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Abstract. Trajectory planning is considered for semilinear parabolic partial differential equations
(PDEs) with boundary control. For this, a novel flatness-based technique is proposed, which is based
on the reformulation of the boundary control problem as a Cauchy problem followed by a formal
integration. Solution existence is analyzed using a generalized Cauchy-Kowalevskaja Theorem in
suitable Gevrey classes and formal integration. This moreover enables to deduce efficient semi-
numerical design techniques, which are illustrated in a simulation scenario.

1. INTRODUCTION

Trajectory planning, i.e., the determination of a feedforward control to realize desired state or
output trajectories, is of fundamental importance in many applications arising, e.g., in chemical
engineering, mechatronics, and robotics. For this, flatness-based techniques have evolved into a
rather systematic design approach for finite-dimensional and certain classes of infinite-dimensional
systems governed by PDEs [3, 7, 16, 9, 12]. While there exists a rather broad catalog of applications,
given semilinear PDEs flatness is however still restricted to polynomial nonlinearities [9, 2, 12].

In order to address this limitation, subsequently a novel approach is presented for flatness-based
trajectory planning for boundary controlled semilinear parabolic PDEs in a one-dimensional spatial
domain. Herein, the boundary control problem is transformed into an initial value problem for a
semilinear second order PDE parametrized in terms of the flat or basic output. We investigate
the resulting Cauchy problem on a rigorous level and analyze the existence of a local solution for
nonlinearities satisfying a Gevrey class 2 condition. The approach relies on the reformulation of the
Cauchy problem as a first order system in scales of Banach spaces of Gevrey class functions, which
turns out to be an appropriate problem set-up (cf. also [19] for a comprehensive introduction).
The system is studied in integral form and a solution is obtained with the method of successive
approximation. This in addition enables to deduce efficient semi-numerical trajectory planning
techniques. For this, two algorithms, i.e., a discrete iteration scheme induced by the successive
approximation and an explicit algorithm using quadrature formulas, are proposed for the numerical
evaluation of the control input in terms of the basic output. Both algorithms yield highly accurate
results with the latter being computationally much less expensive. The applicability of our method
is confirmed by simulation results for a semilinear parabolic PDE with trigonometric nonlinearity.

The paper is organized as follows. Section 2 introduces the formal state and input parametriza-
tion in terms of a Cauchy problem. Mathematical preliminaries and the solution existence are
addressed in Section 3 followed by the semi-numerical realization in Section 4. Simulation results
are presented in Section 5. Final remarks conclude the paper.
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2. FLATNESS-BASED TRAJECTORY PLANNING

We study boundary control problems for semilinear reaction-diffusion equations with a Neumann
boundary condition at x = 0 and a Dirichlet input h at x = 1, i.e.

∂tu(x, t) = ∂2
xu(x, t)− f(u(x, t), x) (1a)

∂xu(0, t) = 0, u(1, t) = h(t), (1b)

where u is real valued and considered on the domain (0, 1)× (0, τ) for some τ > 0. The system is
assumed to be initially in steady state

u(x, 0) = u0(x), x ∈ [0, 1] (1c)

with u0 a solution us(hs; ·) of the boundary-value problem associated to (1a), (1b) for some fixed
hs = h(0), i.e.

∂2
xus(x)− f(us(x), x) = 0,

∂xus(0) = 0, us(1) = hs.
(2)

Based on (1), the considered trajectory planning problem concerns the design of a feedforward
control h∗ to realize the transition from the initial steady state u0 to a final steady state u1 within
the finite time interval t ∈ [0, T ] along a predefined spatial-temporal profile u∗.

For this, we proceed with a flatness-based approach by reformulating the initial-boundary-value
problem (1) as a Cauchy problem in the spatial variable x (see also [11] for the linear case). The
boundary condition at x = 0 is thereby interpreted as initial data, i.e.

∂2
xu(x, t) = ∂tu(x, t) + f(u(x, t), x)

∂xu(0, t) = 0.
(3a)

Since (3a) is of 2nd order in x an additional linear independent boundary condition at x = 0 is
required. Therefore, impose

u(0, t) = y(t) (3b)

with the function t 7→ y(t) serving a as degree of freedom. If a solution u(y; ·) of (3) exists at x = 1
for given y, then the input can be parametrized in terms of y by

h(t) = u(y; 1, t). (4)

Subsequently, y is called a flat or basic output formally parametrizing state u and input h. In
particular, by prescribing a desired path y∗ the solution of (3) yields the feedforward control h∗,
which is required to track the corresponding spatial-temporal path u∗ in open-loop.

3. ANALYTIC RESULTS

It is well known that (3) even in the linear case admits a unique solution if and only if y is of
Gevrey class d ≤ 2. For semilinear problems existence of solutions is verified in [4] on a small spatial
interval for nonlinearities of Gevrey class d ≤ 2 in t and analytic in the remaining variables. In
[18] this was further generalized requiring only continuity in x instead of analyticity. Subsequently,
we pursue a different ansatz and investigate (3) within the framework of the abstract Cauchy-
Kowalevskaja Theorem mainly developed in [15, 13, 14, 6, 5]. We show that a local solution can
be obtained if both the basic output and the nonlinearity satisfy certain Gevrey class conditions.
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3.1. Scales of Banach spaces. In the following, essential results on Gevrey class functions and
scales of Banach spaces are provided, which are required for the analysis of (3), where we restrict

ourselves to functions of Gevrey class d = 2. We abbreviate dn

dtnu(t) by u(n)(t) and for n = 1 we

write u′(t) instead of u(1)(t).

Definition 1. Let Ω ⊂ R be an open set. A function u : Ω→ R is of Gevrey class 2 if u ∈ C∞(Ω)
and for every compact subset I ⊂ Ω there exist positive constants γ,M such that

max
t∈I
|u(n)(t)| ≤Mn!2

γn
, ∀n ∈ N0. (5)

To obtain a Banach space, Gevrey class functions have to be restricted to one single subset I
and the constant γ in (5) has to be fixed [8]. However, it is impossible to formulate (3) on one
single Banach space due to the properties of the differential operator in t. This is illustrated in the
following Lemma, whose proof is given in Appendix A.

Lemma 1. Suppose u : I → R satisfies estimate (5) for fixed γ > 0 and some constant M > 0.
Then u′ satisfies (5) only for σ < γ. In particular, for any σ ∈ R with 0 < σ < γ there exists a
constant M ′ > 0 such that

max
t∈I
|u(n+1)(t)| ≤M ′n!2

σn
, n ∈ N0. (6)

This problem can be overcome by introducing a one-parameter family of function spaces allowing
the respective constant in (5) to vary. On each single space a norm is defined according to [10].

Definition 2. For fixed constants 0 < σ0 < σ1 we define a scale function by σ(s) = (1−s)σ0 +sσ1,
where s ∈ [0, 1]. We say that u ∈ Gs (where we drop the dependence on the interval I for notational
convenience) if u ∈ C∞(Ω) for some I ⊂ Ω and

||u||s :=
∞∑
n=0

σn(s)

n!2
max
t∈I
|u(n)(t)| <∞. (7)

According to [10], Gs with norm || · ||s is a Banach space and a scale of Banach spaces can be defined
by {Gs}s∈[0,1], where Gs ⊆ Gs′ and ||u||s′ ≤ ||u||s, 0 ≤ s′ ≤ s ≤ 1. Furthermore, each space Gs is a
Banach algebra. In particular, for u, v ∈ Gs, it holds that uv ∈ Gs and

||uv||s ≤ ||u||s||v||s.

Note that the norm (7) differs from those in [1] and [5] and simplifies most of the proofs. The
Banach algebra property can be easily verified using the Leibniz rule. The next result is an abstract
version of Lemma 1. On Gs we define an operator D by (Du)(t) := u′(t).

Lemma 2. For 0 ≤ s′ < s ≤ 1 the operator D : Gs → Gs′ is bounded and

||Du||s′ ≤
CD

(s− s′)2
||u||s

for all u ∈ Gs, where CD := (2/e)2(1/σ0)(σ1/(σ1 − σ0))2.

The proof of this result is omitted but is available in [17].

3.2. Abstract integral equation. Eqn. (3) is subsequently considered on an extended spatial
interval [0, L] for L > 1. By introducing new variables [u1, u2, u3] := [u, ∂xu, ∂tu] we reformulate
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(3) as a first order system and formally integrate, which yields

u1(x, t) = y(t) +

∫ x

0
u2(ξ, t)dξ

u2(x, t) =

∫ x

0

(
u3(ξ, t) + f(u1, ξ)

)
dξ

u3(x, t) = y′(t) +

∫ x

0
∂tu2(ξ, t)dξ

(8)

To obtain an abstract formulation the state variable is considered as a function of x with values
in a function space, i.e., we define Ui : [0, L] → Gs by Ui(x)(t) := ui(x, t). The above system of
integral equations can then be written as

Ui(x) = Ui,0 +

∫ x

0
Gi(U1(ξ), U2(ξ), U3(ξ))dξ (9a)

with U1,0 = y, U2,0 = 0, U3,0 = y′ and

G1(U1(x), U2(x), U3(x)) = U2(x)

G2(U1(x), U2(x), U3(x)) = U3(x) + F (U1(x), x)

G3(U1(x), U2(x), U3(x)) = DU2(x)

(9b)

for F (U1(x), x)(t) := f(u1(x, t), x) and (DU2(x))(t) := ∂tu2(x, t).

3.3. Local existence of solutions. In order to construct a solution of (9) we define a sequence

of functions (U
[k]
i (x))k∈N0 by U

[0]
i (x) = Ui,0 and

U
[k+1]
i (x) = Ui,0 +

∫ x

0
Gi
(
U

[k]
1 (ξ), U

[k]
2 (ξ), U

[k]
3 (ξ)

)
dξ.

We consider a fixed scale of Banach spaces {Gs}s∈[0,1] and for the sake of simplicity we assume that
F (0, x) = 0.
Assumptions.

(A1) Assume that y ∈ G1, y′ ∈ G1. In particular, this implies ||y||1 ≤ R0 <∞ for some constant
R0.

(A2) The nonlinear function F : Bs(R)× [0, L]→ Gs defines a continuous map, where Bs(R) :=
{u ∈ Gs : ||u||s < R} for fixed R > R0 and s ∈ [0, 1]. In addition, the (local) Lipschitz
estimate

||F (u, x)− F (v, x)||s ≤ CF ||u− v||s (10)

holds for u, v ∈ Bs(R), 0 ≤ x ≤ L and a constant CF > 0 independent of u, v, x, s.

Lemma 2 and the preceding assumptions allow for an application of [5, Theorem 2.1].

Theorem 1. There exits a constant r > 0 such that for every 0 ≤ s < 1/2 and 0 ≤ x < r(1−s) the

sequence (U
[k]
i (x))k∈N0 converges to a limit function Ui(x) in Gs with convergence being uniform with

respect to x on compact subsets of [0, r(1− s)). The functions Ui(x) are continuously differentiable
with respect to x and u(x, t) := U1(x)(t) solves the Cauchy problem (3).

For applications it is crucial to decide whether a given nonlinear function f satisfies Assumption
(A2). To address this, we provide a classification.

Lemma 3. Let R > 0 be fixed and let f : R→ R be a function of Gevrey class 2 satisfying

max
x∈[−R,R]

|f (n)(x)| ≤Mf
n!2

γnf
, ∀n ∈ N0 (11)
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for constants Mf > 0 and γf > R. Let F be defined by

F (u)(t) := (f ◦ u)(t), t ∈ I = [0, T ].

The function F maps Bs(R) into Gs, is differentiable (in the sense of Fréchet) at any u ∈ Bs(R),
and for any u, v ∈ Bs(R) there exists a positive constant CF such that

||F (u)− F (v)||s ≤ CF ||u− v||s.

The proof of Lemma 3 is sketched in Appendix B. Having guaranteed the existence of a solution
to the Cauchy problem (3) in terms of a basic output the theoretical results are exploited to develop
efficient semi-numerical techniques to solve the trajectory planning problem.

4. SEMI-NUMERICAL REALIZATION

Two different algorithmic realizations are proposed to determine the control input h from (3) for
given y. In the following, the equation is studied on [0, 1] × [0, T ], where T < τ is determined by
the considered steady state to steady state transition. We define an equidistant grid with spacings
∆x, ∆t such that nx∆x = 1 and nt∆t = T for some integers nx, nt and xl := l∆x, tj := j∆t.

4.1. Discrete successive approximation. The analytic results presented in the previous section
suggest the implementation of a discrete analogue of the iteration sequence defined by

u
[k+1]
i (x, t) = ui,0(t) =

∫ x

0
gi(u

[k]
1 (ξ, t), u

[k]
2 (ξ, t), u

[k]
3 (ξ, t))dξ (12)

for u
[0]
i (x, t) = ui,0(t), i = 1, 2, 3, k ≥ 0, and functions gi formally defined according to the integrands

in (8). Let y(tj) and y′(tj) denote the numerical evaluations of the basic output and its time
derivative. The first iteration step is trivial and given by

u
[0]
1 (xl, tj) = y(tj), u

[0]
2 (xl, tj) = 0, u

[0]
3 (xl, tj) = y′(tj).

To compute the numerical value u
[k+1]
i (xl, tj) given u

[k]
i (xl, tj) the arising time derivative of u2 in

(0, T ) is approximated by finite differences of second order accuracy. For t = 0 and t = T derivatives

are set to zero, which is justified since we only consider functions satisfying y(n)(0) = y(n)(T ) = 0
for all n ∈ N0. It can easily be checked that these boundary conditions are propagated in the
iteration. To abbreviate notation, formally define D for the approximation of the time derivative
by

Du[k]
i (xl, tj) :=

{
0 j = 0, nt
u
[k]
i (xl,tj+1)−u[k]i (xl,tj−1)

2∆t j = 1, ..., nt − 1.
(13)

For the evaluation of the integrals (12), approximated integrands are defined by g
[k]
1 (xl, tj) :=

u
[k]
2 (xl, tj), g

[k]
2 (xl, tj) := u

[k]
3 (xl, tj) + f(u

[k]
1 (xl, tj), xl), and g

[k]
3 (xl, tj) := Du[k]

2 (xl, tj). In the fol-
lowing, Ixltj [·] denotes an approximation of the spatial integral with lower bound x0 = 0 and upper

bound xl for a fixed time tj , which is obtained by standard quadrature formulas as described below.
For l = 1 the trapezoidal rule yields

Ix1tj [g
[k]
i ] :=

∆x

2
(g

[k]
i (x0, tj) + g

[k]
i (x1, tj))

For l even we apply Simpson’s rule

Ixltj [g
[k]
i ] :=

∆x

3

(
g

[k]
i (x0, tj) + 2

l/2−1∑
m=1

g
[k]
i (x2m, tj) + 4

l/2∑
m=1

g
[k]
i (x2m−1, tj) + g

[k]
i (xl, tj)

)
. (14)
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For l odd an additional trapezoidal step is necessary, i.e.

Ixltj [g
[k]
i ] :=

∆x

3

(
g

[k]
i (x0, tj) + 2

(l−1)/2−1∑
m=1

g
[k]
i (x2m, tj) + 4

(l−1)/2∑
l=1

g
[k]
i (x2m−1, tj) + g

[k]
i (xl−1, tj)

)
+

∆x

2

(
g

[k]
i (xl−1, tj) + g

[k]
i (xl, tj))

)
. (15)

Thus, the iteration reduces to

u
[k+1]
i (xl, tj) := u

[0]
i (xl, tj) + Ixltj [g

[k]
i ].

The iteration is stopped once

max
i

max
j

∣∣u[k+1]
i (1, tj)− u[k]

i (1, tj)
∣∣ < ε (16)

for user-defined ε > 0. With k∗ := k+1 an approximation of the control input is obtained according
to (4) by

hsa(tj) = u
[k∗]
1 (1, tj), j = 0, . . . , nt. (17)

4.2. Explicit integration. The above presented algorithm is strongly connected to the analytic
method of proof and hence is a promising candidate to obtain reliable results. However, one can
ask for other methods to solve (3) numerically for a given basic output y. To this end we consider
an integral formulation based on the second order form of the equation, which reads

u(x, t) = y(t) +

∫ x

0
K(x, ξ)(∂tu(ξ, t) + f(u(ξ, t), ξ))dξ, (18)

where K(x, ξ) := x − ξ. The numerical solution of nonlinear Volterra-type integral equations by
means of quadrature methods is in general complicated by the fact that for each grid point xl a
system of nonlinear equations has to be solved. However, the integral kernel in (18) allows for an
explicit scheme described in the following.

For this, assume that the time derivative vanishes at t= 0 and t= T , which is justified as we
consider transitions between steady states such that (13) applies for the discretized time derivative.
Set u(x0, tj) = y(tj) and apply the trapezoidal rule to (18), which yields

u(x1, tj) = y(tj) + (∆x)2

2

(
Dy(tj) + f(y(tj), x0)

)
.

Suppose that the values of u(xm, tj) are available for m = 0, . . . , l − 1 and j = 0, . . . , nt. Hence,
introducing g1(xl, xm, tj) := K(xl, xm)u(xm, tj) and g2(xl, xm, tj) := K(xl, xm)f(u(xm, tj), xm) the
approximated solution to (18) follows as

u(xl, tj)=y(tj)+DIxltj [g1(xl, ·, ·)]+Ixltj [g2(xl, ·, ·)]

with the discrete integral operator Ixltj [·] defined above and gi(xl, ·, ·) indicating that xl is fixed.

Here, the order of integration and differentiation was interchanged with the benefit that the time
derivative has to be evaluated only once and does not have to be stored for further evaluations.
Due to the fact that K(xl, xl) = 0 an explicit expression for u(xl, tj) is obtained depending on the
values of u(xm, tj) for m = 0, . . . , l − 1 and j = 0, . . . , nt. The control input hence follows from

hei(tj) = u(1, tj), j = 0, . . . , nt. (19)

5. TRAJECTORY ASSIGNMENT AND EVALUATION

The semi-numerical methods proposed above directly enable an efficient realization of the the-
oretical results and hence admit the explicit computation of the feedforward control h∗ given a
desired basic output trajectory y∗ to achieve finite time transitions between steady states.
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5.1. Trajectory assignment for the basic output. For the appropriate explicit assignment of
the basic output trajectory consider the following lemma.

Lemma 4. Let ψ : R → R be defined by ψ(t) = exp(−1/[t(1 − t)]) for t ∈ (0, 1) and ψ(t) = 0 for
t 6= (0, 1). For T > 0 the function ΨT : R→ R defined by

ΨT (t) =


0 t ≤ 0
1

Ψ0

∫ t/T
0 ψ(τ)dτ t ∈ (0, T )

1 t ≥ T
(20)

is of Gevrey class 2, where Ψ0 :=
∫ 1

0 ψ(τ)dτ . In particular

sup
t∈R
|Ψ(n)

T (t)| ≤Mψ
n!2

γn
, ∀n ∈ N0

with γ = T/3 and Mψ = 1/(3eΨ0).

The proof is provided in Appendix B.1. Note that differing from [9], where implicit estimates for
(20) are obtained depending on an abstract parameter, our results are explicit. Moreover, note that
ΨT (t) is locally non-analytic at t ∈ {0, T}. This property can be exploited to solve the trajectory
planning problem. In view of (3), steady state profiles (2) can be equivalently defined in terms of
y, i.e.

∂2
xus(x)− f(us(x), x) = 0,

us(0) = ys, ∂xus(0) = 0
(21)

for constant ys. With this, the following result applies.

Corollary 1. Let (uk)k=0,...,n denote a sequence of steady states (21) to be attained at successive
time instances (T2k)k=0,...,n. We define

y∗(t) :=y∗0 +

n∑
k=1

(y∗k − y∗k−1)ΨT2k−T2k−1
(t− T2k−1) (22)

with y∗k := uk(0) and 0≤T0≤T1<T2≤T3<T4 . . . <T2n. Lemma 4 implies that y∗ : R → R is of

Gevrey class 2 such that maxt≥0 |y∗(n)(t)| ≤Myn!2/γny for γy = 1
3 mink=1,...,n{T2k − T2k−1} and

My = nmax
{

max
k=0,...,n

|y∗k|, max
k=1,...,n

Mψ|y∗k − y∗k−1|
}
.

Due to the local non-analyticity of ΨT (t) it follows that derivatives y∗(j), j ≥ 1, vanish at t = T2k

and t = T2k+1 for k = 0, ..., n with uks(0) = y∗(T2k+1) = y∗(T2k), i.e., in view of (21) the steady
state uks is reached at t = T2k and is held for t ∈ [T2k, T2k+1]..

5.2. Trigonometric nonlinearity – analytical results. With these preliminaries, we consider
the boundary control problem (1) for a trigonometric nonlinearity defined by

f(u) := sin(u).

The system is assumed to be initially in rest, i.e., u0 = y∗0 = 0. Let u1(x) and u2(x) denote two
steady states governed by (21) with y∗1 = 0.25 and y∗2 = 0.5. Flatness-based trajectory planning is
applied to determine the feedforward control to realize the smooth transition sequence u0 → u1 →
u2 within prescribed time intervals. We consider this example for

T0 = 0.25, T1 = 0.5, T2 = 0.75, T3 = 1.25 (23)
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and assign the desired basic output trajectory y∗ according to (22). Corollary 1 yields γy = 1/12
and My = 1/2Mψ. We set I := [0, T3] in Definition 2 and choose the constants in the scale function
as σ0 < σ1 < γy such that

‖y‖1 =
∞∑
n=0

σn1
n!2

max
t∈I
|y∗(n)(t)| ≤ My

1− σ1/γy
=: R0.

Application of Lemma 1 shows ‖y′‖1 <∞, which verifies Assumption (A1). Choosing σ1 := 1/60,
σ0 := σ1/2 yields R0 ≈ 10.9. It is left to show that the nonlinearity is admissible by analyzing the
assumptions of Lemma 3. Since all derivatives of the sine function are bounded it is particularly
simple to obtain (11). For R := 12, γf := 15 and Mf := 100 we obtain

max
x∈[−R,R]

| sin(n)(x)| ≤ 1 ≤Mf
n!2

γnf
, ∀n ∈ N0.

We conclude that Theorem 1 applies, which (setting s = 0) proves the existence of a local solution
u of (3) for x ∈ [0, r), t ∈ I, where u is a twice continuously differentiable function of x and
u(x, ·) ∈ G0.

5.3. Trigonometric nonlinearity – numerical results. We perform numerical simulations for
the domain [0, 1] × [0, 1.5] with ∆x = ∆t = 0.01 to compare the two algorithms presented in
Section 4. At first, discrete successive approximation is considered as described in Section 4.1,
where ε = 10−4 is assigned in (16). For the considered problem the resulting k∗ = 28 iterations
were evaluated in a normalized CPU time of tsacpu = 1. It is evident that the iterative discrete
successive approximation is computationally much more expensive than the explicit integration
proposed in Section 4.2. For the latter, the evaluation of the parametrization requires a normalized
CPU time tei

cpu = tsacpu/14 on the same machine.
The corresponding steady states uk and the numerically determined feedforward controls h∗sa(t)

and h∗ei(t) according to (17) and (19) for y replaced by y∗ are shown in Figure 1 (top). Thereby,
maxt |h∗sa−h∗ei(t)| < 10−4 is obtained, which confirms both the convergence and the accuracy of the
schemes. The original problem (1) was solved numerically by making use of the Matlab routine
pdepe for h = h∗ei(t). The resulting spatial-temporal evolution is depicted in Figure 1 (bottom, left)
in the (x, t)-plane. The profile confirms the precise realization of the desired finite time transition
starting at the zero initial state u0 to the final steady state u2 via the intermediate state u1. A
further comparison of the obtained trajectory u(0, t) and the desired path y∗ is provided in Figure
1 (bottom, right), which illustrates the high tracking accuracy by means of the flatness-based
feedforward control.

6. OUTLOOK

In this contribution, a novel flatness-based technique is proposed to solve trajectory planning
problems for semilinear parabolic distributed-parameter systems with boundary control avoiding
presently existing restrictions to polynomial nonlinearities. The approach is based on the interpre-
tation of the governing equations as an (abstract) Cauchy problem in the spatial coordinate, which
enables the introduction of a basic output to formally parametrize the system state and input.
Existence of solutions is analyzed for Gevrey class functions in scales of Banach spaces by making
use of a generalized Cauchy-Kowalevskaja Theorem and formal integration. These results more-
over directly enable to develop efficient semi-numerical techniques to solve the trajectory planning
problem. Simulation results confirm the theoretical results and illustrate both the applicability and
the achievable high tracking performance. Future work includes explicit estimates on the interval
of existence of solutions to the parametrized Cauchy problem and addresses the case of coupled
systems of PDEs.
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Figure 1. Numerical results for (1) with nonlinearity f(u) = sin(u) and desired
basic output trajectory (22) with (23). Steady state profiles (top, left); comparison
of feedforward controls (top, right); state evolution (bottom, left); comparison of
obtained y = u(0, t) and desired trajectory y∗ (bottom, right).

Appendix A. Proof of Lemma 1

Noting supx≥0{(σ/γ)xx2} = (2/e ln(γ/σ))2 for σ, γ ∈ R+ with σ < γ, we obtain

σn

n!2
|u(n+1)(t)| = 1

σ

(
σ

γ

)n+1

(n+ 1)2 γn+1

(n+ 1)!2
|u(n+1)(t)|

≤ 1

σ

[
2

e(ln γ − lnσ)

]2 γn+1

(n+ 1)!2
|u(n+1)(t)| ≤ M

σ

[
2

e(ln γ − lnσ)

]2

.

Appendix B. Lemma 3: Sketch of proof

The first part of the proof is a one-dimensional version of a result in [10]. The assumption on f
implies that

∞∑
j=0

Rj

j!2
max
x∈J
|f (j)(x)| ≤

Mf

1− (R/γf )
:= C0. (24)
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where J := [−R,R]. To obtain an estimate for the n-th derivative of the composition f ◦ v the
following version of the formula of Faà di Bruno, cf. [10], is used

(f ◦ u)(n) =
n∑
j=1

f (j) ◦ u
j!

∑
k1,...,kj∈N∑

ki=n

n!

k1! · · · kj !

j∏
i=1

v(ki)

for n ≥ 1. Furthermore, it can be easily verified by induction that j! ≤ n!/(k1! · · · kj !) for j ≥ 1
and k1, . . . , kj ∈ N with

∑
ki = n. This implies 1/(n!j!k1! · · · kj !) ≤ 1/(j!k1! · · · kj !)2. For n ≥ 1 it

hence follows that

σn(s)

n!2
max
t∈I
|(f ◦ u)(n)(t)| ≤

n∑
j=1

maxt∈I |(f (j) ◦ u)(t)|
j!2

∑
k1,...,kj∈N∑

ki=n

j∏
i=1

σki(s)

ki!2
max
t∈I
|u(ki)(t)|.

Taking the sum over n yields

∞∑
n=1

σn(s)

n!2
max
t∈I
|(f ◦ u)(n)(t)| ≤

∞∑
j=1

maxt∈I |(f (j)◦u)(t)|
j!2

∑
k1,...,kj∈N

j∏
i=1

σki(s)

ki!2
max
t∈I
|u(ki)(t)|

=

∞∑
j=1

1
j!2

max
t∈I
|(f (j) ◦ u)(t)|

( ∞∑
k=1

σk(s)
k!2

max
t∈I
|u(k)(t)|

)j
≤
∞∑
j=1

Rj

j!2
max
t∈I
|(f (j) ◦ u)(t)| ≤

∞∑
j=1

Rj

j!2
max
x∈J
|f (j)(x)| <∞.

Since maxt∈I |(f ◦ u)(t)| ≤ maxx∈J |f(x)| we conclude that

||F (v)||s =
∞∑
n=0

σn(s)

n!2
max
t∈I
|(f ◦ u)(n)(t)| ≤ C0.

Using similar arguments it can be shown that F : Bs(R) ⊂ Gs → Gs is differentiable at u ∈ Bs(R)

in the sense of Fréchet with derivative F (1)(u), where

[F (1)(u)v](t) := (f ′ ◦ u)(t) · v(t).

An application of the mean value theorem for the Fréchet derivative yields the existence of a
constant CF such that

||F (u)− F (v)||s ≤ CF ||u− v||s.
For further details, the reader is referred to [17].

B.1. Proof of Lemma 4. We study the properties of ψ and restrict ourselves to t ∈ (0, 1/2] for
symmetry reasons. The function ψ is real analytic on (0, 1) and can thus be analytically extended
to a complex function in a small neighbourhood of t for every t ∈ (0, 1/2]. For n ∈ N0 Cauchy’s
integral formula is applied to obtain

ψ(n)(t) =
n!

2πi

∫
Γ

ψ(z)

(z − t)n+1
dz,

where we set Γ := {z ∈ C : z = t+ t/2 exp(iϕ), t ∈ (0, 1
2 ], ϕ ∈ [0, 2π)}. Note that Re(1/z(1− z)) =

Re(1/z) + Re(1/1 − z) and for z ∈ Γ the individual terms can be estimated by Re(1/1 − z) ≥ 1,
10



Re(1/z) ≥ 2/(3t) such that |ψ(z(t, ϕ)| ≤ (1/e) exp (−2/(3t)). This estimate and the change of
variables from z to ϕ in the above integral yields

|ψ(n)(t)| ≤ n!

e

(
2

t

)n
e−2/3t ≤ n!

e

(
3n

e

)n
≤ n!23n

e
,

where we use the fact that xae−bx ≤ (a/eb)a for a ≥ 0 and b > 0, as well as the estimate nn ≤ n!en.
For n ≥ 1 this implies

|Ψ(n)
T (t)| = |ψ

(n−1)(t/T )|
Ψ0Tn

≤ n!2

3eΨ0

(
3

T

)n
.

Note that 1/(3eΨ0) > 1 and since |ΨT (t)| ≤ 1 we conclude that the above estimate holds for all
n ≥ 0.
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