ZAMM header will be provided by the publisher

A derivation of the isothermal quantum hydrodynamic equations
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Isothermal quantum hydrodynamic equations of or@¢h?) using the quantum entropy minimization method recently de-
veloped by Degond and Ringhofer are derived. The equations havioitim of the usual quantum hydrodynamic model
including a correction term of orde€?(42) which involves the vorticity. If the initial vorticity is of orde® (%), the standard
model is obtained up to ordé?(%*). The derivation is based on a careful expansion of the quantum eduiilmbtained
from the entropy minimization in powers &f.
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1 Introduction

It is well known since the early years of quantum mechanias tiere exists a fluiddynamical formulation of the Sxtin-
ger equation [19]. The derivation of such quantum hydrodyinamodels from first principles has attracted recently a lot
of interest in the mathematical and physical literatureg[43, 9]. This interest relies on the need of accurate andesitic
simulations of quantum semiconductor devices like lasedstanneling diodes. Indeed, the numerical solution of tharly-
particle) Schvdinger or quantum Liouville equation is extremely time saming, whereas fluid-type quantum models are
computationally less expensive.

A simple derivation uses WKB wave functiogs= /ne"S/¢ for the particle density.(x, t) and phases(z, t), wheres is
the scaled Planck constant. Separating the real and intggast of the single-state Sdbdinger equation gives Euler-type
equations including the so-called Bohm potentia)/n/+/n as a quantum correction of ordet (see, e.g., [12, 14, 15] for
details). In the semi-classical limit — 0, the classical pressureless Euler equations are obtaiftgd.appraoch does not
take into account many-particle effects and the model casohsidered as a zero-temperature model. In order to incatgo
temperature effects, we are aware of two approaches.

The first approach starts from a mixed-state 8dhrger-Poisson system consisting of a sequence of sstgte-Schivdin-
ger equations to each of which an occupation probabilitgsoaiated [12]. Defining the total particle and current derssas
the superposition of all single-state densities, weigbtethe occupation probabilities, fluid equations for thetipbe density,
the current density and the energy tensor are derived, gsipethe conservation of mass, momentum, and energy. Howev
the system of equations is not closed. The energy equatiot@ios a heat flux vector which cannot be expressed in terms
of the particle density, current density and energy onlyer&fore, a closure condition is necessary. In the liteeatseveral
choices have been proposed, using a special ansatz forahfithe[11] or assuming a constant temperature (isotherass;c
[14]).

The second approach is based on the kinetic picture of gomamtechanics, described by the collisional (scaled) Wigner
equation

dw +p-Vew—OV]w = Q(w), t>0, w(z,p,0) = wr(z,p), (z,p) € R™, (1)

where(x, p) are the position-momentum variablé}}V] is a pseudo-differential operator [20] defined by

_ 1 < _ _ £ ! $)ein(p—p) /
OVl ep.t) = i [ 2 [V(e+ 5nt) =V (o= o) wtass e 0y

and Q(w) is a collision operator which will be specified in section 2heTelectrostatic potentidf = V(z,t) is usually
selfconsistently coupled to the particle densftw(z, p, ¢)dp via Poisson’s equation but in this paper, we suppose that the
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2 A. Jingel and D. Matthes: A derivation of the isothermal quantum hydraayo equations

potential is a given function since the coupling throughsBon’s equation does not effect our analysis. We noticetltieat
Schibdinger equation is formally equivalent to the Wigner eguratvithout collisions.

Applying a moment method to (1), i.e. multiplying this eqoatby 1, p, and|p|?/2 and integrating over the momentum
space, we obtain formally the so-called moment equationhéfirst moments of the Wigner functiem namely the particle
densityn = (w), the fluiddynamical momentumu = (wp), and the energy density = (w|p|?/2), where we have used
the notation(f(p)) = [ f(p)dp for functions f(p). However, the moment equations contain the integralp|?/2) which
generally cannot be expressed in termsipfiu, ande only. Gardner used a “momentum-shifted” approximationhef t
guantum thermal equilibrium distribution derived by Wigne*, as a closure function in the above system, i.e., he replaced
w by w* and calculated the corresponding moments [8] (also comyiting5]). Assuming that the spatial variations of the
temperature are sufficiently small and taking into accoumhy terms of ordee?, the resulting equations lead to the quantum
hydrodynamic model

On +divinu) = 0, (2
2
O¢(nu) + div(nu @ u) + V(nT) — nVV — %nv (A\/?) = 0, (3)
2
Ore + div (nu(e +7T)— %n((v ®V)In n)u) —nu-VV = 0, reRY >0, 4)

wheree = gnT + infu? - ;—znA In n, with initial conditions forn, nu, ande. A related set of state equations which are

nonlocal in the potential have been derived in [9, 10] by $ifeld asymptotics for quantum thermodynamical equibibri
Another closure ansatz has been recently employed by Degonddringhofer [4] by extending Levermore’s moment

hierarchy [17] for classical gas dynamics to quantum systéviore precisely, the equilibrium function, which is choses a

closure, is the minimum (or maximum according to the physioavention) of a quantum entropy functiondlw) subject

to the constraints that the moments of the equilibrium fiomcare prescribed:

1 n(x)
H(w*) =min { H(v) : / v(x,p) D dp = nu(z) for all z € R?
e 3lpl? e(z)

A definition of the quantum entropy will be given in section Zhis approach yields quantum hydrodynamic equations
including a pressure tensor and heat flux vector. Unforepathey cannot easily be expressed in terms of the particle
density, momentum, and energy since the pressure and heatéunonlocal (i.e., their values at a given paintepend on
the values of:, nu, ande at any other point).

Degond et al. [3] have derived more explicit expressionsi¥paading the quantum equilibrium* in powers of the scaled
Planck constard. In this way, they have derived the quantum drift-diffusemd a quantum energy-transport model in the
diffusion limit (i.e. replacingr — z/§ andt — t/§2 for somes > 0 and then letting — 0). Here, the quantum equilibrium
is the minimum of the entropy to the constraint of a givenipkertdensity, in the case of the quantum drift-diffusion rabd
and to the constraints of a given particle density and enérdiie case of the quantum energy-transport equations.

This paper is motivated by the formal resemblance betwegm#vis equilibrium function employed by Gardner [8] and
the quantum equilibrium of Degond et al. [3] (see Remark 8r&fdetailed discussion). This observation allows us twveer
an isothermalquantum hydrodynamic model by using quantum entropy miation. The derivation of the full model is
devoted to future work. We notice that this is the first deaiormof anexplicit quantum hydrodynamic model by this method.

More precisely, we derive the equations

o +div(nu) = 0, reRY >0, (5)
. g2 Ayn g2 4
O(nu) + div(nu @ u) + Vn —nVV — EnV ( NG ) = Ele(nU) +0(e), (6)

whereU is a tensor with components

d

Uke = = > _(Osuy — Ou) (Biwe — Opuy)

i=1

and 9; denotes the partial derivativ®/0z;. The scaled temperatureTs = 1. The tensoilU vanishes if the velocity: is
irrotational in the sens@;u; — Oyu; = O forall i, k = 1,...,d. In particular, it vanishes in one space dimension. In fiaict,
is enough to require thaf = O(c?). We also prove that the usual quantum hydrodynamic equatRyA(3) (withT = 1) are
obtained up to orde®(s?) if the vorticity is initially of orderO(e). In Remark 3.3 we explain the presence of the vorticity
term in (6) by comparing the approach of Degond et al. withegygroach of Gardner.

The isothermal quantum hydrodynamic model (2)-(3) vith= 1 has been analytically and numerically studied in, e.g.,
[7, 13, 16, 18]. The full model including the energy equatiéphas been numerically solved in, e.g., [1, 8].
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This paper is organized as follows. In section 2 we make peettie definition of the quantum entropy and the quantum
equilibrium and we state our main results. In section 3 waltsome technical lemmas from [3], and sections 4 and 5 are
devoted to the proof of the main results.

2 Definitions and main results

We start with the collisional Wigner equation (1). We assungydrodynamic scaling, i.e., we introduce the followingsp
and time scaling,

2 =6z, t =6t
for somed > 0 which is assumed to be small compared to one. Then (1) bec@miting the primes)

d00ws + 5(]) - Vaws — G[V}wé) = Q(w)’ t>0, (7)
ws(z,p,0) = wr(x,p), (xz,p) € R??, (8)

The collision operator is given by the simple relaxatiandior “BGK” approach (with scaled relaxation time= 1)

whereM[w] is a quantum analogue of the Maxwellian used in classicatigaamics (also see Remark 5.1).
In order to define the quantum Maxwellidi[w], we first introduce the Wigner transform. Lebe an operator of?(R¢)
andp(z, z') its integral kernel, i.e.

(p)(z) = /R Hlea)pla)da’ forall ¢ € L2(RY)

Then the Wigner transform is defined by

1 ~ € €N\ in
W(p)(x,p) = W /Rd P(fl? + ST §n>e Py,

Its inverselV —1, also called Weyl quantization, is defined for any functfdm, p) as an operator oh?(R?):

(W (£)6) (. p) = /

f(:v + y)gb(y)eip-(zfy)/edpdy forall ¢ € L*(R%).
Rd

2
With these definitions we are able to introduce glo@ntum exponentiand thequantum logarithnformally by
Expw = W(exp W (w)), Lnw=W({InW (w)),

where exp and In are the operator exponential and logaritkspectively [3].
Now, therelative quantum entropig given by

H(w) = /}me(an -1+ @ - V(a:))dxdp.

Notice that this entropy is a scalar quantity with non-lcggzdtial dependence am in contrast to the classical entropy which
is defined pointwise in space. Finally, we define the quantuamwéllian or quantum equilibriume* = M [w] for some given
functionw(z, p) as the solution of the constrained minimization problem

H(w") = min {H(v) : /R o(@,p, ) (;) dp = ( n(z,t) ) forallz € RY, ¢ > o} , ©)

nu(z,t)

where
n(x,t)z/ w(x, p,t)dp, nu(x,t)z/ w(x, p,t)pdp.
Rd Rd

The solutionw* of the constrained minimization problem, if it exists, isey by

M[w)(z,p,t) = w*(z,p, t) = EXp <A(x7t) 4 B(z,t) - p— %)7

whereA(z, t) and B(z, t) are some Lagrange multipliers. This completes the defmiicahe collision operator.
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4 A. Jingel and D. Matthes: A derivation of the isothermal quantum hydraayo equations

The moment equations are obtained from (1) by multiplicaby 1,p, respectively, and integration over the momentum
space. Noticing that

/ O[V]wdp = 0, / O[V]wpdp = —nVV for all w(x, p)
Rd R
and, by the definition o/ [w],

Q(w)dp = 0, / Q(w)pdp =0 for all w(z, p)
R¢ Rd
we obtain the moment equations
O¢(w) + div(wp) = 0, O¢(wp) + div(wp ® p) — (w)VV =0, (10)

where we recall thatf (p)) = | f(p)dp.
Our main result is as follows.

Theorem 2.1 Letw; be a solution of (7)-(8). Then, formallys — w = M[w] asd — 0. Moreover,n = (M[w]) and
nu = (Mw]p) are (formally) solutions of (5)-(6) with initial conditien

71(1‘,0) = <w1>(m)v TL'LL((B,O) = <w1p>(x), zeR%

Recall that the functiom™* = M [w] is formally defined by (9), where the moments are given by

1 1
M = [ 1 :
y [w](z,p,1) (p) dp /R , Jim ws (e, p,t) (p) dp

We are able to show that the quantum hydrodynamic equatiensatisfied up to ode®(c*) if the initial vorticity is of
orderO(e). For this, let Curk be the tensor with component€url);; = d;u; — 9ju;, 4,5 = 1,...,d. Then we can write
U = —(Curlu) T (Curlu). Furthermore, we set

d
ICuru(t) 2 = 3 /Rd(Curlu)ij(x,t)zdx.
ij=1

Corollary 2.2 Let (n,u) be a smooth solution to (5)-(6). We assume th&t bounded independently ofin L°°(0, oo;
C™t1(R%)), wherem € N, m > d/2, and that the initial vorticity satisfies

ICurlu(0)|| gm gy = O(e).
Then, fort > 0,
[Curlw(t) || grm (gay = OC(e) (11)

and (n, nu) solves formally

on +div(nu) = 0,
2
O¢(nu) + div(nu @ u) + Vn — nVV — %nv (A\/\/HE) = 0O, zeRY t>0. (12)

3 Some auxiliary lemmas

For the expansion of the quantum exponential we need somarnatéons.
Lemma 3.1 The following identities hold:

/d e_|p|2/2dp = (277)(1/2’
R
2
/d e P Ppipsdp = (2m)"%6,5,
R
2

/d e P 2y pipkpedp = (2m)Y2(8150ke + Sirdje + Siedjk)-
R

The following lemma is a consequence of [3, Prop. 5.3].
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Lemma 3.2 Let A, B : R? — R be smooth functions and p € R?. Then we can expand the quantum exponential as
follows:

2 2
Exp (A(a:) +B(z)-p— |p7) — A@)+B(z)p=[p|*/2 [1 + % (AA + AB-p+ 9;B;0;B;
1 2
= 5(05A+ 03B - p)(pi — Bi)(p; — Bj) — 30:B;(pi — B:)(9; A + 0;B - p)
1
+§|V(A+B-p)2)} +O(eh). (13)

Here and in the following, we use Einstein’s summation catiea and the notatiofd; for the partial derivativé/0x;.
Remark 3.3 This paper is motivated by the resemblance between Wigequgibrium distribution [21, (25)]

2
* _ _—V/T—|p|?/2T € 1 2, 4
wiy (@, p) = eV [1+—8T2(—AV+§|W pzpmV)] +0(e")

3T

with (constant) temperatufg and potential’ = V (z), and the quantum Maxwellian

2 2
wiy(x,p) = Exp (A(x,t) - ﬂ) = AIPl/2T {1 + — (AA+ S|VAP2 -

4
5T plp]é)”A)} + O(e)

T
employed by Degond et al. [3] as a closure function in thevdédn of the quantum drift-diffusion model. Both formulas
coincide if we identify the Lagrange parametémwith the “potential”’—V/T'. In fact, both approximations are essentially
derived in the same way since Wigner approximates the aperap(H /1), which is related to the quantum exponent#,
being the Schirdinger operator.

For his derivation of the quantum hydrodynamic model, Garégmmployed the “shifted” equilibrium distribution [8, (R4

2 1 1
wé(z,p) = C’(m,t)efv/Tf‘pful /2T [1 + —( - AV + g\VV|2 + 3737;]"/(1)14 —u;)(pj — u])ﬂ + (’)(&?4)

8T? (

with temperaturd’ = T'(z, t) which is assumed to vary slowly iy i.e., he replaced by the “shifted” momentump — u. This
approach is motivated by the classical Maxwellian derifedjnstance by minimizing the classical thermodynamia oy
subject to given moments of density, momentum, and energly [The “density”C, the temperaturd’, and the velocityu

are the Lagrange multipliers arising from the solution af tonstrained minimization problem. The equilibrium fuoct
w, differs from the approximation of the quantum exponentl®)( since the Lagrange multiplielsand B arising from (9)
(recall that the temperature is constant in (9)) give risadditional terms in the approximation of the quantum MaXiae|
not present in the heuristic approach of Gardner. OnlyBoe 0 andu = 0 we obtain the same formulas ({f = 1).

Therefore, the vorticity term in the momentum equation $&) purely quantum mechanical effect. Its presence is jrtify
the expansion of the quantum exponential taking care of #ggdnge multipliers from (9).

4 Proof of Theorem 2.1

We expand the first moments of the quantum exponential.
Lemma 4.1 It holds:

- /RdExp<A(x)+B(x)~ '@Q)dp

= (2m)¥2AHIBI/2 [1 +53 (2A(A+ 3IB?) + V(A + 3IBI*)* + 0,B,(0;B; — ajBi))] +0(eY).
In particular,
n = (2m)¥2eATIBI/2 L 0(e2). (14)

In the following, we suppress the dependenceé simce it is only a parameter in the formulas.

Proof. The lemma follows after integration of t6&<2) expansion of the quantum exponential given by Lemma 3.2. For
the calculation it is convenient to write the quantum expia¢in terms of the difference — B,

2 5 5 2
Exp (A +B-p— %) = AHIBI/2=Ip=BI"/2 <1 + %F(p - B)) +0(eh),
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6 A. Jingel and D. Matthes: A derivation of the isothermal quantum hydraayo equations

where

1 1
F(p-B) = AA+§|VA|2+AB'(p—B)+AB'B+aiBjajBi—g(aijAJraz‘jB'B)(pi—Bi)(Pj_Bj)

1 2
— gaijB “(p— B)(pi — Bi)(p; — Bj) — gaiBj(pi — B;)(0; +9;B- B)

2 1 1
- gaiBj(pi - B;)0;B-(p—B) + gaiB (p—B)o;B-(p—B)+ gaiB -BY;,B - B
1 1 2 2
+ 5813 . (p - B)&B - B + go”!lB . BaiB . (p - B) + galAazB . (p - B) + g@lA&B - B.
Thus, by Lemma 3.1,
2 2 82
n = AtIBI /2/ e~ lp—BI*/2 (1 + —F(p— B))dp+ O(eh)
R 8

52
= (am) ARy 2 [ R gy + O,
R

and the conclusion follows by computing the last integiijrig into account Lemma 3.1. O
Lemma 4.2 It holds fork =1,...,d:
_ |p\2 _ e 4
nuy = Exp | A(z) + B(z) - p— —— pkdp—an—FﬁnIk—&-O(s )
R4

wherel, = (0; + 0;A+ 0;B - B)(9; B, — 0rB;). In particular,
u= B+ 0(e?). (15)

Proof. We write

2 2
nu / EXD<A+B-p—%>(p—B)dp+/ Exp(A+B-p——|p2|>de
R4 Rd

2
= / Exp <A+B-p—%> (p — B)dp + nB,
Rd

and Lemmas 3.1 and 3.2 yield

2
/d Exp <A+B'p——p| )(pk-—Bk)dp
R

2
2 2
- %(%)d/zeu\m 12(8; + 0;A+ 0;B - B)(9;By — 8.B;) + O(e%)
2
= %n(az + 0;A+ 8;B - B)(0;B), — 0:B;) + O(c%).
In the last step we have used the relation (14). -

Lemma 4.3 It holds fork, ¢ =1,...,d:

2
Py = /d Exp <A(;z:) + B(z)-p— %) Prpedp
R

2 2
€ €
= nlpe + nuply — Enﬁke(A + %|B\2) + Eang +0O(eY),

where
Jie = (0iBi — 01 B;)(0; By — 04 B;). (16)
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Proof. Again, we write the integrand in termspf- B:

Py =

2
/ Exp (A+B p— |p2| )(pk—Bk)(pE—BZ)dp
R4

2 2
+Bk/ Exp(A+B-p— Ipl® pedp+Be/ Exp(A+B-p— Ipl® prdp
Rd 2 Rd 2
pl?
— BBy Exp|A+B-p— —|dp
R 2
2
= /d Exp (A +B-p— |p2| ) (pr. — By)(pe — Be)dp + By.(nug) + Be(nuy) — Br.Ben 17)
R
2
= /d Exp <A +B-p— |p2| ) (pk — Br)(pe — Be)dp (18)
R
2 2 g2 2
+n (uk — 12[k> Up + 1 <Up — 12[@) <uk — 12[k> <u£ — 12[@) + 0(64) (29)
2
= [0 (445 p= ) G0 = B~ By + s + 0 (20)
R
Here, we have replace; by u; — (¢2/12)1; + O(e?*) (see Lemma 4.2). Using Lemma 3.1, one computes
2
/ Exp (A +B-p- %) (pk — Bi)(pe — Be)dp
]Rd
2
= nlpy — n [819@(14 + %|B|2) — (8lBk — akBi)(aiBe — 8gBi)} + 0(54). (22)
Inserting (21) into (20) gives
2
Py = ndpe +nugup — %n [8kg(A + %‘BP) - (@-Bk - 8kBi)(6iBg — 6¢Bi)] + 0(64),
concluding the proof. O
Lemma 4.4 It holds:
. . g2 Ay/n g2 4
divP = Vn + div(nu @ u) — gnv ( NG ) + Ele(nJ) +0(eY),
where the tensay is defined in (16).
Proof. Firstwe observe, following [3], that (14) impli®& = nV (A + 1| B[?) + O(e?) and thus
Vn/|? Vn A Vn|?
v+ BRI = TEE o), At s —dv () v o = 5 - iR o),
which yields
An  |Vn|? A/
1122 11312y2 _ 921 _ 2y 2
2A(A+ 3|BJ°) + V(A + 5|B)|" =2 - 3 +O(%) NG (e%). (22)

Hence, in view of Lemma 4.3,

(diVP)g

Above we have shown tha@n = ndy (A + 3|B|?) +

(diVP)g

2

e
O Pre = Opn + 8;€(nukw) — E [&gnakg(A + %‘B‘Q) + nakkg(A + %|B|2)]

2
+ S50k(nde) + O(Y).

2

O(e?

). Therefore, using (22),

e
opn + 8k(nuku4) — Enag [%8k(A+ %|B|2)8k(14 + %|B|2) + 8kk(A + %|B|2)]

2
n i—28k(ang) +O®h

2
Oyn. + O (nugug) — %na@ [A(A + %\3\2) ¥

2

Ogn + O (nukw) — %nag

(W

Aa
>

> + 8k(ang) +0O(e )

2
€
IV(A+3BP)IP] + E8k(ang) +O(e*)
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8 A. Jingel and D. Matthes: A derivation of the isothermal quantum hydraayo equations

This shows the lemma. O
Now we are able to prove the main theorem.

Proof. (Theorem 2.1.) Performing formally the lindit— 0 in the Wigner equation (7), we obtain far = lims_. ws
the equationV/ [w] — w = Q(w) = 0 and thusw equals the quantum Maxwellia¥ [w]. The moment equations fars read

O (ws) +div(wsp) =0,  Oy{wsp) + div(wsp ® p) — (ws) VV = 0.
Using the definitions = (M[w]) andnu = (M[w]p), we obtain in the formal limit — 0:

On + div(nu) =0, Ot(nu) + div(M [w]p ® p) — nVV = 0.
Replacing divv = div(M [w]p ® p) by its expansion derived in Lemma 4.4, we infer the quantudrdgynamic equations
(5)-(6). O

5 Proof of Corollary 2.2
A computation shows that the velocityformally solves

Ou+ (u-Vu+V(nn —V) = O(e?).
Therefore,

Ou(Curlu);j +u - V(Curlu);; + Ozup (Curlu)y; + 0jur(Curlu), = O(e2). (23)
Multiplying this equation byCurlw);;, integrating ovei®? and summing over all, j, yields

1 1<

Solcurulag, =~ Mz_jl /R u- V(Curlu)?dz — /R O (Curl ) (Curlu)yda

_ /R Opui(Curlu)y (Cutlu)dir + O(2).

Since, by integration by parts,

—/ u- V(Curlu)?jd:v = diVU(Curlu)fjda:,
R R4

we arrive after applying Blder’s inequality to
1
§at||cur|u||2L2(Rd) < cf|Curlul|72 gay + O(e?),

wherec > 0 is a constant which is independentzofsince we assume thatand its derivatives are uniformly bounded:in
Integration ovex0, t) and Gronwall's lemma give
[Curtu(t) 32 gey < > [Curlu(0) 72 ey + O() = O).

Differentiating (23) with respect to;,, multiplying by d; (Curlu);;, integrating oveR? and performing the same manipu-
lations as above leads to

|0 Curlu(t)[|2 ey = O(?),  k=1,....d.

This shows thaﬂCurIu(t)Hf{l(Rd) = O(£?). Taking higher derivatives and proceeding as above yidltls (
Finally, writing (6) in a weak form, employing (11),

/OT <(9t(nu) +div(nu ® u) + Vn —nVV — %w <A\/‘/ﬁﬁ> ,¢>> dt

o2 T
= —/ / n(CurIu)ji(Curlu)jkﬁigzﬁkdxdt
2 0 R4
T
052HCU”UH%m(o,T;Lm(Rd))/O |1l 1 (may dt

IN

IN

T
et [ ol eyt
0

for all smooth test functiong, where(-,-) is the duality product in the space of distributions, and- 0 is a constant
independent of. Hence, (12) follows.
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Remark 5.1 The above derivation also holds true for more general ¢oflisperators. In fact, we only need the following
properties of) (w):

(1) K Qw)=0thenw = Mw];  (2) (Q(w)) =0and(Q(w)p) = 0.
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