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1. Introduction

In their pioneering work, Shigesada, Kawasaki, and Teramoto23 proposed a general-

ization of the Lotka-Volterra differential equations in order to describe spatial segre-

gation of interacting population species. Denoting by u1 = u1(x, t) and u2 = u2(x, t)

the densities of the two competing species, the equations read as follows:

∂tui − divJi = (ai − biu1 − ciu2)ui, Ji = ∇
(

(di + ρi1u1 + ρi2u2)ui

)

, (1.1)

with homogeneous Neumann boundary and initial conditions

Ji · ν = 0 on ∂Ω × (0,∞), u(·, 0) = u0
i ≥ 0 in Ω, i = 1, 2. (1.2)

1



2 L. Chen and A. Jüngel

Problem (1.1)–(1.2) has to be solved in QT = Ω× (0, T ), where T > 0 and Ω ⊂ R
d

(d ≥ 1) is a bounded domain. In (1.1), d1, d2 ≥ 0 are the diffusion rates, ρ11, ρ22 ≥ 0

the self-diffusion coefficients, and ρ12, ρ21 ≥ 0 are the cross-diffusion constants mak-

ing the parabolic problem strongly coupled. Furthermore, the nonnegative coeffi-

cients a1 and a2 denote the intrinsic growth rates, b1 and c2 the intra-specific com-

petition constants, and b2 and c1 the rates of inter-specific competition. Equations

(1.1) have the interesting feature that they allow for pattern formation depending

on the relative sizes of the interaction coefficients.19 For vanishing coefficients di

and ρij , we obtain the classical Lotka-Volterra differential equations.

The above system possesses the diffusion matrix
(

d1 + 2ρ11u1 + ρ12u2 ρ12u1

ρ21u2 d2 + 2ρ22u2 + ρ21u1

)

.

Nonlinear problems with a full diffusion matrix are difficult to deal with since, for

instance, maximum principles, employed for the derivation of a priori estimates,

generally cannot be applied. Moreover, the above matrix is not symmetric and

generally not positive definite. In Ref.5,9 it has been shown that the problem (1.1)–

(1.2) can be transformed to a system with a symmetric, positive definite diffusion

matrix via the change of variables w1 = ln(u1)/ρ12 and w2 = ln(u2)/ρ21. This

symmetrization property is strongly connected to the existence of the entropy

E(t) =

∫

Ω

(

1

ρ12
Φ(u1) +

1

ρ21
Φ(u2)

)

dx,

where Φ(x) = x(lnx − 1) + 1, x ≥ 0 (see Ref.7,12). Differentiating this function

formally, the a priori estimate

E(t) + 2

∫

Qt

(

d1

ρ12
|∇√

u1|2 +
d2

ρ21
|∇√

u2|2 + |∇√
u1u2|2

)

dxdτ

+

∫

Qt

(

b1

ρ12
(u2

1 lnu2
1 + 1) +

c2

ρ21
(u2

2 lnu2
2 + 1) +

( c1

ρ12
+

b2

ρ21

)

u1u2

)

dxdτ(1.3)

+ 2

∫

Qt

(

ρ11

ρ12
|∇u1|2 +

ρ22

ρ21
|∇u2|2

)

dxdτ ≤ C(E(0) + 1), 0 < t ≤ T,

for some C > 0 depending on T is obtained. In particular, if ρ11 > 0 and ρ22 > 0,

we obtain L2(0, T ;H1(Ω)) bounds for u1 and u2.

The above inequality can be derived by employing the test functions ln(u1)/ρ12

and ln(u2)/ρ21 in the weak formulation of (1.1) for i = 1 and i = 2, respectively.

Clearly, this derivation is only rigorous if the densities u1 and u2 are positive.

However, since we are lacking a maximum (or minimum) principle, it is not clear

how to prove this property. This problem can be fixed by working in the variables w1,

w2 since then u1 = exp(ρ12w1) and u2 = exp(ρ21w2) are automatically positive. In

order to make the estimate (1.3) rigorous, the idea of Ref.5 was to semi-discretize

the system (1.1) in time and to approximate the cross-diffusion terms by finite

differences in such a way that a discrete entropy inequality analogous to (1.3) holds.
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In this paper we extend the results and improve the method of Ref.5. First,

we allow for vanishing self-diffusion coefficients ρ11 = ρ22 = 0. This complicates

the analysis since we do not conclude L2(0, T ;H1(Ω)) bounds for u1 and u2 from

(1.3) but only L2(0, T ;H1(Ω)) bounds for the nonlinear functions
√

u1 and
√

u2.

Furthermore, we are able to give a much simpler proof than presented in Ref.5 by

using a Galerkin approximation. Our approximate problem provides a positivity-

preserving fully discrete scheme, which is interesting from a numerical point of

view. Finally, we also study the long-time behavior of the transient solutions to

(1.1)-(1.2) for special (constant) steady states. We prove that the solutions converge

exponentially fast to their steady state in the entropy and in the L1 norm.

In the following we explain our results in more detail. We set ρ11 = ρ22 = 0 and

we rescale the equations such that ρ12 = ρ21 = 1. Then the equations to be studied

are as follows:

∂tui − ∆(diui + u1u2) = (ai − biu1 − ciu2)ui, (x, t) ∈ QT , i = 1, 2, (1.4)

with boundary and initial conditions

∇ui · ν = 0 on ∂Ω × (0,∞), ui(·, 0) = u0
i in Ω, i = 1, 2. (1.5)

Our first main result is contained in the following existence theorem.

Theorem 1.1. Let s = 1 + d2/(2d + 2) and ∂Ω ∈ C`,1 with ` ∈ N, ` ≥ s. Further-

more, let ai, bi, ci ≥ 0, di > 0, and u0
i ∈ LΨ(Ω) be such that u0

i ≥ 0 in Ω, i = 1, 2.

Then there exists a weak solution (u1, u2) of problem (1.4)–(1.5) satisfying

ui ≥ 0 in Ω × (0,∞), ∂tui ∈ L1
loc(0,∞; (Hs(Ω))′),

ui ∈ L
4/3
loc (0,∞;W 1,4/3(Ω)) ∩ L∞

loc(0,∞;LΨ(Ω)).

The equations (1.4) are satisfied in the sense of distributions and the initial data

(1.5) are satisfied in the sense of the dual space (Hs(Ω))′.

The space LΨ(Ω) is the Orlicz space with function Ψ(x) = Φ(x + 1) = (1 +

x) ln(1 + x) − x, x ≥ 0. We refer to Ref.1,14 for its definition and properties.

In order to prove Theorem 1.1 we use a semi-discretization in time (backward

Euler method) so that problem (1.4)–(1.5) becomes a recursive sequence of elliptic

equations. Then we perform the change of unknowns ui = ewi (i = 1, 2). The

advantage of this transformation is that the property wi ∈ L∞(Ω) implies the

positivity of ui. In Ref.9 the problem (1.1)–(1.2) has been considered in one space

dimension only, since then the solution satisfies w1, w2 ∈ H1(Ω) ↪→ L∞(Ω). Clearly,

this argument cannot be used in several space dimensions. Our new idea is to

employ a Galerkin approximation. More precisely, we solve the semi-discrete elliptic

problem in a sequence of finite-dimensional spaces whose union is dense in Hs(Ω)

with s > d/2. Then wi ∈ Hs(Ω) ↪→ L∞(Ω) and the transformation ui = ewi is well

defined and yields positive discrete solutions.

The discrete entropy inequality and Aubin’s lemma allow us to conclude the

strong convergence in L1(QT ) of a subsequence of the discrete solutions u
(τ)
i , where
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τ denotes the discretization parameters. However, from the entropy estimates, we

obtain a uniform estimate for the discrete time derivative of u
(τ)
i only in the space

L1(0, T ; (Hs(Ω))′). Since L1 is not reflexive, generally, we cannot extract a converg-

ing subsequence. In order to prove the weak compactness in L1 we use a variant of

a result of Yosida25 (see Lemma 3.2).

We turn to the study of the long-time behavior of the solutions to (1.4)–(1.5).

The case of the Lotka-Volterra equations with diffusion (i.e. ρij = 0 for i, j = 1, 2)

has been studied in Ref.3,8. It turns out that the asymptotic behavior depends on

the relative sizes of the quantities A = a1/a2, B = b1/b2, and C = c1/c2:

(i) A > max{B,C},
(ii) A < max{B,C},
(iii) B > A > C (weak competition),

(iv) B < A < C (strong competition).

The solution (u1(·, t), u2(·, t)) converges, as t → ∞, uniformly to (a1/b1, 0) in case

(i), to (0, a2/c2) in case (ii), and to u∗ = ((a1c2 − a2c1)/(b1c2 − b2c1), (b1a2 −
b2a1)/(b1c2 − b2c1)) in case (iii). Thus, in cases (i) or (ii), one of the species is

wiped out whereas in case (iii), both species coexist. Case (iv) is more involved. For

instance, the constant steady states (a1/b1, 0) and (0, a2/c2) are locally stable and

u∗ is unstable,19 and the stability of positive steady states depends on the shape of

the domain Ω.13,20,21

In the triangular cross-diffusion case (i.e. ρij ≥ 0 but ρ21 = 0), Le et al. proved

the existence of a global attractor of the system.16,17 However, only a few results

are available on the asymptotic behavior of the solutions to the cross-diffusion

model with full diffusion matrix, since in this situation, the influences from both

the Lotka-Volterra and the self- and cross-diffusion terms need to be taken into

account. The interesting topic here is the question if the system admits non-constant

steady states, expressing spatial segregation of the species. For some results in this

direction, we refer to Ref.11,20,22. Lou and Ni investigate this question extensively

in Ref.19. Roughly speaking, their results can be summarized as follows.

• If the diffusion or self-diffusion rates are sufficiently large, there exist only

constant steady states (no segregation).

• In the weak competition case and if the self-diffusion and/or cross-diffusion

rates are weaker than the diffusion coefficients, there still exist only constant

stationary solutions.

• In the weak or strong competition case, fixing one of the cross-diffusion

parameters ρ12 or ρ21, there exists a non-constant steady state if the other

cross-diffusion constant is sufficiently large (and if the diffusion and Lotka-

Volterra parameters are appropriately chosen, see Ref.19).

These results indicate that diffusion and self-diffusion seem to prevent pattern for-

mation, whereas cross-diffusion seems to support the segregation process. In Ref.19
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the following question remained unsolved: Do non-constant steady states still exist

if both cross-diffusion coefficients are strong but qualitatively similar? In this paper,

we give a partial answer to this question. More precisely, we show that in the case of

vanishing inter-specific competition b2 = c1 = 0 (special case of weak competition),

only constant solutions exist no matter how strong the cross-diffusion coefficients

are. Furthermore, we prove that the solution, constructed in Theorem 1.1, converges

exponentially fast to its (constant) steady state if ai = bi = ci = 0 (i = 1, 2).

In order to prove the long-time behavior we employ the so-called entropy-entropy

production method (see, e.g., Ref.2,4). The relative entropy of the population system

with stationary solution (U1, U2) equals

E(t;U1, U2) =

∫

Ω

(

U1

ρ12
Φ

( u1

U1

)

+
U2

ρ21
Φ

( u2

U2

)

)

dx,

where we recall that Φ(x) = x(lnx− 1) + 1, x ≥ 0. If ai = bi = ci = 0 (i = 1, 2) the

steady state is given by

(Ū1, Ū2) =
1

meas(Ω)

∫

Ω

(u0
1, u

0
2)dx, (1.6)

and we are able to show that

E(t; Ū1, Ū2) − E(s; Ū1, Ū2) ≤ −C

∫ t

s

2
∑

i=1

‖∇√
ui‖2

L2(Ω)dτ, 0 ≤ s < t < ∞, (1.7)

The logarithmic Sobolev inequality allows to relate the L2 norm of ∇√
ui with the

relative entropy and then, the Gronwall inequality yields the exponential decay in

the entropy.

Theorem 1.2. Let the assumptions of Theorem 1.1 hold and let ai = bi = ci = 0,

i = 1, 2. Furthermore, let (u1, u2) be the weak solution constructed in Theorem 1.1.

Then there exists a constant C > 0 such that (u1(·, t), u2(·, t)) converges exponen-

tially fast to its steady state (1.6) as t → ∞. More precisely, we have the entropy

decay

E(t; Ū1, Ū2) ≤ E(0; Ū1, Ū2)e
−Ct, t > 0,

and the L1 decay

2
∑

i=1

1

2meas(Ω)Ūi
‖ui(·, t) − Ūi‖L1(Ω) ≤

√

E(0; Ū1, Ū2)e
−Ct/2, t > 0.

Our final result for the case b2 = c1 = 0 is obtained by considering the steady

state (a1/b1, a2/c2) and proving the entropy inequality (1.7) for this situation.

Proposition 1.1. If a1, a2, b1, c2 > 0 and b2 = c1 = 0 then there exist only constant

stationary solutions to (1.4)–(1.5).

The paper is organized as follows. In section 2 we formulate the fully discretized

equations and prove the existence of an approximate positive solution. The limit of
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vanishing approximation parameters and hence the existence of a weak solution to

(1.4)–(1.5) is proven in section 3. Finally, the long-time behavior of the solution is

analyzed in section 4.

2. An approximate problem

In this section we prove the existence of solutions to an approximate problem which

can be seen as a positivity-preserving fully discretized numerical scheme.

Let (vj) be a dense subset of Hs(Ω) with s = 1 + d2/(2d + 2) being orthogonal

in the L2 scalar product. For instance, one may choose vj as the eigenfunctions of

the Laplace operator with homogeneous Neumann boundary conditions. We may

assume that v1 = 1 in Ω. Then, by the regularity of ∂Ω, vj ∈ Hs(Ω), and, since the

Laplace operator is self-adjoint and compact, (vj) is dense in L2(Ω) and therefore

also in Hs(Ω). Notice that vj ∈ W 1,r′

(Ω) ↪→ L∞(Ω), r′ = 2d + 2.

Let Vn = span{v1, . . . , vn}, n ∈ N, be a finite-dimensional subspace of Hs(Ω),

and let w
(0,n)
i ∈ Vn be such that exp(w

(0,n)
i ) → u0

i strongly in LΨ(Ω), as n → ∞,

i = 1, 2.

We decompose (0, T ] = ∪K
k=1((k − 1)τ, kτ ] for τ = T/K, K ∈ N. Let w

(k−1,n)
i ∈

Vn be given and set u
(k−1,n)
i = exp(w

(k−1,n)
i ), i = 1, 2. This definition makes sense

since w
(k−1,n)
i ∈ Vn ⊂ L∞(Ω). In the following, we solve the approximate problem

∫

Ω

(

ε∇w
(k,n)
i + diu

(k,n)
i ∇w

(k,n)
i + u

(k,n)
1 u

(k,n)
2 ∇(w

(k,n)
1 + w

(k,n)
2 )

)

· ∇χdx

+ ε

∫

Ω

w
(k,n)
i χdx (2.1)

= −1

τ

∫

Ω

(

u
(k,n)
i − u

(k−1,n)
i

)

χdx +

∫

Ω

u
(k,n)
i

(

ai − biu
(k,n)
i − ciu

(k,n)
i

)

χdx

for all χ ∈ Vn, where ε > 0, u
(k,n)
i = exp(w

(k,n)
i ), i = 1, 2, and we show that the

discrete entropy

E(k,n) =

2
∑

i=1

∫

Ω

(

u
(k,n)
i (lnu

(k,n)
i − 1) + 1

)

dx

is uniformly bounded.

Lemma 2.1. For sufficiently small fixed τ > 0 and for all k = 1, . . . ,K, there exists

a solution (w
(k,n)
1 , w

(k,n)
2 ) ∈ V 2

n to (2.1), satisfying the discrete entropy estimate

E(k,n) + ετ
k

∑

j=1

2
∑

i=1

∫

Ω

(

|∇w
(j,n)
i |2 + (w

(j,n)
i )2

)

dx

+ τ

k
∑

j=1

∫

Ω

(

2
∑

i=1

diu
(j,n)
i |∇w

(j,n)
i |2 + u

(j,n)
1 u

(j,n)
2 |∇(w

(j,n)
1 + w

(j,n)
2 )|2

)

dx
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+ τ
k

∑

j=1

∫

Ω

(b1

2

(

(u
(j,n)
1 )2 ln(u

(j,n)
1 )2 + 1

)

+
c2

2

(

(u
(j,n)
2 )2 ln(u

(j,n)
2 )2 + 1

)

+ (b2 + c1)u
(j,n)
1 u

(j,n)
2

)

dx

≤ C(E(0,n) + 1), (2.2)

where the constant C > 0 is independent of τ , n, and ε (but depending on T ).

Proof. In order to simplify the presentation, we omit the indices k and n. The

idea is to employ the Leray-Schauder fixed-point theorem. For this, we construct

a mapping S : V 2
n × [0, 1] → V 2

n by solving, for given (w̄1, w̄2) ∈ V 2
n , ū1 = ew̄1 ,

ū2 = ew̄2 , and σ ∈ [0, 1], the problem

ε

∫

Ω

(∇wi · ∇χ + wiχ)dx + σ

∫

Ω

(

diūi∇w̄i + ū1ū2∇(w̄1 + w̄2)
)

· ∇χdx

= −σ

τ

∫

Ω

(ūi − u
(k−1,n)
i )χdx + σ

∫

Ω

ūi(ai − biū1 − ciū2)χdx (2.3)

for all χ ∈ Vn, where i = 1, 2. Since ūi ∈ L∞(Ω), we can apply the lemma of

Lax-Milgram to obtain a unique solution (w1, w2) ∈ V 2
n to (2.3). Thus, setting

S(w̄1, w̄2, σ) = (w1, w2) defines the fixed-point operator S.

Notice that S(w̄1, w̄2, 0) = (0, 0). Furthermore, by standard arguments, S is

continuous. Since Vn is finite dimensional, S(·, σ) is a compact operator for all σ ∈
[0, 1]. It remains to establish uniform estimates for every fixed point of S(·, σ). Let

(w1, w2) be a fixed point, i.e., (w1, w2) solves (2.3) with w̄i = wi and ūi = ui = ewi ,

i = 1, 2. We use χ = w1 as a test function in (2.3) for i = 1 and χ = w2 in (2.3) for

i = 2 and add both equations. This gives

σ

τ

2
∑

i=1

∫

Ω

(ui − u
(k−1,n)
i )widx + ε

2
∑

i=1

∫

Ω

(|∇wi|2 + w2
i )dx

+ σ

∫

Ω

(

2
∑

i=1

diui|∇wi|2 + u1u2|∇(w1 + w2)|2
)

dx

= σ
2

∑

i=1

∫

Ω

(ai − biu1 − ciu2)ui lnuidx. (2.4)

The first integral on the left-hand side can be estimated by means of the elementary

inequality x(lnx − ln y) ≥ x − y for all x, y > 0 as

2
∑

i=1

∫

Ω

(ui − u
(k−1,n)
i )widx

=

2
∑

i=1

∫

Ω

(

ui lnui − u
(k−1,n)
i lnu

(k−1,n)
i + u

(k−1,n)
i (lnu

(k−1,n)
i − lnui)

)

dx
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≥
2

∑

i=1

∫

Ω

(

ui lnui − u
(k−1,n)
i lnu

(k−1,n)
i + u

(k−1,n)
i − ui

)

dx

= E(k,n) − E(k−1,n).

For the estimate of the right-hand side of (2.4) we employ the elementary inequality

x lnx ≥ x − 1 for x ≥ 0:

2
∑

i=1

∫

Ω

(ai − biu1 − ciu2)ui lnuidx

=

∫

Ω

(

2
∑

i=1

ai

(

ui(lnui − 1) + 1
)

+ a1(u1 − 1) + a2(u2 − 1) +
b1

2
+

c2

2

− b1

2
(u2

1 lnu2
1 + 1) − c2

2
(u2

2 lnu2
2 + 1) − b2u1u2 lnu2 − c1u2u1 lnu1

)

dx

≤
∫

Ω

(

max{a1, a2}
2

∑

i=1

(

ui(ln ui − 1) + 1
)

− b1

2
(u2

1 lnu2
1 + 1) − c2

2
(u2

2 lnu2
2 + 1)

+
b1

2
+

c2

2
− a1 − a2 + (a1 + b2)u1 + (a2 + c1)u2 − (b2 + c1)u1u2

)

dx.

The linear terms in u1 and u2 can be estimated in terms of the entropy such that

we obtain, for some constant C > 0 which is independent of ε, τ , and n,

2
∑

i=1

∫

Ω

(ai − biu1 − ciu2)ui lnuidx

≤
∫

Ω

(

C

2
∑

i=1

(

ui(lnui − 1) + 1
)

− b1

2
(u2

1 lnu2
1 + 1) − c2

2
(u2

2 lnu2
2 + 1)

− (b2 + c1)u1u2 + C
)

dx.

Thus, (2.4) gives

σ

τ
E(k,n) + ε

2
∑

i=1

∫

Ω

(|∇wi|2 + w2
i )dx

+ σ

∫

Ω

(

2
∑

i=1

diui|∇wi|2 + u1u2|∇(w1 + w2)|2
)

dx

+ σ

∫

Ω

(b1

2
(u2

1 lnu2
1 + 1) +

c2

2
(u2

2 lnu2
2 + 1) + (b2 + c1)u1u2

)

dx

≤ σ

τ
E(k−1,n) + σC(E(k,n) + 1), (2.5)

and the discrete Gronwall inequality for sufficiently small τ > 0 (and σ = 1) implies

(2.2), using kτ ≤ T . The estimate (2.2) provides a uniform H1 estimate for w1 and

w2 and shows the lemma.
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3. Existence of weak solutions

The solution of the fully discrete system (2.1) also depends on ε and will be denoted

by (w
(k,n,ε)
1 , w

(k,n,ε)
2 ). We also introduce the piecewise constant function w

(τ)
i (x, t) =

w
(k,n,ε)
i (x) if x ∈ Ω, t ∈ ((k − 1)τ, kτ ], i = 1, 2. Setting Qt = Ω × (0, t), u

(τ)
i =

exp(w
(τ)
i ) for i = 1, 2 and

E(τ)(t) =
2

∑

i=1

∫

Ω

(

u
(τ)
i (x, t)

(

lnu
(τ)
i (x, t) − 1

)

+ 1
)

dx,

we can rewrite the estimate (2.2) as

E(τ)(t) +

∫

Qt

(

2
∑

i=1

di

∣

∣∇
√

u
(τ)
i

∣

∣

2
+

∣

∣∇
√

u
(τ)
1 u

(τ)
2

∣

∣

2
)

dxdσ

+ ε

2
∑

i=1

∫

Qt

(|∇w
(τ)
i |2 + w2

i )dx + (b2 + c1)

∫

Qt

u
(τ)
1 u

(τ)
2 dxdσ

+

∫

Qt

(b1

2

(

(u
(τ)
1 )2 ln(u

(τ)
1 )2 + 1

)

+
c2

2

(

(u
(τ)
2 )2 ln(u

(τ)
2 )2 + 1

)

)

dxdσ

≤ C(E(τ)(0) + 1). (3.1)

The constant C > 0 is independent of τ , ε, and n.

For the limit (ε, τ) → 0, n → ∞, we employ the following convergence results.

Lemma 3.1. Let Ω ⊂ R
d (d ≥ 1) be a bounded domain and let un ∈ Lp(Ω),

1 ≤ p ≤ ∞, such that (un) is bounded in Lp(Ω) and un → u pointwise a.e. in Ω as

n → ∞. Then un → u strongly in Lq(Ω) as n → ∞ for all q < p.

A proof of this lemma can be found in Ref.18 (Ch. 1.3 and p. 144).

Lemma 3.2. Let X be a reflexive Banach space, T > 0, and (un) ⊂ L1(0, T ;X) be

a sequence such that (un) is bounded in L1(0, T ;X) and
∫

χ〈φ, un〉X′,Xdt converges

for every φ ∈ X ′ and χ ∈ L∞(0, T ) as n → ∞, where 〈·, ·〉X′,X denotes the duality

product of X and its dual space X ′. Then un ⇀ u weakly in L1(0, T ;X) for some

u ∈ L1(0, T ;X) as n → ∞.

Proof. The lemma is a consequence of Theorem 4 (Ch. 5.1) in Ref.25 Indeed, let

φ ∈ X ′ and fn[φ](t) = 〈φ, un(t)〉X′,X for t ∈ (0, T ). Then fn[φ] ∈ L1(0, T ), (fn[φ]) is

bounded in L1(0, T ), and limn→∞

∫

fn[φ]χdt exists for all χ ∈ L∞(0, T ). Thus, by

Theorem 4 (Ch. 5.1) of Ref.25, there exists f [φ] ∈ L1(0, T ) such that fn[φ] ⇀ f [φ]

weakly in L1(0, T ) as n → ∞. The function u, defined by u(φ) = f [φ] for φ ∈ X ′,

satisfies u ∈ L1(0, T ;X ′′). Since X is reflexive, u can be interpreted as a function

in L1(0, T ;X) and f [φ] = 〈φ, u〉X′,X . Hence, as n → ∞,

∫ T

0

χ〈φ, un〉X′,Xdt =

∫ T

0

fn[φ]χdt →
∫ T

0

χ〈φ, u〉X′,Xdt
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for all φ ∈ X ′ and χ ∈ L∞(0, T ). This implies the conclusion.

In the following lemma we show that the sequences (w
(τ)
i ) and (u

(τ)
i ) have con-

vergent subsequences. For this we define

∂τ
t ui(·, t) =

1

τ

(

u
(k,n)
i − u

(k−1,n)
i

)

if t ∈ ((k − 1)τ, kτ ].

Lemma 3.3. As (ε, τ) → 0, n → ∞, it holds for i = 1, 2, up to subsequences which

are not relabeled,

u
(τ)
i → ui strongly in L1(0, T ;Lα(Ω)), (3.2)

∇u
(τ)
i = u

(τ)
i ∇w

(τ)
i ⇀ ∇ui weakly in L4/3(Ω), (3.3)

u
(τ)
1 u

(τ)
2 ⇀ u1u2 weakly in L1+1/d(QT ), (3.4)

u
(τ)
1 u

(τ)
2 ∇(w

(τ)
1 + w

(τ)
2 ) ⇀ ∇(u1u2) weakly in Lr(QT ), (3.5)

(

u
(τ)
i

)2
⇀ u2

i weakly in L1(QT ), (3.6)

εw
(τ)
i , ε∇w

(τ)
i ⇀ 0 weakly in L2(QT ), (3.7)

∂τ
t u

(τ)
i ⇀ ∂tui weakly in L1(0, T ; (Hs(Ω))′), (3.8)

for some functions u1, u2, where 1 ≤ α < 4/3 and r = (2d + 2)/(2d + 1).

Proof. We first show (3.2). Since ‖u(τ)
i ‖L∞(0,T ;LΨ(Ω)) is uniformly bounded, we

obtain from (3.1)

∥

∥

∥

√

u
(τ)
1 u

(τ)
2

∥

∥

∥

L∞(0,T ;L1(Ω))
≤ C,

∥

∥

∥

√

u
(τ)
1 u

(τ)
2

∥

∥

∥

L2(0,T ;H1(Ω))
≤ C,

where here and in the following, C > 0 denotes a generic constant which is inde-

pendent of ε, τ , and n. By Gagliardo-Nirenberg’s inequality with p = 2 + 2/d and

θ = 2d(p − 1)/(d + 2)p (and thus θp = 2), we infer

∥

∥

∥

√

u
(τ)
1 u

(τ)
2

∥

∥

∥

Lp(QT )
≤ C

(

∫ T

0

∥

∥

∥

√

u
(τ)
1 u

(τ)
2

∥

∥

∥

(1−θ)p

L1(Ω)

∥

∥

∥

√

u
(τ)
1 u

(τ)
2

∥

∥

∥

θp

H1(Ω)
dt

)1/p

≤ C
∥

∥

∥

√

u
(τ)
1 u

(τ)
2

∥

∥

∥

1−θ

L∞(0,T ;L1(Ω))

(

∫ T

0

∥

∥

∥

√

u
(τ)
1 u

(τ)
2

∥

∥

∥

θp

H1(Ω)
dt

)1/p

≤ C. (3.9)

Therefore, with r = (2d + 2)/(2d + 1),

‖u(τ)
1 u

(τ)
2 ∇(w

(τ)
1 + w

(τ)
2 )‖Lr(QT ) = 2

∥

∥

∥

√

u
(τ)
1 u

(τ)
2 ∇

√

u
(τ)
1 u

(τ)
2

∥

∥

∥

L(2d+2)/(2d+1)(QT )

≤ 2
∥

∥

∥

√

u
(τ)
1 u

(τ)
2

∥

∥

∥

L2+2/d(QT )

∥

∥

∥
∇

√

u
(τ)
1 u

(τ)
2

∥

∥

∥

L2(QT )

≤ C, (3.10)

‖∇u
(τ)
i ‖L4/3(QT ) = ‖u(τ)

i ∇w
(τ)
i ‖L4/3(QT ) = 2

∥

∥

∥

√

u
(τ)
i ∇

√

u
(τ)
i

∥

∥

∥

L4/3(QT )
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≤ 2
∥

∥

∥

√

u
(τ)
i

∥

∥

∥

L4(QT )

∥

∥

∥
∇

√

u
(τ)
i

∥

∥

∥

L2(QT )
≤ C, (3.11)

‖u(τ)
1 u

(τ)
2 ‖L1+1/d(QT ) =

∥

∥

∥

√

u
(τ)
1 u

(τ)
2

∥

∥

∥

2

L2+2/d(QT )
≤ C. (3.12)

Let Pn : Hs(Ω) → Vn be the projection on Vn. Then, for all ψ = φη with φ ∈ Hs(Ω)

and η ∈ L∞(0, T ),
∣

∣

∣

∣

∫

QT

∂τ
t u

(τ)
i ψdxdt

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

QT

∂τ
t u

(τ)
i (Pnφ)ηdxdt

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

QT

(

∇(diu
(τ)
i + u

(τ)
1 u

(τ)
2 ) · ∇(Pnφ) + u

(τ)
i (ai − biu

(τ)
1 − ciu

(τ)
2 )Pnφ

)

ηdxdt

∣

∣

∣

∣

≤
∫ T

0

(

‖∇(diu
(τ)
i + u

(τ)
1 u

(τ)
2 )‖Lr(QT )‖∇φ‖Lr′ (Ω)‖η‖Lr′ (0,T )

+ ‖u(τ)
i (ai − biu

(τ)
1 − ciu

(τ)
2 )‖L1(Ω)‖φ‖L∞(Ω)‖η‖L∞(0,T )

)

dxdt

≤ C‖φ‖W 1,r′ (Ω)‖η‖L∞(Ω) ≤ C‖ψ‖L∞(0,T ;Hs(Ω)),

where r′ = 2d+2. By density, this inequality also holds for all ψ ∈ L∞(0, T ;Hs(Ω)).

This shows that

‖∂τ
t u

(τ)
i ‖L1(0,T ;(Hs(Ω))′) ≤ C, i = 1, 2.

Summarizing, this bound and (3.11) give

‖u(τ)
i ‖L4/3(0,T ;W 1,4/3(Ω)) + ‖∂τ

t u
(τ)
i ‖L1(0,T ;(Hs(Ω))′) ≤ C.

Since W 1,4/3(Ω) injects compactly into L4/3(Ω) and the latter space injects contin-

uously into (Hs(Ω))′, we can apply the version of Aubin’s lemma in Ref.24 (Thm. 5)

to conclude, maybe passing to a subsequence which is not relabeled, that (3.2) holds.

In particular, (a subsequence of) the sequence (u
(τ)
i ) converges pointwise a.e.

in QT to ui as (ε, τ) → 0, n → ∞. Since (

√

u
(τ)
i ) is bounded in L4(QT ) (again a

consequence of (3.1)), Lemma 3.1 implies that
√

u
(τ)
i → √

ui strongly in Lq(QT ) for all q < 4.

With this strong convergence result and the boundedness of (∇
√

u
(τ)
i ) in L2(QT )

we conclude that

∇
√

u
(τ)
i ⇀ ∇√

ui weakly in L2(QT ).

Thus,

∇u
(τ)
i = 2

√

u
(τ)
i ∇

√

u
(τ)
i ⇀ 2

√
ui∇

√
ui = ∇ui weakly in Lq(QT ) (3.13)

for all 1 < q < 4/3. In fact, since
∥

∥

∥

√

u
(τ)
i ∇

√

u
(τ)
i

∥

∥

∥

4/3

L4/3(QT )
=

∥

∥

∥
∇

√

u
(τ)
i

∥

∥

∥

4/3

L2(QT )
‖u(τ)

i ‖2/3
L2(QT ) ≤ C,
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by (3.1), the sequence (∇u
(τ)
i ) is bounded in L4/3(QT ), and the weak convergence

(3.13) also holds true for q = 4/3. This shows (3.3).

The bound (3.12) and the pointwise convergence of (u
(τ)
i ) imply that

√

u
(τ)
1 u

(τ)
2 ⇀

√
u1u2 weakly in L2+2/d(QT ),

which proves (3.4).

Moreover, the discrete entropy estimate (3.1) gives

∇
√

u
(τ)
1 u

(τ)
2 ⇀ ∇√

u1u2 weakly in L2(QT ).

Thus
√

u
(τ)
1 u

(τ)
2 ∇

√

u
(τ)
1 u

(τ)
2 ⇀

√
u1u2∇

√
u1u2 weakly in Lq(QT ) for all q < r.

In fact, this convergence also holds true for q = r in view of the uniform bound

provided by (3.10). Hence, (3.5) is shown.

Furthermore, (3.1) shows that (u
(τ)
i ) is bounded in L2(QT ) and therefore, the

pointwise convergence of (u
(τ)
i ) gives (3.6). The convergence (3.7) is a consequence

of the uniform bound for (
√

εw
(τ)
i ) in L2(0, T ;H1(Ω)) which follows from (3.1).

It remains to show that (3.8) holds. For this, let φ ∈ Hs(Ω), η ∈ L∞(0, T ). Let

δ > 0 be arbitrary and let n ∈ N be so large that there exists χ ∈ Vn such that

‖φ − χ‖Hs(Ω) ≤ δ. Then
∫

QT

∂τ
t u

(τ)
i φηdxdt =

∫

QT

∂τ
t u

(τ)
i (φ − χ)ηdxdt (3.14)

+

∫

QT

(

∇(diu
(τ)
i + u

(τ)
1 u

(τ)
2 ) · ∇χ + u

(τ)
i (ai − biu

(τ)
1 − ciu

(τ)
2 )χ

)

ηdxdt.

The first term on the right-hand side can be estimated by
∣

∣

∣

∣

∫

QT

∂τ
t u

(τ)
i (φ − χ)ηdxdt

∣

∣

∣

∣

≤ δ‖∂τ
t u

(τ)
i ‖L1(0,T ;(Hs(Ω))′)‖η‖L∞(Ω) ≤ δC.

In view of the above convergence results, the second term on the right-hand side of

(3.14) is also converging. Therefore,

lim
(ε,τ)→0,n→∞

∫

QT

∂τ
t u

(τ)
i ψdxdt

exists for all ψ = φη and hence, by density, also for all ψ ∈ L∞(0, T ;Hs(Ω)). Thus,

Lemma 3.2 implies (3.8).

Proof. (Theorem 1.1.) The approximate problem (2.1) can be written as

1

τ

∫

QT

∂τ
t u

(τ)
i χηdxdt + ε

∫

QT

(

∇w
(τ)
i · ∇χ + w

(τ)
i χ

)

ηdxdt

+

∫

QT

(

diu
(τ)
i ∇w

(τ)
i + u

(τ)
1 u

(τ)
2 ∇(w

(τ)
1 + w

(τ)
2 )

)

∇χηdxdt

=

∫

QT

u
(τ)
i

(

ai − biu
(τ)
1 − ciu

(τ)
2

)

χηdxdt, i = 1, 2,
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where χ ∈ Vn and η ∈ L∞(0, T ). Lemma 3.3 allows to pass to the limit (ε, τ) → 0,

n → ∞ in the above equation which yields
∫ T

0

〈∂tui, ψ〉dt +

∫

QT

∇(diui + u1u2) · ∇ψdxdt =

∫

QT

ui(ai − biu1 − ciu2)ψdxdt,

for i = 1, 2 and for all ψ ∈ L∞(0, T ;Hs(Ω)), where 〈·, ·〉 denotes the duality product

between (Hs(Ω))′ and Hs(Ω).

The initial data are satisfied in the sense of (Hs(Ω))′ since

ui ∈ W 1,1(0, T ; (Hs(Ω))′) ⊂ C0([0, T ]; (Hs(Ω))′).

This proves Theorem 1.1.

4. Long-time behavior of the solutions

The exponential decay of the transient solutions (u1, u2)(·, t) to its steady state

(U1, U2) as t → ∞ will be proven by means of the entropy–entropy production

method. For this, we introduce the relative entropy

E(t;U1, U2) =

2
∑

i=1

∫

Ω

UiΦ
(ui(t)

Ui

)

dx,

where we recall that Φ(x) = x(lnx − 1) + 1. We only consider the special steady

states

(Ū1, Ū2) =
1

meas(Ω)

∫

Ω

(u0
1, u

0
2)dx if ai = bi = ci = 0 (i = 1, 2) and

(U∗

1 , U∗

2 ) =

(

a1

b1
,
a2

c2

)

if b2 = c1 = 0.

Lemma 4.1. Let 0 < s < t and (u1, u2) be the weak solution to (1.4)–(1.5) obtained

by Theorem 1.1. Then

E(t; Ū1, Ū2) − E(s; Ū1, Ū2) ≤ −C

2
∑

i=1

∫ t

s

‖∇√
ui‖2

L2(Ω)dτ (4.1)

if ai = bi = ci = 0 (i = 1, 2) and

E(t;U∗

1 , U∗

2 ) − E(s;U∗

1 , U∗

2 ) ≤ −C
2

∑

i=1

∫ t

s

‖∇√
ui‖2

L2(Ω)dτ (4.2)

−
∫ t

s

∫

Ω

(

b1u1(u1 − U∗

1 )(lnu1 − lnU∗

1 ) + c2u2(u2 − U∗

2 )(ln u2 − lnU∗

2 )
)

dxdt

if b2 = c1 = 0.

Proof. We only prove the second inequality (4.2) since the proof of the first one is

similar (and, in fact, simpler).
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We choose χ = w
(k,n)
i − lnU∗

i ∈ Vn in (2.1) and add the equations for i = 1 and

i = 2. Since b2 = c1 = 0, we arrive, after a similar computation as in the proof of

Lemma 2.1, to

1

τ
(E

(k,n)
∗ − E

(k−1,n)
∗ ) + ε

2
∑

i=1

∫

Ω

(|∇w
(k,n)
i |2 + |w(k,n)

i |2)dx

+

2
∑

i=1

∫

Ω

diu
(k,n)
i |∇w

(k,n)
i |2dx +

∫

Ω

u
(k,n)
1 u

(k,n)
2 |∇(w

(k,n)
1 + w

(k,n)
2 )|2dx (4.3)

+

∫

Ω

[

b1u
(k,n)
1 (u

(k,n)
1 − U∗

1 ) ln
(u

(k,n)
1

U∗

1

)

+ c2u
(k,n)
2 (u

(k,n)
2 − U∗

2 ) ln
(u

(k,n)
2

U∗

2

)]

dx

≤ ε

2
∑

i=1

∫

Ω

w
(k,n)
i lnU∗

i dx,

where

E
(k,n)
∗ =

2
∑

i=1

∫

Ω

U∗

i Φ
(u

(k,n)
i

U∗

i

)

dx.

As in the proof of Lemma 2.1 we can rewrite the above estimate in terms of the

variables u
(τ)
i , i = 1, 2, which are piecewise constant in time.

We claim now that for all 0 < s < t, up to subsequences which are not relabeled,

the following limits hold as (ε, τ) → 0 and n → ∞:

(i) E(t;U∗

1 , U∗

2 ) = lim E
(k,n)
∗ if t ∈ (tk−1, tk],

(ii)

∫ t

s

∫

Ω

|∇√
ui|2dxdτ ≤ lim inf

∫ t

s

∫

Ω

u
(τ)
i |∇w

(τ)
i |2dxdτ,

(iii)

∫ t

s

∫

Ω

ui(ui − U∗

i ) ln
(

ui

U∗

i

)

dxdτ ≤ lim inf
∫ t

s

∫

Ω
u

(τ)
i (u

(τ)
i − U∗

i ) ln
(u

(τ)
i

U∗

i

)

dxdτ,

(iv) ε

∫ t

s

∫

Ω

w
(τ)
i lnU∗

i dxdτ → 0.

Indeed, the convergence result (i) follows from the strong Lp (p < 2) convergence

of u
(τ)
i (·, t) to ui(·, t) for a.e. t > 0 and Lebesgue’s dominated convergence theorem.

The result (ii) is a consequence of the weakly lower semi-continuity of the L2 norm.

Furthermore, Fatou’s lemma and the pointwise convergence of (u
(k,n)
i ) imply (iii).

Finally, the estimate (3.1) shows that

∣

∣

∣

∣

ε

∫

Ω

w
(k,n)
i lnU∗

i dx

∣

∣

∣

∣

≤
√

εC‖
√

εw
(k,n)
i ‖L2(Ω) ≤ C

√
ε

from which we conclude (iv). Thus, the limit (ε, τ) → 0, n → ∞ in (4.3) finishes

the proof.
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Proof. (Theorem 1.2.) Inequality (4.1) implies

E(t; Ū1, Ū2) ≤ E(0; Ū1, Ū2) − C

2
∑

i=1

∫ t

0

‖∇√
ui‖2

L2(Ω)dτ.

Thus, employing the logarithmic Sobolev inequality,4,10

∫

Ω

g2 ln
(g2

ḡ

)

dx ≤ C

∫

Ω

|∇g|2dx

for all g ∈ H1(Ω) such that ḡ = meas(Ω)−1‖g‖2
L2(Ω), and the conservation of mass,

∫

Ω

ui(·, t)dx =

∫

Ω

u0
i dx = meas(Ω)Ūi, t > 0,

we arrive to

E(t; Ū1, Ū2) ≤ E(0; Ū1, Ū2) − C

∫ t

0

E(τ ; Ū1, Ū2)dτ, t > 0.

Hence, by Gronwall’s inequality,

E(t; Ū1, Ū2) ≤ E(0; Ū1, Ū2)e
−Ct, t > 0.

The L1 decay is derived by applying the Csiszár-Kullback inequality4,6,15

‖g − G‖2
L1(Ω) ≤ 4M

∫

Ω

GΦ
( g

G

)

dx,

for all non-negative g, G ∈ L1(Ω) such that
∫

GΦ(g/G)dx exists and satisfying
∫

gdx =
∫

Gdx = M . Indeed, we obtain

2
∑

i=1

1

2meas(Ω)Ūi
‖ui(·, t) − Ūi‖L1(Ω) ≤

√

E(t; Ū1, Ū2)

≤
√

E(0; Ū1, Ū2)e
−Ct/2.

This proves the theorem.

Proof. (Proposition 1.1.) Since the function x 7→ lnx is non-decreasing, inequality

(4.2) implies

d

dt
E(t;U∗

1 , U∗

2 ) +

2
∑

i=1

‖∇√
ui‖2

L2(Ω) ≤ 0.

Moreover, if d
dtE(t0;U

∗

1 , U∗

2 ) = 0 for some t0 > 0 then (4.2) proves that

ui(·, t0) = U∗

i , i = 1, 2. Consequently, since t 7→ E(t;U∗

1 , U∗

2 ) is non-negative

and non-increasing, E(t;U∗

1 , U∗

2 ) = E(t0;U
∗

1 , U∗

2 ) = 0 for t ≥ t0. This shows that

ui(·, t) = U∗

i , i = 1, 2, for t ≥ t0, which means that there only exist constant

stationary solutions.
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