
Parallel Preconditioning for Spherical Harmonics

Expansions of the Boltzmann Transport Equation

Karl Rupp∗†, Tibor Grasser∗ and Ansgar Jüngel†

∗Institute for Microelectronics, TU Wien. Gußhausstraße 27-29/E360, A-1040 Wien, Austria
†Institute for Analysis and Scientific Computing, TU Wien. Wiedner Hauptstraße 8-10/E101, A-1040 Wien, Austria

Email: {rupp,grasser}@iue.tuwien.ac.at, juengel@asc.tuwien.ac.at

Abstract—While the Monte Carlo method for the Boltzmann
transport equation for semiconductors has already been paral-
lelized, this is much more difficult to accomplish for the deter-
ministic spherical harmonics expansion method which requires
the solution of a linear system of equations. For the typically
employed iterative solvers, preconditioners are required to obtain
good convergence rates. These preconditioners are serial in
nature and cannot be applied efficiently in a black-box manner
to arbitrary systems.

Motivated by the underlying physical processes, we present
a parallel block-preconditioning scheme that allows us to use
existing serial preconditioners in a parallel setting. A reduction
of execution times by up to one order of magnitude on current
multi-core processors as well as graphics processing units is
observed.

I. INTRODUCTION

Since its introduction in the early 1990s, the spherical

harmonics expansion (SHE) method has become an attractive

alternative to the stochastic Monte Carlo method for the

numerical solution of the Boltzmann transport equation (BTE).

While the application of the SHE method has long been

restricted to one-dimensional device simulations due to high

memory requirements, enough memory is available on modern

computers to allow for two-dimensional device simulations

[1].

With the emergence of parallel computing architectures in

desktop computers, parallel algorithms increase in attractive-

ness. Recently, massively parallel computing architectures in

the form of graphics processing units (GPUs) for the use

as accelerators have gained a lot of popularity. While fully

parallel implementations of the Monte Carlo method have

already been reported [2], an artificial restriction of the SHE

method to a single CPU core would be detrimental to the

attractiveness of the method.

The SHE method ultimately leads to the solution of large

systems of linear equations, typically employed within a

nonlinear iteration scheme to ensure self-consistency of the

BTE with the Poisson equation. Due to the large number

of unknowns, iterative solution methods have to be used

for the solution of these systems. The convergence rate of

such iterative methods can be substantially improved by the

use of preconditioners. As discussed by Jungemann et al.

[3], the system of linear equations resulting from the SHE

equations requires a good preconditioner in order to obtain

reasonable rates. In recent publications on the SHE method

[1], [3], an incomplete LU factorization (ILU) preconditioner

was used for that purpose. ILU is a widely accepted black-box

preconditioner [4], but it is in its pure form restricted to single-

threaded execution. Even though parallel block-variants of

ILU as well other parallel preconditioning techniques such as

sparse approximate inverses [5] or polynomial preconditioners

have been developed, their convergence enhancement can be

typically considerably lower than single-threaded variants [4],

[6].

The purpose of this work is to show that the preconditioner

for the SHE method can be well parallelized. We study the

structure of the linear system resulting from the SHE method

and propose a general block-preconditioning scheme which

can also be used with serial preconditioners. We demonstrate a

considerable reduction of execution times on multi-core CPUs

as well as on GPUs by employing the initially serial ILU

preconditioner within the proposed parallel framework.

II. PHYSICS-BASED BLOCK-PRECONDITIONING

In operator form, the SHE equations in steady state can be

written as

Ll,m{f} = Ql,m{f} , l = 0, . . . , L, m = −l, . . . , l ,

where Ll,m and Ql,m denote the projections of the stream-

ing operator and the scattering operator onto the spherical

harmonics Yl,m, respectively. Employing the H-transform [1],

[7], carrier trajectories in free flight are given by hyperplanes

of constant total energy H in the simulation domain (x, H),
cf. Fig. 1. This is reflected in the model by the fact that Ll,m

does not couple any of the, say, NH different energy levels in

the simulation domain.

Carriers within the device can change their total energy

only by inelastic scattering events, thus the scattering operator

Ql,m{f} is responsible for coupling different energy levels.

However, if only elastic scattering processes are considered,

the total energy of the involved particles remains unchanged

and the different energy levels do not couple. Therefore,

in a SHE simulation using only elastic scattering and NH

different energy levels, the resulting system of linear equations

is consequently decoupled into NH independent problems.

Such a decomposition has been observed already in early

publications on SHE [8], but it has been of no practical

relevance since inelastic scattering processes are essential for

predictive device simulation.

H

x

Forbidden

Trajectories

Fig. 1. Trajectories of carriers in free flight within the device are given by
constant total energy H .

Inelastic scattering processes like optical phonon scattering

couple different energy levels. As devices are scaled down,

the average number of scattering events of a carrier while

moving through the device decreases. As a consequence, the

coupling between different energy levels gets weaker. At the

algebraic level this can be reasoned as follows: Using a box

integration scheme as proposed by Hong et al. [1], the volume

integral over the free streaming operator Ll,m is transformed to

a surface integral due to the divergence operator with respect

to the spatial variable x. Therefore, if the typical device length

d is scaled to d′ := αd with 0 < α < 1, the contributions from
the free streaming operator scale as αn−1, where n denotes

the spatial dimension considered in the simulation. However,

the scattering terms are obtained by an integration over the

control volume, which scales as αn. Therefore, in the limit

of extremely scaled devices, the coupling between different

energy levels is negligible.

We propose a construction of a preconditioner based on the

decoupled problem and using it as an approximation for the

coupled problem including inelastic scattering. More precisely,

let Sfull denote the system matrix of the coupled problem after

elimination of the odd order unknowns (cf. [3]) and Selastic the

system matrix of the decoupled problem. Then we construct

the preconditioner P full for Sfull as

P full ≈ (Sfull)
−1 ≈ (Selastic)

−1 ≈ P elastic . (1)

Since the elastic problem is decoupled into NH subproblems,

Selastic decomposes into NH independent blocks. For each

of these blocks, a (possibly serial) preconditioner can be

efficiently set up as well as applied to the residual vector in

parallel.

III. SYMMETRIZATION OF THE SCATTERING PROCESSES

Naturally the scattering rate from higher energy to lower

energy is much higher than vice versa. This asymmetry of

inelastic scattering processes for energies Hi and Hj , i < j,

with respect to energy manifests itself in the system matrix

in the form of large values in the block with energy index

(Hi, Hj), and small entries in the block (Hj , Hi), cf. Fig. 2.
Therefore, the upper triangular part of the system matrix is

populated with much larger values than the lower triangular

part. It should be noted that this asymmetry ensures that the

equilibrium solution is a Maxwell (or more generally, a Fermi-

Dirac) distribution.

The large values in the upper triangular part of the matrix

are a hindrance for the construction of the preconditioner by

neglecting off-diagonal blocks. We reduce this asymmetry by

rescaling the unknowns of the discrete system according to

the expected exponential decay. The new discrete unknowns

f ′

l,m(xi, Hi, t) are obtained from the old discrete unknowns

fl,m(xi, Hi, t) by

f ′

l,m(xi, Hi, t) := exp

(

εi

kBT

)

fl,m(xi, Hi, t) , (2)

where εi denotes the kinetic energy at point (xi, Hi), kB is

the Boltzmann constant and T denotes a scaling temperature

which can be seen as a numerical parameter. The benefit of this

rescaling is that in equilibrium the primed unknowns are then

of similar order and show little to no exponential behavior.

We note that this rescaling can be written in matrix form as

Sf = b ⇔ SDf ′ = b ,

where D is a diagonal matrix with the diagonal terms given

by the reciprocals of the exponentials in (2). The matrix

S′ := SD represents the system matrix with symmetrized

scattering entries. Here, symmetrization refers to rescaling the

unknowns such that the entries in the off-diagonal blocks

(Hi, Hj) and (Hj , Hi) are of similar magnitude – it does not

mean symmetry of the system matrix in the strict mathematical

sense.

IV. PRACTICAL CONSIDERATIONS

For the construction of the preconditioner it is not necessary

to set up another system matrix Selastic explicitly. Since the

contribution of inelastic scattering operators to the diagonal

blocks is positive, it is of advantage to use the block diagonal

of Sfull for setting up the preconditioner. Thereby, extra

memory for a second system matrix is avoided.

It has been observed in numerical experiments that the

rescaling of unknowns leads to better results if the temperature

T in (2) is set above room temperature. The physical interpre-

tation is that carriers are heated in areas of large electric fields,

thus having a lower exponential decay rate, which relates to a

higher temperature. Good results are obtained with T = 400K
and only a low sensitivity of the number of iterations on the

parameter T is observed.

The rows of the system matrix S′ can be normalized prior

to the block-factorization. This leads to a matrix S′′ given as

S′′ = ES′ = ESD ,

where the diagonal matrixE consists of the inverses of the row

norms. Thus, a two-sided diagonal preconditioner is applied

to the initial system matrix S before launching the block-

preconditioning scheme.

V. RESULTS

As a benchmark for the proposed block preconditioner

we consider the spatially two-dimensional simulation of an

n+nn+ diode with different lengths of the intrinsic region.

The parallel preconditioning scheme is implemented in our

H1

H1 H2

H2

HNH

HNH

(a) System matrix structure without any modi-
fications. Scattering from higher to lower ener-
gies leads to non-negligible off-diagonal coupling
blocks.

H1

H1 H2

H2

HNH

HNH

(b) System matrix structure after rescaling the un-
knowns such that solution variables are of similar
magnitude.

H1

H1 H2

H2

HNH

HNH

(c) As devices are scaled down, the entries in off-
diagonal blocks become small compared to the
entries in the diagonal blocks.

Fig. 2. Structure of the system matrix for total energy levels H1 < H2 < . . . < HNH
. Unknowns at the same total energy Hi are enumerated consecutively,

leading to a block-structure of the system matrix. For simplicity, scattering only between energy levels H1 and H2 is depicted using arrows with thickness
proportional to the magnitude of the entries.

simulator ViennaSHE. As a preconditioner for each block,

we consider an incomplete LU factorization with threshold

(ILUT). The same preconditioner is used as a single-threaded

preconditioner, since ILU preconditioners have been employed

in other recent works. The stabilized bi-conjugate gradient

algorithm (BiCGStab) is used as linear solver, since it provides

a lower memory footprint than the GMRES method used in

[3].

Execution times of the iterative BiCGStab solver are com-

pared for a single CPU core and for multiple CPU cores of

a quad-core Intel Core i7 960 CPU with eight logical cores.

In addition, comparisons for an NVIDIA Geforce GTX 580

GPU are found in Figs. 3 and 4. The GPU is programmed and

accessed using our OpenCL-based library ViennaCL [9], [10],

which also provides the iterative BiCGStab solver.

As can be seen in Figs. 3 and 4, the performance increase

for each linear solver step is more than one order of magnitude

compared to the single-core implementation. This super-linear

scaling with respect to the number of cores on the CPU is due

to the better caching possibilities obtained by the higher data

locality within the block-preconditioner.

The required number of iterations using the block-

preconditioner decreases with the device size. For a 25 nm

intrinsic region, the number of iterations is only twice than that

of an ILUT preconditioner for the full system. At an intrinsic

region of 200 nm, four times the number of iterations are

required. This is a very small price to pay for the excellent

parallelization possibilities.

Overall, the multi-core implementation is by a factor of

three to ten faster than the single core-implementation even

though a slightly larger number of solver iterations is required.

The purely GPU-based solver with hundreds of simultaneous

lightweight threads is by up to one order of magnitude faster

than the single-core CPU implementation.

A comparison of Figs. 3 and 4 further shows that the

SHE order does not have a notable influence on the block-

preconditioner efficiency compared to the full preconditioner.

The slightly larger number of solver iterations for third order

expansions is due to the higher number of unknowns in the

linear system. The performance gain is almost uniform over

the length of the intrinsic region and slightly favors shorter

devices, thus making the scheme an ideal candidate for current

and future scaled-down devices.

VI. CONCLUSIONS

A parallel block-preconditioning scheme is proposed and

demonstrated to be very efficient especially for scaled-down

devices. In contrast to black-box block preconditioners, the

proposed scheme is based on a sound physical principle. The

number of iterations compared to a single-threaded ILUT

preconditioner for the full system matrix is two to three times

as large, but this is only a minor price to pay for the huge

degree of parallelism provided for the crucial preconditioning

step. On the whole, an overall performance improvement of

one order of magnitude is obtained.

ACKNOWLEDGMENT

Karl Rupp and Ansgar Jüngel acknowledge support from

the Austrian Science Fund (FWF), grants I395 and P20214.

The authors gratefully acknowledge support by the Graduate

School PDEtech at the TU Wien.

REFERENCES

[1] S. M. Hong and C. Jungemann, A Fully Coupled Scheme for a
Boltzmann-Poisson Equation Solver based on a Spherical Harmonics
Expansion. J. Comp. Elec., vol. 8, p. 225–241 (2009).

[2] W. Zhang et. al., A 3D Parallel Monte Carlo Simulator for Semiconductor
Devices. Proc. IWCE 2009, p. 1–4 (2009).

[3] C. Jungemann et. al., Stable Discretization of the Boltzmann Equation
based on Spherical Harmonics, Box Integration, and a Maximum Entropy
Dissipation Principle. J. Appl. Phys., vol. 100, no. 2, p. 024502-+ (2006).

[4] Y. Saad, Iterative Methods for Sparse Linear Systems, Second Edition,
SIAM (2003).

[5] M. J. Grote and T. Huckle, Parallel Preconditioning with Sparse Approx-
imate Inverses. SIAM J. Sci. Comp., vol. 18, no. 3, p. 838–853 (1997).

[6] P. S. Vassilevski, Multilevel Block Factorization Preconditioners, Springer
(2008).

[7] A. Gnudi et al., Two-Dimensional MOSFET Simulation by Means of
a Multidimensional Spherical Harmonics Expansion of the Boltzmann
Transport Equation. S. S. Electr., vol. 36, no. 4 p. 575–581 (1993).

[8] Gnudi, A. et al., One-Dimensional Simulation of a Bipolar Transistor by
means of Spherical Harmonics Expansion of the Boltzmann Transport
Equation. Proc. SISDEP, vol. 4, p. 205–213 (1991).

[9] Khronos Group. OpenCL. http://www.khronos.org/opencl/.
[10] ViennaCL. http://viennacl.sourceforge.net/.

 0.001

 0.01

 0.1

 1

 20 40 60 80 100 120 140 160 180 200

E
x
e
c
.

T
im

e
 (

s
e
c
)

Length of Intrinsic Region (nm)

Execution Time per Solver Step for First-Order SHE

CPU, 1 thread
CPU, 8 threads

GPU

 10

 100

 1000

 20 40 60 80 100 120 140 160 180 200

It
e
ra

ti
o
n
s

Length of Intrinsic Region (nm)

Solver Iterations for First-Order SHE

Full ILUT
Block ILUT

 0.1

 1

 10

 20 40 60 80 100 120 140 160 180 200

E
x
e
c
.
T

im
e
 (

s
e
c
)

Length of Intrinsic Region (nm)

Total Execution Time for First-Order SHE

CPU, 1 thread
CPU, 8 threads

GPU

Fig. 3. Execution times per solver iteration, number of solver iterations
and total solver execution time for a first-order SHE simulation of n+nn+

diodes with different lengths of the intrinsic region. A reduction of total
execution times compared to a single-threaded implementation by one order
of magnitude is obtained.

 0.01

 0.1

 1

 20 40 60 80 100 120 140 160 180 200

E
x
e
c
.

T
im

e
 (

s
e
c
)

Length of Intrinsic Region (nm)

Execution Time per Solver Step for Third-Order SHE

CPU, 1 thread
CPU, 8 threads

GPU

 10

 100

 1000

 20 40 60 80 100 120 140 160 180 200

It
e
ra

ti
o
n
s

Length of Intrinsic Region (nm)

Solver Iterations for Third-Order SHE

Full ILUT
Block ILUT

 1

 10

 100

 20 40 60 80 100 120 140 160 180 200

E
x
e
c
.
T

im
e
 (

s
e
c
)

Length of Intrinsic Region (nm)

Total Execution Time for Third-Order SHE

CPU, 1 thread
CPU, 8 threads

GPU

Fig. 4. Execution times per solver iteration, number of solver iterations and
total solver execution time for a third-order SHE simulation of n+nn+ diodes
with different lengths of the intrinsic region. Similar to first-order expansions,
a reduction of execution times up to one order of magnitude with respect to
a single-threaded implementation is obtained.

