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Abstract. One-dimensional stationary energy-transport equa-
tions for semiconductors in the dual entropy variable formula-
tion are numerically discretized employing a mixed-hybrid finite-
element method which has the advantage to fulfill current conser-
vation. Numerical results for two ballistic diodes are presented and
numerical convergence rates are computed.

1. Introduction

The simulation of modern ultra-small semiconductor devices requires the use of ad-
vanced models which are able to deal with physical effects such as carrier heating
and velocity overshoot. The energy-transport equations seem to provide a reason-
able compromise between physical accuracy and numerical efficiency. They consist
of the conservation laws of mass and energy for the electron density n and elec-
tron temperature T , together with constitutive relations for the particle and energy
fluxes J1 and J2, respectively, and are coupled to the Poisson equation for the elec-
trostatic potential V . In one space dimension, the scaled stationary equations read
as follows:

−∂xJ1 = 0, J1 = ∂xn − T−1n∂xV,(1.1)

−∂xJ2 = −J1∂xV + W (n, T ), J2 = 3
2∂x(nT ) − 3

2n∂xV,(1.2)

λ2∂xxV = n − C(x), x ∈ I = (0, 1).(1.3)

Here, W (n, t) = 3n(1 − T )/2τ is the relaxation term with the (scaled) energy
relaxation time τ , λ denotes the scaled Debye length, and C(x) is the doping profile
(see [13] for details). The equations are completed by the boundary conditions

(1.4) n(0) = n(1) = 1, T (0) = T (1) = 1, V (0) = U, V (1) = 0.

This energy-transport model has been derived in [2, 6] from the semiconductor
Boltzmann equation by means of a Hilbert expansion method and is referred to
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as the Chen model since it has been used by Chen et al. in [4]. The first energy-
transport model has been presented by Stratton [20].

The derivation in [2] provides another formulation of the energy-transport equa-
tions, namely in the primal entropy variables µ/T and −1/T , where µ is the
chemical potential, related to the particle density by the expression n(µ, T ) =
N0T

3/2 exp(µ/T ), N0 > 0 being a scaled density. Although this formulation makes
clear the connection to thermodynamics, the equations still contain the Joule heat-
ing term −J1∂xV in (1.2) and are convection dominated, which complicates the
numerical approximation. In [1, 5] is has been observed that the Joule heating
term vanishes if the dual entropy variables w1 = (µ − V )/T and w2 = −1/T are
employed. In these variables, the equations (1.1) and (1.2) become

−∂xI1 = 0, I1 = D11∂xw1 + D12∂xw2,(1.5)

−∂xI2 = W (n, T ), I2 = D21∂xw1 + D22∂xw2,(1.6)

where the diffusion coefficients are given by

D11 = n, D12 = D21 = −n
(

V +
3

2
T

)

, D22 = n
(

V −
3

2
T

)2

+
3

2
nT 2.

The main objective of this paper is to present a numerial scheme for the strongly
coupled elliptic problem (1.4)-(1.6) in the dual entropy variables w1, w2.

The numerical discretization of energy-transport models has been investigated
in the physical literature for quite some years (see, e.g., [4, 7, 19]). Mathematicians
employed ENO (essentially non-oscillatory) schemes [12], finite-difference methods
[8], mixed finite volumes [3], and mixed finite elements [9, 10, 14, 17, 18].

More precisely, the authors in [9] employed a mixed-hybrid finite-element method
for (1.1)-(1.2), taking advantage of the drift-diffusion type formulation of the current
expressions. Since zero-order terms are taken into account, the use of standard
mixed finite elements generally does not provide an M-matrix which is desirable in
view of a discrete maximum principle. In order to guarantee the M-matrix property,
finite elements developed in [15, 16] have been used instead.

Another approach has been presented in [17, 18]. The authors of [17, 18] are
working in the dual entropy variable formulation and employ a standard mixed
finite-element scheme together with an artificial time derivative. The disadvantage
of this approach is that a large discrete system has to be solved.

In this paper, we also work with dual entropy variables, but we employ a hy-

bridized form of the mixed finite-element method. Compared to [9], we can use
standard finite elements which are easier to handle than the finite elements of [16]
but still provide the M-matrix property. Compared to [17], we can apply static
condensation to the algebraic system which allows to reduce the complexity of the
discrete problem considerably.

The paper is organized as follows. The mixed-hybrid finite-element discretization
of problem (1.4)-(1.6) is presented in section 2. In section 3 two one-dimensional
ballistic diodes which can be considered as a benchmark model are simulated and
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numerical convergence rates are given. The extension of this approach to two space
dimensions is in preparation.

2. Discretization of the equations

We choose an equidistant grid xi = ih, i = 0, . . . , N , and the discretization param-
eter h = 1/N . Furthermore, we introduce the following finite-element spaces:

Xh = {f ∈ L2(I) : f is linear on (xi−1, xi) for all i},

Yh = {f ∈ L2(I) : f is constant on (xi−1, xi) for all i},

Zh = R
N+1.

In several space dimensions, one may choose a “hybridized” Raviart-Thomas space
of lowest order (see, e.g., [9]). Although the Poisson equation can be discretized
with standard finite elements, we choose a mixed formulation also for this equation
since the electric field −∂xV is used to compute the fluxes. For this, we define the
field-like variable E = λ2∂xV . The mixed-hybrid finite-element discretization of
(1.3) reads as follows: Find Eh ∈ Xh, Uh ∈ Yh, and Vh ∈ Zh satisfying V 1

h = U ,

V N+1
h = 0 (the superscripts denote components of the vector Vh) such that

N
∑

i=1

(

λ−2

∫ xi

xi−1

Ehφh dx +

∫ xi

xi−1

Uh∂xφh dx − [Vhφh]
xi

xi−1

)

= 0,

N
∑

i=1

(

∫ xi

xi−1

∂xEhψh dx −

∫ xi

xi−1

(nh − C(x))ψh dx

)

= 0,

−
N

∑

i=1

[µhEh]
xi

xi−1
= 0

for all φh ∈ Xh, ψh ∈ Yh, and µh ∈ Zh satisfying µ1
h = µN+1

h = 0. The first
equation is obtained from a weak version of λ−2E = ∂xV , using integration of parts
and summation of all (xi−1, xi). Here, Eh is an approximation of E, and both Uh

and Vh approximate the potential V . The second equation is a discrete weak form
of ∂xE = n(V,w1, w2) − C(x), and the third equation implies the continuity of
Eh at the nodes. The particle density n(V,w1, w2) = (−w2)

−3/2 exp(w1 − V w2) is

approximated by nh = n(V
i

h, wi
1h, wi

2h), where, on each (xi−1, xi),

V
i

h =
V i−1

h + V i
h

2
, wi

jh =
wi−1

jh + wi
jh

2
, j = 1, 2.

Before we can give the mixed-hybrid form of (1.5)-(1.6), we need some definitions.
The inverse of D is denoted by A = (Aij)i,j=1,2 (which depends on V , w1, and
w2), where

A11 =
2w2

2

3n2
D22, A12 = A21 = −

2w2
2

3n2
D21, A22 =

2w2
2

3n2
D11,
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and set Ah = A(V
i

h, wi
1h, wi

2h) and Wh = W (V
i

h, wi
1h, wi

2h) on each (xi−1, xi).
Furthermore, we use the notations

Ih = (I1h, I2h)>, vh = (v1h, v2h)>, wh = (w1h, w2h)>.

Then, the mixed-hybrid formulation of (1.5)-(1.6) reads as follows: Find Ih ∈ Xh =
X2

h, vh ∈ Yh = Y 2
h , and wh ∈ Zh = Z2

h satisfying the boundary conditions such
that

N
∑

i=1

(

∫ xi

xi−1

φh · AhIh dx +

∫ xi

xi−1

vh · ∂xφh dx − [φh · wh]xi

xi−1

)

= 0,(2.1)

N
∑

i=1

(

∫ xi

xi−1

ψh · ∂xIh dx −

∫ xi

xi−1

Wh · ψh dx

)

= 0,(2.2)

−

N
∑

i=1

[µh · Ih]xi

xi−1
= 0(2.3)

for all φh ∈ Xh, ψh ∈ Yh, and µh ∈ Zh satisfying µ1
h = µN+1

h = 0. Equation
(2.1) is derived from the weak formulation of the first equations in (1.5)-(1.6); (2.2)
comes from the weak form of the second equations in (1.5)-(1.6); and finally, (2.3)
imposes the continuity of the fluxes across the inter-element boundaries.

We apply static condensation in order to reduce the size of the discrete system.
This yields an algebraic system for the Lagrange multipliers Vh, w1h, and w2h only.
Locally, we can express the variables Uh, v1h, v2h and Eh, I1h, I2h in terms of the
Lagrange multipliers. Indeed, we obtain

U i
h = V

i

h −
h2

12λ2
(nh − Ci

h), vi
h =

(

wi
1h

wi
2h

)

−
h2

12
AhWh,

where

Ci
h =

1

h

∫ xi

xi−1

C(x) dx.

In order to derive the dependence of Eh and Ih on the Lagrange multipliers, we
use the local basis

φ0i(x) =

{

1, x ∈ (xi−1, xi)
0, else,

φ1i(x) =

{

2
h (x − 1

2 (xi−1 + xi)), x ∈ (xi−1, xi)
0, else

in Xh, since the continuity is forced by the Lagrange multipliers. On each interval
(xi−1, xi) we can write Eh = Ei

0hφ0i + Ei
1hφ1i and Ih = Ii

0hφ0i + Ii
1hφ1i, where

(

Ei
0h

Ei
1h

)

=
λ2

h
Mh

(

V i−1
h

V i
h

)

+
h

2

(

0
nh − Ci

h

)

,

(

Ii
0h

Ii
1h

)

=
1

h

(

D11hMh D12hMh

D21hMh D22hMh

) (

wi
1h

wi
2h

)

+
h

2

(

0

Wh

)
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and

Dh = A−1
h , Mh =

(

−1 1
0 0

)

, wi
jh =

(

wi−1
jh

wi
jh

)

, j = 1, 2.

The nonlinear system for Vh, w1h, w2h is solved by a combination of the Newton
and Gummel method. First, we compute the solution of the thermal equilibrium
U = 0 as an initial guess of the iterative procedure. Then we increase the applied
voltage by the voltage increment 4U = 50 mV and solve the coupled subsystem
(1.5)-(1.6) using the Newton method up to convergence. Then we perform one
Newton iteration step in the linearized Poisson equation,

(2.4) λ2∂xxδV − n
(l)
h δV = −λ2∂xxV

(l)
h + n

(l)
h − C(x), δV (0) = δV (1) = 0,

where n
(l)
h = n(V

(l)
h , w

(l+1)
1h , w

(l+1)
2h ) and the functions w

(l+1)
1h , w

(l+1)
2h are the solu-

tions of the previous flux subsystem. Then we set V
(l+1)
h = V

(l)
h + δV . If ||δV ||2

is smaller than a prescribed tolerance and if the right-hand side in (2.4) is small
enough we stop the Gummel iteration and increase the applied voltage again to
start the next Gummel iteration.

Remark. The coefficients of Ah can be easily computed since, on (xi−1, xi), we
have

(2.5)
1

h

∫ xi

xi−1

e−(w1h−V hw2h) dx = e−(w1h−V hw2h).

One might think that a better approximation of A is obtained by taking the linear
interpolants of Vh, w1h, w2h in the exponent. Denoting by Jh the linear interpolant
operator, one could choose

(2.6)
1

h

∫ xi

xi−1

e−(Jh(w1h)−Jh(Vh)w2h) dx

or

(2.7)
1

h

∫ xi

xi−1

e−(Jh(w1h)−Jh(Vh)Jh(w2h)) dx.

The integral (2.6) can be computed explicitly since the exponent is a linear func-
tion. However, we observed that the approximation (2.6) requires much more nodes
than (2.5) to ensure the convergence of the iterative system. On the other hand,
(2.7) needs to be calculated numerically. This can be done, for instance, with the
functions

F+(x) = ex2

∫ x

0

e−t2dt and F−(x) = e−x2

∫ x

0

et2dt, x ∈ R.

The mapping F− is referred to as the Dawson function and can be approximated
efficiently with Chebyshev polynomials and asymptotic expansions [11]. For both
(2.5) and (2.7) the same number of nodes can be taken. The approximation (2.7)
leads to a slightly faster convergence of the Gummel iteration compared to (2.5),
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but every iteration step is more time consuming. Therefore, we have chosen the
simple formula (2.5). ¤

3. Numerical results for ballistic diodes

As numerical examples we simulate two n+nn+ ballistic diodes. In the first exam-
ple, we choose the same numerical data as in [6]. More precisely, the device length
is 0.6 µm and the doping profile C(x) equals 2 · 1015 cm−3 for x ∈ (0.1µm, 0.5µm)
(channel or n region) and 5·1017 cm−3 elsewhere (n+ regions). The ambient temper-
ature is 300K, the relaxation time τ0 = 0.4 ps, and the applied voltage U = 1.5 V.
The computations are performed on a uniform grid with 101 nodes. (We notice
that the scheme also works for 40 nodes.)

In Figure 1 the electron temperature T und electron mean velocity u = I1/qn (q
being the elementary charge) are displayed. The electrons are moving from right to
left. They heat up in the channel region and are close to the ambient temperature
in the n+ regions. The mean velocity shows a small velocity overshoot around
x = 0.14 µm. The maximal temperature equals Tmax = 2348 K and the maximal
velocity is umax = 1.404 · 107 cm/s. These values are in very good agreement with
the results of [6], where Tmax = 2330 K and umax = 1.44 · 107 cm/s have been
reported.
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Figure 1. Electron temperature (left) and mean velocity (right)
versus position in a ballistic diode with channel length 0.4µm.

As a second example we present the temperature and mean velocity of a ballistic
diode with channel length of 90 nm (Figure 2). The length of the n+ regions is
also 90 nm such that the total length of the device equals 270 nm. The physical
parameters are the same as in the first example but the applied voltage is now
U = 1 V. As expected, the temperature is smaller than in the first example since
the voltage and the channel length are smaller. The overshoot of the mean velocity
almost vanishes.
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Figure 2. Electron temperature (left) and mean velocity (right)
versus position in a ballistic diode with channel length 90 nm.

h RE(Vh) CR(Vh) RE(nh) CR(nh) RE(Th) CR(Th)
2 · 10−2 0.1819 − 0.6591 − 0.3858 −
1 · 10−2 0.0639 1.5089 0.2358 1.4828 0.1367 1.4968

6.67 · 10−3 0.0348 1.5027 0.1285 1.4965 0.0745 1.4980
5 · 10−3 0.0226 1.5015 0.0835 1.4977 0.0484 1.4990

Table 1. Relative errors and convergence rates for Vh, nh, Th.

In Table 1 we present, for the first example, the relative errors

RE(uh) =
||uh − u∗||L2

||u∗||L2

,

where uh is some numerical solution and u∗ the reference solution, and the numerical
convergence rates CR for the potential, the particle density, and temperature. For
this, we have employed piecewise linear interpolation of the Lagrange multipliers
Vh, w1h, and w2h. The reference solution is the numerical solution obtained on a
very fine mesh with h = 0.33 · 10−4. We observe that the convergence rates are
around 1.5 which is in good agreement with the results of [6].
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[9] S. Holst, A. Jüngel, and P. Pietra. A mixed finite-element discretization of the energy-

transport equations for semiconductors. SIAM J. Sci. Comput. 24 (2003), 2058-2075.
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