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Abstract A quantum Navier—Stokes system for the particle, momentuchean
ergy densities are formally derived from the Wigner—Fokker—Raguation us-
ing a moment method. The viscosity term depends on the padgcisity with a
shear viscosity coefficient which equals the quantum diffusioefficient of the
Fokker—Planck collision operator. The main idea of the déowais the use of a
so-called osmotic momentum operator, which is the sum of tlasespace mo-
mentum and the gradient operator. In this way, a Chapman—Ems$aapsion of
the Wigner function, which typically leads to viscous appnoations, is avoided.
Moreover, we show that the osmotic momentum emerges from lecajegtheory.
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1 Introduction

Dissipative quantum models aim for describing a quantum sysbgether with
a reservoir, which absorbs the energy lost by the system. Exarapé active re-
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gions and contacts in semiconductor devices [2], spin chaitisthhermal noise

[15], or open Bose-Einstein condensates [1]. These models amaltyphased

on the master equation in Lindblad form [18], the Qitinger-Langevin equation
[20], or collisional Wigner equations [2,18]. Due to their highnmerical com-

plexity, simpler macroscopic models have been derived in tgaars.

One strategy is to introduce the Wigner—Weyl transform of the idensa-
trix, which defines the Wigner function(x, p,t) in the phase-space variables
(x, p) € R® and timet > 0, and to write the master equation in terms of the Wigner
function, leading to the Wigner equation

AW+ p- Oxw+ B:]V]w = Leek[W] + Lrp[w], (x,p) € RS, t >0, Q)

with the initial conditiorw(-, -,0) = wp in R8. Here,8;[V] is the nonlocal potential
operator

(BrRIVIW) (X, p,t) = (ziﬁp/RSXRS(6V)(x,y,t)eiy'(r)—p')/ﬁdp(dy,

which models the influence of the electric potentiék,t), and

(V) (%, y,t) = 'ﬁ(v <x+ %,t) —V(x— %,t)) .

The operators on the right-hand side of (1) describe collisionsaaméxplained
in Section 2. By slight abuse of notation,denotes the scaled reduced Planck
constant, although the above equations are scaled (see [1éndigpfor details
of the scaling). For mathematical results on the Wigner—Fe#keanck model, we
refer to [3,4].

By formal integration of the Wigner equation over the momentpacs, evo-
lution equations for the particle densitymoment densityiu, and energy density
ne, defined by

— 1 2
(n?nuane)_/R3 (17 pa§|p| )de7 (2)

can be derived. However, higher-order moments appear whictotha expressed
in terms of the moment&, nu,ne), which is called the closure problem. It can
be solved by assuming that the Wigner function in the higheerordoments
can be approximated by the quantum equilibrium distributibjw]. According
to Degond and Ringhofer [9], given a Wigner functianand the correspond-
ing moments (2), the quantum equilibrium is defined (if it ejists the maxi-
mizer of the quantum free energy (or quantum entropy) subjebietednstraints

(n,nu,ne) = fps(L, p, 3| pHM[w]dp:

[pP-U(xDP
M [W] (X7 p’t) - EXp(A(X,t) 2T (th) )
The functiondA, U, andT are the Lagrange multipliers of the constrained extremal
problem, Expw) = W(expW~1(w)) is the quantum exponential defined in [9],
andw andw—1 are the Wigner transform and its inverse operator, respectively [2,
16]. The multiplietU is linked to the velocity by the relatiord = u+O(R?) and
it holdsU = u for irrotational flows [16, p. 295]. The rigorous solvability of the



constrained maximization problem is a delicate issue. A unigaximizer of the
guantum entropy in the one-dimensional setting subject tovengbcal particle
density was proven recently in [24].

In this way, quantum hydrodynamic equations were derived [10MBdse
numerical solution is less demanding than for Wigner modelsei\a Chapman—
Enskog expansion around the quantum equilibrium is appliegd, M[w] + ag,
whereg is some first-order correction ara > 0 is some parameter, diffusive
corrections are obtained.

This procedure was recently applied by Brull anémts [6] to the Wigner—
BGK equation (named after Bhatnagar, Gross, and Krook [5]), whiclalsq1)
with Lgp[w] = 0, leading to nonlocal quantum Navier—Stokes equationssist
ing of the mass conservation equation and the momentum Eatamation. Lo-
cal equations are realized by approximating the quantum edqjuith up to order
O(R*), yielding a density-dependent viscosity in the stress tefi$wr full model,
including the energy equation, was derived in [19].

In this paper, we present an alternative derivation of the quaritavier—
Stokes model by starting from the Wigner—Fokker—Planck eqoatihd by just
applying a moment method. The first advantage of our ansdtaisve can avoid
the Chapman-Enskog expansion, which simplifies signifigeht derivation.
The second advantage is that the viscosity coefficient caddrgified with the
quantum diffusion coefficient of the operatatp|w|, which is proportional to the
de Broglie wavelength and whose numerical value can be eastiéyrdined. On
the other hand, the viscosity coefficient in [6, 19] equalssiteded relaxation time
in the BGK operator and it may be less easier to determine itenaai value.

In principle, the moment method just gives zeroth-order approkims.of the
moments. It may appear surprising why we obtain viscous correntithoutap-
plying a (first-order) Chapman—Enskog expansion. The reasont iwé¢healculate
the moments not in the momentum variapleut employing the moment operator

N = p— Dgqlx 3

(see (5) below for an expressionDf). This definition is related to the osmotic
velocity of Nelson [26, Formula (26)] and to the deformed momentéiMasna,
Hamilton, and Delle Site [25, Formula (8)]. We show in Section Bat {3) orig-
inates from a local gauge transformation in the $dimger picture. Then, intro-
ducing then-moments

(nnug.ney) = [ (1.0.5In/2)wdp @

where|n|? = n - n, new quantum Navier-Stokes equations flemu,,ne,;) are
derived with a viscosity term essentially coming from the expoeSq [r3 (Ox®
p+ p® Oyx)wd pup to terms of orde®(R*), where " denotes the tensor product
(see Theorem 1 below).

When we apply the moment method to the Wigner—Fokker—Plaqdiation
(1) using thep-moments (2), we obtain quantum hydrodynamic equations includ-
ing the diffusion operatorga Axn, a Ax(nu), anda Ax(ne), respectively, in the mo-
ment equations [14,21]. There is a surprising connection betweenquantum



Navier—Stokes model and these quantum hydrodynamic eqsatiwdeed, intro-
ducing the new velocity = u— aOxlogn, the latter model can be formulated as
the former one ihi > a = Dqq [17]. It holds

nu, = /R3 nwdp= /RB pwd p— quDX/R3Wd p= nu— Dgqlxn = nv,

and thus, the velocities, andv coincide forn > 0. Hence, it may be expected
that the quantum Navier—Stokes system follows from the Widradtker—Planck
equation by means of the above momentum operator. In this pageshow
that this expectation is correct although the two modelsgeitlerived from the
Wigner—BGK equation or from the Wigner—Fokker—Planck moklale different
stress tensors and energies (see Section 2 for a discussion).

The paper is organized as follows. In Section 2, we detail thgnéfi-Fokker—
Planck model (1) and present a model hierarchy involving the @iguguation
and its moment models as well as our main result. fhmoment equations are
derived in Section 3 and their closure is performed in Section 4.

2 Model hierarchy, main result, and discussion

In this section, we make precise the Wigner—Fokker—Plancleireott the defini-
tion of the quantum equilibrium, present a model hierarchy, givemain result,
and discuss the osmotic momentum.

2.1 Definition of the collision operators

The collision operator on the right-hand side of (1) consistsaaf terms. The
dominant term is of BGK type,

Leck[W] = %(M[W] —W),

wherea > 0 is the relaxation time anl[w] denotes the quantum equilibrium
[9]. In order to defineM|[w] (see Section 1 for a definition), we assume that the
collision operatotggk conserves mass, momentum, and energy,

1 2
/R3 (17 P, 5Pl )LBGK[W]d p=0.
The second collision term in (1) is the Fokker—Planck operator

which models the dissipative interaction of an electron efemith an idealized
heat bath consisting of an ensemble of harmonic oscillatorsTf83. parameters
are the friction coefficiend > 0, the decoherence coefficieDdp, > 0, and the
system-to-bath diffusion parametégy > 0 andDqq > 0. In particular, the diffu-
sion coefficient A2

qu - 6mI43T0 (5)



plays the role of the viscosity (see Theorem 1 below), wineie the (effective)
mass of the electrons akgTp the thermal energy. When the quantum diffusion
parameters vanisi),q = Dqq = 0, we obtain the Caldeira—Leggett operator [7].
This operator, however, does not satisfy the Lindblad commii,pDaq — D34 >
A2/4 which is a generic condition for quantum systems to preserveleenpos-
itivity of the density matrix along the evolution [2].

2.2 A model hierarchy

Letw be a solution to the Wigner—Fokker—Planck equation (1) anithéeparticle
densityn, momentumu, and energy densityebe given by (2). When integrating
the Wigner—BGK equation (1) withgp[w] = 0 over the momentum space, closing
the moment equations bvijw], performing a Chapman—Enskog expansios:

M[w] + ag, and expandind|w] in powers offi?, the (local)quantum Navier—
Stokes equationsp toO(F*)
dn+divy(nu) =0, (6)
& (nu) + divy(nu®@ u+ P) — nOxV = divk S, @)
& (ne) + divx (P+nel)u+q) —nu- 0V =divk(SU, xeR?t>0, (8)

are obtained (see Arrow 1 in Figure 1), whéiis the identity matrix ifR3*3,

3 1 h? h?
ne= -nT + =njul?— —nAlogn, P =nTI— -—n2logn
€ 2 +2 |u| 24 X Og ) 12 X Og

are the energy density and quantum stress tensor, respectindly

2

5 h . 1.
q= —éanTDT — ﬂn(AqurZDXde u), S= ZanT(D(u) ~3 dlvxu]I) 9

are the quantum heat flux and viscous stress tensor, respg{i®klFurthermore,
O2logn is the Hessian of log andD(u) = %(Du+ Ou') the symmetric velocity
gradient. The initial conditions are given fay, nu, ne)(-, 0) = (np, N, N&y), where

— 1 2
(no.nwo,ne) = [ (1.p.51F)wodp (10)

On the other hand, when integrating the Wigner—Fokker—Rlanaation (1)
with Lggk[w] = O over the momentum space, closing the moment equations by
M[w], and expanding the quantum equilibrium in power&%ftheviscous quan-
tum hydrodynamic equationg to O(R*)

0;n+divy(nu) = Dggdxn, (11)
¢ (nu) + divy(NU® u+ P+ 2Dpgnll) — n,V = —2Anu+ DggAx(nu),  (12)
(ne) + divy ((P+ nel + 2D pgnl)u) — nu- OxV (13)

= 3Dppn—4Ane+ DggAx(Nne),

with initial conditions (10) are derived (Arrow 2 in Figure 1).
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Fig. 1 Macroscopic quantum models derived from the Wigner—-BGK amn&r—Fokker—Planck
equations. The derivation expressed by Arrow 4 is new.

As explained in the introduction, there is a surprising connacbetween
the above models (6)—(8) and (11)—(13) by means of the transfommagie=
u—alylogn, wherea = Dqq (Arrow 3 in Figure 1), which make them (formally)
equivalent. Besides, the fact that the structure of (6)—(8) ibbgnas to its classi-
cal Navier—Stokes counterpart makes it particularly interggtimm a mathemati-
cal viewpoint. Indeed, this system contains the quantumrgéimation of the clas-
sical, fluid-mechanical viscosity term, with nonconstant @itgpdependent) dif-
fusion coefficients. We remark that there exists a class of gonahtavier—Stokes
models derived from Lagrangian mechanics of the space of praiyabigasures
[12] such that this model class goes beyond the viscous gumaimyarodynamic
equations.

The expressioqqllxlogn is known as the osmotic velocity, see [26]. This
motivates the introduction of the momentum operatet p— Dqqx (See Section
2.4). One may expect that the quantum Navier—Stokes systetvecaerived from
the Wigner—Fokker—Planck equation (1) if we define the momént usingn
instead ofp, see definition (4). Theorem 1 below shows that this is indeedalse
(Arrow 4 in Figure 1).

We expect that a viscous quantum hydrodynamic model can beddriom
the Wigner—BGK equation using a similar transformation (Arrow Figure 1)
but this is not of our interest since we cannot expect a sirogtifin of the deriva-
tion from the Wigner—Fokker—Planck equation.

2.3 Main result and discussion
Now we can state our main result.

Theorem 1 Letw, be a (smooth) solution to the Wigner—Fokker—Planck equation
(). Then the limit function we limy_ oWy Solves, up to terms of order(@“), the
guantum Navier-Stokes equations
an+divk(nuy) =0, (14)
A (nuy) +divy (Nupy @ Uy + Py) — N0V = —2Anu, +divy S, (15)
d(ney) + divy ((Py +neyI)uy + Ay ) + DggnAxV — nuy - OV (16)
= 3Dppn—4Ane, +divk(Suy), X€R3 >0,



where (n,nuy) is given by(4), and we have assumed thatup)) = %(Du,7 -
Ouj) = O(RF?) and OxlogT = O(R?) with T being defined irf17) below. Fur-
thermore, the modified quantum stress tensartRe quantum heat flux,q the
viscous stress tensof, Sand the energy density pere given by

2

h
2

h’ :

2

3 1 h’ :
ney = 5nT+ §n|un|2—ﬂnﬂxbg”—qu”d'qun- 17

The initial conditions are, up to terms of order(), given by

(n,nuy, ey )(+,0) = (No, N — DgqUxNo, NEy — Dgqdivy(nwp))  in R3,
where(ng, Ny, N&y) is defined in(10).

The operato%m |2 is defined by

3In1? = 31pI* ~Dqqp- Ox+ 5D3¢Ax = 3P|* — Dgqh - Ox — 5DGAx.
Notice that we have employed the same notatiom&gy, defined by (4) and (17).
Since both expressions only differ up to terms of o@éT*) and the above system
is derived up to terms of the same order, no confusion can occur.

The model of Theorem 1 can be interpreted as follows. Equations(({ll&) are
the balance equations of the particle, momentum, and enertgitoks. The stress
tensorP,; consists of the pressurel, which expresses the Boyle law for ideal
gases, the increasg¢[2yq+ ADgqq) to the temperature due to quantum diffusion,

and the quantum tenser(R?/12)n02logn. Beside the term @pq+ A Dgg)N, the
guantum stress tensBy corresponds to the expression derived in other quantum
fluid models [16].

Compared to the quantum Navier—Stokes model of [19], there are diffar-
ences. First, the general expression of the viscous stress &eeobe formulated
as

S=2uD(u) + (Z - %u) divy ul,

where i is the shear viscosity and the bulk viscosity. In the model of [19],
the bulk viscosity vanisheg, = 0; in our model, we havé = %u. Second, the

guantum heat flux in [19] contains the stabilizing Fourier teﬂg‘anTDXT (see
(9)), which comes from the Chapman-Enskog expansion and is missithe
above model. Third, the pressure part in the stress teRsaontains a larger
temperature expression than that one in [19]. The difference isodhe diffusion
parameter®pq andDqq. Finally, the energy density contains the tegyndivy uy
which is not present in [19].



The energy densityig, is the sum of the thermal energ}nT, the kinetic

energy%n\u,, |2, and two quantum contributions. When integrated over sphee, t
energy density becomes (after an integration by parts)

B 3 1., h2 )
/Rsnaqu_/Rs <§nT+§n|u,,| )dXJFE/Rsz\m' dx

- qu/RB,nd'VxUndX

The third term can be interpreted as the Fisher information, whénedast term
describes the work due to compression and vanishes for incoriipecfaids.
According to (16), the energy dissipation becomes

d g
a/ms ne,,dx:SDpp/Rgndx—M /Rsn%dx— qu/RznAXde

R3

The first term expresses the increase of total mass due to theedenoh coef-
ficient Dpp. The second term describes energy relaxation with rateThe last
two terms can be understood when assuming that the electriotjgdtis self-
consistently coupled to the Poisson equation

AZAV =n—C(x),

whereAp is the scaled Debye length a@idx) models fixed charged background
ions. By integrating by parts and using (14), we find that

_ — 2 _’b = 2
/RBnu,].DXde_ /Rsathdx_ )\D/RsAxatVde_ ; dt/ |0,V [2dx

Hence, the last two terms of the energy dissipation are writen a

Dqq 2
)%/Rsn(nC( ))dx—?a/ |0V 2dx

Whereas the second term expresses energy fluctuation due tiicdlaces, the
first one, which is bounded from below, is an effect of the quantissightion.

2.4 Osmotic momentum

We wish to elucidate the origin of the kinetic momentum opergpand to relate
it to similar expressions in the literature. First, we discusséhation between (3)
and the deformed momentum operator of [25]. For simplificationcersider a
single quantum state given by the wave functin



Let P= —ihl be the quantum momentum operator. It is a simple matter to
verify thatu:= Py =u— gﬂxlog(n), as follows straightforwardly from the fact
thatu = £im(Oxy/y). This leads to

din+divy(nt) = —?Axn, (18)
& (n0) + divy (NU® T) — nOxV = g(nDX(DX -U) — (Axn)T), (19)

 solving the Schisdinger equation(ihd; + %ZAX —V)y = 0, which obviously
entails the fact that the linear Séhlinger operator contributes to the quantum—
mechanical fluid equations with complex viscosity coeffitsewhen written in
terms of the couplén,t). This is in good agreement with [25], whose idea is
to introduce the deformed momentum operatgryP= (P—iu)y for some real
functionu and the corresponding kinetic energy

1 *
To=3 [ (P (Pug)dx

where* denotes the complex conjugateyof

The formal minimizer ofu — T, equals the osmotic velocity. = —(h/2)
Oxlogn, wheren = |@|? is the particle density. This leads to the deformed mo-
mentum operator

ih
Pe= P+%Dxlogn.

Our strategy will consist of considering a real approach to tlgarithmic
part of the microscopic velocity, sayv = u— Dqql0xlog(n), whereDqq has been
chosen instead di/2 since the (real) viscocity effects of our starting model are
enclosed in this coefficient.

We remark that the notion “osmotic velocity” appears first in troekwof Nel-
son, see [26, Formula (26)]. We wish to formulate the above operaterrims of
the moments of the Wigner function. To this end, we define thgnéfi function
of a single state by

wW(x, p,t) = (Zirﬁ)?’/]R3 tp(x+ %Y!,U(xf %)e*iy'p/ﬁdy.

A computation shows that the (macroscopic) particle and mamedensities
become [16, Lemma 11.2]

n=|yP= [ wdp (20)
ih
nu=Re(y'PY) = 7 (WO -Oup'y) = [ pwdp  (@1)

The deformed momentum operator equals

PPy = w*<P+ng|09n)w =yY'PY+ gDXn,
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and the (macroscopic) deformed momentum density equals thearigomen-
tum density,

Re(y"Pey) =Re(y'Py) = [ pwdp

In other words, the deformed momentum does not “see” the osnelticity part
since it is complex.

We claim that the osmotic velocity emerges from gauge fieldrthdd., Chap-
ter 1]. Given the quantum statle, we introduce the local gauge transformation

p=e"y,

wheref = Dqqlogn/hiis the gauge function. The corresponding covariant deriva-
tive
: :Dag
Dxyp = Uky — 100y = Dx(p"T(Dxmgn)w

has the propertyly(e "9 ) = e '9Dyy. The transformed state andy have the
same particle density but the momentum density changes aecgdcd

nv:= Re(¢" P) = Re(y" PY) — Ay *0x8 = nu— Dggnlxlogn,

which is the sum of the momentum density (21) and the osmotimembum. In
terms of the Wigner function we find that, by (20) and (21),

nv:/]Rs pwd p— quDX/R3de: /Ra(p—quDX)de: /Rsnwdp,

which motivates the definition (3) of the operatpr

3 The n-moment equations

In this section, we derive the moment equations in the varigbl#efined in (3).
First, we recall the expressions for the moments of the poteotiatator (see
Lemmas 12.9 and 13.2 in [16]). We use the following notation

(9) = 3g(p)dp for functionsg(p).
R
Lemma 1 The moments of the potential operatfV] are as follows:
(6rV]) =0, (POrIVIW) = —nChV,  (3[pP6RIVIW) = —nu- TV, (22)
As a consequence, the moments in gheariable become
(N6RVIw) = —nOV,  (3|n]?6a[V]w) = —nu, - OV +DggnAV.  (23)
The Wigner equation (1) in the osmotic momentum writes as
Aw+n - Oaw+ B[V]w = Leek[W] +Ln[w], (24)
where the modified Fokker—Planck operator is given by
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Then, introducing the moments in terms pf(the particle densityn does not
change in they-formulation),

NUp = (NW) = nNu— quDX” (29)
= ne— qud|VX(an> 2quAXn7

the n-moment equations read as follows.

Lemma 2 Let w be a solution to the Wigner—Fokker—Planck equafibn The
n-momentgn,nuy,ne, ), defined in(25)26), solve the following hydrodynamic
equations:

an+divk(nuy) =0, (27)
0 (Nup ) +dive(n ® NW) — NOLV + 2(Dpg+ A Dgq) Oxn = —2Anuy, (28)
d:(ney) + divy( 3|1 |?w) + 2(Dpg + A Dgq) div(NUy ) + DagnAV (29)

Proof Integrating the Wigner equation (24) over the momentum spadeohn
serving thatLgck [W]) = (L, [w]) = 0 immediately gives (27). Next, we apply
to (24) and integrate over.

% (NUy ) +divi(n @ NW) + (N Br[VIW) = (nLn [W]).
The right-hand side becomes
{(NLn W) = (pLyW]) — Dgglx(Ln [W]) = —2Anu—2DpglIxn
= —2ANnuUy — 2(Dpg+ADgq) Oxn.

Together with the first identity in (23), we obtain (28). Fin(;ltttjoplying%hﬂ2 to
(24) and integrating ovep leads to

a(nen) +divk(3n|n[*w) + (3In16kVIw) = (3]n°Ly [w]). (30)

We calculate the moment &f; (w]:
(3In12Ly (W) = (3]PI°Ly (W) — Daqdivx(pLy W) + 3DGqAx(Ly [W)).

The first summand equals

(3|p[?Lp[W]) = 3Dppn — 4A ne— 2D pqdivy(nu)

= 3Dppn — 4Ane; — 2(Dpg+ 2A Dyq) divk(nuy )
— 2Dqq(Dpg+ A Dqgg)AxM;
the second summand becomes
—Dgqdivk(pLy [W]) = 2A Dgqdivy(nu) + 2D pgDgglxn
= 2ADgqdivx(nuy) + 2Dgq(Dpg+ A Dgg) Axn;

and the third summand vanishes. Adding these expressiorstiead

(3In1?Ly[W]) = 3Dppn — 4Ane; — 2(Dpg+ A Dggq) divk(nuy ).
Inserting this expression and the second identity in (23) intp§88ves the result.
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4 Closure of then-moment equations

Letwy be a solution to the Wigner—Fokker—Planck equation (1) anehlénuy, )q,
(n&y)q) be the corresponding-moments. The parameteris the scaled relax-
ation time occuring in the BGK operator. In the linit— 0, we obtairLggk [W] =
0, wherew = limy_,oWq. This implies thatv = M[w] and then-moments can be
closed according to the formal limit — O:

()1 () i)
(Nup)a | = n |wedx— | nuy | = n | Mwjdx
nea) 7 \3inp ey ) 7 \3inf2

We notice that there exist other strategies to close the moeatgrations, for in-
stance the shifted Maxwellian closure of Gardner [13] or thewlmselations
accounting for quantum mixtures in the wave-function picture 31—

We calculate now the momentg ® nM[w]) and(%n In1>M[w]).

Lemma 3 Assuming thaflylogT = O(R®) and A(uy) = 3(Ouy, — Ouy)) = O(R?),
the following expansions hold:

(n®NM[W]) = nuy @ Uy + P —2DgqnD(up ) + O(F*), (31)

(3n|n|*MW]) = a, + (P+neyI)u, — 2Dgqdivk(ND(up )uy) +O(F*),  (32)

where2logn denotes the Hessian tifgn, P = nTI — (R2/12)n02logn is the

quantum stress tensor ang g —(R?/24)n(Axup + 20y divyuy ) is the quantum
heat flux.

Proof First, we observe that
(p® pM[W]) =P+nuau, (3p|pMMW]) =G+ (P+nel)u,

whereP = ((p—u) ® (p—u)M[w]) is the quantum stress tensor ae- <%(p—
u)|p—uM[w]) is the quantum heat flux in thevariable. Under the assumptions
OlogT = O(R?) and A(u) = A(up) = O(R?), P, §, andne can be expanded in
powers offi® [19, Formulas (19)-(20)]:

2
B nTI— %nDiIognJrO(ﬁ“), (33)
ﬁZ
0= — 5 N(Au -+ 20xdivyu) +O(), (34)
3 1., R
ne=ZnT+nlu —ﬂnAxlognJrO(ﬁ“). (35)

Since(M[w]) = nand(pM[w]) = nu, we find that

(n@nMw]) = (p@ pM[W]) — 2Dqq(Ch ©s PMW]) + Dgo( M [w])
=P+ nu®u— 2Dgq0x ®s () + DZ,02N,
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wherea®sb = %(a@ b+b® a) is the symmetric tensor product. Inserting the
definition (25) ofnu,, a computation shows that

(N ®NMW]) = P+nu, @ u; — 2DggnD(uy,) + Dy logn® Oy logn,

whereD(u,) = 2(Du,, + Dug) The expansion (33) and the propelilg(q i)
(see (5)) then implies the first claim (31).
Next, we obtain

(3nInPMW]) = (3p|p[*M[W]) — Daq(p(p- Ox)M[W]) + 3D5Ax(pPMW
— Daglx(3/PPMW]) + D?,q(Dx(p- Ox)M[w])

— 3D A (MW])
=G+ (P+ nel)u— Dgq(divk(P+nu@u) + Ox(ne))

+ 3D (Ax(nu) + 20Z(nU)) — 3D AN,

Because of (33D§q =0O(f%), nugu= Nnup ® Uy + O(h ?), andne= ne; + O(R?)
(see (26)), this expression simplifies to

(An|n|PMW]) = G+ (P+nel)u— Dgq(Tx(nT) + divk(nuy @up) ~ (36)
We writed and (P + nel)u in terms of then-moments:

R i
G= _ﬁn(AXu” + 20y divy Uy ) +O(R),

(P-+nel)u= (P+ neyI)up + Dgq(P+ neyT) Oxlogn + Dagdivk(nup Ju, + O(F%).

Inserting these expansions into (36) gives, sifgé = O(R?),

(3nlnPMw) = - Z (xty + 20 livyy) + (P+ney )y
+ Dgq((nT + ney ) Oxlogn + divy(nuy Jup — Ox(nT)
— divk(nu, ® uy) — Ox(ney) ) + O(R™)
= 24 n(Axuy + 20y divyuy ) 4 (P+neyIuy
— Dgg(Nnuy - Oxup +nCxe) + O(RY).

Finally, observing that
1
Dggq(nuy - Oxup +nlye) = qu(nu,7 +Oetin + 5n0x(|ug |2)> +O(R*)

the claim (32) follows.
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Theorem 1 now follows immediately from thpmoment equations (27)—(29)
and Lemma 2. The expression for the energy density is a consegjoé(26) and
(35):

1 R? :
ne, = ShT+ ~njuf®> — nAxlogn — Dgqdivy(nuy ) + O(R*)
2 2 24
3 1., , R : F
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