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A new derivation of the quantum
Navier–Stokes equations in the
Wigner–Fokker–Planck approach

Received: date / Accepted: date

Abstract A quantum Navier–Stokes system for the particle, momentum, and en-
ergy densities are formally derived from the Wigner–Fokker–Planck equation us-
ing a moment method. The viscosity term depends on the particledensity with a
shear viscosity coefficient which equals the quantum diffusion coefficient of the
Fokker–Planck collision operator. The main idea of the derivation is the use of a
so-called osmotic momentum operator, which is the sum of the phase-space mo-
mentum and the gradient operator. In this way, a Chapman–Enskogexpansion of
the Wigner function, which typically leads to viscous approximations, is avoided.
Moreover, we show that the osmotic momentum emerges from local gauge theory.
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1 Introduction

Dissipative quantum models aim for describing a quantum system together with
a reservoir, which absorbs the energy lost by the system. Examples are active re-
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gions and contacts in semiconductor devices [2], spin chains with thermal noise
[15], or open Bose–Einstein condensates [1]. These models are typically based
on the master equation in Lindblad form [18], the Schrödinger-Langevin equation
[20], or collisional Wigner equations [2,18]. Due to their high numerical com-
plexity, simpler macroscopic models have been derived in recent years.

One strategy is to introduce the Wigner–Weyl transform of the density ma-
trix, which defines the Wigner functionw(x, p, t) in the phase-space variables
(x, p)∈R

6 and timet > 0, and to write the master equation in terms of the Wigner
function, leading to the Wigner equation

∂tw+ p·∇xw+θh̄[V]w = LBGK[w]+LFP[w], (x, p) ∈ R
6, t > 0, (1)

with the initial conditionw(·, ·,0) = w0 in R
6. Here,θh̄[V] is the nonlocal potential

operator

(θh̄[V]w)(x, p, t) =
1

(2πh̄)3

∫

R3×R3
(δV)(x,y, t)eiy·(p−p′)/h̄dp′dy,

which models the influence of the electric potentialV(x, t), and

(δV)(x,y, t) =
i
h̄

(
V

(
x+

y
2
, t

)
−V

(
x− y

2
, t

))
.

The operators on the right-hand side of (1) describe collisions andare explained
in Section 2. By slight abuse of notation,h̄ denotes the scaled reduced Planck
constant, although the above equations are scaled (see [14, Appendix] for details
of the scaling). For mathematical results on the Wigner–Fokker–Planck model, we
refer to [3,4].

By formal integration of the Wigner equation over the momentum space, evo-
lution equations for the particle densityn, moment densitynu, and energy density
ne, defined by

(n,nu,ne) =
∫

R3

(
1, p,

1
2
|p|2

)
wdp, (2)

can be derived. However, higher-order moments appear which cannot be expressed
in terms of the moments(n,nu,ne), which is called the closure problem. It can
be solved by assuming that the Wigner function in the higher-order moments
can be approximated by the quantum equilibrium distributionM[w]. According
to Degond and Ringhofer [9], given a Wigner functionw and the correspond-
ing moments (2), the quantum equilibrium is defined (if it exists) as the maxi-
mizer of the quantum free energy (or quantum entropy) subject to the constraints
(n,nu,ne) =

∫
R3(1, p, 1

2|p|2)M[w]dp:

M[w](x, p, t) = Exp
(

A(x, t)− |p−U(x, t)|2
2T(x, t)

)
.

The functionsA,U , andT are the Lagrange multipliers of the constrained extremal
problem, Exp(w) = W(expW−1(w)) is the quantum exponential defined in [9],
andW andW−1 are the Wigner transform and its inverse operator, respectively [2,
16]. The multiplierU is linked to the velocityu by the relationU = u+O(h̄2) and
it holdsU = u for irrotational flows [16, p. 295]. The rigorous solvability of the
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constrained maximization problem is a delicate issue. A unique maximizer of the
quantum entropy in the one-dimensional setting subject to a given local particle
density was proven recently in [24].

In this way, quantum hydrodynamic equations were derived [10,13],whose
numerical solution is less demanding than for Wigner models. When a Chapman–
Enskog expansion around the quantum equilibrium is applied,w = M[w] + αg,
whereg is some first-order correction andα > 0 is some parameter, diffusive
corrections are obtained.

This procedure was recently applied by Brull and Méhats [6] to the Wigner–
BGK equation (named after Bhatnagar, Gross, and Krook [5]), which equals (1)
with LFP[w] = 0, leading to nonlocal quantum Navier–Stokes equations, consist-
ing of the mass conservation equation and the momentum balance equation. Lo-
cal equations are realized by approximating the quantum equilibrium up to order
O(h̄4), yielding a density-dependent viscosity in the stress tensor. The full model,
including the energy equation, was derived in [19].

In this paper, we present an alternative derivation of the quantum Navier–
Stokes model by starting from the Wigner–Fokker–Planck equation and by just
applying a moment method. The first advantage of our ansatz is that we can avoid
the Chapman–Enskog expansion, which simplifies significantly the derivation.
The second advantage is that the viscosity coefficient can beidentified with the
quantum diffusion coefficient of the operatorLFP[w], which is proportional to the
de Broglie wavelength and whose numerical value can be easily determined. On
the other hand, the viscosity coefficient in [6,19] equals thescaled relaxation time
in the BGK operator and it may be less easier to determine its numerical value.

In principle, the moment method just gives zeroth-order approximations of the
moments. It may appear surprising why we obtain viscous correctionswithoutap-
plying a (first-order) Chapman–Enskog expansion. The reason is that we calculate
the moments not in the momentum variablep but employing the moment operator

η = p−Dqq∇x (3)

(see (5) below for an expression ofDqq). This definition is related to the osmotic
velocity of Nelson [26, Formula (26)] and to the deformed momentum of Mosna,
Hamilton, and Delle Site [25, Formula (8)]. We show in Section 2.4 that (3) orig-
inates from a local gauge transformation in the Schrödinger picture. Then, intro-
ducing theη-moments

(n,nuη ,neη) =
∫

R3

(
1,η ,

1
2
|η |2

)
wdp, (4)

where|η |2 = η ·η , new quantum Navier–Stokes equations for(n,nuη ,neη) are
derived with a viscosity term essentially coming from the expression Dqq

∫
R3(∇x⊗

p+ p⊗∇x)wdpup to terms of orderO(h̄4), where “⊗” denotes the tensor product
(see Theorem 1 below).

When we apply the moment method to the Wigner–Fokker–Planckequation
(1) using thep-moments (2), we obtain quantum hydrodynamic equations includ-
ing the diffusion operatorsα∆xn, α∆x(nu), andα∆x(ne), respectively, in the mo-
ment equations [14,21]. There is a surprising connection betweenthe quantum
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Navier–Stokes model and these quantum hydrodynamic equations. Indeed, intro-
ducing the new velocityv = u−α∇x logn, the latter model can be formulated as
the former one if̄h > α = Dqq [17]. It holds

nuη =
∫

R3
ηwdp=

∫

R3
pwdp−Dqq∇x

∫

R3
wdp= nu−Dqq∇xn = nv,

and thus, the velocitiesuη andv coincide forn > 0. Hence, it may be expected
that the quantum Navier–Stokes system follows from the Wigner–Fokker–Planck
equation by means of the above momentum operator. In this paper, we show
that this expectation is correct although the two models, either derived from the
Wigner–BGK equation or from the Wigner–Fokker–Planck model,have different
stress tensors and energies (see Section 2 for a discussion).

The paper is organized as follows. In Section 2, we detail the Wigner–Fokker–
Planck model (1) and present a model hierarchy involving the Wigner equation
and its moment models as well as our main result. Theη-moment equations are
derived in Section 3 and their closure is performed in Section 4.

2 Model hierarchy, main result, and discussion

In this section, we make precise the Wigner–Fokker–Planck model and the defini-
tion of the quantum equilibrium, present a model hierarchy, giveour main result,
and discuss the osmotic momentum.

2.1 Definition of the collision operators

The collision operator on the right-hand side of (1) consists of two terms. The
dominant term is of BGK type,

LBGK[w] =
1
α

(M[w]−w),

whereα > 0 is the relaxation time andM[w] denotes the quantum equilibrium
[9]. In order to defineM[w] (see Section 1 for a definition), we assume that the
collision operatorLBGK conserves mass, momentum, and energy,

∫

R3

(
1, p,

1
2
|p|2

)
LBGK[w]dp= 0.

The second collision term in (1) is the Fokker–Planck operator

LFP[w] = Dpp∆pw+2λ divp(pw)+2Dpqdivx(∇pw)+Dqq∆xw,

which models the dissipative interaction of an electron ensemble with an idealized
heat bath consisting of an ensemble of harmonic oscillators [8].The parameters
are the friction coefficientλ > 0, the decoherence coefficientDpp > 0, and the
system-to-bath diffusion parametersDpq > 0 andDqq > 0. In particular, the diffu-
sion coefficient

Dqq =
λ h̄2

6mkBT0
(5)
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plays the role of the viscosity (see Theorem 1 below), wherem is the (effective)
mass of the electrons andkBT0 the thermal energy. When the quantum diffusion
parameters vanish,Dpq = Dqq = 0, we obtain the Caldeira–Leggett operator [7].
This operator, however, does not satisfy the Lindblad condition DppDqq−D2

pq ≥
λ 2/4 which is a generic condition for quantum systems to preserve complete pos-
itivity of the density matrix along the evolution [2].

2.2 A model hierarchy

Let w be a solution to the Wigner–Fokker–Planck equation (1) and let the particle
densityn, momentumnu, and energy densitynebe given by (2). When integrating
the Wigner–BGK equation (1) withLFP[w] = 0 over the momentum space, closing
the moment equations byM[w], performing a Chapman–Enskog expansionw =
M[w] + αg, and expandingM[w] in powers ofh̄2, the (local)quantum Navier–
Stokes equationsup toO(h̄4)

∂tn+divx(nu) = 0, (6)

∂t(nu)+divx(nu⊗u+P)−n∇xV = divx S, (7)

∂t(ne)+divx
(
(P+neI)u+q

)
−nu·∇xV = divx(Su), x∈ R

3, t > 0, (8)

are obtained (see Arrow 1 in Figure 1), whereI is the identity matrix inR3×3,

ne=
3
2

nT +
1
2

n|u|2− h̄2

24
n∆x logn, P = nTI− h̄2

12
n∇2

x logn

are the energy density and quantum stress tensor, respectively, and

q = −5
2

αnT∇T − h̄2

24
n(∆xu+2∇xdivxu), S= 2αnT

(
D(u)− 1

3
divx uI

)
(9)

are the quantum heat flux and viscous stress tensor, respectively [19]. Furthermore,
∇2

x logn is the Hessian of logn andD(u) = 1
2(∇u+ ∇u⊤) the symmetric velocity

gradient. The initial conditions are given by(n,nu,ne)(·,0)= (n0,nu0,ne0), where

(n0,nu0,ne0) =
∫

R3

(
1, p,

1
2
|p|2

)
w0dp. (10)

On the other hand, when integrating the Wigner–Fokker–Planck equation (1)
with LBGK[w] = 0 over the momentum space, closing the moment equations by
M[w], and expanding the quantum equilibrium in powers ofh̄2, theviscous quan-
tum hydrodynamic equationsup toO(h̄4)

∂tn+divx(nu) = Dqq∆xn, (11)

∂t(nu)+divx(nu⊗u+P+2DpqnI)−n∇xV = −2λnu+Dqq∆x(nu), (12)

∂t(ne)+divx
(
(P+neI+2DpqnI)u

)
−nu·∇xV (13)

= 3Dppn−4λne+Dqq∆x(ne),

with initial conditions (10) are derived (Arrow 2 in Figure 1).
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Fig. 1 Macroscopic quantum models derived from the Wigner–BGK or Wigner–Fokker–Planck
equations. The derivation expressed by Arrow 4 is new.

As explained in the introduction, there is a surprising connection between
the above models (6)–(8) and (11)–(13) by means of the transformation uη =
u−α∇x logn, whereα = Dqq (Arrow 3 in Figure 1), which make them (formally)
equivalent. Besides, the fact that the structure of (6)–(8) is analogous to its classi-
cal Navier–Stokes counterpart makes it particularly interesting from a mathemati-
cal viewpoint. Indeed, this system contains the quantum generalization of the clas-
sical, fluid-mechanical viscosity term, with nonconstant (density-dependent) dif-
fusion coefficients. We remark that there exists a class of quantum Navier–Stokes
models derived from Lagrangian mechanics of the space of probability measures
[12] such that this model class goes beyond the viscous quantum hydrodynamic
equations.

The expressionDqq∇x logn is known as the osmotic velocity, see [26]. This
motivates the introduction of the momentum operatorη = p−Dqq∇x (see Section
2.4). One may expect that the quantum Navier–Stokes system can be derived from
the Wigner–Fokker–Planck equation (1) if we define the moments by usingη
instead ofp, see definition (4). Theorem 1 below shows that this is indeed the case
(Arrow 4 in Figure 1).

We expect that a viscous quantum hydrodynamic model can be derived from
the Wigner–BGK equation using a similar transformation (Arrow 5 inFigure 1)
but this is not of our interest since we cannot expect a simplification of the deriva-
tion from the Wigner–Fokker–Planck equation.

2.3 Main result and discussion

Now we can state our main result.

Theorem 1 Let wα be a (smooth) solution to the Wigner–Fokker–Planck equation
(1). Then the limit function w= limα→0wα solves, up to terms of order O(h̄4), the
quantum Navier-Stokes equations

∂tn+divx(nuη) = 0, (14)

∂t(nuη)+divx
(
nuη ⊗uη +Pη

)
−n∇xV = −2λnuη +divxSη , (15)

∂t(neη)+divx
(
(Pη +neηI)uη +qη

)
+Dqqn∆xV −nuη ·∇xV (16)

= 3Dppn−4λneη +divx(Sηuη), x∈ R
3, t > 0,
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where (n,nuη) is given by(4), and we have assumed that A(uη) = 1
2(∇uη −

∇u⊤η ) = O(h̄2) and ∇x logT = O(h̄2) with T being defined in(17) below. Fur-
thermore, the modified quantum stress tensor Pη , the quantum heat flux qη , the
viscous stress tensor Sη , and the energy density neη are given by

Pη = n
(
T +2(Dpq+λDqq)

)
I− h̄2

12
n∇2

x logn,

qη = − h̄2

24
n
(
∆xuη +2∇xdivx uη

)
, Sη = 2DqqnD(uη),

neη =
3
2

nT +
1
2

n|uη |2−
h̄2

24
n∆x logn−Dqqndivxuη . (17)

The initial conditions are, up to terms of order O(h̄4), given by

(n,nuη ,neη)(·,0) = (n0,nu0−Dqq∇xn0,ne0−Dqqdivx(nu0)) in R
3,

where(n0,nu0,ne0) is defined in(10).

The operator12|η |2 is defined by

1
2|η |2 = 1

2|p|
2−Dqqp·∇x + 1

2D2
qq∆x = 1

2|p|
2−Dqqη ·∇x− 1

2D2
qq∆x.

Notice that we have employed the same notation forneη , defined by (4) and (17).
Since both expressions only differ up to terms of orderO(h̄4) and the above system
is derived up to terms of the same order, no confusion can occur.

The model of Theorem 1 can be interpreted as follows. Equations (14)–(16) are
the balance equations of the particle, momentum, and energy densities. The stress
tensorPη consists of the pressurenT, which expresses the Boyle law for ideal
gases, the increase 2(Dpq+ λDqq) to the temperature due to quantum diffusion,
and the quantum tensor−(h̄2/12)n∇2

x logn. Beside the term 2(Dpq+λDqq)n, the
quantum stress tensorPη corresponds to the expression derived in other quantum
fluid models [16].

Compared to the quantum Navier–Stokes model of [19], there are some differ-
ences. First, the general expression of the viscous stress tensor Scan be formulated
as

S= 2µD(u)+
(

ζ − 2
3

µ
)

divx uI,

whereµ is the shear viscosity andζ the bulk viscosity. In the model of [19],
the bulk viscosity vanishes,ζ = 0; in our model, we haveζ = 2

3µ. Second, the
quantum heat flux in [19] contains the stabilizing Fourier term−5

2αnT∇xT (see
(9)), which comes from the Chapman–Enskog expansion and is missing in the
above model. Third, the pressure part in the stress tensorPη contains a larger
temperature expression than that one in [19]. The difference is due to the diffusion
parametersDpq andDqq. Finally, the energy density contains the termDqqndivxuη
which is not present in [19].
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The energy densityneη is the sum of the thermal energy32nT, the kinetic
energy1

2n|uη |2, and two quantum contributions. When integrated over space, the
energy density becomes (after an integration by parts)

∫

R3
neηdx=

∫

R3

(3
2

nT +
1
2

n|uη |2
)

dx+
h̄2

6

∫

R3
|∇x

√
n|2dx

−Dqq

∫

R3
ndivx uηdx.

The third term can be interpreted as the Fisher information, whereasthe last term
describes the work due to compression and vanishes for incompressible fluids.
According to (16), the energy dissipation becomes

d
dt

∫

R3
neηdx= 3Dpp

∫

R3
ndx−4λ

∫

R3
neηdx−Dqq

∫

R3
n∆xVdx

+
∫

R3
nuη ·∇xVdx.

The first term expresses the increase of total mass due to the decoherence coef-
ficient Dpp. The second term describes energy relaxation with rate 4λ . The last
two terms can be understood when assuming that the electric potential is self-
consistently coupled to the Poisson equation

λ 2
D∆xV = n−C(x),

whereλD is the scaled Debye length andC(x) models fixed charged background
ions. By integrating by parts and using (14), we find that

∫

R3
nuη ·∇xVdx=

∫

R3
∂tnVdx= λ 2

D

∫

R3
∆x∂tVVdx= −λ 2

D

2
d
dt

∫

R3
|∇xV|2dx.

Hence, the last two terms of the energy dissipation are written as

−Dqq

λ 2
D

∫

R3
n(n−C(x))dx− λ 2

D

2
d
dt

∫

R3
|∇xV|2dx.

Whereas the second term expresses energy fluctuation due to electric forces, the
first one, which is bounded from below, is an effect of the quantum dissipation.

2.4 Osmotic momentum

We wish to elucidate the origin of the kinetic momentum operator (3) and to relate
it to similar expressions in the literature. First, we discuss the relation between (3)
and the deformed momentum operator of [25]. For simplification, weconsider a
single quantum state given by the wave functionψ .
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Let P= −ih̄∇x be the quantum momentum operator. It is a simple matter to
verify that ũ := Pψ = u− ih̄

2 ∇x log(n), as follows straightforwardly from the fact
thatu = 1

h̄Im
(
∇xψ/ψ

)
. This leads to

∂tn+divx(nũ) = − ih̄
2

∆xn, (18)

∂t(nũ)+divx
(
nũ⊗ ũ

)
−n∇xV =

ih̄
2

(
n∇x(∇x · ũ)− (∆xn)ũ

)
, (19)

ψ solving the Schr̈odinger equation
(
ih̄∂t + h̄2

2 ∆x −V
)
ψ = 0, which obviously

entails the fact that the linear Schrödinger operator contributes to the quantum–
mechanical fluid equations with complex viscosity coefficients when written in
terms of the couple(n, ũ). This is in good agreement with [25], whose idea is
to introduce the deformed momentum operator Pu ψ = (P−iu)ψ for some real
functionu and the corresponding kinetic energy

Tu =
1
2

∫

R3
(Pu ψ)∗(Pu ψ)dx,

whereψ∗ denotes the complex conjugate ofψ .
The formal minimizer ofu 7→ Tu equals the osmotic velocityuc = −(h̄/2)

∇x logn, wheren = |ψ |2 is the particle density. This leads to the deformed mo-
mentum operator

Pc = P+
ih̄
2

∇x logn.

Our strategy will consist of considering a real approach to the logarithmic
part of the microscopic velocitỹu, sayv = u−Dqq∇x log(n), whereDqq has been
chosen instead of̄h/2 since the (real) viscocity effects of our starting model are
enclosed in this coefficient.

We remark that the notion “osmotic velocity” appears first in the work of Nel-
son, see [26, Formula (26)]. We wish to formulate the above operator interms of
the moments of the Wigner function. To this end, we define the Wigner function
of a single state by

w(x, p, t) = (2πh̄)3
∫

R3
ψ

(
x+

y
2

)∗
ψ

(
x− y

2

)
e−iy·p/h̄dy.

A computation shows that the (macroscopic) particle and momentum densities
become [16, Lemma 11.2]

n = |ψ |2 =
∫

R3
wdp, (20)

nu= Re(ψ∗Pψ) = − ih̄
2

(
ψ∗∇xψ −∇xψ∗ψ

)
=

∫

R3
pwdp. (21)

The deformed momentum operator equals

ψ∗Pc ψ = ψ∗
(

P+
ih̄
2

∇x logn
)

ψ = ψ∗Pψ +
ih̄
2

∇xn,
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and the (macroscopic) deformed momentum density equals the original momen-
tum density,

Re(ψ∗Pc ψ) = Re(ψ∗Pψ) =
∫

R3
pwdp.

In other words, the deformed momentum does not “see” the osmotic velocity part
since it is complex.

We claim that the osmotic velocity emerges from gauge field theory [11, Chap-
ter 1]. Given the quantum stateψ , we introduce the local gauge transformation

φ = e−iθ ψ ,

whereθ = Dqq logn/h̄ is the gauge function. The corresponding covariant deriva-
tive

Dxψ = ∇xψ − i∇xθψ = ∇xψ − i
Dqq

h̄
(∇x logn)ψ

has the property∇x(e−iθ ψ) = e−iθ Dxψ . The transformed stateφ andψ have the
same particle density but the momentum density changes according to

nv := Re(φ ∗Pφ) = Re(ψ∗Pψ)− h̄|ψ |2∇xθ = nu−Dqqn∇x logn,

which is the sum of the momentum density (21) and the osmotic momentum. In
terms of the Wigner function we find that, by (20) and (21),

nv=
∫

R3
pwdp−Dqq∇x

∫

R3
wdp=

∫

R3
(p−Dqq∇x)wdp=

∫

R3
ηwdp,

which motivates the definition (3) of the operatorη .

3 The η-moment equations

In this section, we derive the moment equations in the variableη , defined in (3).
First, we recall the expressions for the moments of the potentialoperator (see
Lemmas 12.9 and 13.2 in [16]). We use the following notation

〈g〉 =
∫

R3
g(p)dp for functionsg(p).

Lemma 1 The moments of the potential operatorθh̄[V] are as follows:

〈θh̄[V]〉 = 0, 〈pθh̄[V]w〉 = −n∇xV, 〈1
2|p|

2θh̄[V]w〉 = −nu·∇xV. (22)

As a consequence, the moments in theη-variable become

〈ηθh̄[V]w〉 = −n∇xV, 〈1
2|η |2θh̄[V]w〉 = −nuη ·∇xV +Dqqn∆xV. (23)

The Wigner equation (1) in the osmotic momentum writes as

∂tw+η ·∇xw+θh̄[V]w = LBGK[w]+Lη [w], (24)

where the modified Fokker–Planck operator is given by

Lη [w] = Dpp∆pw+2λ divp(pw)+2Dpqdivx(∇pw).
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Then, introducing the moments in terms ofη (the particle densityn does not
change in theη-formulation),

nuη = 〈ηw〉 = nu−Dqq∇xn, (25)

neη = 〈1
2|η |2w〉 = ne−Dqqdivx(nu)+ 1

2D2
qq∆xn (26)

= ne−Dqqdivx(nuη)− 1
2D2

qq∆xn,

theη-moment equations read as follows.

Lemma 2 Let w be a solution to the Wigner–Fokker–Planck equation(1). The
η-moments(n,nuη ,neη), defined in(25)–(26), solve the following hydrodynamic
equations:

∂tn+divx(nuη) = 0, (27)

∂t(nuη)+divx〈η ⊗ηw〉−n∇xV +2(Dpq+λDqq)∇xn = −2λnuη , (28)

∂t(neη)+divx〈1
2η |η |2w〉+2(Dpq+λDqq)divx(nuη)+Dqqn∆xV (29)

−nuη ·∇xV = 3Dppn−4λneη .

Proof Integrating the Wigner equation (24) over the momentum space and ob-
serving that〈LBGK[w]〉 = 〈Lη [w]〉 = 0 immediately gives (27). Next, we applyη
to (24) and integrate overp:

∂t(nuη)+divx〈η ⊗ηw〉+ 〈ηθh̄[V]w〉 = 〈ηLη [w]〉.
The right-hand side becomes

〈ηLη [w]〉 = 〈pLη [w]〉−Dqq∇x〈Lη [w]〉 = −2λnu−2Dpq∇xn

= −2λnuη −2(Dpq+λDqq)∇xn.

Together with the first identity in (23), we obtain (28). Finally, applying 1
2|η |2 to

(24) and integrating overp leads to

∂t(neη)+divx〈1
2η |η |2w〉+ 〈1

2|η |2θh̄[V]w〉 = 〈1
2|η |2Lη [w]〉. (30)

We calculate the moment ofLη [w]:

〈1
2|η |2Lη [w]〉 = 〈1

2|p|
2Lη [w]〉−Dqqdivx〈pLη [w]〉+ 1

2D2
qq∆x〈Lη [w]〉.

The first summand equals

〈1
2|p|

2Lη [w]〉 = 3Dppn−4λne−2Dpqdivx(nu)

= 3Dppn−4λneη −2(Dpq+2λDqq)divx(nuη)

−2Dqq(Dpq+λDqq)∆xn;

the second summand becomes

−Dqqdivx〈pLη [w]〉 = 2λDqqdivx(nu)+2DpqDqq∆xn

= 2λDqqdivx(nuη)+2Dqq(Dpq+λDqq)∆xn;

and the third summand vanishes. Adding these expressions leads to

〈1
2|η |2Lη [w]〉 = 3Dppn−4λneη −2(Dpq+λDqq)divx(nuη).

Inserting this expression and the second identity in (23) into (30) proves the result.
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4 Closure of theη-moment equations

Let wα be a solution to the Wigner–Fokker–Planck equation (1) and let (n,(nuη)α ,
(neη)α) be the correspondingη-moments. The parameterα is the scaled relax-
ation time occuring in the BGK operator. In the limitα → 0, we obtainLBGK[w] =
0, wherew = limα→0wα . This implies thatw = M[w] and theη-moments can be
closed according to the formal limitα → 0:




nα
(nuη)α
(neη)α


 =

∫

R3




1
η

1
2|η |2


wαdx→




n
nuη
neη


 =

∫

R3




1
η

1
2|η |2


M[w]dx.

We notice that there exist other strategies to close the momentequations, for in-
stance the shifted Maxwellian closure of Gardner [13] or the closure relations
accounting for quantum mixtures in the wave-function picture [21–23].

We calculate now the moments〈η ⊗ηM[w]〉 and〈1
2η |η |2M[w]〉.

Lemma 3 Assuming that∇x logT = O(h̄2) and A(uη) = 1
2(∇uη −∇u⊤η ) = O(h̄2),

the following expansions hold:

〈η ⊗ηM[w]〉 = nuη ⊗uη +P−2DqqnD(uη)+O(h̄4), (31)

〈1
2η |η |2M[w]〉 = qη +(P+neηI)uη −2Dqqdivx(nD(uη)uη)+O(h̄4), (32)

where∇2
x logn denotes the Hessian oflogn, P= nTI− (h̄2/12)n∇2

x logn is the
quantum stress tensor and qη = −(h̄2/24)n(∆xuη + 2∇xdivxuη) is the quantum
heat flux.

Proof First, we observe that

〈p⊗ pM[w]〉 = P̂+nu⊗u, 〈1
2 p|p|2M[w]〉 = q̂+(P̂+neI)u,

whereP̂ = 〈(p−u)⊗ (p−u)M[w]〉 is the quantum stress tensor andq̂ = 〈1
2(p−

u)|p−u|2M[w]〉 is the quantum heat flux in thep variable. Under the assumptions
∇ logT = O(h̄2) and A(u) = A(uη) = O(h̄2), P̂, q̂, andne can be expanded in
powers ofh̄2 [19, Formulas (19)-(20)]:

P̂ = nTI− h̄2

12
n∇2

x logn+O(h̄4), (33)

q̂ = − h̄2

24
n(∆xu+2∇xdivxu)+O(h̄4), (34)

ne=
3
2

nT +
1
2

n|u|2− h̄2

24
n∆x logn+O(h̄4). (35)

Since〈M[w]〉 = n and〈pM[w]〉 = nu, we find that

〈η ⊗ηM[w]〉 = 〈p⊗ pM[w]〉−2Dqq〈∇x⊗s pM[w]〉+D2
qq〈∇2

xM[w]〉
= P̂+nu⊗u−2Dqq∇x⊗s(nu)+D2

qq∇2
xn,
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wherea⊗s b = 1
2(a⊗ b+ b⊗ a) is the symmetric tensor product. Inserting the

definition (25) ofnuη , a computation shows that

〈η ⊗ηM[w]〉 = P̂+nuη ⊗uη −2DqqnD(uη)+D2
qqn∇x logn⊗∇x logn,

whereD(uη) = 1
2(∇uη +∇u⊤η ). The expansion (33) and the propertyD2

qq = O(h̄4)
(see (5)) then implies the first claim (31).

Next, we obtain

〈1
2η |η |2M[w]〉 = 〈1

2 p|p|2M[w]〉−Dqq〈p(p·∇x)M[w]〉+ 1
2D2

qq∆x〈pM[w]〉
−Dqq∇x〈1

2|p|
2M[w]〉+D2

qq〈∇x(p·∇x)M[w]〉
− 1

2D3
qq∆x∇x〈M[w]〉

= q̂+(P̂+neI)u−Dqq
(

divx(P̂+nu⊗u)+∇x(ne)
)

+ 1
2D2

qq

(
∆x(nu)+2∇2

x(nu)
)
− 1

2D3
qq∆x∇xn.

Because of (33),D2
qq = O(h̄4), nu⊗u = nuη ⊗uη +O(h̄2), andne= neη +O(h̄2)

(see (26)), this expression simplifies to

〈1
2η |η |2M[w]〉 = q̂+(P̂+neI)u−Dqq

(
∇x(nT)+divx(nuη ⊗uη) (36)

+∇x(neη)
)
+O(h̄4).

We writeq̂ and(P̂+neI)u in terms of theη-moments:

q̂ = − h̄2

24
n
(
∆xuη +2∇xdivxuη

)
+O(h̄4),

(P̂+neI)u = (P+neηI)uη +Dqq(P+neηI)∇x logn+Dqqdivx(nuη)uη +O(h̄4).

Inserting these expansions into (36) gives, since∇xT = O(h̄2),

〈1
2η |η |2M[w]〉 = − h̄2

24
n
(
∆xuη +2∇xdivxuη

)
+(P+neηI)uη

+Dqq
(
(nT +neη)∇x logn+divx(nuη)uη −∇x(nT)

−divx(nuη ⊗uη)−∇x(neη)
)
+O(h̄4)

= − h̄2

24
n
(
∆xuη +2∇xdivxuη

)
+(P+neηI)uη

−Dqq
(
nuη ·∇xuη +n∇xe

)
+O(h̄4).

Finally, observing that

Dqq
(
nuη ·∇xuη +n∇xe

)
= Dqq

(
nuη ·∇xuη +

1
2

n∇x(|uη |2)
)

+O(h̄4)

= 2Dqqdivx
(
nD(uη)uη

)
+O(h̄4),

the claim (32) follows.
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Theorem 1 now follows immediately from theη-moment equations (27)–(29)
and Lemma 2. The expression for the energy density is a consequence of (26) and
(35):

neη =
3
2

nT +
1
2

n|u|2− h̄2

24
n∆x logn−Dqqdivx(nuη)+O(h̄4)

=
3
2

nT +
1
2

n|uη |2−
h̄2

24
n∆x logn−Dqqndivxuη +O(h̄4).
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