motion can be modeled by Newton’s law. However, in view of the huge number of
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electrons involved, the solution of the Newton equations is computationally too expen-

sive. Moreover, we are not interested in the trajectory of each single particle. Hence,

a statistical approach seems to be sufficient, introducing the distribution function (or

“probability density”) f(x, v, t) of an electron ensemble, depending on the position

x ∈ R
3, velocity v = ẋ = dx/dt ∈ R

3, and time t > 0. By Liouville’s theorem, the

trajectory of f(x(t), v(t), t) does not change during time, in the absence of collisions,

and hence,

0 =
df

dt
= ∂tf + ẋ · ∇xf + v̇ · ∇vf along trajectories, (1)

where ∂tf = ∂f/∂t and ∇xf , ∇vf are gradients with respect to x, v, respectively.

Since electrons are quantum particles (and position and velocity cannot be de-

termined with arbitrary accuracy), we need to incorporate some quantum mechanics.

As the solution of the many-particle Schrödinger equation in the whole space is out of

reach, we need an approximate approach (also see [11]). First, by Bloch’s theorem, it is

sufficient to solve the Schrödinger equation in a semiconductor lattice cell. Furthermore,

the many-particle interactions are described by an effective Coulomb force. Finally, the

properties of the semiconductor crystal are incorporated by the semi-classical Newton

equations.

More precisely, let p = ~k denote the crystal momentum, where ~ is the reduced

Planck constant and k the wave vector. For electrons with low energy, the velocity is

proportional to the wave vector, ẋ = ~k/m, where m is the electron mass at rest.

In the general case, we have to take into account the energy band structure of the

semiconductor crystal (see [4; 7; 8] for details). Newton’s third law is formulated as

ṗ = q∇xV , where q is the elementary charge and V (x, t) the electric potential. Then,

using v̇ = ṗ/m and ∇k = (m/~)∇v, (1) becomes the (mesoscopic) Boltzmann transport

equation

∂tf +
~

m
k · ∇xf +

q

~
∇xV · ∇kf = Q(f), (x, k) ∈ R

3 × R
3, t > 0, (2)
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where Q(f) models collisions of electrons with phonons, impurities, or other particles.

The moments of f are interpreted as the particle density n(x, t), current density J(x, t),

and energy density (ne)(x, t):

n =

∫

R3

fdk, J =
~

m

∫

R3

kfdk, ne =
~

2

2m

∫

R3

|k|2fdk. (3)

In the self-consistent setting, the electric potential V is computed from the Poisson

equation εs∆V = q(n − C(x)), where εs is the semiconductor permittivity and C(x)

models charged background ions (doping profile). Since n depends on the distribution

function f , the Boltzmann-Poisson system is nonlinear.

The Boltzmann transport equation is defined over the six-dimensional phase

space (plus time) whose high dimensionality makes its numerical solution a very chal-

lenging task. One approach is to employ the Monte-Carlo method which consists in

simulating a stochastic process. Drawbacks of the method are the stochastic nature

and the huge computational cost. An alternative is the use of deterministic solvers,

e.g., expanding the distribution function with spherical harmonics [6].

Macroscopic semi-classical models

When collisions become dominant in the semiconductor domain, i.e., the mean free

path (the length which a particle travels between two consecutive collision events)

is much smaller then the device size, a fluid dynamical approach may be appropriate.

Macroscopic models are derived from (2) by multiplying the equation by certain weight

functions, i.e. 1, k, and |k|2/2, and integrating over the wave-vector space. Setting all

physical constants to one in the following, for notational simplicity, we obtain, using

the definitions (3), the balance equations
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∂tn+ divx J =

∫

R3

Q(f)dk, x ∈ R
3, t > 0, (4)

∂tJ + divx

∫

R3

k ⊗ kfdk − n∇xV =

∫

R3

kQ(f)dk, (5)

∂t(ne) +
1

2
divx

∫

R3

k|k|2fdk −∇xV · J =
1

2

∫

R3

|k|2Q(f)dk. (6)

The higher-order integrals cannot be expressed in terms of the moments (3), which is

called the closure problem. It can be solved by approximating f by the equilibrium

distribution f0, which can be justified by a scaling argument and asymptotic analysis.

The equilibrium f0 can be determined by maximizing the Boltzmann entropy under

the constraints of given moments n, nu, and ne [4]. Inserting f0 in (4)-(6) gives explicit

expressions for the higher-order moments, yielding the so-called hydrodynamic model.

Formally, there is some similiarity with the Euler equations of fluid dynamics, and

there has been an extensive discussion in the literature whether electron shock waves

in semiconductors are realistic or not [10].

Diffusion models, which do not exhibit shock solutions, can be derived by a

Chapman-Enskog expansion around the equilibrium distribution f0 according to f =

f0 +αf1, where α > 0 is the Knudsen number (the ratio of the mean free path and the

device length) which is assumed to be small compared to one. The function f1 turns

out to be the solution of a certain operator equation involving the collision operator

Q(f). Depending on the number of given moments, this leads to the drift-diffusion

equations (particle density given)

∂tn+ divx J = 0, J = −∇xn+ n∇xV, x ∈ R
3, t > 0, (7)

or the energy-transport equations (particle and energy densities given)

∂tn+ divx J = 0, J = −∇xn+
n

T
∇xV, x ∈ R

3, t > 0, (8)

∂t(ne) + divx S + nu · ∇xV = 0, S = −3

2
(∇x(nT ) − n∇xV ), (9)
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where ne = 3

2
nT , T being the electron temperature, and S is the heat flux. For the

derivation of these models we have assumed that the equilibrium distribution is given

by Maxwell-Boltzmann statistics and that the elastic scattering rate is proportional to

the wave vector. More general models can be derived too, see [4, Chap. 6].

The drift-diffusion model gives a good description of the transport in semicon-

ductor devices close to equilibrium but it is not accurate enough for submicron devices

due to, e.g., temperature effects, which can be modeled by the energy-transport equa-

tions.

In the presence of high electric fields, the stationary equations corresponding

to (7)-(9) are convection dominant. This can be handled by the Scharfetter-Gummel

discretization technique. The key idea is to approximate the current density along each

edge in a mesh by a constant, yielding an exponential approximation of the electric

potential. This technique is related to mixed finite-element and finite-volume meth-

ods [2]. Another idea to eliminate the convective terms is to employ (dual) entropy

variables. For instance, for the energy-transport equations, the dual entropy variables

are w = (w1, w2) = ((µ − V )/T,−1/T ), where µ is the chemical potential, given by

n = T 3/2 exp(µ/T ). Then (8)-(9) can be formulated as the system

∂tb(w) − div(D(w, V )∇w) = 0,

where b(w) = (n, 3

2
nT )⊤ and D(w, V ) ∈ R

2×2 is a symmetric positive definite diffusion

matrix [4] such that standard finite-element techniques are applicable.

Microscopic quantum models

The semi-classical approach is reasonable if the carriers can be treated as particles. The

validity of this description is measured by the de Broglie wavelength λB corresponding

to a thermal average carrier. When the electric potential varies rapidly on the scale of
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λB or when the mean free path is much larger than λB, quantum mechanical models

are more appropriate. A general description is possible by the Liouville–von Neumann

equation

iε∂tρ̂ = [H, ρ̂] := Hρ̂− ρ̂H, t > 0,

for the density matrix operator ρ̂, where i2 = −1, ε > 0 is the scaled Planck con-

stant, and H is the quantum mechanical Hamiltonian. The operator ρ̂ is assumed to

possess a complete orthonormal set of eigenfunctions (ψj) and eigenvalues (λj). The

sequence of Schrödinger equations iε∂tψj = Hψj (j ∈ N), together with the num-

bers λj ≥ 0, is called a mixed-state Schrödinger system with the particle density

n(x, t) =
∑

∞

j=1
λj|ψj(x, t)|2. In particular, λj can be interpreted as the occupation

probability of the state j. We refer to [11] for some mathematical and numerical back-

ground of the Schrödinger equation.

The Schrödinger equation describes the evolution of a quantum state in an ac-

tive region of a semiconductor device. It is used when inelastic scattering is sufficiently

weak such that phase coherence can be assumed and effects as resonant tunneling and

quantum conductance can be observed. Typically, the device is connected to an exterior

medium through access zones, which allows for the injection of charge carriers. Instead

of solving the Schrödinger equation in the whole domain (self-consistently coupled to

the Poisson equation), one wishes to solve the problem only in the active region and

to prescribe transparent boundary conditions at the interfaces between the active and

access zones. Such a situation is referred to as an open quantum system. The determi-

nation of transparent boundary conditions is a delicate issue since ad-hoc approaches

often lead to spurious oscillations which deteriorate the numerical solution [1].

Nonreversible interactions of the charge carriers with the environment can be

modeled by the Lindblad equation
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iε∂tρ̂ = [H, ρ̂] + i
∑

k

(
Lkρ̂L

∗

k −
1

2
(L∗

kLkρ̂+ ρ̂L∗

kLk)
)
,

where Lk are the so-called Lindblad operators and L∗

k is the adjoint of Lk. In the

Fourier picture, this equation can be formulated as a quantum kinetic equation, the

(mesoscopic) Wigner-Boltzmann equation

∂tw + p · ∇xw + θ[V ]w = Q(w), (x, p) ∈ R
3 × R

3, t > 0, (10)

where p is the crystal momentum, θ[V ]w is the potential operator which is a nonlocal

version of the drift term ∇xV · ∇pw [4, Chap. 11], and Q(w) is the collision operator.

The Wigner function w = W [ρ̂], where W denotes the Wigner transform, is essentially

the Fourier transform of the density matrix. A nice feature of the Wigner equation is

that it is a phase-space description, similar to the semi-classical Boltzmann equation.

Its drawbacks are that the Wigner function cannot be interpreted as a probability

density, as the Boltzmann distribution function, and that the Wigner equation has

to be solved in the high dimensional phase space. A remedy is to derive macroscopic

models which are discussed in the following section.

Macroscopic quantum models

Macroscopic models can be derived from the Wigner-Boltzmann equation (10) in a

similar manner as from the Boltzmann equation (2). The main difference to the semi-

classical approach is the definition of the equilibrium. Maximizing the von Neumann

entropy under the constraints of given moments of a Wigner function w, the formal

solution (if it exists) is given by the so-called quantum Maxwellian M [w], which is

a nonlocal version of the semi-classical equilibrium. It was first suggested by Degond

and Ringhofer and is related to the (unconstrained) quantum equilibrium given by

Wigner in 1932 [3; 5]. We wish to derive moment equations from the Wigner-Boltzmann

equation (10) for the particle density n, current density J , and energy density ne,
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defined by

n =

∫

R3

M [w]dp, J =

∫

R3

pM [w]dp, ne =
1

2

∫

R3

|p|2M [w]dp.

Such a program was carried out by Degond et al. [3], using the simple relaxation-type

operator Q(w) = M [w] − w. This leads to a hierarchy of quantum hydrodynamic and

diffusion models which are, in contrast to their semi-classical counterparts, nonlocal.

When we employ only one moment (the particle density) and expand the re-

sulting moment model in powers of ε up to order O(ε4) (to obtain local equations), we

arrive at the quantum drift-diffusion (or density-gradient) equations

∂tn+ divx J = 0, J = −∇xn+ n∇xV +
ε2

6
n∇x

(∆x

√
n√
n

)
, x ∈ R

3, t > 0.

This model is employed to simulate the carrier inversion layer near the oxide of a MOS-

FET (metal-oxide-semiconductor field-effect transistor). The main difficulty of the nu-

merical discretization is the treatment of the highly nonlinear fourth-order quantum

correction. However, there exist efficient exponentially fitted finite-element approxima-

tions, see the references of Pinnau in [4, Chap. 12].

Formally, the moment equations for the charge carriers and energy density give

the quantum energy-transport model. Since its mathematical structure is less clear, we

do not discuss this model [4, Chap. 13.2].

Employing all three moments n, nu, ne, the moment equations, expanded up to

terms of order O(ε4), become the quantum hydrodynamic equations

∂tn+ div J = 0, ∂tJ + divx

(J ⊗ J

n
+ P

)
+ n∇xV = −

∫

R3

pQ(M [w])dp,

∂t(ne) − divx((P + neI)u− q) + ∇xV · J =
1

2

∫

R3

|p|2Q(M [w])dp, x ∈ R
3, t > 0,

where I is the identity matrix in R
3×3, the quantum stress tensor P and the energy

density ne are given by
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P = nT I − ε2

12
n∇2

x log n, ne =
3

2
nT +

1

2
n|u|2 − ε2

24
n∆x log n,

u = J/n is the mean velocity, and q = −(ε2/24)n(∆xu + 2∇x divx u) is the quan-

tum heat flux. When applying a Chapman-Enskog expansion around the quantum

equilibrium, viscous effects are added, leading to quantum Navier-Stokes equations [5,

Chap. 5]. These models are very interesting from a theoretical viewpoint since they

exhibit a surprising nonlinear structure. Simulations of resonant tunneling diodes us-

ing these models give qualitatively reasonable results. However, as expected, quantum

phenomena are easily destroyed by the occuring diffusive or viscous effects.
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