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Isothermal quantum hydrodynamic equations of orderO(~2) using the quantum entropy minimization method recently de-
veloped by Degond and Ringhofer are derived. The equations have the form of the usual quantum hydrodynamic model
including a correction term of orderO(~2) which involves the vorticity. If the initial vorticity is of orderO(~), the standard
model is obtained up to orderO(~4). The derivation is based on a careful expansion of the quantum equilibrium obtained
from the entropy minimization in powers of~

2.
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1 Introduction

It is well known since the early years of quantum mechanics that there exists a fluiddynamical formulation of the Schrödin-
ger equation [19]. The derivation of such quantum hydrodynamic models from first principles has attracted recently a lot
of interest in the mathematical and physical literature [4,6, 8, 9]. This interest relies on the need of accurate and efficient
simulations of quantum semiconductor devices like lasers and tunneling diodes. Indeed, the numerical solution of the (many-
particle) Schr̈odinger or quantum Liouville equation is extremely time consuming, whereas fluid-type quantum models are
computationally less expensive.

A simple derivation uses WKB wave functionsψ =
√

neiS/ε for the particle densityn(x, t) and phaseS(x, t), whereε is
the scaled Planck constant. Separating the real and imaginary part of the single-state Schrödinger equation gives Euler-type
equations including the so-called Bohm potential∆

√
n/

√
n as a quantum correction of orderε2 (see, e.g., [12, 14, 15] for

details). In the semi-classical limitε → 0, the classical pressureless Euler equations are obtained.This appraoch does not
take into account many-particle effects and the model can beconsidered as a zero-temperature model. In order to incorporate
temperature effects, we are aware of two approaches.

The first approach starts from a mixed-state Schrödinger-Poisson system consisting of a sequence of single-state Schr̈odin-
ger equations to each of which an occupation probability is associated [12]. Defining the total particle and current densities as
the superposition of all single-state densities, weightedby the occupation probabilities, fluid equations for the particle density,
the current density and the energy tensor are derived, expressing the conservation of mass, momentum, and energy. However,
the system of equations is not closed. The energy equation contains a heat flux vector which cannot be expressed in terms
of the particle density, current density and energy only. Therefore, a closure condition is necessary. In the literature, several
choices have been proposed, using a special ansatz for the heat flux [11] or assuming a constant temperature (isothermal case;
[14]).

The second approach is based on the kinetic picture of quantum mechanics, described by the collisional (scaled) Wigner
equation

∂tw + p · ∇xw − Θ[V ]w = Q(w), t > 0, w(x, p, 0) = wI(x, p), (x, p) ∈ R
2d, (1)

where(x, p) are the position-momentum variables,Θ[V ] is a pseudo-differential operator [20] defined by

(Θ[V ]w)(x, p, t) =
i

(2π)d/2

∫

R2d

1

ε

[
V

(
x +

ε

2
η, t

)
− V

(
x − ε

2
η, t

)]
w(x, p′, t)eiη·(p−p′)dηdp′,

andQ(w) is a collision operator which will be specified in section 2. The electrostatic potentialV = V (x, t) is usually
selfconsistently coupled to the particle density

∫
w(x, p, t)dp via Poisson’s equation but in this paper, we suppose that the
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2 A. Jüngel and D. Matthes: A derivation of the isothermal quantum hydrodynamic equations

potential is a given function since the coupling through Poisson’s equation does not effect our analysis. We notice thatthe
Schr̈odinger equation is formally equivalent to the Wigner equation without collisions.

Applying a moment method to (1), i.e. multiplying this equation by 1, p, and|p|2/2 and integrating over the momentum
space, we obtain formally the so-called moment equations for the first moments of the Wigner functionw, namely the particle
densityn = 〈w〉, the fluiddynamical momentumnu = 〈wp〉, and the energy densitye = 〈w|p|2/2〉, where we have used
the notation〈f(p)〉 =

∫
f(p)dp for functionsf(p). However, the moment equations contain the integral〈wp|p|2/2〉 which

generally cannot be expressed in terms ofn, nu, ande only. Gardner used a “momentum-shifted” approximation of the
quantum thermal equilibrium distribution derived by Wigner, w∗, as a closure function in the above system, i.e., he replaced
w by w∗ and calculated the corresponding moments [8] (also comparewith [5]). Assuming that the spatial variations of the
temperature are sufficiently small and taking into account only terms of orderε2, the resulting equations lead to the quantum
hydrodynamic model

∂tn + div(nu) = 0, (2)

∂t(nu) + div(nu ⊗ u) + ∇(nT ) − n∇V − ε2

6
n∇

(
∆
√

n√
n

)
= 0, (3)

∂te + div

(
nu(e + T ) − ε2

12
n((∇⊗∇) ln n)u

)
− nu · ∇V = 0, x ∈ R

d, t > 0, (4)

wheree = d
2nT + 1

2n|u|2 − ε2

24n∆ln n, with initial conditions forn, nu, ande. A related set of state equations which are
nonlocal in the potential have been derived in [9, 10] by small-field asymptotics for quantum thermodynamical equilibria.

Another closure ansatz has been recently employed by Degondand Ringhofer [4] by extending Levermore’s moment
hierarchy [17] for classical gas dynamics to quantum systems. More precisely, the equilibrium function, which is chosen as a
closure, is the minimum (or maximum according to the physical convention) of a quantum entropy functionalH(w) subject
to the constraints that the moments of the equilibrium function are prescribed:

H(w∗) = min



H(v) :

∫

Rd

v(x, p)




1
p

1
2 |p|2


 dp =




n(x)
nu(x)
e(x)


 for all x ∈ R

d



 .

A definition of the quantum entropy will be given in section 2.This approach yields quantum hydrodynamic equations
including a pressure tensor and heat flux vector. Unfortunately, they cannot easily be expressed in terms of the particle
density, momentum, and energy since the pressure and heat flux are nonlocal (i.e., their values at a given pointx depend on
the values ofn, nu, ande at any other point).

Degond et al. [3] have derived more explicit expressions by expanding the quantum equilibriumw∗ in powers of the scaled
Planck constantε. In this way, they have derived the quantum drift-diffusionand a quantum energy-transport model in the
diffusion limit (i.e. replacingx → x/δ andt → t/δ2 for someδ > 0 and then lettingδ → 0). Here, the quantum equilibrium
is the minimum of the entropy to the constraint of a given particle density, in the case of the quantum drift-diffusion model,
and to the constraints of a given particle density and energy, in the case of the quantum energy-transport equations.

This paper is motivated by the formal resemblance between Wigner’s equilibrium function employed by Gardner [8] and
the quantum equilibrium of Degond et al. [3] (see Remark 3.3 for a detailed discussion). This observation allows us to derive
an isothermalquantum hydrodynamic model by using quantum entropy minimization. The derivation of the full model is
devoted to future work. We notice that this is the first derivation of anexplicitquantum hydrodynamic model by this method.

More precisely, we derive the equations

∂tn + div(nu) = 0, x ∈ R
d, t > 0, (5)

∂t(nu) + div(nu ⊗ u) + ∇n − n∇V − ε2

6
n∇

(
∆
√

n√
n

)
=

ε2

12
div(nU) + O(ε4), (6)

whereU is a tensor with components

Uk` = −
d∑

i=1

(∂iuk − ∂kui)(∂iu` − ∂`ui)

and∂i denotes the partial derivative∂/∂xi. The scaled temperature isT = 1. The tensorU vanishes if the velocityu is
irrotational in the sense∂iuk − ∂kui = 0 for all i, k = 1, . . . , d. In particular, it vanishes in one space dimension. In fact,it
is enough to require thatU = O(ε2). We also prove that the usual quantum hydrodynamic equations (2)-(3) (withT = 1) are
obtained up to orderO(ε4) if the vorticity is initially of orderO(ε). In Remark 3.3 we explain the presence of the vorticity
term in (6) by comparing the approach of Degond et al. with theapproach of Gardner.

The isothermal quantum hydrodynamic model (2)-(3) withT = 1 has been analytically and numerically studied in, e.g.,
[7, 13, 16, 18]. The full model including the energy equation(4) has been numerically solved in, e.g., [1, 8].
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This paper is organized as follows. In section 2 we make precise the definition of the quantum entropy and the quantum
equilibrium and we state our main results. In section 3 we recall some technical lemmas from [3], and sections 4 and 5 are
devoted to the proof of the main results.

2 Definitions and main results

We start with the collisional Wigner equation (1). We assumea hydrodynamic scaling, i.e., we introduce the following space
and time scaling,

x′ = δx, t′ = δt,

for someδ > 0 which is assumed to be small compared to one. Then (1) becomes(omitting the primes)

δ∂twδ + δ(p · ∇xwδ − Θ[V ]wδ) = Q(w), t > 0, (7)

wδ(x, p, 0) = wI(x, p), (x, p) ∈ R
2d. (8)

The collision operator is given by the simple relaxation-time or “BGK” approach (with scaled relaxation timeτ = 1)

Q(w) = M [w] − w,

whereM [w] is a quantum analogue of the Maxwellian used in classical gasdynamics (also see Remark 5.1).
In order to define the quantum MaxwellianM [w], we first introduce the Wigner transform. Letρ be an operator onL2(Rd)

andρ̃(x, x′) its integral kernel, i.e.

(ρφ)(x) =

∫

Rd

ρ̃(x, x′)φ(x′)dx′ for all φ ∈ L2(Rd).

Then the Wigner transform is defined by

W (ρ)(x, p) =
1

(2π)d

∫

Rd

ρ̃
(
x +

ε

2
η, x − ε

2
η
)
eiη·pdη.

Its inverseW−1, also called Weyl quantization, is defined for any functionf(x, p) as an operator onL2(Rd):

(W−1(f)φ)(x, p) =

∫

Rd

f
(x + y

2

)
φ(y)eip·(x−y)/εdpdy for all φ ∈ L2(Rd).

With these definitions we are able to introduce thequantum exponentialand thequantum logarithmformally by

Expw = W (exp W−1(w)), Ln w = W (ln W−1(w)),

where exp and ln are the operator exponential and logarithm,respectively [3].
Now, therelative quantum entropyis given by

H(w) =

∫

R2d

w
(

Ln w − 1 +
|p|2
2

− V (x)
)
dxdp.

Notice that this entropy is a scalar quantity with non-localspatial dependence onw, in contrast to the classical entropy which
is defined pointwise in space. Finally, we define the quantum Maxwellian or quantum equilibriumw∗ = M [w] for some given
functionw(x, p) as the solution of the constrained minimization problem

H(w∗) = min

{
H(v) :

∫

Rd

v(x, p, t)

(
1

p

)
dp =

(
n(x, t)

nu(x, t)

)
for all x ∈ R

d, t > 0

}
, (9)

where

n(x, t) =

∫

Rd

w(x, p, t)dp, nu(x, t) =

∫

Rd

w(x, p, t)pdp.

The solutionw∗ of the constrained minimization problem, if it exists, is given by

M [w](x, p, t) = w∗(x, p, t) = Exp
(
A(x, t) + B(x, t) · p − |p|2

2

)
,

whereA(x, t) andB(x, t) are some Lagrange multipliers. This completes the definition of the collision operator.
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4 A. Jüngel and D. Matthes: A derivation of the isothermal quantum hydrodynamic equations

The moment equations are obtained from (1) by multiplication by 1,p, respectively, and integration over the momentum
space. Noticing that

∫

Rd

Θ[V ]wdp = 0,

∫

Rd

Θ[V ]wpdp = −n∇V for all w(x, p)

and, by the definition ofM [w],
∫

Rd

Q(w)dp = 0,

∫

Rd

Q(w)pdp = 0 for all w(x, p)

we obtain the moment equations

∂t〈w〉 + div〈wp〉 = 0, ∂t〈wp〉 + div〈wp ⊗ p〉 − 〈w〉∇V = 0, (10)

where we recall that〈f(p)〉 =
∫

f(p)dp.
Our main result is as follows.

Theorem 2.1 Let wδ be a solution of (7)-(8). Then, formally,wδ → w = M [w] asδ → 0. Moreover,n = 〈M [w]〉 and
nu = 〈M [w]p〉 are (formally) solutions of (5)-(6) with initial conditions

n(x, 0) = 〈wI〉(x), nu(x, 0) = 〈wIp〉(x), x ∈ R
d.

Recall that the functionw∗ = M [w] is formally defined by (9), where the moments are given by
∫

Rd

M [w](x, p, t)

(
1

p

)
dp =

∫

Rd

lim
δ→0

wδ(x, p, t)

(
1

p

)
dp.

We are able to show that the quantum hydrodynamic equations are satisfied up to oderO(ε4) if the initial vorticity is of
orderO(ε). For this, let Curlu be the tensor with components(Curlu)ij = ∂iuj − ∂jui, i, j = 1, . . . , d. Then we can write
U = −(Curlu)>(Curlu). Furthermore, we set

‖Curlu(t)‖2
L2(Rd) =

d∑

i,j=1

∫

Rd

(Curlu)ij(x, t)2dx.

Corollary 2.2 Let (n, u) be a smooth solution to (5)-(6). We assume thatu is bounded independently ofε in L∞(0,∞;
Cm+1(Rd)), wherem ∈ N, m > d/2, and that the initial vorticity satisfies

‖Curlu(0)‖Hm(Rd) = O(ε).

Then, fort > 0,

‖Curlu(t)‖Hm(Rd) = O(ε) (11)

and(n, nu) solves formally

∂tn + div(nu) = 0,

∂t(nu) + div(nu ⊗ u) + ∇n − n∇V − ε2

6
n∇

(
∆
√

n√
n

)
= O(ε4), x ∈ R

d, t > 0. (12)

3 Some auxiliary lemmas

For the expansion of the quantum exponential we need some preparations.

Lemma 3.1 The following identities hold:
∫

Rd

e−|p|2/2dp = (2π)d/2,

∫

Rd

e−|p|2/2pipjdp = (2π)d/2δij ,

∫

Rd

e−|p|2/2pipjpkp`dp = (2π)d/2(δijδk` + δikδj` + δi`δjk).

The following lemma is a consequence of [3, Prop. 5.3].
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Lemma 3.2 Let A, B : R
d → R be smooth functions andx, p ∈ R

d. Then we can expand the quantum exponential as
follows:

Exp

(
A(x) + B(x) · p − |p|2

2

)
= eA(x)+B(x)·p−|p|2/2

[
1 +

ε2

8

(
∆A + ∆B · p + ∂iBj∂jBi

− 1

3
(∂ijA + ∂ijB · p)(pi − Bi)(pj − Bj) −

2

3
∂iBj(pi − Bi)(∂jA + ∂jB · p)

+
1

3
|∇(A + B · p)|2

)]
+ O(ε4). (13)

Here and in the following, we use Einstein’s summation convention and the notation∂i for the partial derivative∂/∂xi.

Remark 3.3 This paper is motivated by the resemblance between Wigner’sequilibrium distribution [21, (25)]

w∗
W(x, p) = e−V/T−|p|2/2T

[
1 +

ε2

8T 2

(
− ∆V +

1

3
|∇V |2 +

1

3T
pipj∂ijV

)]
+ O(ε4)

with (constant) temperatureT and potentialV = V (x), and the quantum Maxwellian

w∗
D(x, p) = Exp

(
A(x, t) − |p|2

2T

)
= eA−|p|2/2T

[
1 +

ε2

8T

(
∆A +

1

3
|∇A|2 − 1

3T
pipj∂ijA

)]
+ O(ε4)

employed by Degond et al. [3] as a closure function in the derivation of the quantum drift-diffusion model. Both formulas
coincide if we identify the Lagrange parameterA with the “potential”−V/T . In fact, both approximations are essentially
derived in the same way since Wigner approximates the operator exp(H/T ), which is related to the quantum exponential,H
being the Schr̈odinger operator.

For his derivation of the quantum hydrodynamic model, Gardner employed the “shifted” equilibrium distribution [8, (24)]

w∗
G(x, p) = C(x, t)e−V/T−|p−u|2/2T

[
1 +

ε2

8T 2

(
− ∆V +

1

3
|∇V |2 +

1

3T
∂ijV (pi − ui)(pj − uj)

)]
+ O(ε4)

with temperatureT = T (x, t) which is assumed to vary slowly inx, i.e., he replacedp by the “shifted” momentump−u. This
approach is motivated by the classical Maxwellian derived,for instance by minimizing the classical thermodynamic entropy
subject to given moments of density, momentum, and energy [17]. The “density”C, the temperatureT , and the velocityu
are the Lagrange multipliers arising from the solution of the constrained minimization problem. The equilibrium function
w∗

G differs from the approximation of the quantum exponential (13), since the Lagrange multipliersA andB arising from (9)
(recall that the temperature is constant in (9)) give rise toadditional terms in the approximation of the quantum Maxwellian
not present in the heuristic approach of Gardner. Only forB = 0 andu = 0 we obtain the same formulas (ifT = 1).
Therefore, the vorticity term in the momentum equation (6) is a purely quantum mechanical effect. Its presence is justified by
the expansion of the quantum exponential taking care of the Lagrange multipliers from (9).

4 Proof of Theorem 2.1

We expand the first moments of the quantum exponential.

Lemma 4.1 It holds:

n =

∫

Rd

Exp

(
A(x) + B(x) · p − |p|2

2

)
dp

= (2π)d/2eA+|B|2/2

[
1 +

ε2

24

(
2∆(A + 1

2 |B|2) + |∇(A + 1
2 |B|2)|2 + ∂iBj(∂iBj − ∂jBi)

)]
+ O(ε4).

In particular,

n = (2π)d/2eA+|B|2/2 + O(ε2). (14)

In the following, we suppress the dependence ont since it is only a parameter in the formulas.

P r o o f. The lemma follows after integration of theO(ε2) expansion of the quantum exponential given by Lemma 3.2. For
the calculation it is convenient to write the quantum exponential in terms of the differencep − B,

Exp

(
A + B · p − |p|2

2

)
= eA+|B|2/2−|p−B|2/2

(
1 +

ε2

8
F (p − B)

)
+ O(ε4),

Copyright line will be provided by the publisher



6 A. Jüngel and D. Matthes: A derivation of the isothermal quantum hydrodynamic equations

where

F (p − B) = ∆A +
1

3
|∇A|2 + ∆B · (p − B) + ∆B · B + ∂iBj∂jBi −

1

3
(∂ijA + ∂ijB · B)(pi − Bi)(pj − Bj)

− 1

3
∂ijB · (p − B)(pi − Bi)(pj − Bj) −

2

3
∂iBj(pi − Bi)(∂j + ∂jB · B)

− 2

3
∂iBj(pi − Bi)∂jB · (p − B) +

1

3
∂iB · (p − B)∂iB · (p − B) +

1

3
∂iB · B∂iB · B

+
1

3
∂iB · (p − B)∂iB · B +

1

3
∂iB · B∂iB · (p − B) +

2

3
∂iA∂iB · (p − B) +

2

3
∂iA∂iB · B.

Thus, by Lemma 3.1,

n = eA+|B|2/2

∫

Rd

e−|p−B|2/2
(
1 +

ε2

8
F (p − B)

)
dp + O(ε4)

= (2π)d/2eA+|B|2/2 +
ε2

8
eA+|B|2/2

∫

Rd

e−|q|2/2F (q)dq + O(ε4),

and the conclusion follows by computing the last integral, taking into account Lemma 3.1.

Lemma 4.2 It holds fork = 1, . . . , d:

nuk =

∫

Rd

Exp

(
A(x) + B(x) · p − |p|2

2

)
pkdp = nBk +

ε2

12
nIk + O(ε4),

whereIk = (∂i + ∂iA + ∂iB · B)(∂iBk − ∂kBi). In particular,

u = B + O(ε2). (15)

P r o o f. We write

nu =

∫

Rd

Exp

(
A + B · p − |p|2

2

)
(p − B)dp +

∫

Rd

Exp

(
A + B · p − |p|2

2

)
Bdp

=

∫

Rd

Exp

(
A + B · p − |p|2

2

)
(p − B)dp + nB,

and Lemmas 3.1 and 3.2 yield

∫

Rd

Exp

(
A + B · p − |p|2

2

)
(pk − Bk)dp

=
ε2

12
(2π)d/2eA+|B|2/2(∂i + ∂iA + ∂iB · B)(∂iBk − ∂kBi) + O(ε4)

=
ε2

12
n(∂i + ∂iA + ∂iB · B)(∂iBk − ∂kBi) + O(ε4).

In the last step we have used the relation (14).

Lemma 4.3 It holds fork, ` = 1, . . . , d:

Pk` =

∫

Rd

Exp

(
A(x) + B(x) · p − |p|2

2

)
pkp`dp

= nδk` + nuku` −
ε2

12
n∂k`(A + 1

2 |B|2) +
ε2

12
nJk` + O(ε4),

where

Jk` = (∂iBk − ∂kBi)(∂iB` − ∂`Bi). (16)
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P r o o f. Again, we write the integrand in terms ofp − B:

Pk` =

∫

Rd

Exp

(
A + B · p − |p|2

2

)
(pk − Bk)(p` − B`)dp

+ Bk

∫

Rd

Exp

(
A + B · p − |p|2

2

)
p`dp + B`

∫

Rd

Exp

(
A + B · p − |p|2

2

)
pkdp

− BkB`

∫

Rd

Exp

(
A + B · p − |p|2

2

)
dp

=

∫

Rd

Exp

(
A + B · p − |p|2

2

)
(pk − Bk)(p` − B`)dp + Bk(nu`) + B`(nuk) − BkB`n (17)

=

∫

Rd

Exp

(
A + B · p − |p|2

2

)
(pk − Bk)(p` − B`)dp (18)

+ n

(
uk − ε2

12
Ik

)
u` + n

(
u` −

ε2

12
I`

)
uk − n

(
uk − ε2

12
Ik

) (
u` −

ε2

12
I`

)
+ O(ε4) (19)

=

∫

Rd

Exp

(
A + B · p − |p|2

2

)
(pk − Bk)(p` − B`)dp + nuku` + O(ε4). (20)

Here, we have replacedBi by ui − (ε2/12)Ii + O(ε4) (see Lemma 4.2). Using Lemma 3.1, one computes
∫

Rd

Exp

(
A + B · p − |p|2

2

)
(pk − Bk)(p` − B`)dp

= nδk` −
ε2

12
n

[
∂k`(A + 1

2 |B|2) − (∂iBk − ∂kBi)(∂iB` − ∂`Bi)
]
+ O(ε4). (21)

Inserting (21) into (20) gives

Pk` = nδk` + nuku` −
ε2

12
n

[
∂k`(A + 1

2 |B|2) − (∂iBk − ∂kBi)(∂iB` − ∂`Bi)
]
+ O(ε4),

concluding the proof.

Lemma 4.4 It holds:

divP = ∇n + div(nu ⊗ u) − ε2

6
n∇

(
∆
√

n√
n

)
+

ε2

12
div(nJ) + O(ε4),

where the tensorJ is defined in (16).

P r o o f. First we observe, following [3], that (14) implies∇n = n∇(A + 1
2 |B|2) + O(ε2) and thus

|∇(A + 1
2 |B|2)|2 =

|∇n|2
n2

+ O(ε2), ∆(A + 1
2 |B|2) = div

(∇n

n

)
+ O(ε2) =

∆n

n
− |∇n|2

n2
+ O(ε2),

which yields

2∆(A + 1
2 |B|2) + |∇(A + 1

2 |B|2)|2 = 2
∆n

n
− |∇n|2

n2
+ O(ε2) = 4

∆
√

n√
n

+ O(ε2). (22)

Hence, in view of Lemma 4.3,

(divP )` = ∂kPk` = ∂`n + ∂k(nuku`) −
ε2

12

[
∂kn∂k`(A + 1

2 |B|2) + n∂kk`(A + 1
2 |B|2)

]

+
ε2

12
∂k(nJk`) + O(ε4).

Above we have shown that∂kn = n∂k(A + 1
2 |B|2) + O(ε2). Therefore, using (22),

(divP )` = ∂`n + ∂k(nuku`) −
ε2

12
n∂`

[
1
2∂k(A + 1

2 |B|2)∂k(A + 1
2 |B|2) + ∂kk(A + 1

2 |B|2)
]

+
ε2

12
∂k(nJk`) + O(ε4)

= ∂`n + ∂k(nuku`) −
ε2

12
n∂`

[
∆(A + 1

2 |B|2) + 1
2 |∇(A + 1

2 |B|2)|2
]
+

ε2

12
∂k(nJk`) + O(ε4)

= ∂`n + ∂k(nuku`) −
ε2

6
n∂`

(
∆
√

n√
n

)
+

ε2

12
∂k(nJk`) + O(ε4).
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This shows the lemma.

Now we are able to prove the main theorem.

P r o o f. (Theorem 2.1.) Performing formally the limitδ → 0 in the Wigner equation (7), we obtain forw = limδ→0 wδ

the equationM [w] − w = Q(w) = 0 and thus,w equals the quantum MaxwellianM [w]. The moment equations forwδ read

∂t〈wδ〉 + div〈wδp〉 = 0, ∂t〈wδp〉 + div〈wδp ⊗ p〉 − 〈wδ〉∇V = 0.

Using the definitionsn = 〈M [w]〉 andnu = 〈M [w]p〉, we obtain in the formal limitδ → 0:

∂tn + div(nu) = 0, ∂t(nu) + div〈M [w]p ⊗ p〉 − n∇V = 0.

Replacing divP = div〈M [w]p ⊗ p〉 by its expansion derived in Lemma 4.4, we infer the quantum hydrodynamic equations
(5)-(6).

5 Proof of Corollary 2.2

A computation shows that the velocityu formally solves

∂tu + (u · ∇)u + ∇(ln n − V ) = O(ε2).

Therefore,

∂t(Curlu)ij + u · ∇(Curlu)ij + ∂iuk(Curlu)kj + ∂juk(Curlu)ik = O(ε2). (23)

Multiplying this equation by(Curlu)ij , integrating overRd and summing over alli, j, yields

1

2
∂t‖Curlu‖2

L2(Rd) = −1

2

d∑

i,j=1

∫

Rd

u · ∇(Curlu)2ijdx −
∫

Rd

∂iuk(Curlu)kj(Curlu)ijdx

−
∫

Rd

∂juk(Curlu)ik(Curlu)ijdx + O(ε2).

Since, by integration by parts,

−
∫

Rd

u · ∇(Curlu)2ijdx =

∫

Rd

div u(Curlu)2ijdx,

we arrive after applying Ḧolder’s inequality to

1

2
∂t‖Curlu‖2

L2(Rd) ≤ c‖Curlu‖2
L2(Rd) + O(ε2),

wherec > 0 is a constant which is independent ofε (since we assume thatu and its derivatives are uniformly bounded inε).
Integration over(0, t) and Gronwall’s lemma give

‖Curlu(t)‖2
L2(Rd) ≤ e2ct‖Curlu(0)‖2

L2(Rd) + O(ε2) = O(ε2).

Differentiating (23) with respect toxk, multiplying by∂k(Curlu)ij , integrating overRd and performing the same manipu-
lations as above leads to

‖∂kCurlu(t)‖2
L2(Rd) = O(ε2), k = 1, . . . , d.

This shows that‖Curlu(t)‖2
H1(Rd) = O(ε2). Taking higher derivatives and proceeding as above yields (11).

Finally, writing (6) in a weak form, employing (11),
∫ T

0

〈
∂t(nu) + div(nu ⊗ u) + ∇n − n∇V − ε2

6
n∇

(
∆
√

n√
n

)
, φ

〉
dt

=
ε2

2

∫ T

0

∫

Rd

n(Curlu)ji(Curlu)jk∂iφkdxdt

≤ cε2‖Curlu‖2
L∞(0,T ;L∞(Rd))

∫ T

0

‖φ‖H1(Rd)dt

≤ cε4

∫ T

0

‖φ‖H1(Rd)dt

for all smooth test functionsφ, where〈·, ·〉 is the duality product in the space of distributions, andc > 0 is a constant
independent ofε. Hence, (12) follows.

Copyright line will be provided by the publisher



ZAMM header will be provided by the publisher 9

Remark 5.1 The above derivation also holds true for more general collision operators. In fact, we only need the following
properties ofQ(w):

(1) If Q(w) = 0 thenw = M [w]; (2) 〈Q(w)〉 = 0 and〈Q(w)p〉 = 0.
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