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Abstract. A strong compactness result in the spirit of the Lions-Aubin-Simon lemma is
proven for piecewise constant functions in time (uτ ) with values in a Banach space. The
main feature of our result is that it is sufficient to verify one uniform estimate for the
time shifts uτ − uτ (· − τ) instead of all time shifts uτ − uτ (· − h) for h > 0, as required in
Simon’s compactness theorem. This simplifies significantly the application of the Rothe
method in the existence analysis of parabolic problems.

1. Introduction

A useful technique to prove the existence of weak solutions to nonlinear evolution equa-
tions and their systems is to semi-discretize the equations in time by the implicit Euler
method (also called Rothe method [5]):

(1)
1

τ

(
uτ (t) − uτ (t − τ)

)
+ A(uτ (t)) = fτ (t), τ ≤ t < T, uτ (0) given,

where τ > 0 is the time step, A is an abstract (nonlinear) operator defined on a certain
Banach space, and fτ is some (piecewise constant) function with values in a Banach space.
In this way, nonlinear elliptic problems are obtained which are sometimes easier to solve.
In order to pass to the limit of vanishing time steps, τ → 0, (relative) compactness for the
sequence of piecewise constant approximate solutions (uτ ) is needed. Since the problem is
nonlinear, we need strong convergence of (a subsequence of) (uτ ) to identify the limit. If
the governing operator is monotone, the limit can be identified using Minty’s trick (see,
e.g., [6, Lemma 2.13]). Having suitable a priori estimates at hand, strong compactness can
be concluded from the Aubin (or Lions-Aubin-Simon) lemma [7] which is a consequence of
a compactness criterium due to Kolmogorov. However, the results of [7] are not directly
applicable. Indeed, typically one can derive the uniform estimate

(2) ‖uτ − uτ (· − τ)‖L1(τ,T ;Y ) = τ ‖−A(uτ ) + fτ‖L1(τ,T ;Y ) ≤ Cτ,
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where C > 0 does not depend on τ , and Y is some Banach space. On the other hand, in
order to apply the Aubin lemma, one needs [7, Theorem 3]

(3) ‖uτ − uτ (· − h)‖L1(h,T ;Y ) → 0 as h → 0, uniformly in τ > 0.

A possible way to avoid this problem is to construct linear interpolants of uτ , say ũτ , for
which a continuous time-derivative version of the Aubin lemma can be applied, giving
ũ → u in L1(0, T ; B) as τ → 0 for some Banach space B [7, Corollary 4]. Since we need
strong convergence of (uτ ), one has to show that uτ − ũτ → 0 in L1(0, T ; B), which might
be difficult to prove (see Section 4 for a situation in which such a proof is possible).

In this note, we show that estimate (2) suffices to infer strong compactness of (uτ ). The
main feature of our result is that it is sufficient to study the time shifts uτ − uτ (· − τ)
instead of all time shifts uτ − uτ (· − h) for all h > 0. This simplifies the proof of the limit
τ → 0 in (1) significantly.

For our main results, let T > 0, N ∈ N, τ = T/N , and set tk = kτ , k = 0, . . . , N .
Furthermore, let (Shu)(x, t) = u(x, t−h), t ≥ h > 0, be the shift operator. We notice that
quasi-uniform time steps may be considered too [3], but they are of minor interest in the
existence analysis.

Theorem 1. Let X, B, and Y be Banach spaces such that the embedding X →֒ B is
compact and the embedding B →֒ Y is continuous. Furthermore, let either 1 ≤ p < ∞,
r = 1 or p = ∞, r > 1, and let (uτ ) be a sequence of functions, which are constant on each
subinterval (tk−1, tk), satisfying

(4) τ−1 ‖uτ − Sτuτ‖Lr(τ,T ;Y ) + ‖uτ‖Lp(0,T ;X) ≤ C0 for all τ > 0,

where C0 > 0 is a constant which is independent of τ . If p < ∞, then (uτ ) is relatively
compact in Lp(0, T ; B). If p = ∞, there exists a subsequence of (uτ ) which converges in
each space Lq(0, T ; B), 1 ≤ q < ∞, to a limit which belongs to C0([0, T ]; B).

A related result in finite-dimensional spaces was recently proven by Gallouët and Latché
[4, Theorem 3.4]. The same setting for degenerate elliptic-parabolic equations in L1 was
considered by Andreianov [2]. In view of (3), one may conjecture that the condition
‖uτ − Sτuτ‖Lr(τ,T ;Y ) = O(τα) as τ → 0 with 0 < α < 1 instead of O(τ) is sufficient to

obtain relative compactness. The following result shows that this is not the case (also see
Theorem 5 below).

Proposition 2. The factor τ−1 in inequality (4) cannot be replaced by τ−α for 0 < α < 1.

This note is organized as follows. In Section 2, Theorem 1 is shown; the proof of
Proposition 2 is presented in Section 3. Finally, we comment these results in Section 4.

2. Proof of Theorem 1

The proof of Theorem 1 is based on a characterisation of the norm of fractional Sobolev
spaces. Let 1 ≤ q < ∞, 0 < σ < 1, and let Y be a Banach space. The fractional Sobolev
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space W σ,q(0, T ; Y ) is the space of (equivalence classes of) functions u ∈ Lq(0, T ; Y ) with
finite Slobodeckii norm

‖u‖W σ,q(0,T ;Y ) =
(
‖u‖q

Lq(0,T ;Y ) + |u|q
Ẇ σ,q(0,T ;Y )

)1/q

,

where

|u|Ẇ σ,q(0,T ;Y ) =

(∫ T

0

∫ T

0

‖u(t) − u(s)‖q
Y

|t − s|1+σq
ds dt

)1/q

is the Slobodeckii semi-norm. Fractional Sobolev spaces in time have also been proven to
be a useful tool in [3].

Lemma 3. Let 1 ≤ q < ∞, 0 < σ < 1 with σq < 1 and let u ∈ Lq(0, T ; Y ) be a
piecewise constant function with (a finite number of) jumps of height [u]k ∈ Y at points tk,
k = 1, . . . , N − 1. Then u ∈ W σ,q(0, T ; Y ) and

‖u‖W σ,q(0,T ;Y ) ≤ ‖u‖Lq(0,T ;Y ) + C
1/q
σq,T

N−1∑

k=1

‖[u]k‖Y ,

where Cσq,T = 2(2σq − 1)T 1−σq/(σq(1 − σq)) does not depend on N .

Proof. We may assume that 0 = t0 < t1 < · · · < tN−1 < tN = T and that u(t) = uk for
tk−1 < t ≤ tk where k = 1, . . . , N . Then [u]k = uk+1 − uk, k = 1, . . . , N − 1, and

u(t) = uk = u1 +
k−1∑

j=1

(uj+1 − uj) = u1 +
N−1∑

j=1

[u]jHtj(t)

for tk−1 < t ≤ tk, where Htj is the shifted Heaviside function

Htj(t) =

{
0 for 0 < t ≤ tj,

1 for tj < t < T.

By definition of the W σ,q(0, T ; Y ) norm and the semi-norm property of | · |Ẇ σ,q(0,T ;Y ), we
find that

‖u‖W σ,q(0,T ;Y ) =
(
‖u‖q

Lq(0,T ;Y ) + |u|q
Ẇ σ,q(0,T ;Y )

)1/q

≤ ‖u‖Lq(0,T ;Y ) + |u|Ẇ σ,q(0,T ;Y )

≤ ‖u‖Lq(0,T ;Y ) + |u1|Ẇ σ,q(0,T ;Y ) +
N−1∑

j=1

‖[u]j‖Y |Htj |Ẇ σ,q(0,T )

= ‖u‖Lq(0,T ;Y ) +
N−1∑

j=1

‖[u]j‖Y |Htj |Ẇ σ,q(0,T ).(5)
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It remains to compute the seminorm of Htj :

|Htj |
q

Ẇ σ,q
=

∫ T

0

∫ T

0

|Htj(t) − Htj(s)|
q

|t − s|1+σq
ds dt = 2

∫ tj

0

∫ T

tj

|Htj(t) − Htj(s)|
q

|t − s|1+σq
ds dt

= 2

∫ tj

0

∫ T

tj

|t − s|−1−σq ds dt =
2

σq(1 − σq)

(
(T − tj)

1−σq + t1−σq
j − T 1−σq

)
.

The right-hand side can be interpreted as a function of ϑ = tj ∈ [0, T ] whose maximum is
achieved at ϑ = T/2. Therefore,

|Htj |
q

Ẇ σ,q
≤

2

σq(1 − σq)

(
2
(T

2

)1−σq

− T 1−σq

)
=

2

σq(1 − σq)
(2σq − 1)T 1−σq = Cσq,T .

Inserting this estimate in (5), the result follows. �

For later use, we remark that the calculations in (5) and below show that

(6) |u|Ẇ σ,1(0,T ;Y ) ≤ C
1/q
σq,T

N−1∑

k=1

‖[u]k‖Y .

Proof of Theorem 1. The idea of the proof is to apply Corollary 5 in [7]: If (uτ ) is bounded
in Lp(0, T ; X)∩W σ,̺(0, T ; Y ), where σ > max{0, 1/̺−1/p}, then (uτ ) is relatively compact
in Lp(0, T ; B) if p < ∞, ̺ = 1 and in C0([0, T ]; B) if p = ∞, ̺ > 1.

First we consider the case p < ∞ and ̺ = 1. Let σ ∈ (0, 1) satisfy 1 − 1/p < σ < 1 and
let uτ (t) = uk for tk−1 < t < tk, k = 1, . . . , N . Then

N−1∑

k=1

‖[uτ ]k‖Y =
N−1∑

k=1

‖uk+1 − uk‖Y = τ−1

N−1∑

k=1

∫ tk+1

tk

‖uk+1 − uk‖Y dt

= τ−1 ‖uτ − Sτuτ‖L1(τ,T ;Y ) ≤ C0.(7)

Since Lp(0, T ; X) →֒ L1(0, T ; Y ), Lemma 3 shows that (uτ ) is bounded in W σ,̺(0, T ; Y ),
and the corollary applies.

It remains to discuss the case p = ∞ and ̺ > 1. We define the piecewise linear
interpolants

ũτ (t) =

{
u1 for 0 ≤ t ≤ t1,

uk −
tk−t

τ
(uk − uk−1) for tk−1 ≤ t ≤ tk, 2 ≤ k ≤ N.

Let (Sτuτ )(t) = u1 for 0 ≤ t < t1. We observe that

(8)





ũ′

τ (t) =
1

τ

(
uτ (t) − (Sτuτ )(t)

)
, 0 ≤ t ≤ T, t 6= tk,

‖ũτ (t)‖X ≤ ‖uτ (t)‖X + ‖(Sτuτ )(t)‖X , 0 ≤ t ≤ T,

which implies that ‖ũτ‖Lp(0,T ;X) ≤ 2 ‖uτ‖Lp(0,T ;X). Now we apply Theorem 1 to (uτ ) with

p = 1 instead of p = ∞, and we apply Corollary 5 in [7] to (ũτ ) with σ = 1. We end up
with a subsequence of (uτ ) (not relabeled) such that uτ → u∗ in L1(0, T ; B), and we may
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assume that the associated subsequence (ũτ ) of piecewise linear interpolants converges to a
limit û in the topology of C0([0, T ]; B). Next we know, for k = 1, . . . , N and tk−1 < t < tk,
that

(9) ‖uτ (t) − ũτ (t)‖Y =
tk − t

τ
‖uτ (t) − (Sτuτ )(t)‖Y ≤ ‖uτ (t) − (Sτuτ )(t)‖Y ,

from which we infer that ‖uτ − ũτ‖L1(0,T ;Y ) ≤ C0τ . Notice that the embeddings L1(0, T ; B)

→֒ L1(0, T ; Y ) and C0([0, T ]; B) →֒ L1(0, T ; Y ) are both continuous, hence u∗ = û.

Since (ũτ ) converges in C0([0, T ]; B) to û, there exists a constant Ĉ > 0 such that

‖ũτ‖L∞(0,T ;B) ≤ Ĉ for all τ , and then also ‖uτ‖L∞(0,T ;B) ≤ Ĉ for all τ . The desired

convergence of (uτ ) to u∗ in any space Lq(0, T ; B) for 1 ≤ q < ∞ follows from interpolation

between ‖uτ − u∗‖L1(0,T ;B) → 0 and ‖uτ − u∗‖L∞(0,T ;B) ≤ 2Ĉ, which completes the proof.
�

Remark 4. Estimates (6) and (7) imply that, for all piecewise constant functions u ∈
L1(0, T ; Y ) with jumps at tk = kτ ,

|u|Ẇ σ,1(0,T ;Y ) ≤ C
1/q
σq,T

N−1∑

k=1

‖[u]k‖Y ≤ τ−1C
1/q
σq,T ‖u − Sτu‖L1(τ,T ;Y ) .

By Lemma 5 of [7], there exists an inverse inequality for all u ∈ W σ,1(0, T ; Y ) and all
σ ∈ (0, 1):

‖u − Sτu‖L1(τ,T ;Y ) ≤ C3τ
σ|u|Ẇ σ,1(0,T ;Y ),

where C3 > 0 depends on σ and T . In this sense, the chain of inequalities

τ |u|Ẇ σ,1(0,T ;Y ) ≤ τσC
1/q
σq,T C3|u|Ẇ σ,1(0,T ;Y )

is almost sharp since we can choose σ as close to one as we wish. �

3. Proof of Proposition 2

We construct a sequence (uτ ) satisfying the assumptions of Theorem 1 with τ−α (0 <
α < 1) in (4) instead of τ−1, but not possessing a convergent subsequence in Lp(0, T ; B),
where p < ∞.

Take X = Y = B = C and (0, T ) = (0, 1). For β ≥ 1, define the function

fβ(t) := (βp + 1)1/ptβ, 0 ≤ t ≤ 1.

Then we have ‖fβ‖Lp(0,T ) = 1. For later use, we remark that

(10) lim
β→∞

fβ(t) = 0,

for each fixed t ∈ [0, 1), uniformly on compact sub-intervals [0, t∗] ⊂ [0, 1).
Since α < 1, we may choose a real number 0 < γ ≤ min{1, p(1−α)}. We set β(τ) = τ−γ

and

uτ (t) :=

{
fβ(τ)(kτ) for kτ ≤ t < (k + 1)τ, k ∈ {0, 1, . . . , N − 1},

fβ(τ)((N − 1)τ) for t = 1.
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The function uτ has jumps of height [uτ ]k at the values t = kτ for 1 ≤ k ≤ N − 1, and all
jumps have the same sign. In particular,

N−1∑

k=1

‖[uτ ]k‖Y =
N−1∑

k=1

[uτ ]k = fβ(τ)(1 − τ) = (τ−γp + 1)1/p(1 − τ)τ−γ

,

1 ≥ (1 − τ)τ−γ

≥ (1 − τ)1/τ ≥
1

2e
.

Therefore, it follows that

τ−α ‖uτ − Sτuτ‖L1(τ,T,Y ) = τ 1−α

N−1∑

k=1

‖[uτ ]k‖Y = τ 1−α(τ−γp + 1)1/p(1 − τ)τ−γ

≤ τ 1−α(τ−γp + 1)1/p ≤
(1

2

)1−α
((1

2

)
−γ

+ 1

)1/p

,

for all τ ∈ (0, 1/2), since 1 − α − γ/p ≥ 0. Hence, (4) holds. But the sequence (uτ ) ⊂
Lp(0, T ; B) does not possess a converging subsequence, which can be seen as follows. Fix t ∈
[0, 1). Then 0 ≤ uτ (t) ≤ fβ(τ)(t), and (10) implies the pointwise convergence limτ→0 uτ (t) =
0, uniform on compact sub-intervals [0, t∗] ⊂ [0, 1). Thus, the pointwise limit of the
subsequence must be the zero function. However, this is impossible, because of the following
uniform lower bound:

∫ 1

0

|uτ (t)|
p dt ≥

∫ 1−τ

0

|fβ(τ)(t)|
p dt = (1 − τ)τ−γp+1 ≥

1

2

(
(1 − τ)τ−γ

)p

≥
1

2
(2e)−p,

showing the claim.

4. Comments

Let X, B, and Y be Banach spaces such that the embedding X →֒ B is dense and
compact, the embedding B →֒ Y is continuous, and there exist 0 < θ < 1, Cθ > 0 such
that for all u ∈ X, the interpolation inequality

(11) ‖u‖B ≤ Cθ ‖u‖
θ
X ‖u‖1−θ

Y

holds. The setting which we have in mind relates to (1), with given u(0) ∈ B. In this
situation, a slightly weaker version of Theorem 1 can be derived directly from the Aubin
lemma.1 Indeed, since X is dense in B, we may approximate u(0) ∈ B by u0 ∈ X, and we
define the piecewise linear interpolant by

ũτ (t) = uk −
tk − t

τ
(uk − uk−1), tk−1 ≤ t ≤ tk, 1 ≤ k ≤ N.

We suppose that u0 and u1 satisfy

(12) τ ‖u0‖
p
X ≤ C1, ‖u0 − u1‖Y ≤ C1

1The authors are grateful to one of the referees for this observation.



COMPACT FAMILIES OF PIECEWISE CONSTANT FUNCTIONS 7

for some constant C1 > 0 independent of τ . The first bound can always be satisfied;
the second bound is a mild condition related to the construction of the sequence (uk).
If this sequence is defined according to (1), the second bound can be replaced by the
regularity assumption τ‖A(u1)‖Y ≤ C for some constant C > 0 independent of τ since
‖u1 − u0‖Y ≤ τ‖A(u1)‖Y + τ‖fτ (τ)‖Y .

Now we make the agreement that (Sτuτ )(t) = u0 for 0 ≤ t < t1 = τ . Then (8) still
holds. It follows from (4) that

‖ũ′

τ‖L1(0,T ;Y ) = ‖u1 − u0‖Y + τ−1 ‖uτ − Sτuτ‖L1(τ,T ;Y ) ≤ C1 + C0.

Furthermore, using (8) and (4) again,

‖ũτ‖Lp(0,T ;X) ≤ τ 1/p ‖u0‖X + 2 ‖uτ‖Lp(0,T ;X) ≤ C
1/p
1 + 2C0.

Hence, by the Aubin lemma [7, Corollary 4], up to a subsequence, ũτ → u in Lp(0, T ; B)
as τ → 0. By the interpolation inequality (11) and by (9),

‖uτ − ũτ‖L1(0,T ;B) ≤ Cθ ‖uτ − ũτ‖
θ
L1(0,T ;X) ‖uτ − ũτ‖

1−θ
L1(0,T ;Y )

≤ Cθ

(
‖uτ‖L1(0,T ;X) + ‖ũτ‖L1(0,T ;X)

)θ
‖uτ − Sτuτ‖

1−θ
L1(0,T ;Y ) .

We remark that ‖uτ − Sτuτ‖L1(0,T ;Y ) ≤ τ(‖u1 − u0‖Y +C0), which implies that uτ − ũτ → 0

in L1(0, T ; B). Since ũτ → u in Lp(0, T ; B), we find that uτ → u in Lq(0, T ; B) for all
q < p. Notice, however, that Theorem 1 allows us to conclude this result up to q = p
without assuming (11) and (12).

Proposition 2 shows that the exponent of the factor τ in (4) cannot be raised. However,
when allowing for arbitrary time shifts Sh, the factor can be replaced by h−α, where
0 < α < 1, under some conditions. An example, adapted to our situation, can be found in
[1, Theorem 1.1]:

Theorem 5 (Amann). Let (11) hold. Furthermore, let 0 < s < 1, 1 ≤ p < ∞, and
F ⊂ Lp(0, T ; Y ). Assume that there exists C2 > 0 such that each u ∈ F satisfies the
following infinite collection of inequalities:

h−s ‖u − Shu‖L1(τ,T ;Y ) + ‖u‖Lp(0,T ;X) ≤ C2 for all h > 0.

Then F is relatively compact in Lq(0, T ; B) for all q < p/((1 − θ)(1 − s)p + θ).

Notice that q = p is admissible if (1−θ)(1−s)p+θ < 1 which is equivalent to s > 1−1/p.
Thus, if we wish to allow for arbitrary large p ≥ 1, we have to require the condition s = 1,
which corresponds to the result of Theorem 1. On the other hand, in applications, often
p = 2, and compactness follows even for s < 1, namely for any s > 1/2.

In the special situation when we have the triple X →֒ B →֒ X ′, where Y = X ′ is the
dual space of X and B is a Hilbert space, the assumptions of Amann’s theorem hold with
θ = 1/2. Then q < 2p/((1 − s)p + 1), and we see that 2p is an upper bound for q. This
corresponds to the result of Walkington [8, Theorem 3.1 (1)].
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