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Abstract

The viscous quantum hydrodynamic equations for semiconductors with constant tem-
perature are numerically studied. The model consists of the one-dimensional Euler
equations for the electron density and current density, including a quantum correction
and viscous terms, coupled to the Poisson equation for the electrostatic potential.
The equations can be derived formally from a Wigner-Fokker-Planck model by a mo-
ment method. Two different numerical techniques are used: a hyperbolic relaxation
scheme and a central finite-difference method. By simulating a ballistic diode and a
resonant tunneling diode, it is shown that numerical or physical viscosity changes sig-
nificantly the behavior of the solutions. Moreover, the current-voltage characteristics
show multiple regions of negative differential resistance and hysteresis effects.
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1 Introduction

Quantum semiconductor devices, like high-electron-mobility transistors (HEMT), superlat-
tices or resonant tunneling diodes, are becoming of increasing importance in state-of-the-
art semiconductor modeling. These devices rely on quantum tunneling of charge carriers
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through potential barriers for their operation. The fundamental model for quantum devices
is the kinetic Wigner equation (or the formally equivalent Schrödinger equation) [31, 37]:

∂tw +
~

m
k · ∇xw +

q

~
θ[V ](w) = 0,

solved in a bounded domain representing the semiconductor device and supplemented with
appropriate initial and boundary conditions. Here, w = w(x, k, t) is the Wigner distribution
function depending on the space variable x ∈ R

d (d ≥ 1), the wave vector k ∈ R
d, and

the time t > 0. The physical parameters are the reduced Planck constant ~ = h/2π, the
effective mass m of the electrons, and the elementary charge q. The operator θ[V ] is defined
in the sense of pseudo-differential operators [41] as

(θ[V ])(w)(x, k, t) =
i

(2π)d

∫

Rd

∫

Rd

m

~

[
V

(
x +

η

2
, t

)
− V

(
x − η

2
, t

)]

× w(x, k′, t)e−i(k−k′)·ηdk′ dη,

where V = V (x, t) is the electrostatic (mean-feld-type) potential, selfconsistently given by
the Poisson equation

divx(εs∇xV ) = q(n − C(x)), x ∈ R
d, (1)

with the permittivity εs of the semiconductor material and the concentration of fixed
charged background ions C(x) (doping profile). The macroscopic particle density n(x, t)
and current density J(x, t) are related to the Wigner function by

n(x, t) =

∫

Rd

w(x, k, t)dp, J(x, t) =
q

m

∫

Rd

w(x, k, t)pdp,

with the momentum p = ~k.
Simulations of the Wigner equation are computationally expensive since the Wigner

distribution function is a function of time, space, and wave vector. Moreover, unphysical
reflections on the domain boundary have to be avoided, which is a delicate problem. There-
fore, in recent years, macroscopic descriptions for quantum semiconductor simulations have
been investigated. They have the advantages that they are computationally less expensive
than its microscopic counterparts, they are expressed in terms of intuitive macroscopic
quantities like particle density and current density, and macroscopic (classical) boundary
conditions can be imposed. In the following we review some fluid-type quantum models
used in the literature.

It is well known since 1927 that there exists a fluiddynamical formulation of the
Schrödinger equation [36]. In fact, by separating the real and the complex part of the
single-state Schrödinger equation, the electron density n(x, t) and current density J(x, t)
are satisfying (formally) the Madelung (or quantum hydrodynamic) equations

∂tn +
1

q
div J = 0, (2)

∂tJ +
1

q
div

(
J ⊗ J

n

)
− q2

m
n∇V − q~

2

6m2
n∇

(
∆
√

n√
n

)
= 0, (3)
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where the symbol ∇ denotes the spatial gradient and J ⊗ J the tensor with components
JiJk. The above model can be interpreted as a dispersive regularization of the pressureless
Euler equations [25].

In order to incorporate non-constant temperature effects, a small-temperature ansatz
[24] or a mixed state of single-particle Wigner functions [25] can be used, which yields the
additional term (qkBT0/m)∇n on the left-hand side of (3) (in the case of a constant scalar
particle temperature T0), where kB denotes the Boltzmann constant. Gardner [20] used
a moment method in order to derive formally quantum hydrodynamic equations (also for
non-constant temperature). The moment equations are closed taking an approximation of
the quantum thermal equilibrium due to Wigner [42]. A quantum hydrodynamic model
with a “smooth” potential has been derived in [22, 23]. Related quantum fluid-type models
are the quantum moment hydrodynamics systems of [14], the quantum energy-transport
models of [13] and the quantum drift-diffusion equations first used in [1] and numerically
solved, e.g., in [34, 39].

These approaches do not include collisions of electrons with impurities of the semi-
conductor or with phonons (except the relaxation-time term of [20]). In fact, a quantum
theory of collisions is still at a rather early stage (see, e.g., [3, 6, 16, 17]). A collision
operator of Fokker-Planck-type, which goes back to [7], has been proposed in [4, 8]. With
this operator the Wigner equation becomes

∂tw +
~

m
k · ∇xw +

q

~
θ[V ](w) =

Dpp

~2
∆kw +

1

τ0

divk(kw) +
Dpq

~
divx(∇kw) + Dqq∆xw, (4)

with constants

Dpp =
kBT0

mτ0

, Dpq =
Ω~

2

6πkBT0τ0

, Dqq =
~

2

12mkBT0τ0

,

where τ0 denotes the momentum relaxation time and Ω the cut-off frequency of the reservoir
oscillators. More precisely, this model governs the dynamical evolution of an electron
ensemble in the single-particle Hartree approximation interacting dissipatively with an
idealized heat bath consisting of an ensemble of harmonic oscillators and modeling the
semiconductor lattice. The constants Dpp, Dpq and Dqq constitute the phase-space diffusion
matrix of the system, and the term divk(kw)/τ0 can be interpreted as a friction term. For
a discussion of this model we refer to [4, 26].

From the Wigner-Fokker-Planck equation (4), moment equations as in [20] can be
derived, using an O(~2) approximation of the quantum thermal equilibrium state as a
closure condition. In fact, the only difference is the integration of the Fokker-Planck term
in the wave vector space. The resulting equations are as follows (see the appendix of [26]
for details):

∂tn +
1

q
divJ = Dqq∆n, (5)

∂tJ +
1

q
div

(
J ⊗ J

n

)
+

qkBT0

m

(
1 +

Dpq

kBT0

)
∇n − q2

m
n∇V − q~

2

6m2
n∇

(
∆
√

n√
n

)
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= − J

τ0

+ Dqq∆J, (6)

to be coupled to the Poisson equation (1) and supplemented with initial conditions for
n and J . For the choice of the boundary conditions, see section 3.1. The second-order
terms Dqq∆n and Dqq∆J can be interpreted as viscous terms. We stress the fact that
they are formally derived from the Wigner-Fokker-Planck model; they are not an ad-hoc
regularization of the quantum hydrodynamic model. The above viscous regularization is
different from the viscous terms in the classical Navier-Stokes equations since it models the
interactions of electrons and phonons in a semiconductor crystal. Usually, when applying
a moment method to the Boltzmann equation, one would expect the continuity equation

∂tn +
1

q
div J̃ = 0

to hold, instead of (5). However, writing (5) as

∂tn +
1

q
div (J − qDqq∇n) = 0,

we can interpret J̃ = J − qDqq∇n as the (effective) current density.
The objective of this paper is to discretize the viscous quantum hydrodynamic equations

(5)-(6) and (1) in one space dimension in order to understand the influence of the viscous
terms on the behavior of the solutions. These are the first numerical results of the viscous
quantum hydrodynamic model in the literature.

The stationary viscous quantum hydrodynamic equations have been analyzed in [26].
It has been shown that there exists a classical solution for so-called “weakly supersonic”
states, assuming a smallness condition on the effective current density J̃ . The long-time
behavior has been studied in [27].

For the inviscid quantum hydrodynamic model (Dqq = 0), more mathematical results
are available. Existence results for the stationary and time-dependent equations, all under
some smallness assumptions, have been obtained in [18, 28, 30, 32, 33, 43]. Concerning
the numerical solution, in most works the quantum hydrodynamic model (including an
equation for the temperature) has been considered as a perturbation of the hyperbolic Euler
equations and discretized by using a hyperbolic scheme, e.g. an upwind finite-difference
discretization [20] or a Runge-Kutta discontinuous Galerkin method [10, 11]. In [9] a
solver for ordinary differential equations has been employed. However, hyperbolic schemes
introduce numerical viscosity which may influence the behavior of the solution. In this
paper we show that this is indeed the case.

We discretize the quantum hydrodynamic equations using a hyperbolic relaxation scheme
and a central finite-difference approximation. We show numerically that the presence of
(artificial or physical) viscosity changes significantly the behavior of the solutions. As the
relaxation scheme introduces numerical viscosity around sharp gradients, the numerical so-
lution is quite different from the solution computed by the central finite-difference method
which avoids artifical viscosity.
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The originality of this paper consists in two facts. First, we make evident the influence of
viscosity on the quantum hydrodynamic model. Second, we simulate a resonant tunneling
diode and present current-voltage characteristics showing negative differential resistance
and hysteresis effects for the viscous model. We notice that hysteresis in the current-voltage
curve using the inviscid quantum hydrodynamic model has been first shown in [11].

The paper is organized as follows. In the next section we scale the equations. In section
3 the numerical methods are presented in detail and the schemes are tested. Section 4.1 is
concerned with the numerical simulation of a ballistic diode and the numerical study of the
inviscid and the semi-classical limit. In section 4.2 a resonant tunneling diode is simulated
and static current-voltage characteristics are computed. Finally, we conclude the paper in
section 5.

2 Scaling of the equations

We scale the viscous quantum hydrodynamic equations (5)-(6) and (1) by introducing a
characteristic length L (for instance, the device diameter) and the characteristic time τ0

and define the characteristic density, voltage and current density, respectively, by

C∗ = sup |C|, V ∗ =
kBT0

q
, J∗ =

qkBT0C
∗τ0

Lm

L

ι
,

where ι is the mean-free path defined by ι2 = kBT0τ
2
0 /m. After introducing the scaling

x → Lx, t → τ0t, n → C∗n, C → C∗C, V → V ∗V, J → J∗J,

we obtain the scaled viscous quantum hydrodynamic equations

∂tn + divJ = ν∆n, (7)

∂tJ + div

(
J ⊗ J

n

)
+ T∇n − n∇(V + Vext) −

ε2

2
n∇

(
∆
√

n√
n

)
= −J + ν∆J, (8)

λ2∆V = n − C(x). (9)

We have added to the left-hand side of (8) the term n∇Vext with the external potential
Vext(x) which models heterogenous semiconductor materials (see section 4 for details). The
scaled parameters are

ε2 =
1

6

(
Lb

L

)2

, ν =
1

6

(
Lb

L

)2
L

ι

t∗

τ0

, T = 1 +
1√
18π

Ω~

kBT0

Lb

ι
, λ2 =

εskBT0

q2L2C∗
,

and Lb = ~/
√

2mkBT0 is the de Broglie length. We have assumed that the permittivity
of the semiconductor is constant. Notice that the scaled effective temperature T is the
sum of the scaled temperature (which is one) and the correction Ω~Lb/

√
18πkBT0ι. In

the derivation of the Wigner-Fokker-Planck model it has been assumed that Ω~/kBT0 is of
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Parameter Physical meaning Numerical value
q elementary charge 1.6 · 10−19 As
m effective electron mass 0.063 · 9.11 · 10−31 kg
kB Boltzmann constant 1.380 · 10−23 J/K
~ reduced Planck constant 1.055 · 10−34 Js
εs semiconductor permittivity 12.9 · 8.85 · 10−12 As/Vm
T0 lattice temperature 77 K
τ0 momentum relaxation time 0.9 · 10−12 s

Table 1: Typical physical parameters for GaAs.

order one. Then the correction to the temperature is small if the mean free path is large
compared to the de Broglie length.

The values of the parameters which we employ for the numerical simulations are dis-
played in Table 1. Using

L = 125 nm, C∗ = 1024 m−3,

the scaled parameters become

ε2 = 9.734 · 10−4, ν = 9.935 · 10−4, T = 1.00585, λ2 = 3.032 · 10−4. (10)

3 Numerical schemes

We discretize the viscous quantum hydrodynamic equations (7)-(9) in the one-dimensional
interval Ω = (0, 1) using two methods: central finite differences and a relaxation scheme.

3.1 Central finite difference scheme

We introduce the uniform spatial mesh xi = i4x, i = 0, . . . , N , with 4x = 1/N and

denote by ni(t) and Ṽi(t) the numerical approximations of n(xi, t) and V (xi, t) + Vext(xi),
respectively, i = 0, . . . , N . The current density J is approximated by Ji−1/2(t) at the mid
points xi−1/2 = xi − 4x/2, i = 1, . . . , N . Central finite differences at xi for (7) and at
xi−1/2 for (8) yield the semi-discrete equations

dni

dt
= −Ji+1/2 − Ji−1/2

4x
+ ν

ni+1 − 2ni + ni−1

(4x)2
, i = 1, . . . , N − 1, (11)

dJi−1/2

dt
= − 1

4x

(
J2

i

ni

− J2
i−1

ni−1

)
− T

4x
(ni − ni−1) +

ni−1 + ni

24x
(Ṽi − Ṽi−1 + Qi − Qi−1)

− Ji−1/2 + ν
Ji+1 − 2Ji + Ji−1

(4x)2
, i = 1, . . . , N. (12)

Here, Qi is the discrete quantum term

Qi =
ε2

2(4x)2

(√
ni+1

ni

+

√
ni−1

ni

− 2

)
, (13)
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and Ji = (Ji−1/2 + Ji+1/2)/2. We impose the same boundary conditions as in [20]:

n0 = C(0), nN = C(1), n−1 = n1, nN+1 = nN−1,

J−1/2 = J1/2, JN+1/2 = JN−1/2.

The first two boundary conditions express that the total charge C − n vanishes at the
interval boundary.

The Poisson equation (9) is also discretized by central finite differences. The boundary
conditions for the electric potential are V0 = 0 and VN = U , where U is the applied
potential. First we solve

λ2ψi−1 + 2ψi − ψi−1

(4x)2
= ni − C(xi), i = 1, . . . , N − 1, (14)

with ψ0 = 0 and ψ1 = 0. The potential Vi satisfying the boundary condition at xN is then
given by Vi = ψi + i(U − ψN)/N , and the potential Ṽi = Vi + Vext(xi).

We solve (11)-(12) with an explicit second-order Runge-Kutta method. For each time
step, after solving (11)-(12), the Poisson equation (14) is solved using the new value for ni.
The stationary solution is computed as the long-time limit of the transient solution. The
time-step control is done heuristically, and the transient computations are stopped when
the changes of the average effective current and of the effective current density at selected
points are smaller than a certain tolerance. We recall that the effective current density
J − ν∂xn is constant in the stationary viscous model. At applied voltage U = 0, the initial
conditions for (11)-(12) may be chosen as n(x, 0) = C(x) and J(x, 0) = 0. After obtaining
the solution at applied voltage U we use this solution as initial data for (11)-(12) with an
applied voltage U + 4U for some increment 4U (continuation method).

The described scheme cannot be used for the inviscid problem (ν = 0) since there is
essentially no viscosity in the central finite difference discretization, whereas the physical
viscosity ν stabilizes the central scheme. In order to compute also solutions of the inviscid
stationary problem we use the same discretization as above but we solve the nonlinear
equations by employing the standard Newton-Raphson method.

3.2 Relaxation scheme

The system (7)-(8) can be seen as hyperbolic conservation laws (including potential terms
as well as dissipation and diffusion). The eigenvalues of the hyperbolic part are

λ± =
J

n
±

√
T .

In order to solve this hyperbolic system, we adapt a relaxation scheme based on the pio-
neering work of Jin and Xin [29] and further developed, e.g., in [2]. The relaxation scheme
proves to be an appropriate method for solving the classical hydrodynamic semiconductor
equations [35]. For these equations, also other numerical schemes have been employed,
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e.g., second-order upwind shock-capturing methods [19], the Runge-Kutta discontinuous
Galerkin method [12], or ENO (essentially non-oscillatory) schemes [40].

More precisely, we write the equations (7)-(8) as a hyperbolic system with source terms

∂tU + ∂xA(U) = (f 1, f 2)>,

where U = (n, J), A(U) = (J, J2/n + Tn)>,

f 1 = ν∂xxn, f 2 = −J + n∂x(Ṽ + Q) + ν∂xxJ

and Q = ε2(∂xx

√
n)/2

√
n. We discretize the convective system

∂tU + ∂xA(U) = 0

in a uniform spatial grid as in the previous subsection with grid points xi = i4x and grid
size 4x > 0 and assign a linear propagation speed matrix Λ = diag(λ1, λ2) with suitable
constants λ1, λ2 > 0 satisfying the subcharacteristic condition (see [2]). Denoting by Ui

an approximation of U(xi), a semi-discrete relaxed scheme with minmod limiter reads as
follows:

dUi

dt
=

A(Ui−1) − A(Ui+1)

24x
− 1

24x
ΛBi,

where

Bi = minmod(M+
i+1 − M+

i ,M+
i − M+

i−1) − minmod(M+
i − M+

i−1,M
+
i−1 − M+

i−2)

+ minmod(M−

i+2 − M−

i+1,M
−

i+1 − M−

i ) − minmod(M−

i+1 − M−

i ,M−

i − M−

i−1),

and

M±

i =
1

2
(Ui ± Λ−1A(Ui)).

Then we take into account the source terms f 1 and f 2 which are discretized with central
finite differences; i.e., with f 1

i and f 2
i denoting the approximations of f 1 and f 2 at xi,

respectively, we approximate

f 1
i = ν

ni+1 − 2ni + ni−1

(4x)2
,

f 2
i = −Ji +

ni

24x
(Ṽi+1 − Ṽi−1 + Qi+1 − Qi−1) + ν

Ji+1 − 2Ji + Ji−1

(4x)2
,

and Qi is given by (13). We end up with the ODE system

dUi

dt
=

A(Ui−1) − A(Ui+1)

24x
− 1

24x
ΛBi + (f 1

i , f 2
i )>,

which is solved by an explicit second-order Runge-Kutta method. We use the same set of
boundary conditions as in the previous subsection.
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3.3 Numerical tests

In this section we perform a numerical test for the two schemes proposed in the previous
subsections. We use as test problem a GaAs ballistic n+nn+ device with length L = 125 nm
and without external potential (Vext = 0). The channel length is 25 nm and the doping
profile C(x) is slightly smoothed around the junctions at x = 50 nm and x = 75 nm:

C(x) = [1 + 0.4995(tanh(10x − 750) − tanh(10x − 500))] · 1024 m−3, x ∈ [0, 125 nm].

The scaled parameters are given by (10).

0 20 40 60 80 100 120

10
17

10
18

0 20 40 60 80 100 120
−3

−2

−1

0

1

2
x 10

−4

Figure 1: Electron density (in cm−3) versus position (in nm), computed by the relaxation
scheme (left) and relative error between the relaxation scheme and the Newton-Raphson
scheme (right) using 500 grid points.

First we solve the inviscid problem (ν = 0) in thermal equilibrium (U = 0) using the
relaxation scheme. We choose the (unscaled) relaxation parameters λ1 = 0.05 and λ2 = 80
(in units of 105 m/s). In Figure 1 (left) the stationary electron density (obtained as the
long-time “limit” of the transient solution) is shown using 500 points. For comparison we
have also computed the particle density employing a standard Newton-Raphson scheme as
explained in section 3.1. In Figure 1 (right) the relative error of both solutions is shown.
The relative error is smaller than 3·10−4 with a grid size of 4x = 2·10−3. The relative error
between the relaxation scheme and the central finite-difference scheme (stabilized with a
very small viscosity) is of the same order. We remark that the oscillatory behavior of the
relative error comes from the dispersive leading-order “error” in the modified equation for
the numerical scheme.

It is worth mentioning that the choice of the relaxation parameters λ1 and λ2 can be
delicate. While they should be chosen large enough to maintain stability, the numerical
viscosity increases with increasing parameters [2]. For instance, fixing λ2 = 80, we compute
the particle and current densities for various values of λ1. Whereas the particle densities
are very similar (as in Figure 1), the current density changes significantly with different
λ1 (Figure 2). For larger λ1 we observe larger values of the current density, caused by the
numerical viscosity. On the other hand, for smaller λ1 we observe an increasing oscillation
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frequency. A reasonable choice of λ1 and λ2 requires a balance between dispersion and
dissipation for which, up to now, no theoretical result is available as a guide. On the other
hand, the effective current density J̃ computed by the Newton scheme is a constant and,
up to rounding errors, equal to zero.

0 50 100
−4

−2

0

2

4
x 10

4 (a)

0 50 100
−4000

−2000

0

2000

4000
(b)

0 50 100
−400

−200

0

200

400
(c)

0 50 100
−200

−100

0

100

200
(d)

Figure 2: Current density (in A/cm2) versus position (in nm), computed by the relaxation
scheme with the relaxation parameter λ2 = 80 and various values of λ1 (in units of 105 m/s):
(a) λ1 = 80, (b) λ1 = 10, (c) λ1 = 1, (d) λ1 = 0.05. In (c) and (d), unphysical high-
frequency oscillations can be observed.

The above results show that the numerical solution of the equations using the relaxation
scheme may be delicate. This observation becomes more important for positive applied
voltage. For instance, even at the rather low applied voltage U = 0.05 V, the particle
density is quite different for various values of the relaxation parameters λ1 and λ2 (Figure
3). For smaller relaxation parameters, more oscillations are observed. This also holds true
for the current density, depicted in Figure 4. Moreover, the (average) value of the current
density depends on the relaxation parameters.

We summarize that the behavior of the solution of the inviscid model depends strongly
on the artificial viscosity of the relaxation scheme. Clearly, it also influences the solution
of the viscous model, depending on the order of magnitudes of the numerical and the
physical viscosity. Therefore, in the following simulations we have only used the central
finite-difference scheme.
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Figure 3: Electron density (in cm−3) versus position (in nm), computed by the relaxation
scheme: (a) (λ1, λ2) = (80, 80); (b) (λ1, λ2) = (40, 80); (c) (λ1, λ2) = (20, 40); (d) (λ1, λ2) =
(10, 20). The values of λ1 and λ2 are in units of 105 m/s.

4 Numerical simulations

4.1 Numerical simulation of a ballistic diode

In order to understand the influence of the quantum term as well as the (physical) viscosity
we simulate a ballistic n+nn+ diode. We wish to compare our results to those of [38].
Therefore, we replace the term −J on the right-hand side of (8) by −J/τ and choose the
scaled parameters

ε = 0.00289, λ = 0.1, τ = 0.125

and the doping profile

C(x) = 1 + 0.45(tanh(1000x − 600) − tanh(1000x − 400)), x ∈ (0, 1).

First we study the inviscid quantum hydrodynamic equations. It is well known that the
classical hydrodynamic model (ε = 0) can develop a shock discontinuity in the transition
from a supersonic region to a subsonic region, while the transition from the subsonic to
the supersonic region is smooth [5]. As the sound speed in the scaled system is one, J < n
characterizes the subsonic region and J > n the supersonic zone. The two regions are
separated by the sonic line n = J (notice that J is constant in the stationary inviscid
problem).
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Figure 4: Current density (in A/cm2) versus position (in nm), computed by the relaxation
scheme: (a) (λ1, λ2) = (80, 80); (b) (λ1, λ2) = (40, 80); (c) (λ1, λ2) = (20, 40); (d) (λ1, λ2) =
(10, 20). The values of λ1 and λ2 are in units of 105 m/s.

In Figure 5 we present the electron density for different values of the applied voltage.
In the subsonic zone n > J the solution is smooth whereas in the supersonic zone n < J ,
the particle density oscillates with a wave length of order ε [38]. The oscillations are not

a numerical artefact as already pointed out in [38]. In fact, they are due to the dispersive
quantum term and double grid simulations give the same result. Comparing the above
results with the simulations using the viscous model with scaled viscosity ν = 4.267 · 10−3

(Figure 6), we observe that the oscillatory pattern is dissipated. The wave length is the
same as for the inviscid model, but the amplitude is smaller.

In the following we are interested in two asymptotic limits: the inviscid limit ν → 0
and the semi-classical limit ε → 0. In [26] it has been proved that the solutions converge
for ν → 0, ε → 0, respectively, to a solution of the limit problem (the inviscid quantum
hydrodynamic model or the viscous hydrodynamic model, respectively) under the assump-
tion that the current density is small enough. We want to present numerical results for
large current density or large applied voltage.

In Figure 7 the particle densities for various viscosities are displayed. The (scaled)
applied voltage is chosen to be U = 5, and the solutions are computed using the central
scheme of section 3.1. We observe that the oscillations are smeared out for larger viscosity
and vanish completely for large enough viscosities. This is more pronounced close to the
left junction x = 0.4 where the particles traveling from left to right enter the supersonic
region. For ν = 0.125ν0 ≈ 5 · 10−5 the solution almost coincides with the solution of the
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Figure 5: Electron density versus position of the inviscid quantum hydrodynamic model,
computed by the Newton method. The dashed line indicates the value of the current
density and separates the subsonic and supersonic regions. The (scaled) applied voltages
are (a) U = 0; (b) U = 4; (c) U = 5; (d) U = 6.

inviscid model in Figure 5.
The current density J also converges to the current density of the inviscid model as the

viscosity tends to zero (Figure 8). Notice that the variable J is not constant in the viscous
model. However, the effective current density J −ν∂xn is a constant. Therefore, we expect
the variable J to converge to the constant current density of the inviscid model. In Figure
8 the current density of the inviscid model is computed using the Newton method.

In the semi-classical limit ε → 0, the electron density seems to converge to a solution
with a very sharp gradient near x = 0.6 (Figure 9). This is in contrast to the convergence
behavior of the solution to the inviscid model. Indeed, for smaller values of ε, the frequency
of the oscillations increases, and it has been shown numerically in [38] that the solution
of the inviscid quantum hydrodynamic equations do not converge weakly to the solution
of the hydrodynamic model (in the transonic case). Therefore, the viscous terms seem to
regularize the equations in the semi-classical limit.

Another behavior is expected if both ε and ν tend to zero. In this situation the limit
are the classical hydrodynamic equations. We let ν tend to zero faster than ε by changing
ν and ε by ν · γ2 and ε · γ, respectively, and let γ → 0. Figure 10 for U = 5 shows that the
frequency of the oscillations of the electron density increases in the limit, and no (strong)
limit can be expected, similar as for the semi-classical limit in the inviscid model. Again,
the oscillations are not a numerical artefact as a double grid computation shows a similar
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Figure 6: Electron density versus position of the viscous quantum hydrodynamic model,
computed by the central finite-difference scheme of section 3.1. The scaled applied voltages
are (a) U = 0; (b) U = 4; (c) U = 5; (d) U = 6.

behavior. Due to the high-frequency oscillations we need a refined mesh for subplots (c)
and (d). For instance, we use 4000 grid points in subplot (d).

In [26] it has been shown that the combined limit ε → 0 and ν → 0 can be performed
rigorously in the “subsonic” viscous model. In particular, the solutions converge strongly
in some Lebesgue space. Figure 10 shows that strong convergence of the particle densities
seems not to hold in the “supersonic” case.

4.2 Simulation of a resonant tunneling diode

In this section we simulate a one-dimensional resonant tunneling diode using the viscous
quantum hydrodynamic model. The tunneling diode consists of highly doped GaAs regions
near the contacts and a lightly doped middle region of 50 nm length. The middle region
contains a quantum well of 5 nm length sandwiched between two 5 nm AlGaAs barriers.
This resonant barrier structure is itself sandwiched between two 5 nm GaAs spacer layers.
The physical effect of the barriers is a shift in the quasi-Fermi level which can be modeled
by an additional step function Vext added to the electrostatic potential. More precisely, the
device length is L = 125 nm, the doping profile has a sharp discontinuity,

C(x) =

{
5 · 1021 m−3 for 50 nm ≤ x ≤ 75 nm,

1024 m−3 else,
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Figure 7: Inviscid limit in the viscous quantum hydrodynamic model. Electron density
versus position for applied voltage U = 5 and viscosities (a) ν = 8ν0; (b) ν = 2ν0; (c)
ν = 0.5ν0; (d) ν = 0.125ν0 with ν0 = 4.267 · 10−3.
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Figure 8: Inviscid limit in the viscous quantum hydrodynamic model. Current density
versus position for applied voltage U = 4 and viscosities ν = αν0 with ν0 = 4.267 · 10−3.
Notice that the variable J is not constant in the viscous model.
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Figure 9: Semi-classical limit in the viscous quantum hydrodynamic model. Electron
density versus position with ν = 4.267 · 10−3, U = 5 and (a) ε = ε0; (b) ε = 0.5ε0; (c)
ε = 0.25ε0; (d) ε = 0.125ε0, where ε0 = 0.00289.

and the external potential Vext is taken as in [20]:

Vext(x) =

{
−0.209 V for x ∈ [55 nm, 60 nm] ∪ [65 nm, 70 nm],

0 else.

We are interested in the stationary current-voltage characteristics. For the numerical
computations we employ the continuation method. More precisely, we choose the stationary
solution of the hydrodynamic model (see [35]) as the initial data for zero applied voltage.
The solution converges numerically to a stationary solution of the viscous quantum model.
After obtaining a stationary solution at applied voltage U , we use it as the initial data
for the computation with applied voltage U + 4U , with a small non-uniform increment
4U . We take in the simulations 500 grid points and a time step of 10−5 ps. The transient
computations are stopped when the changes of the average current and of the current
density at selected points are smaller than 0.1%. The time to reach the steady state
depends on the increment 4U , but typically, the equilibrium is reached in 10 to 20 ps. We
recall that the relaxation time equals τ0 = 0.9 ps.

The numerical current-voltage characteristic in Figure 11 is computed by first increasing

the applied voltage from U = 0 V to U = 0.3 V and then, choosing the solution for the
largest applied voltage as the initial data, by decreasing the applied voltage. More precisely,
the curve displays the effective current density J − ν∂xn versus the applied voltage since
the variable J is not constant in the viscous model.
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Figure 10: Combined inviscid and semi-classical limit in the viscous model. Electron
density versus position for U = 5, ν = ν0γ

2 and ε = ε0γ, where ν0 = 4.267 · 10−3 and
ε0 = 0.00289. (a) γ = 1; (b) γ = 1/2; (c) γ = 1/4; (d) γ = 1/5.
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Figure 11: Effective current density (in A/cm−2) versus applied voltage (in V) for a resonant
tunneling diode. The arrows indicate the direction of increasing or decreasing applied
voltage.
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The characteristic shows several features. First, there are regions in which the effective
current density is decreasing with increasing applied voltage. These regions have a negative
differential resistance and characterize the tunneling diode. Multiple regions of negative
differential resistance in the inviscid model have been first observed in [21]. Second, the
curve has very sharp gradients just before the regions of negative differential resistance.
More precisely, the jumps occur when the applied voltage is increased from U = 0.2070 V
to U = 0.2075 V and from U = 0.2735 V to U = 0.2740 V. Physically, we expect sharp
gradients just after the local maximum of the current density and not before. Why the
viscous quantum hydrodynamic model shows a different behavior is under investigation. A
possible reason could be that the temperature is assumed to be constant. In fact, the usual
quantum hydrodynamic simulations in the literature (e.g., [11, 20, 23]) always include the
energy equation.

In Figure 12 the particle densities just before and after the jump are shown. We
observe that the electron density develops a “wiggle” when the current density jumps. For
decreasing applied voltage, the jumps occur at smaller values of U . In fact, the curve
shows a hysteresis effect. Hysteresis in the current-voltage curve of the inviscid quantum
hydrodynamic model has been already observed in [11]. The reported characteristic is
different from our results since the authors in [11] do not observe jumps in the curve.
However, in [11] a different model is used (the temperature equation is included) and a
hyperbolic solver is used which introduces non-uniform numerical viscosity. Therefore, it is
not surprising that hysteresis also occurs in our viscous model. Mathematically, hysteresis
indicates non-uniqueness of solutions. There are values of the applied voltage for which
there are at least two solutions (Figure 13).

0 20 40 60 80 100 120
10

14

10
15

10
16

10
17

10
18

0 20 40 60 80 100 120
10

14

10
15

10
16

10
17

10
18

10
19

Figure 12: Electron density (in cm−3) versus position (in nm) in a resonant tunneling
diode. Left figure: U = 0.2070 V (solid line) and U = 0.2075 V (dashed line). Right figure:
U = 0.2735 V (solid line) and U = 0.2740 V (dashed line).

The influence of the viscosity on the current-voltage characteristics is shown in Figure
14. We clearly see that the sharp gradients are smoothed by the viscous effects. Although
the viscosity constant is only changed by a factor two, the curves are quite different which
shows that the models depend very sensitively on the viscosity constant. This observation
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Figure 13: Electron densities (in cm−3) versus position (in nm) in a resonant tunneling
diode at U = 0.204 V (solid line for increasing applied voltage and dashed line for decreasing
applied voltage).

indicates that the use of hyperbolic solvers with non-uniform artificial viscosity, applied to
the quantum hydrodynamic equations, has to be done with care.

The final Figure 15 is concerned with the influence of the lattice temperature. A larger
temperature constant seems also to smoothen the current-voltage curve. We expect that
for larger lattice temperature, the thermal diffusion of the electrons destroys the resonant
effects, and no regions with negative differential resistance can be observed anymore.

5 Conclusions

We have discretized the inviscid and the viscous quantum hydrodynamic equations using
a central finite-difference and a relaxation scheme. Numerical tests showed that the re-
laxation scheme seems to be inappropriate to solve the equations numerically since the
numerical viscosity changes the behavior of the solutions significantly. On the other hand,
the central scheme avoids any artifical viscosity.

The inviscid limit and the semi-classical limit have been performed numerically in
the viscous quantum model. It turns out that the solution converges numerically to the
solution of the limit model even in the supersonic zones. However, in the combined limit,
the particle density develops high-frequency oscillations and no (strong) convergence can
be expected.

Finally, we simulated a resonant tunneling structure. The current-voltage characteristic
shows negative differential resistance and hysteresis effects. Moreover, the viscosity terms
make the characteristics “smoother”.
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Figure 14: Effective current density (in A/cm−2) versus applied voltage (in V) for a resonant
tunneling diode with two viscosity constants: ν = ν0 (thin solid line) and ν = 2ν0 (thick
dotted line) with ν0 = 0.00289.
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Figure 15: Effective current density (in A/cm−2) versus applied voltage (in V) for a resonant
tunneling diode with lattice temperature T0 = 77 K (solid line) and T0 = 300 K (dashed
line).
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