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Abstract Due to its deterministic nature, the spherical harmonics expansion method
is an attractive alternative to the Monte Carlo method for the solution of the Boltz-
mann Transport Equation for the purpose of electronic device simulation. However,
since the problem is posed in a six-dimensional problem space emerging from the
three-dimensional space variable and the three-dimensional momentum variable,
deterministic approaches typically suffer from huge memory requirements, which
have prohibited their application to two and three-dimensional simulations. To re-
duce these high memory requirements, we first show that the coupling of the re-
sulting system of partial differential equations is only weak and then propose a new
scheme for the lossless compression of the resulting systemof linear equations af-
ter discretization. This reduces the overall memory requirements significantly and
paves the way for deterministic three-dimensional device simulations. Numerical
experiments demonstrate the applicability of our method and confirm our theoreti-
cal results.
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1 Introduction

As long as quantum mechanical effects are negligible, the microscopic behavior of
charge carriers in semiconductors is very well described bya distribution function
f (x,k, t) that depends on the spatial coordinatex, the momentum̄hk and timet, and
fulfills the Boltzmann transport equation (BTE). The most commonly used method
to solve the BTE is the Monte Carlo method, with the main disadvantage of its
computational expense, especially when attempting to reduce the statistical noise in
the low density tails of the distribution function. The mostprominent alternative to
the stochastic Monte Carlo (MC) method is the deterministicspherical harmonics
expansion (SHE) method [1]. Recent results demonstrate that higher order expan-
sions, e.g. of order nine, result in excellent agreement with MC simulations, while
maintaining the performance benefit [3,4].

The major challenge of the SHE method is the huge memory consumption re-
ported even for two-dimensional devices at moderate expansion orders [3], which
has so far prohibited an application of the SHE method to three-dimensional simula-
tions. To overcome these limitations, we present a new system matrix compression
scheme that reduces the memory requirements by up to two orders of magnitude
and paves the way for three-dimensional device simulationsusing the SHE method.

2 The Projected Equations

After a truncated expansion of the distribution function into real-valued, orthonor-
mal spherical harmonicsYl,m(θ ,ϕ) up to orderL,

f (x,ε,θ ,ϕ , t)≈
L

∑
l=0

l

∑
m=−l

fl,m(x,ε, t)Yl,m(θ ,ϕ) , (1)

a spherical projection of the BTE and application of theH-transform [2], one ob-
tains with Einstein’s summation convention a system of coupled partial differential
equations with shifted arguments [3]

∂ fl,mZ

∂ t
+∇x · v

l′,m′

l,m fl′ ,m′Z −F ·Γ l′,m′

l,m fl′,m′Z

= ∑
η

sl′ ,m′;in
l,m fl′ ,m′(x,ε ∓ h̄ωη , t)Z(x,ε ∓ h̄ωη , t)− sl′,m′;out

l,m fl′ ,m′Z

for all l ∈ {0, . . . ,L}, m ∈ {−l, . . . , l}. The generalized density of statesZ depends

on the band structure,F is the force andsl′ ,m′;in
l,m andsl′,m′ ;out

l,m denote the in- and out-
scattering coefficients. Function arguments are suppressed wherever appropriate to
increase readability.
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If all coupling coefficientsvl′,m′

l,m , Γ l′,m′

l,m , sl′ ,m′;in
l,m;η andsl′ ,m′;out

l,m were multiples of the
Kronecker deltaδl,l′δm,m′ , all equations would be decoupled and could be solved in-
dividually. Conversely, nonzero coupling coefficients forall quadruples(l,m, l′,m′)
indicate a tight coupling, which usually complicates the solution process. This is in
analogy to systems of linear equations: If the system matrixis diagonal, the solution
is found immediately, but if the matrix is dense, typically alot of computational
effort is required to solve the system.

It has been shown in [4] that the scattering termssl′,m′ ;in
l,m andsl′ ,m′;out

l,m do not couple
different expansion coefficients in the case of spherical energy bands. Moreover, the
symmetry of the underlying processes yields for general band structures that

v2i′,m′

2i,m = v2i′+1,m′

2i+1,m = 0, Γ 2i′,m′

2i,m = Γ 2i′+1,m′

2i+1,m = 0 .

for all permissible integersi, i′ andm, m′ holds [4]. Therefore, all nonzero coupling
coefficients possess different parities in the leading indices. This structural informa-
tion about the coupling was already used in a preprocessing step for the solution of
the discretized equations in [4].

Under the assumption of spherical energy bands, i.e.ε(k) = ε̃(|k|), the velocityv,
the modulus of the wave vector|k| and the generalized density of states only depend
on the energyε, but not on the anglesθ ,ϕ . With this it can now be shown that the

coupling induced byvl′,m′

l,m andΓ l′,m′

l,m is weak:

Theorem 1. Under the assumption of spherical energy bands, the following holds
true for indices l, l′ ∈ {0, . . . ,L}, m ∈ {−l, . . . , l} and m′ ∈ {−l′, . . . , l′}:

1. If vl′,m′

l,m is nonzero, then l ∈ {l′±1} and m ∈ {±|m′|±1,m′}.

2. If Γ l′,m′

l,m is nonzero, then l ∈ {l′±1} and m ∈ {±|m′|±1,m′}.

A proof is given in [5]. The theorem allows one to better eliminate those coeffi-

cientsvl′,m′

l,m andΓ l′,m′

l,m , which may not vanish in simulations due to numerical noise,
even though they are analytically zero.

3 Discretization and System Matrix Compression

In steady state, a discretization of the expansion coefficients on a staggered grid
(cf. [6]) with N grid points leads to a system of linear equations represented by a
system matrixS of sizeN(L+1)2×N(L+1)2. The sparsity ofS is a direct conse-
quence of the finite difference or finite volume schemes used.Using the results of
Theorem 1, it can be shown [5] that the resulting system matrix S can be written as

S =
8

∑
i=1

Qi ⊗Ri (2)
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where⊗ denotes the Kronecker product. TheQi only depend on the discretiza-
tion in the(x,H)-space, while theRi are determined by the coupling among spher-
ical harmonics up to orderL only. This allows for a representation ofS using only
O((L+1)2+CsparseN) numbers. SinceN is typically much larger than(L+1)2, the
full system matrix can be stored forCsparse= 10 with roughly 80N numbers, which
means a reduction of two orders of magnitude compared to the uncompressed case.

4 Solution of the Linear System

The matrix compression scheme is of use only if the resultingsystem of linear
equations can be solved without the need to recover the full matrix again. Such
a reconstruction is, in principle, necessary if direct solvers are used, because during
the solution process the matrix structure is altered in a waythat destroys the block
structure. For many popular iterative solvers from the family of Krylov methods, it
is usually sufficient to provide matrix-vector multiplications [7].

Matrix-vector products for a matrix given as a Kronecker product of two smaller
matrices can be carried out in a straightforward manner by decomposing the vec-
tor into blocks of suitable size. This allows for the realization of a very memory
efficient matrix-vector multiplication if the system matrix is given in the form (2).
However, numerical experiments indicate that the full system matrix for the even
and odd order expansions coefficients is ill-conditioned. Asubstantial improvement
of the system matrix condition number can be obtained if the unknowns for the
odd order expansion coefficients are eliminated in a preprocessing step. However, a
direct elimination by altering the system matrix is not possible without destroying
the Kronecker product structure. This can be avoided by using the Schur comple-
ment, for which we refer the reader to [5]. Thus, the system matrix compression
scheme can also benefit from the improved system matrix condition number after
elimination of the odd order unknowns.

5 Results

We have compared memory requirements for the storage of the system matrix at sev-
eral expansion orders in a two-dimensional device simulation. The results in Fig. 1
clearly demonstrate the asymptotic advantage of our approach: Already at an expan-
sion order ofL = 5, memory savings by a factor of 18 are observed, which increases
to 146 atL = 13. With the compressed scheme, the memory required for the system
matrix increases only by a few kilobytes asL increases, which is negligible.

Since the memory required by the system matrix is of orderO(N +L2) and the
memory for the unknowns is of orderO(NL2), the memory required for the un-
knowns is much larger than the memory required for the representation of the system
matrix for large values ofL, cf. Fig. 2. Therefore, the asymptotic memory require-
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Fig. 1 Memory used for
the uncompressed and the
compressed system matrix for
different expansion ordersL
on a three-dimensional grid
with 12500 nodes.
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Fig. 2 Memory used for the
system matrix in relation to
the total amount of memory
used (i.e. system matrix,
unknowns and right hand
side).
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ments for the full simulation is stillO(NL2), but the constant of proportionality
is of order one, while for the full system matrix it is around 11Csparse≈ 100, so a
reduction of memory requirements by two orders of magnitudeis obtained.

On a single CPU core, the minor price to pay for the dramatic reduction in mem-
ory consumption is that the execution times of matrix-vector products with the Schur
complement increase by a factor of about two, cf. Fig. 3. However, the proposed ma-
trix compression scheme is very well suited for parallel architectures, because the
data required for the system matrix may even fit into the CPU caches, allowing for a
very high performance. Moreover, since the system matrix can be written as a sum
of Kronecker products, each summand can be computed on a separate core.

6 Conclusion

The matrix compression scheme presented in this work reduces the memory require-
ments for the system matrix arising from a SHE of the BTE from order O(NL2)
to O(N + L2), which results in total memory savings for the full simulation run
by up to two orders of magnitude. Therefore, our scheme pavesthe way for three-
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Fig. 3 Execution times for
matrix-vector multiplication
with the Schur complement
on a single core of an Intel
Core 2 Quad Q9550 CPU.
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dimensional device simulations especially for larger expansion ordersL. On a single
CPU core, the small price to pay is a runtime penalty on matrix-vector multiplication
of about a factor of two. However, the proposed method is expected to outperform
the traditional storage scheme on parallel architectures.
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