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Abstract Due to its deterministic nature, the spherical harmonipsiazion method
is an attractive alternative to the Monte Carlo method fergblution of the Boltz-
mann Transport Equation for the purpose of electronic desimulation. However,
since the problem is posed in a six-dimensional problemespaterging from the
three-dimensional space variable and the three-dimealstanmentum variable,
deterministic approaches typically suffer from huge mgnmrequirements, which
have prohibited their application to two and three-dimenal simulations. To re-
duce these high memory requirements, we first show that thpliog of the re-
sulting system of partial differential equations is onlyakeand then propose a new
scheme for the lossless compression of the resulting systéimear equations af-
ter discretization. This reduces the overall memory remmants significantly and
paves the way for deterministic three-dimensional devicaeikations. Numerical
experiments demonstrate the applicability of our methati@nfirm our theoreti-
cal results.
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1 Introduction

As long as quantum mechanical effects are negligible, tleeascopic behavior of
charge carriers in semiconductors is very well described Histribution function
f(x,k,t) that depends on the spatial coordingtthe momentunik and timet, and
fulfills the Boltzmann transport equation (BTE). The mostneoonly used method
to solve the BTE is the Monte Carlo method, with the main disatage of its
computational expense, especially when attempting toaeethe statistical noise in
the low density tails of the distribution function. The mpsbminent alternative to
the stochastic Monte Carlo (MC) method is the determiniicerical harmonics
expansion (SHE) method [1]. Recent results demonstrateéntgher order expan-
sions, e.g. of order nine, result in excellent agreemerit M€ simulations, while
maintaining the performance benefit [3, 4].

The major challenge of the SHE method is the huge memory copison re-
ported even for two-dimensional devices at moderate expamsders [3], which
has so far prohibited an application of the SHE method teetdienensional simula-
tions. To overcome these limitations, we present a new systatrix compression
scheme that reduces the memory requirements by up to twaesoodenagnitude
and paves the way for three-dimensional device simulatisitgy the SHE method.

2 The Projected Equations

After a truncated expansion of the distribution functiotoineal-valued, orthonor-
mal spherical harmonic$ ,(6,¢) up to order,
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a spherical projection of the BTE and application of Hid¢ransform [2], one ob-
tains with Einstein’s summation convention a system of ¢edipartial differential
equations with shifted arguments [3]
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foralll € {0,...,L}, me {—I,...,I}. The generalized density of statéslepends
on the band structur€, is the force an '7;127{"” ands'y;{qﬂ;o“t denote the in- and out-

scattering coefficients. Function arguments are suppilegserever appropriate to
increase readability.
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If all coupling coefficients/liﬂ, I':/n’f #ln']{n'” andq'i;ﬂf;om were multiples of the
Kronecker delta |/ oy, 1, all equations would be decoupled and could be solved in-
dividually. Conversely, nonzero coupling coefficients &irquadruplegl,m,1’, m)
indicate a tight coupling, which usually complicates thkison process. This is in
analogy to systems of linear equations: If the system metdiagonal, the solution

is found immediately, but if the matrix is dense, typicallyod of computational

effort is required to solve the system.

It has been shown in [4] that the scattering teeﬁp?”” ands{;ﬂf;omdo not couple
different expansion coefficients in the case of sphericatg@nbands. Moreover, the
symmetry of the underlying processes yields for generatlIsémuctures that

Vam =Vaiim =0 Tam =5/ 0m =0
for all permissible integeris i’ andm, m' holds [4]. Therefore, all nonzero coupling
coefficients possess different parities in the leadingciesli This structural informa-
tion about the coupling was already used in a preprocesgpgar the solution of
the discretized equations in [4].

Under the assumption of spherical energy bands jle.= £(|k|), the velocityv,
the modulus of the wave vecti| and the generalized density of states only depend
on the energy, but not on the angle8, ¢. With this it can now be shown that the

coupling induced by ™ andr!™ i k:
pling induce \m andr) ;" is weak:

Theorem 1. Under the assumption of spherical energy bands, the following holds
truefor indicesl,l’ € {0,...,L},me {-I,....1}andm € {-I",...)I'}:

1. If\/l/h'f isnonzero, thenl € {I' £ 1} andme {£|m|+1,n}.
2. Ifl':/;:{ isnonzero, thenl € {I’+ 1} and me {£|m| £ 1,m}.

A proofis given in [5]. The theorem allows one to better ehiatie those coeffi-

. ! ! . . . . . . .
C|ent5\)I nr]“( andl': r:{ which may not vanish in simulations due to numerical noise,

even though they are analytically zero.

3 Discretization and System Matrix Compression

In steady state, a discretization of the expansion coefiicien a staggered grid
(cf. [6]) with N grid points leads to a system of linear equations repredeéntea
system matrixS of sizeN(L +1)2 x N(L + 1)2. The sparsity oSis a direct conse-
guence of the finite difference or finite volume schemes udsing the results of
Theorem 1, it can be shown [5] that the resulting system m&tcan be written as

S= iQ ®R (2)
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where® denotes the Kronecker product. TRe only depend on the discretiza-
tion in the (x,H)-space, while th&; are determined by the coupling among spher-
ical harmonics up to orddr only. This allows for a representation 8fusing only
O((L+1)? +Cspars®) numbers. Sincdl is typically much larger thafL + 1)?, the

full system matrix can be stored f@parse= 10 with roughly 8N numbers, which
means a reduction of two orders of magnitude compared tortbermpressed case.

4 Solution of the Linear System

The matrix compression scheme is of use only if the resulbiygtem of linear
equations can be solved without the need to recover the fattimagain. Such
a reconstruction is, in principle, necessary if direct sodvare used, because during
the solution process the matrix structure is altered in a tvaydestroys the block
structure. For many popular iterative solvers from the fami Krylov methods, it
is usually sufficient to provide matrix-vector multipligans [7].

Matrix-vector products for a matrix given as a Kroneckerdaret of two smaller
matrices can be carried out in a straightforward manner lopm@osing the vec-
tor into blocks of suitable size. This allows for the rediaa of a very memory
efficient matrix-vector multiplication if the system matis given in the form (2).
However, numerical experiments indicate that the full eystatrix for the even
and odd order expansions coefficients is ill-conditioneduBstantial improvement
of the system matrix condition number can be obtained if thienowns for the
odd order expansion coefficients are eliminated in a preggsing step. However, a
direct elimination by altering the system matrix is not pbieswithout destroying
the Kronecker product structure. This can be avoided bygutsia Schur comple-
ment, for which we refer the reader to [5]. Thus, the systertrimaompression
scheme can also benefit from the improved system matrix tondiumber after
elimination of the odd order unknowns.

5 Results

We have compared memory requirements for the storage oy $ters matrix at sev-
eral expansion orders in a two-dimensional device sinutafl he results in Fig. 1
clearly demonstrate the asymptotic advantage of our apprédready at an expan-
sion order ol =5, memory savings by a factor of 18 are observed, which ise®a
to 146 atlL = 13. With the compressed scheme, the memory required foygtera
matrix increases only by a few kilobyteslaincreases, which is negligible.

Since the memory required by the system matrix is of ord@X + L?) and the
memory for the unknowns is of order(NL?), the memory required for the un-
knowns is much larger than the memory required for the remtasion of the system
matrix for large values of, cf. Fig. 2. Therefore, the asymptotic memory require-
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ments for the full simulation is stil’(NL?), but the constant of proportionality
is of order one, while for the full system matrix it is arountiClparse~ 100, so a
reduction of memory requirements by two orders of magnitaddtained.

On a single CPU core, the minor price to pay for the dramatiacgon in mem-
ory consumption is that the execution times of matrix-veptoducts with the Schur
complementincrease by a factor of about two, cf. Fig. 3. Herghe proposed ma-
trix compression scheme is very well suited for parallehdectures, because the
data required for the system matrix may even fit into the CRihes, allowing for a
very high performance. Moreover, since the system matmxEawritten as a sum
of Kronecker products, each summand can be computed on easepare.

6 Conclusion

The matrix compression scheme presented in this work radtieenemory require-
ments for the system matrix arising from a SHE of the BTE frameo &/ (NL?)
to ¢(N + L?), which results in total memory savings for the full simubatirun
by up to two orders of magnitude. Therefore, our scheme piéneegray for three-
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dimensional device simulations especially for larger exgian orders.. On a single
CPU core, the small price to pay is a runtime penalty on mafeistor multiplication
of about a factor of two. However, the proposed method is etegleto outperform
the traditional storage scheme on parallel architectures.
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