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Karl Rupp1,2, Ansgar Jüngel1, and Tibor Grasser2

1 Institute for Analysis and Scientific Computing, TU Wien
Wiedner Hauptstraße 8–10, A-1040 Wien, Austria

2 Institute for Microelectronics, TU Wien
Gußhausstraße 27-29, A-1040 Wien, Austria

rupp@iue.tuwien.ac.at

Abstract. The solution of large systems of linear equations is typically
achieved by iterative methods. The rate of convergence of these methods
can be substantially improved by the use of preconditioners, which can
be either applied in a black-box fashion to the linear system, or exploit
properties specific to the underlying problem for maximum efficiency.
However, with the shift towards multi- and many-core computing archi-
tectures, the design of sufficiently parallel preconditioners is increasingly
challenging.

This work presents a parallel preconditioning scheme for a state-of-
the-art semiconductor device simulator and allows for the acceleration of
the iterative solution process of the resulting system of linear equations.
The method is based on physical properties of the underlying system
of partial differential equations and results in a block preconditioner
scheme, where each block can be computed in parallel by established se-
rial preconditioners. The efficiency of the proposed scheme is confirmed
by numerical experiments using a serial incomplete LU factorization pre-
conditioner, which is accelerated by one order of magnitude on both
multi-core central processing units and graphics processing units with
the proposed scheme.

1 Introduction

With the introduction of multi-core central processing units (CPUs) in average
desktop computers as well as the use of graphics processing units (GPUs) for
general purpose computations, established serial algorithms need to be adjusted
or even replaced by parallel variants. In particular, it can be very challenging to
use the massively parallel architecture of GPUs with hundreds of threads even
for standard algorithms like matrix-matrix multiplications efficiently [13].

While impressive performance for linear algebra operations can be obtained
on GPUs, there are concerns about the use of GPUs from a productivity point of
view [2]. While in some cases OpenMP [15] allows for a parallelization of existing
code by adding a few lines of code only, GPU programming using OpenCL [11]
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or CUDA [14] requires a deep understanding of the underlying GPU computing
architecture and often a complete redesign of existing CPU-based code. Conse-
quently, the shorter execution times may not balance the increased development
effort.

While existing GPU libraries tend to provide only basic LAPACK-style
functionality, our C++ library ViennaCL [19] provides high-level access to the
vast computing resources of multi-core CPUs and GPUs using OpenCL. The
application programming interface is compatible with uBLAS from the peer-
reviewed Boost libraries [1] and thus hides the details of the GPU computing
hardware from the user, while providing convenient use and high performance
computations. Like other GPU libraries such as CUBLAS [14] and MAGMA
[12], ViennaCL provides BLAS level 1, 2 and 3 routines for dense linear algebra
operations. However, the focus is on sparse matrices and iterative solvers as well
as high usability, which is also the case for the CUDA-based Cusp library [3].
ViennaCL targets shared memory systems and can be run on multiple GPUs.
An investigation of dense matrix-matrix multiplications on heterogeneous dis-
tributed memory architectures using MPI has already been carried out [21] and
shown that a distribution of the problem at hand should be accomplished on a
higher level in order to keep communication overhead under control.

For the solution of partial differential equations, discretization schemes like
the finite element, the finite difference or the finite volume method lead to large
systems of linear equations, for which iterative solvers are typically employed
[17]. The efficiency of such iterative solution schemes depends on the condition
number of the underlying system matrix. Therefore, preconditioners often need
to be employed in order to obtain a good convergence rate. However, the design
of good parallel preconditioners can be very challenging and problem-specific
[18]. Parallel black-box preconditioners for ViennaCL are in preparation, but
they typically come at the expense of spectral efficiency compared to – possibly
serial – problem-specific techniques. The successful implementation of rather
complex preconditioners for GPUs is continuously reported by a number groups
in various fields, e.g. [7] for algebraic multigrid methods, [22] for a factored sparse
approximate inverse technique or [8] for results on a multi-colored incomplete
LU (ILU) factorization.

In this work we present a parallel preconditioner for our state-of-the-art semi-
conductor device simulator. We demonstrate that only a single additional com-
pute kernel added to the functionality already provided in ViennaCL allows to
reduce execution times by about one order of magnitude compared to a single-
threaded execution. This readily shows that a library-centric design of GPU-
based algorithms allows for short code development times, while leveraging the
full power of multi-core CPUs and GPUs.

We give an overview of the simulator in Sec. 2. The block preconditioning
scheme we have recently derived from the underlying problem formulation is
motivated, detailed and discussed in Sec. 3, 4 and 5, which is the key for the
parallelization of the iterative solver. Results are discussed in Sec. 6 and a con-
clusion is drawn in Sec. 7.
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2 A Deterministic Solution Approach for the Boltzmann
Transport Equation for Semiconductors

The Boltzmann transport equation (BTE) for semiconductors is given by

∂f

∂t
+ v · ∇xf + F · ∇pf = Q{f} (1)

and commonly considered to be the best semi-classical description of carrier
transport in semiconductors. Here, f(x,p, t) denotes the distribution function
of carriers in the device with respect to the spatial location x, momentum p and
time t. The velocity v is given by the energy band structure of the material, the
force F is obtained from the electrostatic potential, and the scattering operator
Q{f} is given in low-density approximation as

Q{f} =

∫
B
S(p′,p)f(p′)− S(p,p′)f(p) dp′ , (2)

where B denotes the Brillouin-zone of the material and S(·, ·) denotes the scat-
tering rate from one state to another.

The high dimensionality of the problem as well as the integro-differential na-
ture make the solution of the BTE very challenging. While the stochastic Monte
Carlo method has been the method of choice for a long time, the spherical
harmonics expansion (SHE) method has become an increasingly attractive al-
ternative. Here, the momentum-part of the distribution function is expanded
into spherical harmonics Yl,m as

f(x,p, t) ∼=
L∑

l=0

l∑
m=−l

fl,m(x, H, t)Yl,m(θ, ϕ) , (3)

where H denotes total energy. The series is truncated at a finite expansion order
L, typically L ∈ {1, 3, 5}. In the following, only the steady-state is considered.

While the application of the SHE method has long been restricted to
one-dimensional device simulations due to high memory requirements, enough
memory is available on modern computers to allow for two-dimensional device
simulations [9]. While fully parallel implementations of the Monte Carlo method
have already been reported [23], an artificial restriction of the SHE method to a
single CPU core would be detrimental to the attractiveness of the method.

The SHE method ultimately leads to the solution of large systems of linear
equations for the expansion coefficients fl,m in the (x, H) space. A nonlinear
iteration scheme is typically employed to ensure self-consistency of the BTE
with the Poisson equation describing the electrostatic potential. As discussed by
Jungemann et al. [10], the indefinite system of linear equations resulting from the
SHE equations requires a good preconditioner in order to obtain convergence of
iterative solvers. This is in contrast to many other problem classes, where e.g. the
positive definiteness of the system matrix typically ensures convergence, even if
the number of iterations required might be large. In recent publications on the
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Fig. 1. Trajectories of carriers in free flight within the device are given by constant
total energy H . Carriers can change energy only through inelastic scatting, which is
instant in time and localized space.

SHE method [9,10], an ILU preconditioner was used for that purpose. ILU is
a widely accepted black-box preconditioner [17], but in its pure form restricted
to single-threaded execution. Even though parallel block-variants of ILU as well
other parallel preconditioning techniques such as sparse approximate inverses
[6] or polynomial preconditioners have been developed, their convergence en-
hancement can be typically considerably lower than for single-threaded variants
[17,18].

3 Physics-Based Block-Preconditioning

To obtain a set of equations for the unknown expansion coefficients fl,m in (3),
the BTE is formally projected onto the individual spherical harmonics Yl,m. In
operator form, the SHE equations in steady state can then be written as

Ll,m{f} = Ql,m{f} , l = 0, . . . , L, m = −l, . . . , l ,

where Ll,m and Ql,m denote the projections of the streaming operator and the
scattering operator onto the spherical harmonics Yl,m respectively. Employing
the H-transform [9,5], carrier trajectories in free flight are given by hyperplanes
of constant total energy H in the simulation domain (x, H), cf. Fig. 1. This is
reflected in the model by the fact that Ll,m does not couple any of the, say, NH

different energy levels in the simulation domain.
Carriers within the device can change their total energy only by inelastic

scattering events, thus the scattering operator Ql,m{f} is responsible for cou-
pling different energy levels. However, if only elastic scattering processes are
considered, the total energy of the involved particles remains unchanged and
the different energy levels do not couple. Therefore, in a SHE simulation using
only elastic scattering and NH different energy levels, the resulting system of
linear equations is consequently decoupled into NH independent problems. Such
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a decomposition has been observed already in early publications on SHE [4],
but it has been of no practical relevance since inelastic scattering processes are
essential for predictive device simulation.

Inelastic scattering processes like optical phonon scattering couple different
energy levels. As devices are scaled down, the average number of scattering events
of a carrier while moving through the device decreases and weakens the coupling
between different energy levels. At the algebraic level this can be reasoned as
follows: Using a box integration scheme as proposed by Hong et al. [9], the
volume integral over the free streaming operator Ll,m is transformed to a surface
integral due to the divergence operator with respect to the spatial variable x.
Therefore, if the typical device length d is scaled to d′ := αd with 0 < α < 1, the
contributions from the free streaming operator scale as αn−1, where n denotes the
spatial dimension considered in the simulation. However, the scattering terms
are obtained by an integration over the control volume, which scales as αn.
Therefore, in the limit of extremely scaled devices, the coupling between different
energy levels is negligible.

While the preconditioner is motivated by physical arguments at the continu-
ous level, a discretization still has to be employed. Following the discretization
proposed by Hong et al. [9], the even order expansion coefficients are associated
with grid nodes and represent densities, while odd order expansion coefficients
are associated with edges and represent fluxes. Odd order expansion coefficients
can be condensed [10,16], such that one finally obtains a linear system of equa-
tions for the even order expansion coefficients at discrete locations in the (x, H)
domain. Let Sfull denote this condensed system matrix and Selastic the system
matrix of the decoupled problem obtained in the same way by ignoring any con-
tributions from inelastic scattering processes. Then we propose to construct the
preconditioner P full for Sfull as

P full ≈ (Sfull)
−1 ≈ (Selastic)

−1 ≈ P elastic . (4)

Since the elastic problem is decoupled into NH subproblems, Selastic decomposes
into NH independent blocks. For each of these blocks, a (possibly serial) pre-
conditioner can be efficiently set up as well as applied to the residual vector in
parallel. Moreover, due to the decoupling of the system matrix into independent
blocks, the proposed scheme is also perfectly suitable for distributed memory
architectures.

4 Symmetrization of the Scattering Processes

Due to the exponential decay of the distribution function with respect to carrier
energy, the scattering rate from higher energy to lower energy is much higher
than vice versa. This asymmetry of inelastic scattering processes for energies Hi

and Hj , i < j, with respect to energy manifests itself in the system matrix in the
form of large values in the block with energy index (Hi, Hj), and small entries in
the block (Hj , Hi), cf. Fig. 2. Therefore, the upper triangular part of the system
matrix is populated with much larger values than the lower triangular part. It
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Fig. 2. Structure of the system matrix for total energy levels H1 < H2 < . . . < HNH

before (left) and after (right) symmetrization. Unknowns at the same total energy Hi

are enumerated consecutively, inducing a block-structure of the system matrix. For
simplicity, scattering is depicted between energy levels H1 and H2 only, using arrows
with thickness proportional to the magnitude of the entries. As devices are scaled down,
the entries in off-diagonal blocks become small compared to the entries in the diagonal
blocks.

should be noted that this asymmetry ensures that the equilibrium solution is a
Maxwell (or more generally, a Fermi-Dirac) distribution.

The large values in the upper triangular part of the matrix are a hindrance
for the construction of the preconditioner by neglecting off-diagonal blocks. We
reduce this asymmetry by rescaling the unknowns of the discrete system accord-
ing to the expected exponential decay. The new discrete unknowns f ′

l,m(xi, Hi, t)
are obtained from the old discrete unknowns fl,m(xi, Hi, t) by

f ′
l,m(xi, Hi, t) := exp

(
εi

kBT

)
fl,m(xi, Hi, t) , (5)

where εi denotes the kinetic energy at point (xi, Hi), kB is the Boltzmann con-
stant and T denotes a scaling temperature which is either set to room tempera-
ture, lattice temperature or can be seen as a numerical parameter. The benefit
of this rescaling is that in equilibrium the primed unknowns are then of similar
order and show little to no exponential behavior. It should be noted that the
proposed rescaling can be written in matrix form equivalently as

Sf = b ⇔ SDf ′ = b ,

where D is a diagonal matrix with the diagonal terms given by the reciprocals
of the exponentials in (5). The matrix S′ := SD represents the system matrix
with rebalanced off-diagonal scattering blocks. Here, symmetrization refers to
rescaling the unknowns such that the entries in the off-diagonal blocks (Hi, Hj)
and (Hj , Hi) are of similar magnitude – it does not denote symmetry of the
system matrix in the strict mathematical sense.
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5 Practical Considerations

For the construction of the preconditioner it is not necessary to set up another
system matrix Selastic explicitly. Since the contribution of inelastic scattering
operators to the diagonal blocks is positive, it is of advantage to use the block
diagonal of Sfull for setting up the preconditioner. Thereby, extra memory for a
second system matrix is avoided.

It has been observed in numerical experiments that the rescaling of unknowns
leads to better results if the temperature T in (5) is set above room temperature.
The physical interpretation is that carriers are heated in areas of large electric
fields, thus having a lower exponential decay rate, which relates to a higher
temperature. Good results are obtained with T = 400K and only a low sensitivity
of the number of iterations on the parameter T is observed.

The rows of the system matrix S′ can be normalized prior to the block-
factorization. This leads to a matrix S′′ given as

S′′ = ES′ = ESD ,

where the diagonal matrix E consists of the inverses of the row norms. Thus,
a two-sided diagonal preconditioner is applied to the initial system matrix S
before launching the block-preconditioning scheme.

Within ViennaCL, the call to the iterative solver is given in the mnemonic
form

x = solve(A, b, solver_tag , precond);

where A denotes the system matrix, x and b the result and the right hand side
vector respectively, the solver_tag allows to select the respective solver and
precond specifies the optional preconditioner. For the case of SHE using the
BiCGStab [20] iterative solver and the custom parallel block preconditioner, the
respective code lines for the user are

x = solve(A, b, bicgstab_tag (), she_block_precond );

where she_block_precond is a functor that applies the preconditioner to the resid-
ual in each iterative solver step. Therefore, the user can focus all development
efforts on the preconditioner only, without having to deal with other details
of the underlying iterative solver. In particular, comparisons with the built-in
ILU factorization with threshold (ILUT) preconditioner in ViennaCL are carried
out by

// MatrixType denotes the type of the matrix A

ilut_precond <MatrixType > ilut(A, ilut_tag ());

x = solve(A, b, bicgstab_tag (), ilut);

thus allowing a simple means to switch between different iterative solvers as well
as different preconditioners.
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6 Results

As a benchmark for the proposed block preconditioning scheme, we consider the
spatially two-dimensional simulation of an n+nn+ diode with different lengths of
the intrinsic region. ILUT is used as a preconditioner for each block. As outlined
in Sec. 5, the same preconditioner is used as a single-threaded preconditioner
for the full system matrix, since ILU-type preconditioners have been employed
in other recent works. It has to be emphasized that the preconditioner used for
each block in our scheme can be chosen arbitrarily, thus we aim at confirming the
applicability of the physically motivated scheme only, since it then enables the
use of any possibly serial preconditioner in a highly parallel fashion. BiCGStab
[20] is used as linear solver, since it provides a lower memory footprint than the
GMRES method [17] used in [10].

Execution times of the iterative BiCGStab solver are compared for a single
CPU core using ILUT for the full system matrix, and for the proposed parallel
scheme using multiple CPU cores of a quad-core Intel Core i7 960 CPU with
eight logical cores. In addition, comparisons for a NVIDIA Geforce GTX 580
GPU are found in Figs. 3. The parallelization on the CPU is achieved using the
Boost.thread library [1], and the same development time was allotted for the
OpenCL kernel on the GPU. This allows for a comparison of the results not
only in terms of execution speed, but also in terms of productivity.

As can be seen in Figs. 3, the performance increase for each linear solver step is
more than one order of magnitude compared to the single-core implementation.
This super-linear scaling with respect to the number of cores on the CPU is due
to the better caching possibilities obtained by the higher data locality within
the block-preconditioner.

The required number of iterations using the block-preconditioner decreases
with the device size. For a 25 nm intrinsic region, the number of iterations is
only twice than that of an ILUT preconditioner for the full system. At an intrinsic
region of 200 nm, four times the number of iterations are required. This is a very
small price to pay for the excellent parallelization possibilities.

Overall, the multi-core implementation is by a factor of three to ten faster
than the single core-implementation even though a slightly larger number of
solver iterations is required. The purely GPU-based solver with hundreds of
simultaneous lightweight threads is by up to one order of magnitude faster than
the single-core CPU implementation.

The comparison in Fig. 3 further shows that the SHE order does not have
a notable influence on the block-preconditioner efficiency compared to the full
preconditioner. The slightly larger number of solver iterations for third order
expansions is due to the higher number of unknowns in the linear system. The
performance gain is almost uniform over the length of the intrinsic region and
slightly favors shorter devices, thus making the scheme an ideal candidate for
current and future scaled-down devices.
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Fig. 3. Execution times per solver iteration, number of solver iterations and total
solver execution time for a first-order (left) and a third-order (right) SHE simulation of
n+nn+ diodes with different lengths of the intrinsic region. As expected from physical
arguments, the parallel preconditioner performs the better the smaller the length of the
intrinsic region gets. The GPU version performs particularly well for the computation-
ally more challenging third-order SHE. A reduction of total execution times compared
to a single-threaded implementation by one order of magnitude is obtained.

7 Conclusions

Our case-study of employing a problem-specific parallel preconditioner within
ViennaCL for the acceleration of a semiconductor device simulator readily shows
that library-centric design for algorithms on GPUs and multi-core CPUs based
on OpenCL allows for high productivity. A development of the full GPU solver
from scratch for the particular problem at hand would have resulted in devel-
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opment effort that is at least an order of magnitude larger than a comparable
implementation for multi-core CPUs in e.g. C++, while only a performance gain
of about an additional factor of two would have been obtained.

The parallel block-preconditioning scheme is proposed and demonstrated to
be very efficient especially for scaled-down devices. In contrast to black-box block
preconditioners, the proposed scheme is based on a sound physical principle. The
number of iterations compared to a single-threaded ILUT preconditioner for the
full system matrix is two to four times as large, but this is only a minor price
to pay for the huge degree of parallelism provided for the crucial precondition-
ing step. On the whole, an overall performance improvement of one order of
magnitude is obtained for our test case.
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