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Abstract. A simplified transient energy-transport system for semiconductors subject
to mixed Dirichlet-Neumann boundary conditions is analyzed. The model is formally
derived from the non-isothermal hydrodynamic equations in a particular vanishing mo-
mentum relaxation limit. It consists of a drift-diffusion-type equation for the electron
density, involving temperature gradients, a nonlinear heat equation for the electron tem-
perature, and the Poisson equation for the electric potential. The global-in-time existence
of bounded weak solutions is proved. The proof is based on the Stampacchia truncation
method and a careful use of the temperature equation. Under some regularity assump-
tions on the gradients of the variables, the uniqueness of solutions is shown. Finally,
numerical simulations for a ballistic diode in one space dimension illustrate the behavior
of the solutions.

1. Introduction

The basic model for the charge transport in semiconductor devices are the drift-diffusion
equations for the electron density and the electric potential. This model gives fast and
satisfactory simulation results for devices on the micrometer scale, but it is not able to cope
with so-called hot-electron effects in nanoscale devices. A possible solution is to incorporate
the mean energy in the model equations, which leads to energy-transport equations, first
presented by Stratton [18] and later derived from the semiconductor Boltzmann equation
by Ben Abdallah and Degond [4]. The analysis of the energy-transport model is very
involved due to the strong coupling and temperature gradients. Therefore, we consider in
this paper a simplified energy-transport model which still includes temperature gradients
but the coupling to the energy equation is weaker than in the full model. An important
feature of our model is that it is derived formally from the hydrodynamic semiconductor
equations in a zero relaxation time limit, which provides a physical modeling basis without
heuristics (see Section 2). Our goal is to prove the existence and uniqueness of solutions
to this model and to provide some numerical illustrations of the solutions.
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The model consists of a drift-diffusion-type equation for the electron density n(x, t), a
nonlinear heat equation for the electron temperature θ(x, t), and the Poisson equation for
the electric potential V (x, t):

∂tn − div(∇(nθ) + n∇V ) = 0,(1)

div(κ(n)∇θ) =
n

τ
(θ − θL(x)),(2)

−λ2∆V = n − C(x) in Ω, t > 0.(3)

Here, κ(n) is the thermal conductivity, θL(x) the lattice temperature, and C(x) the doping
profile characterizing the device under consideration. The scaled physical parameters are
the energy relaxation time τ > 0 and the Debye length λ > 0. Equations (1)-(3) hold in
the bounded domain Ω ⊂ R

d (d ≥ 1) with the initial condition

(4) n(0) = nI in Ω.

We suppose that the boundary ∂Ω ∈ C0,1 consists of two parts ΓD and ΓN satisfying
∂Ω = ΓD ∪ ΓN , ΓD ∩ ΓN = ∅, ΓN is closed, and the (d− 1)-dimensional Lebesgue measure
of ΓD is positive. The electron density, temperature, and potential are assumed to be known
on the Dirichlet boundary, which models the contacts, whereas the Neumann boundary
models insulated boundary parts:

(5)
n = nD, θ = θD, V = VD on ΓD,

∇n · ν = ∇θ · ν = ∇V · ν = 0 on ΓN ,

where ν denotes the exterior unit normal vector on ∂Ω.
Before we detail our analytical results, we review related models in the literature. First,

temperature effects have been included in the drift-diffusion equations by allowing for
temperature-dependent diffusivities [17] or temperature-dependent mobilities [9, 12, 20, 23]
coupled to a heat equation. Typically, the so-called non-isothermal drift-diffusion equations
are of the form

∂tn − div Jn = 0, Jn = D∇n + µn∇V,

∂tθ − div(κ(θ)∇θ) = F, F = Jn · ∇V + W,

where Jn is the particle current density, D and µ are the diffusivity and mobility, respec-
tively, and W = −n(θ − θL)/τ is the relaxation term. The difficulty in these models is
that the Joule heating term Jn · ∇V involves quadratic gradients of the potential, which
resembles the thermistor problem; see, e.g., [21]. However, temperature gradients in Jn,
which need to be taken into account, have been ignored.

In [22], Xu allowed for temperature gradients in Jn but he truncated, as in [23], the
Joule heating term by setting F = max{0, Jn · ∇V + W} in order to allow for a maximum
principle. A different approach was adopted in [3], where a kind of quasi-Fermi potential
via φ = n exp(−V/θ) was introduced. Ths model of [3] includes temperature gradients,
but the coefficient contains the electric potential which is not the case in the energy-
transport models derived in [4]. We also mention non-isothermal systems with simplified
thermodynamic forces which were studied in [1].
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Compared to our model (1)-(3), the energy-transport equations contain cross-diffusion
terms also in the energy equation [16]. A typical form of these models reads as

∂tn − div Jn = 0, Jn = ∇(nθα) + nθα−1∇V,

3

2
∂t(nθ) − divJe = Jn · ∇V + W, Je = ∇(nθα+1) + nθα∇V,

where the parameter α > 0 is related to the elastic scattering rate in the collision operator
(see Example 6.8 in [15]). In our model (1)-(2), α = 1, and the diffusion scaling implies
that the variation of the energy density, 3

2
∂t(nθ), and the Joule heating term are negligible

(see Section 2). The main difficulty of the above model is that the corresponding diffusion
matrix is neither diagonal nor tridiagonal and that it degenerates for n = 0 or θ = 0.
Existence results were achieved for stationary equations near thermal equilibrium [10, 11]
and for the transient model [5, 6, 24] if the initial data are close to the stationary drift-
diffusion solutions. General existence results, both for the stationary and time-dependent
model, were proved in [7, 8] but the diffusion matrix was assumed to be uniformly positive
definite, thus avoiding the degeneracy. All these results give only partial answers to the
well-posedness of the problem, and a complete global existence theory for the energy-
transport equations for any data and with physical transport coefficients is still missing.

In this paper, we wish to bring forward the existence theory for energy-transport-type
models by analyzing the system (1)-(3), whose complexity is in between the well-understood
drift-diffusion model and the energy-transport equations. In fact, in our model, the energy
equation simplifies such that the application of the maximum principle for θ becomes pos-
sible. The remaining difficulties are due to the drift term n∇θ in (1) and the quasilinearity
κ(n) in (2). Note that, in view of the mixed boundary conditions, we cannot expect the
regularity ∇θ ∈ L∞ which would simplify the existence proofs significantly.

Our main idea is a careful use of the temperature equation in order to deal with the
drift term n∇θ. More precisely, we replace this term in (1) formally by

div(n∇θ) = div
(n

κ
κ∇θ

)

=
n

κ
div(κ∇θ) + ∇n · ∇θ −

n

κ
∇θ ·

(

∂κ

∂n
∇n +

∂κ

∂θ
∇θ

)

,

and using (2), we find that (1) equals

(6) ∂tn − div(θ∇n) = div(n∇V ) +
n2

κ
(θ − θL) +

(

1 −
n

κ

∂κ

∂n

)

∇n · ∇θ −
n

κ

∂κ

∂θ
|∇θ|2.

The computations will be made rigorous on a weak formulation level in Section 3. From
the above formulation we see that the last term on the right-hand side models a sink if
∂κ/∂θ ≥ 0. This condition is satisfied, for instance, in the case of the Wiedemann-Franz
model κ(n, θ) = nθ. By the maximum principle, we expect to obtain an upper bound for
n.

However, we need the stronger condition ∂κ/∂θ = 0. The reason is that the lack of time
regularity for θ makes it difficult to deal with nonlinear terms, such as θ∇n, to prove the
continuity of the fixed-point operator. Although in physical models, it is often assumed
that the thermal conductivity depends on the temperature θ, a dependency on n only
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also occurs in the physical literature. For instance, the choice κ(n) = n was suggested in
[14, Formula (2.16)] to study spurious velocity overshoots in hydrodynamic semiconductor
models.

From the physical application, we expect that the electron density n stays positive if
it is positive initially and on the Dirichlet boundary parts. Even if κ depends on n only,
the proof of a positive lower bound for n is not obvious, since it is not clear how to deal
with the term ∇n · ∇θ in (6) which is in L1 only. We suppose that either κ(n) is strictly
positive or κ(n) = n. In the former case, we avoid any degeneracy; in the latter case,
(n/κ)(∂κ/∂n) = 1, and the term involving ∇n · ∇θ in (6) vanishes.

Motivated by the above considerations, we impose the following conditions on the ther-
mal conductivity: Let κ ∈ C1([0,∞)) such that there exist κ0, κ1, n∗, n∗ > 0 with

(7)

(i) κ(z) > 0 for all z > 0,

(ii) either κ(z) ≥ κ0 > 0 for all z ≥ 0, or κ(z) = z for all 0 ≤ z ≤ n∗;

(iii) κ(z) ≥ κ1z for all z ≥ n∗.

Condition (i) allows for the degenerate case κ(0) = 0. Condition (ii) ensures the uniform
ellipticity of equation (2). Indeed, if κ(n) = n for n ≤ n∗, we are able to prove that the
solution n is strictly positive and then, κ(n) is strictly positive, too. The last condition is
needed to prove an upper bound for the particle density.

The boundary data are assumed to satisfy

(8)
nD, VD ∈ L2(0, T ; H1(Ω)), θD ∈ Lq(0, T ; W 1,q(Ω)),

nD, θD ∈ L∞(0, T ; L∞(Ω)), inf
ΩT

nD > 0, inf
ΩT

θD > 0,

where q > 2 and ΩT = Ω × (0, T ). The initial data and the given functions fulfill the
conditions

(9) nI , θL, C ∈ L∞(Ω), inf
Ω

nI > 0, inf
Ω

θL > 0, inf
Ω

C(x) ≥ 0.

In order to deal with the mixed Dirichlet-Neumann conditions, we introduce the space

H1
0 (Ω ∪ ΓN) = {u ∈ H1(Ω) : u = 0 on ΓD}.

For properties of this space, we refer to [19, Chapter 1.7.2]. Furthermore, we set H−1(Ω ∪
ΓN) = (H1

0 (Ω ∪ ΓN))′.

Theorem 1 (Existence of solutions). Let Ω ⊂ R
d (d ≥ 1) be a bounded domain with

∂Ω ∈ C0,1, T , τ , λ > 0, and let κ ∈ C1([0,∞)) satisfy (7). Furthermore, assume that
(8) and (9) hold. Then there exists a weak solution (n, θ, V ) ∈ L2(0, T ; H1(Ω))3 to (1)-(5)
satisfying ∂tn ∈ L2(0, T ; H−1(Ω ∪ ΓN)) and

0 ≤ n(t) ≤ K0e
βt, 0 < m ≤ θ(t) ≤ M in Ω, t ∈ (0, T ).

Furthermore, if κ(z) = z for 0 ≤ z ≤ n∗,

n(t) ≥ k0e
−αt > 0 in Ω, t ∈ (0, T ).
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In the above theorem, the constants are defined by

(10)

K0 = max

{

n∗, sup
Ω

nI , sup
ΓD×(0,T )

nD, sup
Ω

C(x)

}

,

k0 = min

{

n∗, inf
Ω

nI , inf
ΓD×(0,T )

nD

}

,

M = max

{

sup
Ω

θL, sup
ΓD×(0,T )

θD

}

, m = min

{

inf
Ω

θL, inf
ΓD×(0,T )

θD

}

,

α =
1

τ
sup

Ω
θL +

1

λ2
, β =

M

τκ1

.

The proof of the theorem is based on the Leray-Schauder fixed-point theorem and the
Stampacchia truncation method. In particular, the truncation is needed in the diffusion
coefficients of div(θ∇n) and div(κ(n)∇θ) to make these expressions uniformly elliptic.

Due to the quasilinearity of the temperature equation, we are able to show the uniqueness
of solutions only in a function space which includes bounded gradients.

Theorem 2 (Uniqueness of solutions). Let the assumptions of Theorem 1 hold and let
κ be locally Lipschitz continuous on [0,∞). Then there exists a unique solution (n, θ, V )
to (1)-(5) in the class of bounded weak solutions satisfying n ∈ L∞(0, T ; W 1,p(Ω)), θ ∈
L∞(0, T ; W 1,∞(Ω)), where p > 2 if d = 2 and p ≥ d if d ≥ 3.

The paper is organized as follows. Equations (1)-(3) are formally derived from the
hydrodynamic model in Section 2. The existence theorem is proved in Section 3, and
Section 4 is devoted to the proof of the uniqueness theorem. In Section 5, we present
numerical results for a simple one-dimensional ballistic diode illustrating the behavior of
the electron temperature in the presence of a cooling and heating lattice temperature.

2. Derivation of the model equations

Equations (1)-(3) are formally derived from the (scaled) hydrodynamic model (see, e.g.,
[15, Chapter 9]):

∂tn − div Jn = 0,

∂tJn − div

(

Jn ⊗ Jn

n

)

−∇(nθ) − n∇V = −
Jn

τp

,

∂t(ne) − div(Jn(e + θ)) − Jn · ∇V − div(κ(n, θ)∇θ) = −
n

τe

(

e −
3

2
θL

)

,

and V is given by the Poisson equation (3). Here, Jn denotes the particle current density,
Jn ⊗ Jn is a tensor product, τp is the momentum relaxation time, and τe the energy
relaxation time. The energy density is the sum of the thermal and kinetic energies:

ne =
3

2
nθ +

|Jn|
2

2n
.
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Energy-transport equations can be derived from the vanishing momentum relaxation
limit. To this end, we set ε = τp and rescale the equations by t → t/ε and J → εJ . This
corresponds to the physical situation of a long time scale and small current densities. The
rescaled equations become:

∂tn − div Jn = 0, ne =
3

2
nθ +

ε2

2

|Jn|
2

n
,(11)

ε2∂tJn − ε2div

(

Jn ⊗ Jn

n

)

−∇(nθ) − n∇V = −Jn,(12)

ε∂t(ne) − εdiv(Jn(e + θ)) − εJn · ∇V − div(κ(n, θ)∇θ) = −
n

τe

(

e −
3

2
θL

)

.

In the formal limit ε → 0, we obtain the limiting model

∂tn − div(∇(nθ) + n∇V ), div(κ(n, θ)∇θ) =
n

τ

(

e −
3

2
θL

)

, e =
3

2
θ,

which corresponds to (1)-(2) with τ = 2τe/3.
In the literature, usually a different limit is performed in order to derive energy-transport

equations. Indeed, if we rescale additionally κ → εκ (small thermal conductivity), and
assume that the energy relaxation time is of the same order as the momentum relaxation
time, τ = τ0 = ε, the rescaled energy equation reads as

(13) ε∂t(ne) − εdiv(Jn(e + θ)) − εJn · ∇V − εdiv(κ(n, θ)∇θ) = −εn

(

e −
3

2
θ

)

.

Then, dividing this equation by ε and performing the formal limit ε → 0 in (11) and (12),
we find the usual energy-transport model with particular diffusion coefficients (see [15,
Chapter 6.4]).

Our simplified model is valid in diffusive situations in which the thermal conductivity is
strong and the energy relaxation time is much larger than the momentum relaxation time.

3. Proof of Theorem 1

The existence proof is based on the Leray-Schauder fixed-point theorem and a truncation
method. For this, we consider the truncated problem

∂tn − div(θm,M∇n) = div(nK∇(θ + V )),(14)

div(κ(nk,K)∇θ) =
nK

τ
(θ − θL),(15)

−λ2∆V = nK − C(x) in Ω, t > 0,(16)

with the initial and boundary conditions (4)-(5), where

nK = max
{

0, min{K,n}
}

,

nk,K = max
{

k, min{K,n}
}

,

θm,M = max
{

m, min{M, θ}
}

,
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and k = k(t) = k0e
−αt, K = K(t) = K0e

βt. We recall that the constants m, M , k0, K0, α,
and β are defined in (10). Observe that the lower truncation of n in (15) is not necessary
if κ(n) ≥ κ0 > 0 for all n ≥ 0. In this case, we replace κ(nk,K) by κ(nK).

We divide the proof in several steps.
Step 1: Definition of the fixed-point operator. Let w ∈ L2(0, T ; L2(Ω)) and σ ∈ [0, 1].

For given t ∈ (0, T ), let V (t) ∈ H1(Ω) be the unique solution to the linear problem

−λ2∆V (t) = w(t)K − C(x) in Ω, V (t) = VD(t) on ΓD, ∇V (t) · ν = 0 on ΓN .

Since w ∈ L2(0, T ; L2(Ω)), we find that V : (0, T ) → H1(Ω) is Bochner-measurable and
V ∈ L2(0, T ; H1(Ω)) (see, e.g., [2, pp. 1133f.]).

Next, let θ(t) ∈ H1(Ω) be the unique solution to the linear uniformly elliptic problem

div
(

κ(w(t)k,K)∇θ
)

=
w(t)K

τ
(θ − θL) in Ω, θ = θD(t) on ΓD, ∇θ · ν = 0 on ΓN .

Again, the integrability of w allows us to conclude that θ ∈ L2(0, T ; H1(Ω)).
Finally, consider the linear parabolic problem

∂tn − div(θm,M∇n) = σdiv
(

wK∇(θ + V )
)

in Ω, t > 0,

n = σnD on ΓD, ∇n · ν = 0 on ΓN , n(0) = σnI in Ω.

Since the right-hand side of the parabolic equation is an element of L2(0, T ; H−1(Ω∪ΓN)),
there exists a unique solution n ∈ L2(0, T ; H1(Ω)) ∩ H1(0, T ; H−1(Ω ∪ ΓN)). This shows
that the operator S : L2(0, T ; L2(Ω))× [0, 1] → L2(0, T ; L2(Ω)), (w, σ) 7→ n, is well defined.
It holds that S(w, 0) = 0 for all w ∈ L2(0, T ; L2(Ω)).

By using θ − θD as a test function in (15), standard estimates and the lower bound of κ
show that

‖θ‖L2(0,T ;H1(Ω)) ≤ c1,

where c1 > 0 depends on κ0, m, M , K, θL, and θD. Similarly,

‖V ‖L2(0,T ;H1(Ω)) ≤ c2,

where c2 > 0 depends on K, λ, C(x), and VD. Therefore, employing n − σnD as a test
function in (1), a Gronwall estimate implies that

‖n‖L2(0,T ;H1(Ω)) + ‖∂tn‖L2(0,T ;H−1(Ω∩ΓN )) ≤ c3,

where c3 > 0 depends on m, K, nD, nI , c1, and c2.
We claim that θ is slightly more regular. Indeed, using the (admissible) test function

(θ − M)+ = max{M, θ} in (15), we obtain

κ∗

∫

Ω

|∇(θ − M)+|2dx ≤

∫

Ω

κ(nk,K)|∇(θ − M)+|2dx

= −
1

τ

∫

Ω

nK(θ − θL)(θ − M)+ ≤ 0,

since θ − θL ≥ 0 on {θ > M}, where κ∗ = κ0 > 0 or κ∗ = minz∈[k,K] κ(z) > 0 (see (7)). We
infer that θ ≤ M on Ω, t > 0. In a similar way, the test function (θ − m)− = min{m, θ}
yields θ ≥ m. In particular, we have θm,M = θ. Thus, the right-hand side of the heat
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equation is an element of L∞(0, T ; L∞(Ω)). By elliptic regularity, we have [13, Theorem 1]
θ(t) ∈ W 1,p(Ω) for some 2 < p ≤ q, and hence, ∇θ ∈ Lp(0, T ; Lp(Ω)).

Step 2: Continuity of the fixed-point operator. Let wj → w strongly in L2(0, T ; L2(Ω))
and σj → σ as j → ∞. Let θj and Vj be the solutions to

(17) div(κ((wj)k,K)∇θj) =
(wj)K

τ
(θj − θL), −λ2∆Vj = (wj)K − C(x) in Ω,

with the corresponding boundary conditions. Then, by the above elliptic estimates, up to
a subsequence,

θj ⇀ θ, Vj ⇀ V weakly in L2(0, T ; H1(Ω)).

Since κ((wj)k,K) → κ(wk,K) strongly in Lr(0, T ; Lr(Ω)) for any r < ∞, we can pass to the
limit in (17) to obtain

div(κ(wk,K)∇θ) =
wK

τ
(θ − θL), −λ2∆V = wK − C(x) in Ω.

In view of the compact embedding H1(Ω) →֒ L2(Ω), Aubin’s lemma shows that L2(0, T ;
H1(Ω)) ∩ H1(0, T ; H−1(Ω ∪ ΓN)) is compactly embedded into L2(0, T ; L2(Ω)). Thus, the
above estimate for nj proves that, again up to a subsequence,

nj → n strongly in L2(0, T ; L2(Ω)).

We have to show that n = S(w, σ). This is proved by passing to the limit in the parabolic
equation satisfied by nj. The problem is the limit of (θj∇nj) since (θj) and (∇nj) both
converge only weakly. We claim that θj → θ strongly in L2(0, T ; H1(Ω)). Taking the
difference of the equations satisfied by θj and θ, respectively, and using θj − θ as a test
function, we find that

∫ T

0

∫

Ω

κ((wj)k,K)|∇(θj − θ)|2dxdt

= −

∫ T

0

∫

Ω

(

κ((wj)k,K) − κ(wk,K)
)

∇θ · ∇(θj − θ)dxdt

−
1

τ

∫ T

0

∫

Ω

(

((wj)K − wK)θ + (wj)K(θj − θ) − ((wj)K − wK)θL

)

(θj − θ)dxdt

≤ −

∫ T

0

∫

Ω

(

κ((wj)k,K) − κ(wk,K)
)

∇θ · ∇(θj − θ)dxdt

−
1

τ

∫ T

0

∫

Ω

((wj)K − wK)θ(θj − θ)dxdt

+
1

τ

∫ T

0

∫

Ω

((wj)K − wK)θL(θj − θ)dxdt.

The regularity ∇θ ∈ Lp(0, T ; Lp(Ω)) for some p > 2 and the strong convergence of
κ((wj)k,K) → κ(wk,K) in any Lr(0, T ; Lr(Ω)) imply that (κ((wj)k,K) − κ(wk,K))∇θ → 0
strongly in L2(0, T ; L2(Ω)). Hence, since ∇θj → ∇θ weakly in L2(0, T ; L2(Ω)), the first
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integral on the right-hand side converges to zero. Similarly, in view of the L∞ bounds for
θ and θL, the second and third integrals converge to zero. Since κ((wj)k,K) ≥ κ∗ > 0, this
shows the claim.

Hence, we can pass to the limit j → ∞ in the equation
∫ T

0

〈∂tnj, φ〉dt +

∫ T

0

∫

Ω

θj∇nj · ∇φdxdt = −σj

∫ T

0

∫

Ω

(wj)K∇(θj + Vj) · ∇φdxdt,

where 〈·, ·〉 denotes the dual product on H1
0 (Ω∪ΓN) and φ ∈ L2(0, T ; H1

0 (Ω∪ΓN)), to infer
that n solves

∂tn − div(θ∇n) = −σdiv(wK∇(θ + V )) in L2(0, T ; H−1(Ω ∪ ΓN)).

This implies that n = S(w, σ). Hence, S is continuous and, by the Aubin lemma, also
compact.

We prove uniform estimates in L∞(0, T ; L∞(Ω)) for all fixed points of S(·, σ) which allows
to remove the truncation and which yields uniform estimates in L2(0, T ; L2(Ω)) needed for
the fixed-point theorem.

Step 3: L∞ bounds for n. Let n be a fixed point of S(·, σ). First, observe that the
test function n− in (14) immediately implies that n− = 0 and n ≥ 0 in Ω, t > 0, since
nK∇n− = 0 in Ω. To derive an upper bound, we set u = e−βtn. Then u solves the equation

(18) ∂tu − div(θ∇u) = σdiv(uK0
∇(θ + V )) − βu,

since nK = max{0, min{K0e
βt, eβtu}} = eβt max{0, min{K0, u}} =: eβtuK0

. Let L > K
and define φ = κ(nk,K)−1uK0

(uL − K0)
+, where uL = min{L, u}. This truncation is

necessary to obtain φ ∈ L2(0, T ; H1
0 (Ω∪ΓN)). Furthermore, φ(0) = 0 since u(0) = nI ≤ K0

in Ω. We employ the test function φ in the temperature equation (15):

(19) −

∫

Ω

κ(nk,K)∇θ · ∇φdx =
1

τ

∫

Ω

nK

κ(nk,K)
(θ − θL)uK0

(uL − K0)
+dx.

First, we compute the left-hand side:

−

∫

Ω

κ(nk,K)∇θ · ∇φdx = −

∫

Ω

uK0
∇θ · ∇(uL − K0)

+dx −

∫

Ω

∇uK0
· ∇θ(uL − K0)

+dx

+

∫

Ω

uK0

κ(nk,K)
(uL − K0)

+ ∂κ

∂n
∇nK · ∇θdx.

The second and third integrals vanish since ∇uK0
= 0 and ∇nK = 0 on {u > K0}. We

obtain

−

∫

Ω

κ(nk,K)∇θ · ∇φdx = −K0

∫

Ω

∇θ · ∇(uL − K0)
+dx.

Therefore, since θ ≤ M and nK/κ(nk,K) ≤ nk,K/κ(nk,K) ≤ 1/κ1 (see (7)), (19) becomes

−K0

∫

Ω

∇θ · ∇(uL − K0)
+dx =

1

τ

∫

Ω

nK

κ(nk,K)
(θ − θL)uK0

(uL − K0)
+dx(20)

≤
M

τκ1

∫

Ω

uK0
(uL − K0)

+dx.
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Next, we use (uL − K0)
+ as an admissible test function in (18). An elementary compu-

tation shows that

F (s) =

∫ s

0

(σL − K0)
+dσ ≥

1

2

(

(sL − K0)
+
)2

.

Therefore, since F (u(0)) = F (nI) = 0,

∫ t

0

〈∂tu, (uL − K0)
+〉ds =

∫

Ω

(

F (u(t)) − F (u(0))
)

dx ≥
1

2

∫

Ω

(

(u(t)L − K0)
+
)2

dx,

where 〈·, ·〉 denotes the dual product on H1
0 (Ω ∪ ΓN). This gives

1

2

∫

Ω

(

(u(t)L − K0)
+
)2

dx +

∫ t

0

∫

Ω

θ|∇(uL − K0)
+|2dxdt

≤ −σ

∫ t

0

∫

Ω

uK0
∇(θ + V ) · ∇(uL − K0)

+dxdt − β

∫ t

0

∫

Ω

u(uL − K0)
+dxdt.

By the Poisson equation (16),

−

∫

Ω

uK0
∇V · ∇(uL − K0)

+dx = −K0

∫

Ω

∇V · ∇(uL − K0)
+dx

= −λ−2K0

∫

Ω

(nK − C(x))(uL − K0)
+dx ≤ 0,

since u > K0 is equivalent to n > K and hence, nK − C(x) = K − C(x) ≥ K0 − C(x) ≥ 0
on {u > K0}, using the definition of K0. Then, taking into account (20), we find that

1

2

∫

Ω

(

(u(t)L − K0)
+
)2

dx + m

∫ t

0

∫

Ω

|∇(uL − K0)
+|2dxdt

≤
M

τκ1

∫ t

0

∫

Ω

uK0
(uL − K0)

+dx − β

∫ t

0

∫

Ω

u(uL − K0)
+dxdt

≤
M

τκ1

∫ t

0

∫

Ω

uK0
(uL − K0)

+dx − β

∫ t

0

∫

Ω

uK0
(uL − K0)

+dxdt

=

(

M

τκ1

− β

)
∫ t

0

∫

Ω

uK0
(uL − K0)

+dxdt = 0,

by the definition of β. We infer that (uL − K0)
+ = 0 for all L > K0. Letting L → ∞,

we obtain (u − K0)
+ = 0 and thus, n ≤ K in Ω, t > 0. As a consequence, nK = n,

and any solution to (14)-(16) solves (1)-(3). Furthermore, the L∞ bounds provide the
uniform estimates needed to apply the Leray-Schauder fixed-point theorem. This proves
the existence of solutions to (1)-(5).

Step 4: Positive lower bound for n. Assume that κ(z) = z for all 0 ≤ z ≤ n∗. We claim
that under this condition, n possesses a positive lower bound. In view of the upper bound
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from Step 3, (n − k)−, where k = k0e
−αt, is an admissible test function in (14) yielding

1

2

∫

Ω

(n − k)−(t)2dx + m

∫ t

0

∫

Ω

|∇(n − k)−|2dxdt ≤ −σ

∫ t

0

∫

Ω

n∇θ · ∇(n − k)−dxdt(21)

− σ

∫ t

0

∫

Ω

n∇V · ∇(n − k)−dxdt + α

∫ t

0

∫

Ω

k(n − k)−dxdt.

We write the second integral on the right-hand side as

−σ

∫ t

0

∫

Ω

(n − k)∇V · ∇(n − k)−dxdt − σ

∫ t

0

∫

Ω

k∇V · ∇(n − k)−dxdt

= −
σ

2

∫ t

0

∫

Ω

∇V · ∇
(

(n − k)−
)2

dxdt − σ

∫ t

0

∫

Ω

k∇V · ∇(n − k)−dxdt

= −
σ

2λ2

∫ t

0

∫

Ω

(n − C(x))
(

(n − k)−
)2

dxdt −
σ

λ2

∫ t

0

∫

Ω

(n − C(x))(n − k)−dxdt

≤
1

2λ2
‖C‖L∞(Ω)

∫ t

0

∫

Ω

(

(n − k)−
)2

dxdt +
1

λ2

∫ t

0

∫

Ω

k[−(n − k)−]dxdt,

using the Poisson equation and n(n − k)− ≤ k(n − k)− in Ω.
In order to estimate the first integral on the right-hand side of (21), we employ the test

function (n − k)− in (15). Then, since κ(n) = n for 0 ≤ n < k ≤ k0 ≤ n∗,

1

τ

∫

Ω

n(θ − θL)(n − k)−dx = −

∫

Ω

κ(n)∇θ · ∇(n − k)−dx = −

∫

Ω

n∇θ · ∇(n − k)−dx.

Therefore, (21) becomes

1

2

∫

Ω

(n − k)−(t)2dx + m

∫ t

0

∫

Ω

|∇(n − k)−|2dxdt ≤
σ

τ

∫ t

0

∫

Ω

n(θ − θL)(n − k)−dx

+
1

2λ2
‖C‖L∞(Ω)

∫ t

0

∫

Ω

(

(n − k)−
)2

dxdt +

(

1

λ2
− α

)
∫ t

0

∫

Ω

k[−(n − k)−]dxdt

≤
1

2λ2
‖C‖L∞(Ω)

∫ t

0

∫

Ω

(

(n − k)−
)2

dxdt

+

(

1

τ
‖θL‖L∞(Ω) +

1

λ2
− α

)
∫ t

0

∫

Ω

k[−(n − k)−]dxdt

=

(

1

τ
‖θL‖L∞(Ω) +

1

λ2
− α

)
∫ t

0

∫

Ω

k[−(n − k)−]dxdt = 0.

We obtain (n − k)− = 0 and hence, n ≥ k in Ω, t > 0.

4. Proof of Theorem 2

Let (n1, θ1, V1), (n2, θ2, V2) be two solutions to (1)-(3) with the regularity indicated in
the theorem.
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Step 1: Estimate of ∇(θ1 − θ2). We employ the test function θ1 − θ2 in the difference of
the weak formulations for θ1, θ2, respectively:

∫ t

0

∫

Ω

κ(n2)|∇(θ1 − θ2)|
2dxdt = −

∫ t

0

∫

Ω

(

κ(n1) − κ(n2)
)

∇θ1 · ∇(θ1 − θ2)dxdt(22)

−
1

τ

∫ t

0

∫

Ω

(

n2(θ1 − θ2) + (n1 − n2)(θ1 − θL)
)

(θ1 − θ2)dxdt.

Using the Cauchy-Schwarz, Poincaré, and Young inequalities, the second integral is esti-
mated from above by

c‖n1 − n2‖L2(0,T ;L2(Ω))‖θ1 − θ2‖L2(0,T ;L2(Ω))

≤ ε‖∇(θ1 − θ2)‖
2
L2(0,T ;L2(Ω)) + c(ε)‖n1 − n2‖

2
L2(0,T ;L2(Ω)).

where c(ε) > 0 depends on ε, the L∞ bounds for θ1 and θL, and the Poincaré constant.
The Lipschitz continuity of κ on [0, K] implies that

−

∫ t

0

∫

Ω

(

κ(n1) − κ(n2)
)

∇θ1 · ∇(θ1 − θ2)dxdt

≤ c

∫ t

0

∫

Ω

|n1 − n2| |∇θ1| |∇(θ1 − θ2)|dxdt

≤ c‖n1 − n2‖L2(0,T ;L2(Ω))‖∇(θ1 − θ2)‖L2(0,T ;L2(Ω))

≤ ε‖∇(θ1 − θ2)‖
2
L2(0,T ;L2(Ω)) + c(ε)‖n1 − n2‖

2
L2(0,T ;L2(Ω)),

where c(ε) > 0 depends on ε and the L∞ norm of ∇θ1. Since κ(n2) ≥ κ∗ > 0 for some
κ∗ > 0, we find from (22), for ε ≤ κ∗/4, that

(23) ‖∇(θ1 − θ2)‖L2(0,T ;L2(Ω)) ≤ c(κ∗)‖n1 − n2‖L2(0,T ;L2(Ω)).

Step 2: Estimate of n1−n2. We employ n1−n2 in the difference of the equations satisfied
by n1 and n2, respectively:

1

2

∫

Ω

(n1 − n2)(t)
2dx +

∫ t

0

∫

Ω

θ2|∇(n1 − n2)|
2dxdt(24)

= −

∫ t

0

∫

Ω

(θ1 − θ2)∇n1 · ∇(n1 − n2)dxdt

+

∫ t

0

∫

Ω

(

n2∇(θ1 − θ2) + (n1 − n2)∇θ1

)

· ∇(n1 − n2)dxdt

+

∫ t

0

∫

Ω

(

n2∇(V1 − V2) + (n1 − n2)∇V1

)

· ∇(n1 − n2)dxdt.



A SIMPLIFIED ENERGY-TRANSPORT MODEL 13

Applying Hölder’s inequality with p > 2 as in the theorem and 1/p + 1/q + 1/2 = 1 to the
first integral, we estimate as follows:

−

∫ t

0

∫

Ω

(θ1 − θ2)∇n1 · ∇(n1 − n2)dxdt

≤ ‖θ1 − θ2‖L2(0,T ;Lq(Ω))‖∇n1‖L∞(0,T ;Lp(Ω))‖∇(n1 − n2)‖L2(0,T ;L2(Ω))

≤ c‖∇(θ1 − θ2)‖L2(0,T ;L2(Ω))‖∇(n1 − n2)‖L2(0,T ;L2(Ω))

≤ c‖n1 − n2‖L2(0,T ;L2(Ω))‖∇(n1 − n2)‖L2(0,T ;L2(Ω))

≤ ε‖∇(n1 − n2)‖
2
L2(0,T ;L2(Ω)) + c(ε)‖n1 − n2‖

2
L2(0,T ;L2(Ω)).

In the second step we have used the Sobolev embedding H1(Ω) →֒ Lq(Ω) and the Poincaré
inquality, and the third step follows from (23).

For the second integral in (24), we obtain, using again (23),
∫ t

0

∫

Ω

(

n2∇(θ1 − θ2) + (n1 − n2)∇θ1

)

· ∇(n1 − n2)dxdt

≤ ε‖∇(n1 − n2)‖
2
L2(0,T ;L2(Ω)) + c(ε)‖∇(θ1 − θ2)‖

2
L2(0,T ;L2(Ω))

+ c(ε)‖n1 − n2‖
2
L2(0,T ;L2(Ω))

≤ ε‖∇(n1 − n2)‖
2
L2(0,T ;L2(Ω)) + c(ε)‖n1 − n2‖

2
L2(0,T ;L2(Ω)).

Finally, for the third integral in (24), we estimate
∫ t

0

∫

Ω

(

n2∇(V1 − V2) + (n1 − n2)∇V1

)

· ∇(n1 − n2)dxdt

≤ ε‖∇(n1 − n2)‖
2
L2(0,T ;L2(Ω)) + c(ε)‖∇(V1 − V2)‖

2
L2(0,T ;L2(Ω))

+
1

2

∫ t

0

∫

Ω

∇V1 · ∇(n1 − n2)
2dxdt.

By the elliptic estimate for the Poisson equation,
∫ t

0

∫

Ω

(

n2∇(V1 − V2) + (n1 − n2)∇V1

)

· ∇(n1 − n2)dxdt

≤ ε‖∇(n1 − n2)‖
2
L2(0,T ;L2(Ω)) + c(ε)‖n1 − n2‖

2
L2(0,T ;L2(Ω))

+
1

2λ2

∫ t

0

∫

Ω

(n1 − C(x))(n1 − n2)
2dxdt

≤ ε‖∇(n1 − n2)‖
2
L2(0,T ;L2(Ω)) + c(ε)‖n1 − n2‖

2
L2(0,T ;L2(Ω)).

Inserting these estimates in (24) and observing that θ2 is uniformly bounded from below,
i.e. θ2 ≥ m > 0 in Ω, t > 0, we infer that

1

2
‖(n1 − n2)(t)‖

2
L2(Ω) + m‖∇(n1 − n2)‖

2
L2(0,T ;L2(Ω))

≤ 3ε‖∇(n1 − n2)‖
2
L2(0,T ;L2(Ω)) + c(ε)‖n1 − n2‖

2
L2(0,T ;L2(Ω)).
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Then, choosing ε ≤ 1/(3m), the Gronwall lemma allows us to conclude that (n1−n2)(t) = 0
in Ω for t > 0. This proves the uniqueness of solutions.

5. Numerical approximation

In this section, we present numerical results for the simplified energy-transport model
with κ(n, θ) = nθ on the interval [0, 1]. The initial and boundary conditions are

nI(x) = C(x) for x ∈ Ω, n(0, t) = C(0), n(1, t) = C(1),

θ(0, t) = θL(0), θ(1, t) = θL(1), V (0, t) = 0, V (1, t) = U for t > 0.

Equations (1)-(3) are discretized on an equidistant grid with N grid points xi = i△x, where
△x = 1/(N − 1). The time grid points are tk = k△t, where △t > 0. We employ central
finite differences in space and the trapezoidal rule in time. Then, with the approximations
nk

i , θk
i , and V k

i of n(xi, tk), θ(xi, tk), and V (xi, tk), respectively, the discretized equations
become

1

△t
(nk

i − nk−1
i ) =

1

(△x)2

(

(nk
i+1θ

k
i+1 − 2nk

i θ
k
i + nk

i−1θ
k
i−1)

+ (nk−1
i+1 θk−1

i+1 − 2nk−1
i θk−1

i + nk−1
i−1 θk−1

i−1 )
)

−
1

2(△x)2

(

(nk
i+1 + nk

i )(V
k
i+1 − V k

i ) − (nk
i + nk

i−1)(V
k
i − V k

i−1)
)

−
1

2(△x)2

(

(nk−1
i+1 + nk−1

i )(V k−1
i+1 − V k−1

i )

− (nk−1
i + nk−1

i−1 )(V k−1
i − V k−1

i−1 )
)

,

nk
i − Ci =

λ2

(△x)2

(

V k
i+1 − 2V k

i + V k
i−1

)

,

nk
i

τ
(θk

i − θL,i) =
κ

2(△x)2

(

(nk
i+1θ

k
i+1 + nk

i θ
k
i )(θ

k
i+1 − θk

i ) − (nk
i θ

k
i + nk

i−1θ
k
i−1)(θ

k
i − θk

i−1)
)

.

Given (nk−1
i , θk−1

i , V k−1
i ), we find (nk

i , θ
k
i , V

k
i ) by solving the above nonlinear equations

subject to the corresponding (Dirichlet) boundary conditions using Newton’s method.
We simulate a ballistic diode which is defined by the doping profile

C(x) = 1 + 0.25
(

tanh(100x − 60) − tanh(100x − 40)
)

, x ∈ [0, 1].

The physical parameters are given in Table 1, and the scaled quantities are defined by

λ2 =
ε0εrkBT0

qCmaxL2
, κ = κ0τ0

kBT0

mn

, t∗ =

√

mnL2

kBT0

, τ =
τ0

t∗
.

For the computations, we choose N = 201 grid points and the time step size △t = 1.25 ×
10−4.

We wish to study the impact of different lattice temperatures. First, we choose a lattice
temperature which is cooling the interior of the diode, i.e. θL(x) = 1

2
(x− 1

2
)2 + 1

2
. Figure 1

shows the electron density and electron temperature at various times for applied voltages
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Parameter Value Physical meaning
kB 1.3807 × 10−23 kg m/s2K Boltzmann constant
ǫ0 8.8542 × 10−12 A2 s4/kg m3 Vacuum permittivity
m0 9.11 × 10−31 kg Electron mass at rest
q 1.602 × 10−19 A s Elementary charge
Cmax 1024 m−3 Maximum doping concentration
T0 300 K Device temperature
L 75 nm Device length
mn 0.067 · m0 Effective electron mass
εr 11.7 Relative permittivity of GaAs
τ0 0.9 × 10−12 s Momentum relaxation time
λ2 3.0 × 10−3 Scaled squared Debye length
τ 3.126 Scaled energy relaxation time
κ0 4.88 × 10−2 Heat transfer coefficient

Table 1. Physical and scaled parameters.

U = 0.2 V and U = 1.0 V, respectively. In both cases, the electron temperature converges
to its nonhomogeneous stationary profile as t → ∞. Since the profile is convex, equation
(2) implies that the particle temperature is larger than the lattice temperature. The
profile of the electron density follows the doping profile except for the large applied bias
U = 1.0 V. In this situation, the electric force is sufficiently strong to deplete the charge
carrier concentration close to the left boundary point.

Figure 2 illustrates the behavior of the electron density and electron temperature when
the lattice temperature is heating the diode, i.e. θL(x) = 7

4
−3(x− 1

2
)2. Again, the electron

temperature converges to a nonhomogeneous steady state, and the behavior of the particle
density is similar to the case of cooling temperatures. The current-voltage characteristic is
very close to that one with constant temperature (not presented). It can be seen that only
for very large voltages, the current density becomes slightly smaller due to an increasing
thermal energy fraction. This shows that the influence of the temperature equation is not
very important in a ballistic diode although there are significant temperature gradients.
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[16] A. Jüngel. Energy transport in semiconductor devices. Math. Computer Modelling Dynam. Sys. 16

(2010), 1-22.
[17] T. Seidman and G. Troianiello. Time-dependent solutions of a nonlinear system arising in semicon-

ductor theory. Nonlin. Anal. 9 (1985), 1137-1157.
[18] R. Stratton. Diffusion of hot and cold electrons in semiconductor barriers. Phys. Rev. 126 (1962),

2002-2014.
[19] G. Troianiello. Elliptic Equations and Obstacle Problems. Plenum Press, New York, 1987.
[20] X. Wu and X. Xu. Degenerate semiconductor device equations with temperature effect. Nonlin. Anal.

65 (2006), 321-337.
[21] X. Xu. A strongly degenerate system involving an equation for parabolic type and an equation of

elliptic type. Commun. Part. Diff. Eqs. 18 (1993), 199-213.
[22] X. Xu. A drift-diffusion model for semiconductors with temperature effects. Proc. Roy. Soc. Edinburgh

Sect. A 139 (2009), 1101-1119.
[23] H.-M. Yin. The semiconductor system with temperature effect. J. Math. Anal. Appl. 196 (1995),

135-152.
[24] L. Yong. Global existence and asymptotic behavior for an 1-D compressible energy transport model.

Acta Math. Sci. 29B (2009), 1-14.

Institute for Analysis and Scientific Computing, Vienna University of Technology,

Wiedner Hauptstraße 8–10, 1040 Wien, Austria

E-mail address: juengel@tuwien.ac.at

Fachbereich Mathematik, Technische Universität Kaiserslautern, Fraunhofer-Platz 1,

67663 Kaiserslautern, Germany

E-mail address: pinnau@mathematik.uni-kl.de

ITWM, Fraunhofer-Zentrum, 67663 Kaiserslautern, Germany

E-mail address: elisa.roehrig@itwm.fraunhofer.de


