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Günter Blöschl is an Associate Professor at the Institute of Hydraulics, Hydrology
and Water Resources Management of the Technical University of Vienna. His
professional interests include measuring and modelling spatial hydrologic pro-
cesses at a range of scales as well as engineering hydrology and water resources
management. He is an author of over 100 scientific papers and has received the
Schrödinger and Lise Meitner awards from the Austrian Science Foundation. He
is an associate editor of Water Resources Research, the Journal of Hydrology and
an editorial board member of Environmental Modelling and Software. He is a Vice
President of sections of both the European Geophysical Society and the
International Association of Hydrological Sciences.





Spatial Patterns in
Catchment Hydrology

Observations and Modelling

Edited by

RODGER GRAYSON
University of Melbourne
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David Tarboton, Günter Blöschl, Keith Cooley,
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Preface

Our everyday lives are dominated by patterns. The all too persistent temporal

pattern of sleep, work, relax; the nightly weather maps and satellite images that

might mould the shape of the forthcoming weekend’s activities; or the intricate

pattern represented by the arrangement of features on a human’s face that lets us

recognise a friend in a crowd. Some patterns contain simple information like the

isobars on a map of surface pressure, while others are breathtakingly rich. Some

of this information we can understand and interpret, while some is well beyond

us. This book is about patterns. It is about how we measure, interpret and model

aspects of spatial hydrological response. It is motivated by a belief that to

advance the knowledge base of scientific hydrology, and to answer many of

the questions of environmental management that are being asked by the broader

community, we have to better exploit the information that resides in the myriad

of patterns observable in nature.

For many years now, modelling tools have been available to simulate spatially

distributed hydrological processes. The quality of the simulations and spatial

process representations has been difficult to assess because of a lack of appro-

priate field data. In recent years there have been several major field exercises in

research catchments, aimed specifically at improving our understanding and

modelling capability of spatial processes. This book seeks to bring some of

those studies together within the context of reviewing our understanding of

spatial hydrological processes and presenting research work aimed at improving

that understanding. In addition, we hope it provides a reference and source of

motivation for others interested in undertaking detailed spatial data collection in

combination with distributed modelling to improve our understanding and pre-

diction of hydrological processes.

Specifically this book seeks to:

(i) Provide readers with an introduction to the nature and representation

of spatial patterns in hydrological processes;

(ii) Show, through example, how the comparison of measured and simu-

lated spatial patterns of hydrological response can be used both to

improve our understanding of processes and to inform model develop-

ment; and

(iii) Provide an avenue for expanding upon the experiences of those who

have undertaken major collection and collation exercises of spatial field
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data, for the purpose of spatial modelling and gaining insight into

spatial processes.

This book is aimed at two types of readers. The first will have a general knowl-

edge of catchment hydrology and be keen to develop their understanding of the

nature of hydrological variability, and be introduced to some methods and mod-

els that can assist in quantifying that variability. We have deliberately kept the

introductory chapters free of detailed mathematics, preferring to concentrate on

an intuitive understanding of the underlying concepts, many of which are quite

rich and complex. We do not intend to provide a complete description of all

available techniques or models, rather we seek to equip the reader with the

knowledge needed to assess the types of tools and models that may be appro-

priate for their particular application, and to understand the basic approaches to

modelling and analysis used in the case-study chapters. The second type of read-

ers will be hydrologists who already have a sound knowledge of methods for

spatial data analysis and of distributed modelling, but are thinking of under-

taking studies similar to those presented in the book. For these readers, the case

studies provide a wide range of measurement techniques, analysis methods,

model types used, and approaches to the comparison of observed and simulated

patterns, which should help them decide on the best approaches for their own

work.

The book is presented in three parts. The first part (Chapters 1–5) starts with

three introductory chapters (Chapters 1–3) on fundamentals that are key to

putting later chapters in context. Chapters 4 and 5 deal with spatial patterns in

precipitation and evaporation, respectively. These two processes were singled out

because they are so critical to spatial hydrological response, yet are relatively

poorly represented in most models. The two chapters include discussions about

the state of the art in measurement and analysis of spatial information and the

synthesis of point data. In the second part, case studies in research catchments

are presented (Chapters 6–12). These chapters cover a range of environments

from the tropics to Alpine regions; a range of dominant processes from

Hortonian runoff to surface–groundwater interaction; a range of spatial data

including remote sensing and multiple-point measurements; and a range of mod-

elling structures including fully distributed grid and contour-based models of

different complexities. An important feature of all the case studies, and some-

thing that makes them relatively rare in the hydrological literature, is that they

directly compare observed with simulated spatial patterns. We asked the authors

to focus on the collection and interpretation of patterns and their implications for

model testing, while providing only a brief description of the models themselves.

For full descriptions of the models, references are given in each of the chapters.

The final part (Chapters 13 and 14) focuses on implications of the material

presented in the earlier chapters. Chapter 13 addresses the implications when

one moves away from the small research catchments to larger scales where prac-

tical predictions from distributed models are needed, focusing on issues of cali-

bration and validation of these models. The final chapter (Chapter 14) is a
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summary of the case studies and a discussion of broader implications from the

work, highlighting what we have learnt from pattern comparisons and the chal-

lenges that remain.

In preparing this book we are greatly indebted to a large number of people.

First and foremost, the contributors, for their dedication in addressing the cen-

tral theme of the book and for providing their insights for us all to share. Thanks

to the reviewers who provided timely feedback, and several colleagues who

reviewed sections and were able to see the big picture when we were lost in detail.

We are particularly grateful to Erich Plate for his thoughtful comments and

willingness to look over the entire manuscript. Andrew Western and Ralf Merz

deserve special mention for their help with a range of tasks from stimulating

discussions on technical matters, to figure preparation. Dieter Gutknecht and

Tom McMahon provided continued support for this project and both the

Technical University of Vienna and the University of Melbourne assisted in a

number of ways, not least being to help us work in the same office for extended

periods of time. It was during these periods that the book really came together,

over hours of discussion and friendly argument. Matt Lloyd from Cambridge

University Press provided much needed assistance in all matters related to the

production of the book.

Finally, love and thanks, to our long suffering partners and families, Ali

Dedman and Elisabeth, Roman, Agnes and Margit Blöschl for their patience

and encouragement.

Rodger Grayson & Günter Blöschl

August 2000
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PART ONE

FUNDAMENTALS





1
Spatial Processes, Organisation and Patterns

Rodger Grayson and Günter Blöschl

1.1 INTRODUCTION

Observation and interpretation of spatial patterns are fundamental to many areas

of the earth sciences such as geology and geomorphology, yet in catchment

hydrology, our historic interest has been more related to temporal patterns

and in particular, that of streamflow. The fact that patterns are everywhere in

hydrology hardly needs explanation. From the rich RADAR images of precipi-

tation, to the photographs from dye studies illustrating preferential flow (e.g.

Flury et al., 1994), there is a wide range of spatial arrangements present in

hydrologic systems. But because of an interest in streamflow, that wonderful

integrator of variability, we have until recently managed to avoid confronting

the challenges of spatial heterogeneity. It is worth noting that a similar history is

apparent in groundwater hydrology where pumping tests have long provided a

measure of integrated aquifer response and distracted researchers from the quan-

tification of aquifer heterogeneity (Anderson, 1997). The last few decades, how-

ever, have heralded an explosion of interest in spatial patterns in hydrology, from

the pioneering work on spatial heterogeneity in runoff producing processes dur-

ing the sixties and early seventies (e.g. Betson, 1964; Dunne and Black, 1970a, b),

through the development of spatially distributed hydrological models that pro-

vide a way to interpret spatial response, to the ever increasing capabilities of

remote sensing methods which provide information on state variables of funda-

mental importance to catchment hydrology.

Two important areas of work are arguably the catalyst that brought the issues

of patterns to the forefront of hydrologists’ minds.

The first is the ready availability of digital elevation models (DEMs) and the

attendant analysis that is possible with these data (e.g. Beven and Moore, 1992),

made all the easier by the ever decreasing cost of computing power and avail-

ability of Geographic Information System (GIS) software. DEMs and powerful

computers have made it possible for every hydrologist with an appropriate com-
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puter package to generate pages of impressive looking patterns that are intui-

tively meaningful, using, for example, topographic wetness indices. These indices

can be computed from a DEM alone and are designed to represent the spatial

patterns of soil moisture deficit in a catchment (e.g. Beven and Kirkby, 1979).

The potential of distributed parameter models can now be exploited via auto-

mating the element representations that are central to these models and assisting

in the management and manipulation of often enormous spatial data sets. Also,

off-the-shelf software for spatially distributed catchment models is now available

at low cost.

The second is the rise in environmental awareness of the broader community

and its subsequent impact on research into, and the management of, natural

resources. We now want to know not only what is the quantity and quality of

water in a stream, but also from where any contaminants came and where best to

invest scarce financial resources to help rectify the problem. We now need pre-

dictions of the hydrological (and ecological) impacts of land use and climate

change – predictions that must account for the spatial variability we see in nature

if they are to be of any practical use. Natural resource agencies are amassing

large amounts of spatial data to complement the temporal data traditionally

measured, and are eagerly looking to use this for predictive spatial modelling

of environmental response. In principle, we have the tools available to undertake

this work and already, the spatial models and impressive colour graphics that our

GISs generate can seduce even the most sceptical of politicians and administra-

tors (Grayson et al., 1993). But in many cases, the scientific credibility of these

predictions is questionable. We need better ways to develop and assess spatial

predictions, as well as to exploit the information that is becoming available from

new measurement methods, which often provide us with very different informa-

tion to that we are using today.

However, while our ability to generate patterns might be impressive, it is not

of itself useful. It is the extent to which these patterns represent reality and to

which they provide us with new insights into hydrological behaviour that is

important. Where we can actually observe patterns in nature, they provide us

with a powerful test of our distributed modelling capabilities and so should

significantly improve the confidence we have in subsequent predictions. But

observed spatial patterns of hydrologically important variables (other than

land use, terrain and in some cases soils) are not very common. To progress,

we will need to make quite different measurements from those used in the past,

perhaps requiring the development of new measurement methods. We will also

need to develop more sophisticated approaches to the testing of spatial predic-

tions against spatial measurements.

The number of papers that have presented comparisons of observed and simu-

lated spatial patterns of catchment hydrological processes is relatively small. In

1991, Blöschl et al. (1991b) used photographs of snow cover to assess the perfor-

mance of a spatially distributed energy and water balance model of the snowpack.

Along similar lines, Wigmosta et al. (1994) and Davis et al. (1995) have used snow

patterns in analyses of alpine hydrology models. But other than snow cover and
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comparisons between shallow piezometers and models such as Topmodel (e.g.

Quinn and Beven, 1993), there have so far been only a few attempts to compare

measured and simulated patterns. For example, Moore and Grayson (1991) com-

pared observed saturated source areas to simulations from a distributed para-

meter model in a small laboratory sand bed. Whelan and Anderson (1996)

simulated the spatial variability of throughfall and compared it to measurements

from an array of ground collectors. Bronstert and Plate (1997) compared observed

and simulated soil moisture patterns in a small German research catchment. These

were all simple visual comparisons of observations versus simulations, but the

insights gained into model performance were new and could never have been

achieved through comparison with traditional measures such as runoff. We pre-

dict that testing models by comparing simulated and observed patterns will even-

tually become commonplace and will provide a quantum advance in the

confidence we are able to place on predictions from distributed models.

With rapid developments in measurement methods and tools for analyses, we

should have all the ingredients to give us new insights into how nature behaves.

But just how do we go about it? Are the models we develop able to use the

information we have available? Is the understanding of fundamental processes

that stood us in good stead in the laboratory, suitable once we move into the

realm of three-dimensional landscapes? Even when we have both simulated pat-

terns and observations for comparison, how do we quantitatively assess model

performance? How do we determine how well the processes are understood and

represented?

While we cannot hope to answer all of these issues, we hope that through the

following chapters, you will see some specific examples of how data, modelling

and our basic understanding of processes can be combined to develop new

insights into hydrological behaviour.

1.2 PROCESS AND PATTERN

What are the links between process and pattern? We recognise patterns because

of some form of organisation. This may be highly ordered such as in a map of

elevation of a large river basin, or totally disordered as might be apparent in an

elevation map of micro-topography of a rough surface. Throughout this book we

will use the term ‘‘organisation’’ to denote a non-random spatial pattern that

becomes apparent when examined visually. But can we explain the organisation

(or lack thereof) in a pattern, via an understanding of the processes that underlie

its creation? Can we infer process behaviour from observed patterns? Some of

these links between process and pattern are obvious while others are not.

Figure 1.1 shows a map of the drainage network of a section of southern

Germany. It is clear that there are areas of distinctly different drainage density, in

this case, caused by a region of limestone in a landscape that is otherwise sand-

stone and mudstone. The limestone geology creates much higher infiltration rates

and hence less surface runoff, which translates into a lower drainage density.
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Were we to try to model drainage in this area without such a map, one would

hope that knowledge of the geological structure of the region and an under-

standing of the type of drainage that occurs in different rock types, would enable

us to predict the observed difference in drainage density and treat the regions

differently in our model. In the absence of such process understanding we would

probably treat the region as homogeneous and have substantial difficulty in

reproducing observed flows.

In other cases, different processes produce different patterns on the same

landscape. Figure 1.2 is an example of soil moisture measurements in a 10 ha

catchment in S.E. Australia (see Chapter 9). It shows the measured soil moisture

patterns during a period in early winter when surface runoff was occurring (top),

and a pattern in mid-summer (bottom). In winter (when it is wet), surface and

subsurface lateral flow occurs, particularly in the gullies, which produces a topo-

graphically organised pattern. In summer, however, (when it is dry) there is a

minimum of lateral redistribution and fluxes are essentially vertical, which pro-

duces a random pattern that is not related to topography (Grayson et al., 1997;

Western et al., 1999a). Here we either know the underlying process (organised

wet winter patterns dominated by topographic effects on lateral flow) and can

6 R Grayson and G Blöschl
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represent it (Western et al., 1999a) or know that the pattern can be considered

random (dry summer case), with soil moisture varying over a narrow range. It is

therefore possible to confidently incorporate the spatial variability into any mod-

elling or further analysis, either by deterministically representing the effects of

topography or making an assumption of randomness.

In some cases we may be able to observe patterns and have some knowledge

of the controlling processes but our ability to represent them is severely limited.

An important example in catchment hydrology is preferential flow through soil.

Figure 1.3 shows horizontal slices and a vertical slice of dye patterns observed in

a block of soil in the field (Flury et al., 1994). Water containing dye was applied

to the surface and infiltrated for some time, after which the soil block was

excavated revealing the patterns of water flow. The silty loam soil contained

many cracks and earthworm channels; the infiltrating water bypassed the soil

Spatial Processes, Organisation and Patterns 7
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matrix almost completely and was channelled into the subsoil. The dye patterns

in Figure 1.3 are extremely complex and their prediction poses a major challenge

(Flury et al., 1994). There are still other cases where we might be aware of

processes that should lead to particular patterns in the landscape, but have

difficulty measuring the real patterns to test the hypothesis. A common example

is the subsurface lateral redistribution of soil moisture leading to patterns of

saturated areas (see Chapters 9 and 11), but these are rarely measured over

large areas (see Chapter 8).

The examples of patterns and processes we have discussed in the previous

paragraphs (e.g. Figures 1.1–1.3) span a wide range of space and time scales,

and this is typical of the processes we need to deal with in catchment hydrol-

ogy. Often different types of patterns are encountered at different time and

space scales and these are associated with different processes. Figure 1.4 shows

a schematic representation of a number of processes at various space–time

scales. At the lower left of the figure are processes with short characteristic

time and space scales, such as infiltration excess runoff, that will lead to

patterns that are very ‘‘patchy’’. These compare to the slower, larger scale

processes such as groundwater flow (top right of figure) where we would

expect patterns of, for example piezometric head, to be spatially more coher-

ent and slowly varying. Given the relationship between process and pattern, it

is worth briefly considering some key processes in catchment hydrology that

lead to patterns in hydrological behaviour. Precipitation dominates hydrolo-

gical response and its patterns are highly dependent on the types of storms

(Austin and Houze, 1972). Convective thunderstorms display patterns with

localised, high intensities and short durations. Figure 1.4 indicates typical

space scales of 1–10 km and typical time scales of 1 minute to 1 hour.

Maps of rain depth tend to be ‘‘patchy’’ for convective storms with subse-

quently great variability in spatial patterns of soil moisture and runoff (see

Chapter 6). On the other hand, frontal weather systems tend to produce long

bands of relatively uniform rainfall. Figure 1.4 indicates typical space scales of

100–1000 km and typical time scales of 1 day. These result in patterns of

runoff that are more spatially uniform, at least at the scale of the weather

system. While Figure 1.4 is a schematic, it is possible to quantitatively derive

similar space-time diagrams for some processes. One example is given later in

this book in Figures 4.5 and 4.13 for the case of precipitation. It is interesting

that the lines in Figures 4.5 and 4.13 plot directly on the band for precipita-

tion shown in Figure 1.4.

The processes of runoff generation also lead to very different patterns. In

humid catchments with relatively low rainfall intensities compared to infiltration

rates of the soil, surface runoff is usually generated from saturated areas (called

saturated source area or saturation excess runoff). These are formed due to the

concentration of subsurface flows, so their patterns in the landscape depend on

the bedrock and surface topographies, differences in soil properties and, to a

lesser extent, vegetation characteristics. Runoff is focused in and around the

drainage lines appearing as patterns of connected linear features that expand

Spatial Processes, Organisation and Patterns 9



and contract seasonally and within storms (e.g. Dunne et al., 1975). Different

patterns result from runoff generated by the infiltration excess mechanism (i.e.

where rainfall intensity exceeds the infiltration rate of the surface, sometimes

called Hortonian runoff). Instead of being focused on drainage lines, runoff

can occur from anywhere on the surface, dependent only on the pattern of

infiltration characteristics. These in turn are related to the patterns of soil, vege-

tation, microtopographic features and the patterns of rainfall, all of which may

be highly organised or apparently random. Runoff may never reach a drainage

line, perhaps re-infiltrating in a patch of porous soil resulting in highly discon-

nected patterns of runoff. Eventually, with enough high intensity rain, gravity

will ensure that runoff reaches drainage lines, producing more linear features

similar to the saturated source process.

In snow dominated environments, spatial variations in energy inputs and

wind exposure tend to dominate patterns of melt and accumulation (see

Chapter 7). Exposure to direct and indirect solar radiation is affected by latitude,

time of year, terrain slope and aspect, with large differences between north and

10 R Grayson and G Blöschl
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south facing slopes, as well as shading and emission/reflection from surrounding

terrain. The interaction between terrain and prevailing wind conditions leads to

depositional and erosional patterns with major impacts on the distribution of

snow water equivalent (the amount of water stored in the snowpack). Some of

these controls are predictable (e.g. from geometry) while others are not, such as

emission and reflection from surrounding terrain, due to large temporal and

spatial variability in specific properties of the surface that are difficult to define

quantitatively.

Perhaps the most complex interrelationship between processes and patterns

occurs for evaporation. We have a general understanding of the quantities that

influence evaporation such as soil moisture, vegetation characteristics, radiative

inputs, air humidity and speed of the wind, and for many of these we can

determine spatial patterns. But just how these factors combine to produce pat-

terns of evaporation is complicated by the fact that each depends on the other

and the atmosphere itself tends to smooth out differences in a way that cannot be

easily described (see Chapter 5). What is more, unlike for example precipitation

or snow cover, we have no means yet of accurately measuring the patterns of

actual evaporation.

Thus there are degrees to which we can observe and explain patterns, due to

limitations in our knowledge of processes and/or our measurement and model-

ling methods. It is important to realise that the scale at which we measure

phenomena will also affect the extent to which we are able to observe and

describe patterns. If, in Figure 1.2, we had only a few data points rather than

over 500, we would be unlikely to identify a meaningful pattern. With just a few

measurements, we might be tempted to treat the distribution of soil moisture as a

random field – an assumption that might be acceptable in summer when it was

dry, but definitely not in winter when it was wet. We must be confident that the

measurements we are interpreting are capturing the nature of the underlying

variability of the system we seek to represent, and are not simply a function of

our sampling density (see Chapter 2). Because we can rarely sample densely

enough to fully define the underlying variability, we must exploit our under-

standing of dominant processes and their manifestations at different scales. We

generally formulate our understanding of processes in the form of models, which

in turn need measurements for proper testing, and so we have observations,

understanding and modelling linked in an iterative loop. This theme is central

to the chapters that follow.

1.3 MODELLING AND PATTERNS

There are many distributed parameter hydrological models available today and

they should provide us with the tools to undertake the detailed spatial analyses

that we are arguing should occur. The large modelling development exercises of

the 1980s such as SHE (Abbott et al., 1986) have turned Freeze and Harlan’s

blueprint of 1969 for a comprehensive spatial model into a reality (Freeze and
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Harlan, 1969). Algorithms that were developed by discipline specialists for the

various processes to convert precipitation to runoff, infiltration and evaporation,

now have a framework within which they can be linked. We have a variety of

methods for representing terrain (see Chapter 3), we can choose from an array of

sub-process representations for evapotranspiration, infiltration and surface

ponding, vertical and lateral flow through porous media, overland and channe-

lised flow and so on (e.g. Singh, 1995).

But how well do the process descriptions, built up in this reductionist

approach, represent the spatial reality? As mentioned earlier, there are few exam-

ples of explicit comparisons of spatial reality with spatial simulated response.

There have, of course, been innumerable applications of these models, using

other methods of testing, but just how well have we really exploited the spatial

capabilities of distributed hydrological models?

Every time we use a model of hydrological response, we are forced to accept

(and make) a series of assumptions about spatial heterogeneity. It is most com-

mon to assume that parameters are uniform within the elementary spatial unit of

the models we use. For the lumped and semi-lumped conceptual models (see

Chapter 3) that still prevail in engineering practice, these elementary units

might be large subcatchments, while in detailed distributed models, they might

be 100s of m2, nevertheless, the ‘‘uniform’’ assumption is generally made at some

point. Furthermore, when we use distributed models it is often necessary (due to

lack of data) to make the uniform assumption over large parts of the area being

modelled – in doing so we ‘‘impose’’ some spatial organisation which may restrict

the interpretations we can make about the simulation results. For example, it is

quite common for the only source of variability represented in a spatial model to

be terrain, and to assume that soil hydraulic properties, rainfall etc. are uniform

(perhaps because we have limited information to say otherwise). It would there-

fore not be surprising to conclude from the simulations that terrain is a dominant

source of variability – indeed it was the only one represented! While this sounds

obvious, it has often been done with (mis)applications of topographically based

models where a good hydrograph fit is provided as evidence of the importance of

topography despite the fact that all the other spatial variables were constant.

Additionally, we might represent soil characteristics as a random field or as a

function of soil type. Again, this is not a ‘‘value free’’ decision. If the soil proper-

ties are indeed randomly distributed or highly correlated with soil type, the

simulation results may be meaningful but if they are not, if in reality there is

some different organisation in the landscape, the simulation results will be highly

distorted (e.g. Chapter 6). Grayson et al. (1995) show how important spatial

organisation can be for runoff simulations. Two patterns of soil moisture deficit,

each with the same properties of mean, variance and correlation length (see

Chapter 2), but one spatially random and the other ‘‘organised’’ by a wetness

index, produce very different responses to given rainfall input (Figures 1.5 and

1.6). The organised pattern gives higher runoff peaks than the random case for

small precipitation events, while the reverse is true for larger rainfall events. This

highlights the importance of properly defining spatial organisation where it exists
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Figure 1.5. Two simulated patterns of soil moisture deficit, one spatially random and the other

‘organised’ by a wetness index. Red values correspond to dry areas (high deficits) and blue areas

correspond to wet areas (low deficits).

Figure 1.6. Runoff simulations using the Thales model and the saturation deficit scenarios in Figure

1.5, for a rainfall event of (a) 30 mm and (b) 5 mm over 1 hour.



and underlines the fact that, while the advent of distributed hydrological models

has opened up enormous potential for spatial analysis, it has brought with it a

requirement for careful interpretation and thoughtful representation of spatial

characteristics.

1.4 REPRESENTATION OF PATTERNS

Even if we are able to observe a pattern, how do we represent it numerically? In

some limited cases, we can directly use an observed data set to produce a single,

‘‘deterministic’’ pattern. Other deterministic patterns could be produced if we

assume, for example, that a wetness index is a true representation of distributed

soil moisture deficit. Alternatively, we may know very little about the underlying

pattern, or believe that it is random, and so wish to represent the variability in a

statistical manner. This is done by either the generation of a random field (where

just mean and variance are preserved) or perhaps one in which some higher level

of spatial correlation is also preserved (see Chapter 2). In these cases, we can

generate any number of patterns, each with the same statistical properties (see

Chapter 2). The deterministic and statistical approaches can also be combined to

account for the fact that while we might expect a certain level of ‘‘deterministic

pattern’’ based on process understanding, there will be a significant amount of

uncertainty (e.g. Chapter 10). The influence of these different representations of

patterns on the resulting hydrological simulations will depend on the extent to

which the deterministic and statistical measures capture features of hydrological

significance.

Not only must we choose the basic approach to pattern representation

(deterministic or statistical) but must also decide on the scale at which hetero-

geneity is to be represented. A central question in representing spatial hetero-

geneity is whether the processes that dominate the hydrological response of

interest change as we change scale. Would runoff from a 1 m2 plot be domi-

nated by the same sort of heterogeneity that dominates continental streamflow?

Our quest is not one for universal laws, but rather for approaches to identify

and represent the dominant processes at different scales. This is vital for the

representation of patterns in models where we must be regularly making deci-

sions about what variability to explicitly represent, what to ignore, and what to

incorporate in some other manner. For example, if our interest is in a general

representation of surface flow across a landscape we may use a readily available

DEM as a sufficient descriptor of surface flow paths. But if our interest is in,

for example, explicitly determining the erosive power of the surface flow, we

would need to represent far more detail of the surface micro-topography. This

could be done explicitly, using detailed DEMs to define the micro-flowpaths, or

we might be able to represent the effect of the micro-channels and surface

roughness of a real surface by some other, non-explicit, means, e.g. by defining

a distribution of flow depths (Abrahams et al., 1989) or conceptualising the

surface as a series of rills (Moore and Burch, 1986; Chapter 3). This is the
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notion of ‘‘sub-grid variability’’ wherein we represent the effects of variability

without explicitly representing the variability itself. These ideas are explored

further in Chapter 3.

In many applications, the spatial capability of distributed models is used to

change spatial parameters and assess the impact of the change on an output

variable such as streamflow. This is particularly common in studies of the impact

of land use change. In other applications, spatially distributed predictions are

required. The different levels to which the spatial capabilities of models are

exploited must also be considered when deciding how best to use information

on patterns. This is a question of ‘‘horses for courses’’ – of choosing the appro-

priate tool for the job. Land surface schemes (i.e. models of the water and energy

balances at the land surface) as used in atmospheric General Circulation Models

(GCMs) are perhaps an extreme example of this issue. These models seek to

describe the effects of spatial heterogeneity at very large scales. They have com-

plex vertical process representations including multi-layer soils, variable stomatal

resistance and aerodynamic functions (for evaporation estimation), but the para-

meters are spatially lumped at the order of 10000s of km2. For the purpose of

representing the general circulation of the atmosphere, these models do a reason-

able job, because general circulation is dominated by surface processes at these

large spatial scales, but in terms of describing surface hydrology for terrestrial

purposes, these models are poor. We are interested in outputs for which these

models were not designed (e.g. local runoff) and which are dominated by hetero-

geneity that they generally ignore (local terrain and soils). These are the wrong

tools for catchment hydrology. On the other hand, hydrologists working on land

surface schemes recognise that the heterogeneity we take for granted may need to

be somehow incorporated at these larger scales. But this cannot be done simply

by applying catchment hydrology’s distributed models and deterministic repre-

sentation of patterns because such fine scale detail would render the schemes too

unwieldy. Methods of pattern representation must be tailored to the model scale

and the types of outputs required, based on an understanding of the dominant

controls.

It is therefore clear that investigations which utilise the information available

in spatial patterns must have four key features:

1. A model that has the structure to represent spatial variability at a scale

appropriate for the dominant processes and required output.

2. Methods for the realistic representation of spatial variability; be they

deterministic or statistical; be they explicit or in the form of ‘‘sub-grid’’

representations.

3. Measurements that enable the parameters in the representations from (2)

to be defined.

4. Methods for the comparisons between observations and predictions of

spatial response.
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1.5 DATA AND PATTERNS

As the sophistication of the modelling has progressed, so too has our need for

appropriate data to assess the quality of simulations. In this regard we are less

well advanced. Remote sensing is a tool for rapid mapping of variables like

vegetation and to some extent precipitation, but it is not routinely used for

other key variables. Surprisingly, the forthcoming chapters in this book make

relatively modest use of remote sensing (RS) information. This is largely because

the type of information that these instruments provide is quite different from

what we are used to using as input or state variables in our models. We cannot

directly obtain a map of root zone porosity or hydraulic conductivity, yet it is

parameters of this type that the models need. As recently demonstrated by

Mattikalli et al. (1998), some of these instruments can provide information on

characteristics related to these variables, but not the variables themselves. This

presents a major challenge for hydrologists of the 21st century – to build models

that are able to exploit the information that is (and will be) coming from RS

platforms. We predict that these will not simply be extensions of the models

presently in use, but rather be tailor-made to utilise what is often more subjective

information. Chapter 12 is an example of model outputs compared with subjec-

tive data (in this case combined field observations rather than remote sensing)

and illustrates the power of this type of information. Chapters 6, 7 and 8 utilise

RS data in both a ‘‘traditional’’ manner (i.e., as directly replacing measurements

normally used) and in a more subjective sense.

But there is still a great deal that can be done using the (essentially point)

measurement techniques on which we have traditionally relied. We need to

choose data that give us the best insight into spatial behaviour – e.g. if shallow

groundwater tables are well linked across a catchment, point information from

piezometers can provide information to reduce the uncertainty in model response

(see Chapter 11). In other cases we need to apply interpolation methods that

produce realistic spatial patterns from point data, to provide both spatially var-

ied input information (such as soil hydraulic properties) and spatial patterns of

hydrological response for comparison with simulated patterns. The case studies

presented in later chapters are examples of combined field and modelling pro-

grammes that were specifically designed to use comparisons of observed and

simulated patterns for gaining insight into hydrological behaviour and to inform

spatial model development. The next two chapters in this introductory section

expand on these broad ideas of spatial data and modelling. They provide a more

detailed discussion of the concepts, and some examples of the tools needed to

better utilise spatial patterns of catchment hydrological response.
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2
Spatial Observations and Interpolation

Günter Blöschl and Rodger Grayson

2.1 INTRODUCTION

Spatial patterns of hydrological processes are a rich source of variability which in

some instances is quite obvious to the observer, as in the case of spatial patterns

of a seasonal snow cover; and in other instances is hidden from the eye and very

difficult to identify by even the most sophisticated measurement techniques, as is

the case with patterns of subsurface preferential flow paths. Part of the richness

comes from the diversity in the spatial arrangement of hydrologically relevant

variables. It is important to understand this arrangement to design measurement

strategies adequately, to interpret the data correctly, to build and/or apply a

model of catchment dynamics, and ultimately to use these data in predictions

of the hydrological behaviour of catchments. There is a wide spectrum of ‘‘mea-

surement techniques’’ (in a general sense) available for exploring these complex

patterns, ranging from traditional stream gauging to remote sensing. Ideally, a

measurement technique should be designed to take into account the type of

natural variability one would expect to encounter. Depending on the nature of

the hydrological variability, certain measurement techniques will be more suita-

ble than others.

Measurement techniques that are potentially capable of capturing hydrologi-

cal patterns differ in terms of their scale and their accuracy. The scale relates to

the area and the time that the measurements represent. Point measurements are

representative over a small area or volume, such as measurements using Time

Domain Reflectometry (TDR), raingauge or infiltrometer measurements. Other

measurements average over a larger area or volume, such as runoff data (which

averages over a catchment), or remote sensing images where each pixel is repre-

sentative of a certain area. Many point measurements make up a measured

pattern. In fact, most observations of patterns in this book are essentially multi-

ple point measurements. Similarly, in the time domain, measurements can be

representative over a very short interval in time (snap shots) such as a single
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set of soil moisture measurements by TDR (see Chapter 9) or they can give an

integrated measure over time such as vegetation patterns which represent the

integrated effects of soil moisture, nutrient availability, climate and other con-

trols over a number of years (see Chapter 12).

The accuracy of the measurements can vary greatly depending on the type of

measurement technique. Measurements can be a direct measure of a hydrological

variable (such as the stage of a stream, rainfall depth, or snow water equivalent

measured by weighing a snow core), and they can be indirect measures where

some feature that is closely related to the variable of interest is recorded. Strictly

speaking most measurement methods are indirect methods, where electrical resis-

tance (e.g. for temperature measurements), signal travel time (e.g. for TDR soil

moisture measurements), electromagnetic emission (for sensors used in remote

sensing) are used, which in turn are converted by a rating function to the variable

of interest (e.g. the stage–discharge curve for streamflow, dielectric constant–

volumetric moisture content curve for TDR). The conversions can introduce

additional measurement errors. The use of indirect measures can be taken further

by using ‘‘surrogate’’ or auxiliary variables (also termed ‘‘proxy data’’) that may

perhaps show only a limited degree of correlation to the variable of interest but

are available in much spatial detail. The classical example in hydrology is the use

of topography as a surrogate for rainfall variations.

Section 2.2 reviews a number of fundamental sampling issues related to scale

and accuracy of measuring the spatial patterns of hydrologic variables. The scale

at which data are collected is often not equivalent to the scale of the model used

to describe the process of interest, so some sort of interpolation is needed before

the observed patterns can be used either as model input, for estimating parameter

values, or for testing of the model. Interpolation issues will be dealt with in

Section 2.3 where the focus is on how the methods work, on their advantages

and disadvantages and what information is needed for them. More detailed

reviews of measurement techniques in hydrometry can be found in Herschy

(1999) and in Sorooshian et al. (1997). Practical methods for interpolations in

a GIS context are given in Meijerink et al. (1994) as well as in the extensive

literature on geostatistics (e.g. Journel and Huijbregts, 1978; Cressie, 1991;

Armstrong, 1998).

2.2 SAMPLING ISSUES

2.2.1 Scale and Patterns

Observed patterns are usually obtained by multiple measurements at discrete

locations (and discrete points in time). This implies that their spatial (and tem-

poral) dimensions can be characterised by three scales as depicted in Figure 2.1.

These scales are the spacing, the extent, and the support, and have been termed

the ‘‘scale triplet’’ by Blöschl and Sivapalan (1995). The spacing refers to the

distance (or time) between samples, the extent refers to the overall coverage of the
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data (in time or space), and the support refers to the averaging volume or area (or

time) of the samples. All three components of the scale triplet are needed to

uniquely specify the space and the time dimensions of the measurements of a

pattern. For example, for TDR soil moisture samples in a research catchment,

the scale triplet in space may have typical values of, say, 10m spacing (between

the samples), 200m extent (i.e. the length of the plot sampled), and 10 cm support

(the diameter of the region of influence of a single TDR measurement). Similarly,

for a remotely sensed image, the scale triplet in space may have typical values of,

say, 30m spacing (i.e. the pixel size), 10 km extent (i.e. the overall size of the

image), and 20m support (i.e. the ‘‘footprint’’ of the sensor). The footprint of the

sensor is the area over which it integrates the information to record one pixel

value. It is usually on the order of the pixel size but not necessarily identical to it.

There are more complex cases such as measurements of evapotranspiration where

the support is difficult to define and may vary in time (see Chapter 5). While the

terms: spacing, extent and support are commonly used in spatial analysis, the

analogous terms in time series analyses are: sampling interval, length of record

and smoothing or averaging interval (e.g. Blackman and Tukey, 1958).

Ideally, the measurements should be taken at a scale that is able to resolve all

the variability that influences the hydrological features in which we are interested.

In general, due to logistic constraints, this will rarely be the case so the measure-

ments will not reflect the full natural variability. For example, if the spacing of the

data is too large, the small-scale variability will not be captured. If the extent of

the data is too small, the large-scale variability will not be captured and will

translate into a trend in the data. If the support is too large, most of the varia-

bility will be smoothed out. These examples are depicted schematically in Figure

2.2 where the sine wave relates to the natural variability of some hydrological

variable and the wavelength is related to the scale of the true hydrological fea-

tures. The points in Figure 2.2 relate to the scale triplet of the measurements.

Similar concepts apply to the time domain. For example, if for an air temperature

sensor the time constant (the time the sensor averages over, i.e. the support) is too

large (say of the order of 1 second) it will not be possible to measure the short

term fluctuations of air temperature due to turbulent eddies with that sensor and

the measured response will be much smoother than the actual fluctuations. It is

clear that some sort of filtering is involved, i.e. the true patterns are filtered by the
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properties of the measurement which are then reflected in the data. The effect of

this filtering is to smooth out variability if the scale of the measurement does not

match the scale of the process. There is a substantial body of literature that deals

with methods for defining and predicting the way in which variability is captured

(or not captured) by the measurement characteristics (e.g. Wiener, 1949; Krige,

1951; Matheron, 1965, 1973; Blackman and Tukey, 1958; Federico and Neuman,

1997). An important practical outcome of that work is the development of meth-

ods to: (i) assess how many measurements are needed to capture (to a certain

accuracy and under particular assumptions) a natural pattern; and (ii) to quan-

tify the variability that is lost due to filtering. This second method, known as

regularisation (Journel and Huijbregts, 1978; Vanmarcke, 1983), provides a tool

for quantifying the variability expected for different measurement supports and

spacings, under particular assumptions about the underlying pattern being mea-

sured. Western and Blöschl (1999) show some examples of regularisation meth-

ods applied to spatial measurements of soil moisture and indicate that they work

well, provided that the statistics of the underlying patterns are well known.

While a quantitative treatment will often not be needed, a qualitative con-

sideration of the scale of the natural variability and that of the measurements is

important to assess at least the magnitude of information on variability that is
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not resolved by the sampling. In Figure 2.3 the spatial spacing and extent of a

range of measurement methods are plotted versus their temporal spacing and

extent. The shaded area refers to the domain between spacing and extent of the

measurements. Taking the example of daily raingauges from a typical hydro-

metric network, the domain covers ranges, in time, from 1 day to, say, 100 yr,

and in space, from 10 km (average spacing of the gauges) to 2000 km (size of the

region). Figure 2.3 also shows the typical scales of TDR measurements of soil

moisture in research catchments as well as a number of space-borne sensors

relevant to hydrology. When comparing Figure 2.3 with Figure 1.4, areas in

the space–time domain that overlap are those where we have measurement tech-

niques that are appropriate for describing the process of interest, whereas areas

that do not overlap are not described well. In other words, from a particular

measurement one can only ‘‘see’’ processes within a limited window (determined

by the scale triplet), and processes at larger and smaller scales will not be reflected

in the data. For example, daily raingauges cannot capture atmospheric dynamics

at the 10 km scale as the temporal spacing is too large, but on the other hand the
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Meteosat satellite sensor is commensurate with atmospheric processes from thun-

derstorms to fronts and one would expect it to capture these processes with little

bias due to scale incompatibility. The comparison also indicates that the TDR

measurements can potentially capture runoff generation processes in a research

catchment setting. Clearly, experimental research catchments and operational

hydrometric networks provide samples at vastly different scales and hence pro-

vide information on different processes.

The type of comparison illustrated by Figure 2.3 and Figure 1.4 allows an

assessment of how representative are multiple-point measurements of the under-

lying spatial pattern of hydrologic processes. In general, this depends on the scale

of the measurements and on whether the pattern varies smoothly in space which

implies large-scale variability (e.g. groundwater heads) or whether there is a lot of

erratic (small-scale) variability (e.g. soil hydraulic conductivity). In the case of

groundwater which varies smoothly, a few samples at a large spacing will be quite

representative of the pattern, while many more samples at shorter spacings will

be needed for erratically varying quantities such as soil hydraulic conductivity. If

a large number of samples in space are available (implying a relatively large

extent and a relatively small spacing) it is much more likely that we can capture

the spatial processes of interest. The key to a successful representation of spatial

patterns in catchment hydrology, therefore, is to maximise the number of sam-

pling points in space that cover an extent sufficient to capture the processes of

interest.

The issue of data being commensurate with the scale of the underlying

patterns can be generalised to the spatial arrangement of the patterns, i.e. the

issue of identifying the level of ‘‘organisation’’ of the underlying patterns. Here

we use the term ‘‘organisation’’ to describe the complexity of the pattern. If the

spatial pattern is purely random it is not organised, while if the pattern does

show features such as elongated bands of high soil moisture values in gullies, it

is organised (see Figure 1.2, and Journel and Deutsch, 1993). Most spatial

measurements are essentially point measurements and the number of measure-

ments available in most practical cases is often small. Because of this, the

spatial complexity of natural patterns cannot be identified very well. Often,

the apparent variability of the data is then interpreted as an evidence of spa-

tially random processes, but this tends to be a consequence of poor sampling

density rather than a reflection of the underlying hydrologic variability.

Williams (1988) commented that in the case of subsurface hydrology, the

apparent disorder is largely a consequence of studying rocks through point

measurements such as boreholes, while a visual examination of the rocks in

mines or through outcrops almost always shows clearly discernible organisa-

tion. This statement is also valid in catchment hydrology, implying again that,

in order to properly define patterns, a large number of such point measurements

will be needed if we are to avoid the trap of trying ‘‘to squeeze the nonexistent

information out of the few poor anaemic point measurements’’ (Klemeš, 1986a,

p. 187S).
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2.2.2 Accuracy and Patterns

In the measurement of hydrologic patterns there is often not only a scale

problem but also a problem with the accuracy of the measurements, i.e. there

often exists a considerable measurement error. If the measurement error is large,

the patterns apparent in the data will be a poor representation of the true under-

lying pattern. The presence of measurement errors confounds the identification of

patterns. See the soil moisture data described in Chapter 9 for an example.

During winter conditions, the measurement error is relatively small as compared

to the true underlying variability (3 ð%V=VÞ2 as compared to 20 ð%V=VÞ2Þ, and
the data give a good appreciation of the real soil moisture patterns. However,

during summer conditions, the measurement error is relatively large as compared

to the true underlying variability ð3 ð%V=VÞ2 as compared to 5 ð%V=VÞ2Þ, and
the data do not allow us to infer any underlying soil moisture pattern very well.

There are two types of measurement errors, systematic and random. A sys-

tematic measurement error may be introduced either by an improper measure-

ment setup (such as the catch deficit of raingauges caused by wind exposure), or

by improper rating functions (e.g. the TDR calibration curves). In many cases it

will be possible to correct for such systematic errors, provided additional (more

accurate) data are available for comparison. A random measurement error may

be introduced, for example, by air gaps around the probes of a TDR and by

inaccurate readings of an observer who reads off the stage of a stream gauge.

While it is not possible to remove random errors by applying a correction, these

errors can be significantly reduced by taking multiple measurements of the same

variable. For example, if there is a measurement error variance of 3 ð%V=VÞ2

attached to a single TDR measurement, ten such measurements at the same

location and time pooled together only have a measurement error of

0:3 ð%V=VÞ2, provided the errors of these ten measurements are statistically

independent. More generally speaking, the measurement error variance decreases

with the inverse of the number of samples that are aggregated (see any basic

statistics text, e.g. Kottegoda and Rosso, 1996). Geostatistical methods use this

property to ‘‘optimally’’ estimate true values from samples that are ‘‘contami-

nated’’ by measurement errors. However, this error reduction is contingent on

the measurement errors being truly random, i.e. uncorrelated and symmetrically

distributed. If they are correlated or possess some organised structure, the actual

error reduction may be much smaller than is implied by these methods. From a

practical point of view, the presence of random measurement errors can be

countered, to some degree, by increasing the number of independent samples;

i.e. many samples using a method with a particular random error can give a

similar accuracy to few samples which have less error in an individual

measurement.

This idea can be extended to the use of surrogates (or proxy data, or auxiliary

data). Surrogates are variables that show some (often limited) degree of correla-

tion to the pattern of interest but are much easier to collect in a spatially dis-

tributed fashion. Examples of surrogates include soil texture to infer hydraulic
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properties (e.g. Rawls et al., 1983) and are discussed in more detail later in the

chapter. The conceptual point of importance is that the lack of correlation

between the original variable and the surrogate can be interpreted as a sort of

measurement error. Ideally we would have surrogates that are both easy to

measure and are highly correlated (low error) to the original variable.

Unfortunately, it is often the case that the easier the method of data collection

(and hence the larger the number of points it is feasible to collect) the poorer is

the correlation (or equivalently the larger the measurement error).

There is therefore usually a trade-off between a few points of great accuracy

(and hence a poor resolution/coverage), and many points of poorer accuracy.

An important example in hydrology is the use of remote sensing data. For

example, weather radar (see Chapter 4) does not, strictly speaking, measure

rainfall, but radar reflectivity which is correlated with rainfall intensity but also

depends on other factors (such as drop size distribution), only some of which

are known. As a consequence, there is often a substantial error introduced

when converting reflectivity to rainfall. Other examples in remote sensing

include soil moisture as estimated from SAR sensors (see Chapter 8) where a

huge number of points (pixels) in space are available, but correlations between

the SAR backscatter and soil moisture tend to be poor. The same is true with

some ground data. For example, in an Alpine environment, it typically takes on

the order of 3 minutes to measure snow depth, but it may take 30 minutes or

more to collect a sample of snow water equivalent. Similarly, it is much faster

(and hence cheaper) to make a TDR measurement of soil moisture than a

gravimetric measurement. Hence we can collect many snow depth samples

(or TDR samples) and have a chance of seeing patterns, yet have to accept a

larger error in an individual measurement than is possible with a more accurate

technique that takes more time to use.

As mentioned above, averaging (or aggregation) can help improve the accu-

racy of surrogates, and this is part of the trade-off. In the example of inferring

patterns of rainfall intensity from radar reflectivity, often, multiple images (for

many points in time) are aggregated. The aggregated (average) image is then

more reliable than the individual images. Similarly, passive microwave data

have been aggregated over time to improve the accuracy of rainfall estimation

(Negri et al., 2000). SAR images are sometimes aggregated in space for more

reliably estimating soil moisture. Aggregated pixels that are on the order of

20 km� 20 km rather than the original 20m� 20m have been shown to be much

better related to soil moisture than the individual images (e.g. Wagner, 1998). In

the snow depth sampling example mentioned above, it is common practice to

measure depth at a minimum of 10 locations in close vicinity to a sample site

and to average these values to increase their accuracy. Clearly, this is at the cost of

reducing the number of sites given fixed time/resources.

An important question for sampling design, therefore, is whether there is an

optimum in the trade-off between accuracy and number of points. In general,

such an optimum will depend on the relationship between the accuracy of a

sample and its cost of collection, but it has been illustrated in Kupfersberger
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and Blöschl (1995) that the value of surrogates also depends on the level of

‘‘organisation’’ (or complexity) of the underlying pattern. For their case study

of aquifer variability, they found that 190 samples of auxiliary data (in this case

subsurface electrical resistance) with a correlation of r2 ¼ 0:36 (between hydrau-
lic conductivity and electrical resistance), outweighed the information from 11

error-free measurements of hydraulic conductivity when random spatial varia-

bility was present, but outweighed 25 error-free measurements when the under-

lying variability was not random, but exhibited preferential flow paths.

The influence of the underlying pattern complexity on optimum sampling

strategies is a ‘‘chicken and egg’’ dilemma. We need to know a lot about an

underlying pattern to design an optimal sampling scheme, but we need data to

know the underlying pattern. This implies an iterative approach where sam-

pling can be refined as more is known about the pattern being measured – this

can be assisted by an understanding of the processes or features leading to the

patterns. For example, if the aquifer in the example above was largely clay but

with some highly permeable sand lenses present, knowing the location of the

lenses (say via a geophysical method) would enable a much more efficient

sampling approach than if it was assumed that the lenses in the area were

randomly distributed.

The notion of surrogates can be taken even further to incorporate process

understanding to improve pattern estimation. The classical example in catch-

ment hydrology involves the use of terrain parameters computed from digital

elevation models (which generally represent a very high ‘‘sampling density’’

compared to many field measurements). There are a range of terrain parameters

that have direct causal links to the driving processes in catchment hydrology

and some parameters are deemed to be useful because of feedbacks between

different processes. Examples include the terrain aspect for representing snow-

melt and evapotranspiration processes (since aspect is related to solar radiation

exposure), and combinations of slope and upslope contributing area to repre-

sent soil saturation or erosion processes. A comprehensive review of terrain

parameters that can be used as surrogates (or indices) in catchment hydrology

is provided in Moore et al. (1991) and the use of indices is discussed further in

Section 2.3.3. The important point is that if an index is able to capture some

key features of a pattern, the amount of sampling needed is greatly reduced. If,

for example, we know that aspect is perfectly correlated to the pattern of

snowmelt, we may need only a few field measurements to calibrate the

relationship.

In summary, the number of sampling points that we need to adequately

represent a spatial hydrologic pattern depends on:

. the scale of the processes comparedwith the extentwe are interested in (small-

scale processes require a larger number of points, while for large-scale

(smoothly varying) processes a single point is representative of a large area),
. accuracy of the data/correlation of surrogates with the values of interest

(accurate data require a smaller number of points), and
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. complexity of patterns/process (rich pattern requires a larger number of

points unless we have some process understanding that can define certain

features of the pattern).

In the case studies of this book (Chapters 6–12) the number of sampling points in

space varies greatly with the type of measurement method used. A number of

case studies use remotely sensed data, both for testing hydrologic models and for

being tested by ground data. For remotely sensed images the number of sampling

points in space (i.e. the number of pixels) is very large but this is at the cost of a

single pixel not providing much hydrologically relevant information. In Walnut

Gulch (Chapter 6) airborne sensors (ESTAR and PBMR) are used for estimating

soil moisture and rainfall; in Kühtai (Chapter 7) aerial photographs of snow

cover patterns (snow/no snow) are used; and in Zwalmbeek and Coët-Dan

(Chapter 8) satellite data (SAR) are used for estimating saturated source areas.

The majority of case studies use multiple point values measured in the field. In

Walnut Gulch (Chapter 6) more than 90 recording raingauges are used; in

Reynolds Creek (Chapter 7) snow water equivalent was sampled at about 300

points in space; at Tarrawarra (Chapter 9) TDR soil moisture was measured at

about 500 points in space; in La Cuenca (Chapter 10) runoff occurrence (for a

single event, runoff occurred/did not occur) was measured by runoff detectors at

72 locations in the catchment; at Minifelt (Chapter 11), the shallow groundwater

table was observed for 108 piezometers; and at Trochu (Chapter 12) recharge/

discharge observations as derived from chemical/vegetation indicators are used

from 48 locations. Finally, two case studies in Chapter 8 use qualitative data

mapped in the field on a continuous basis. These are Coët-Dan where patterns of

saturated source areas from a field survey are used and Zwalmbeek where soil

drainage classes based on field mapping are used.

In practice, there are no hard and fast answers to the problems of sampling

design – of how many points and where, when and how to make measurements.

Any design will include compromise. The best we can do is to ensure that we

consider the implications of that compromise for the use to which we put the

data. At the end of this chapter (Section 2.4), we present a detailed description

and practical example of the steps that can be taken to try to optimise sampling

within given constraints, as a guide to the type of thinking that should go into

sampling design in catchment hydrology.

2.3 FROM POINTS TO PATTERNS

2.3.1 The Interpolation Challenge

We are often able to obtain multiple point measurements but what we would

like to have is some estimate of the variable of interest everywhere in the catch-

ment or region of interest. This really amounts to generating a pattern from point

values and involves interpolation and often extrapolation in space, and some-

times also in time. It is rare to measure an input or model parameter at the same
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scale as it is to be used in a model, so again some sort of interpolation (requiring

a variety of assumptions) must virtually always be undertaken. This section

summarises the concepts that underpin interpolation and common techniques

for the interpolation of spatial data, discussing some of the key issues to be

considered in choosing and using the methods.

Consider two scenarios. In the first scenario, snow depths are sampled at a

regular spacing of 1000 m and are subsequently interpolated on to a 10m grid. In

the second scenario, snow depths are sampled on a 10m grid. It is easy to

envisage that the spatial pattern of (interpolated) snow depths at the 10m spacing

of the first scenario will be much smoother than the patterns in the second

scenario. This example illustrates that interpolation involves a change of scale

(from 1000m spacing to 10m spacing in the above example) and that interpola-

tions tend to smooth measured patterns, i.e. interpolations can be thought of as a

kind of filter. There is some similarity between sampling which is a filter on the

process as discussed in 2.2.1 and interpolation which is a filter on the data. As

with the sampling case, it is possible to define a scale triplet for interpolations

consisting of spacing, extent and support. This triplet has been denoted the model

scale triplet by Blöschl and Sivapalan (1995) (as opposed to a measurement scale

triplet in the case of sampling).

In interpolating samples of snow depths (which involves a model in a general

sense) the scale triplet may have typical values of, say, 10m spacing (i.e. the

resolution to which the map is produced), 10 km extent (i.e. the overall size of

the map), and 10 cm support (i.e. the area over which each point in the map is

representative). Clearly, it is possible to draw many maps of snow depth of the

same area, ranging from ones showing point values (very small support) to ones

with various levels of averaging (i.e. increases in interpolation model support).

The larger the interpolation model support, the smoother the map will be. This

notion of a model scale triplet can also be used for dynamic models of catchment

response (see Chapter 3). For example, for a spatially distributed runoff model,

the scale triplet may have typical values of, say, 25m spacing (i.e. the model

element size), 1 km extent (i.e. the size of the catchment to be modelled), and

25m support (the element size). The support is the spatial dimension over which

the variables in each model element are representative. This is equal to the ele-

ment size in most distributed models but in some models the variables are defined

at points which means that the support is very small.

The concept that interpolation is a filter having a scale triplet associated

with it is critical to interpreting the results of interpolation and how they

represent the underlying data. Let us again consider Figure 2.2. In many appli-

cations in catchment hydrology, the situation resembles the case where the

spacing of the data is much coarser than the scale of the underlying hydro-

logical variability of interest and consequently the choice of interpolation

method becomes exceedingly important. Most of the interpolation methods

for obtaining patterns from observed point values are ‘‘dumb’’ or black box

approaches that do not take into account the type of pattern to be expected, i.e.

for different hydrologic variables (that obviously possess very different spatial
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patterns) one would often use the same interpolation method. However, if we

have some understanding of the underlying process we can introduce some

prior knowledge, for example by introducing auxiliary data (or equivalently

surrogates) and using them in a clever way. Auxiliary data are useful in spatial

interpolations if an underlying relationship to the variable of interest is present

and can be defined. There are a wide range of interpolation methods that are,

in principle, capable of doing this. In fact, the availability and accessibility of

mathematically complex interpolation techniques in GIS and specialist software

has made the application of interpolation methods relatively simple. The chal-

lenge for the user is to have a sufficient understanding of the concepts on which

the methods are based and to apply them in a way that best exploits the

information in the data. Below we will briefly summarise the concepts that

underlie the more widely used spatial interpolation techniques in hydrology.

It is important to realise that the quality of an interpolated pattern depends on

both the accuracy of the original point data and on how well the method of

interpolation/extrapolation reflects the underlying spatial structure of the mea-

surement – something that depends on our understanding of the phenomena

being measured.

2.3.2 A Brief Summary of Concepts that Underlie Spatial Interpolation
Methods

A hierarchy of interpolation techniques can be thought of in terms of the

extent to which information beyond that inherent in an individual data point

is used. The very simplest methods use only the nearest data points for the

interpolation. Methods that exploit information on the total data set in estimat-

ing values at any particular location are a further step up in complexity. Even

more complex are methods that utilise auxiliary data or some theory of system

behaviour to assist in the interpolation. These are all interpolation techniques

that attempt to estimate the most likely true pattern from the points. Sometimes

one is interested in a pattern that perhaps is not the most likely one, but possesses

a variability that is close to the real one. For this purpose stochastic simulation

methods can be used which produce numerous realisations of equally likely

patterns, i.e. a suite of patterns that are all deemed representative of important

features of the true pattern. Finally, one sometimes needs to generate spatial

patterns from an areal average value (rather than from multiple point values)

for which disaggregation methods can be used. We will review these methods

below.

(a) Interpolation Methods That Do Not Use Auxiliary Data

The simplest spatial interpolation methods are usually based on deterministic

concepts. These assume that one true but unknown spatial pattern exists which

we attempt to estimate by either some ad hoc assumptions or some optimality

criterion (e.g. Meijerink et al., 1994). The methods are illustrated schematically in

Figure 2.4 for the one-dimensional case where the dots are observed values and
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the lines are interpolations by various methods. Deterministic interpolation

methods include the following.

. The Thiessen (1911) method, or equivalently, nearest neighbour method

where each point to be interpolated is assigned the value of the data point

that is closest in space. This results in patterns that have polygon shaped

patches of uniform values with sharp boundaries between the patches

(Figure 2.4a). These are clearly very unrealistic for hydrological variables

but the method is simple and robust. The method assumes that the data are

error free (i.e. the value of the interpolated surface at the measurement

point matches the measurement itself).
. The inverse distance squared method where the interpolated value is

estimated by a weighted mean of the data and the weights are inversely

proportional to the squared distance between the interpolated value and

each data point. This results in a pattern that is smooth between the

data points but can have a discontinuity in slope at the data points. For

typical hydrologic data that are unevenly spaced, this method produces

artefacts as is exemplified in Figure 2.4b. It is clear that hydrological

variables are very unlikely to vary in the way this method assumes. Even

though this method is very easy to use, it cannot be recommended.
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Figure 2.4. Comparison of interpolation methods for a one-dimensional example: (a) Thiessen

method; (b) inverse distance squared; (c) example of overfitting using a sixth-order polynomial;

(d) thin plate splines with different tension parameters; (e) kriging (zero nugget, large range); (f)

kriging (solid line: large nugget, large range; dashed line: zero nugget, very short range).



. Moving polynomials where a trend surface is locally (i.e. for each inter-

polated value) fitted to the data within a small local (i.e. ‘moving’) window

about each point to be interpolated. The fitting is usually done by least

squares and the trend surface is represented as a polynomial (Tabios and

Salas, 1985). The higher the order of the polynomial, the closer the fit to the

data but the more irregular the trend surface and the more likely the

occurrence of ‘overfitting’ will be. Overfitting occurs when the particular

data points are very well represented but representation of the underlying

(true) pattern is poor, i.e. more credibility is given to the data than is

merited due to measurement error and the fact that the true surface may

not vary like a polynomial. An example of overfitting is given in Figure 2.4c

where a sixth-order polynomial has been fitted to the seven data points.

This polynomial is clearly an unrealistic representation of hydrologic varia-

bility. Overfitting can be avoided by selecting the order of the polynomial

to be much smaller than the number of local data points which will result in

an interpolated (trend) surface that is smoother and usually does not

exactly match the data points. This is consistent with an implicit assump-

tion that the data may be in error and need not be fitted exactly. As the

method only uses data within a local neighbourhood, it is computationally

efficient and can therefore be used for large data sets. There are numerous

variants of this method, some of them having discontinuities in the inter-

polated surface when the boundary of the window moves across a data

point that is very different from the rest of the data points within the

window. Some of the methods of this type are discussed in Meijerink et

al. (1994).
. Thin plate (or Laplacian) splines (Wahba and Wendelberger, 1980;

Hutchinson, 1991, 1993) where a continuously differentiable surface is

fitted to all the data, i.e. this is a global rather than a local method. The

name of ‘thin plate’ derives from the minimisation function used which has

a physical analogy in the average curvature or bending energy of a thin

elastic sheet. A low-order polynomial is usually used and a minimum cur-

vature criterion implies finding the smoothest possible function. This

method therefore does not suffer from the overfitting or oscillation pro-

blems of the moving polynomial method. There are two main variants of

this method. The simpler one assumes that the data are error free and hence

the interpolated surface goes through the data points. It has one ‘smooth-

ing’ or ‘tension’ parameter which can be used to control the smoothness of

the interpolated surface (Figure 2.4d). The other variant allows for a mea-

surement error by introducing an additional parameter representing the

error term (e.g. Hutchinson, 1991). This parameter can be used to control

the balance between smoothness of the surface versus how close the inter-

polated surface is to the data. There are automated methods available for

determining these parameters such as minimum generalised cross-valida-

tion (GCV, Hutchinson, 1991) which is based on withholding each data

point in turn from the fitting procedure and calculating the error between
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the surface and the data point. Thin plate splines work very well in most

hydrologic applications, unless the data are too widely spaced as compared

to the scale of the underlying phenomenon. They are robust and opera-

tionally straightforward to use. While early implementations were compu-

tationally burdensome, more recent implementations that subdivide the

domain into subregions can be used efficiently for very large data sets

(Hutchinson, 1991). Of the deterministic interpolation methods, this is

the one that can be generally recommended. The only drawback, as com-

pared to geostatistical methods (see below), is that it is not as straightfor-

ward to explicitly consider measurement error and estimation error with

spline interpolations (e.g. Cressie, 1991).

The notion of filtering or a change of scale triplet can be used to highlight some

capabilities and limitations of interpolation methods. Clearly, a change of extent

occurs when extrapolation beyond the domain of observation is attempted. Thin-

plate splines generally perform adequately, provided that the extrapolation is not

too great. A change of support occurs implicitly as the interpolated function is

always smoother than the original data, hence the support notionally increases to

about the size of the data spacing. Methods such as splines allow for adjusting

the smoothness and hence the support of the interpolated surface. A change of

spacing occurs in all the methods, from the spacing of the data to the spacing of

the numerical grid to which one interpolates. Often, in catchment hydrology, the

spacing of the data is much larger than the scale of the underlying process and

therefore the interpolated (small spacing) grid will not show all the small scale

detail.

Stochastic interpolation methods are an alternative to deterministic

approaches. The most widely used stochastic approaches are termed geostatisti-

cal techniques and are based on the notion that the interpolated pattern is a

random variable, which can be described by the variogram. The variogram is

the variance between pairs of points spaced at a certain distance (or lag), or

equivalently a measure of spatial correlation. Pairs of points that are close to

each other tend to be similar, hence the value of the variogram (termed gamma)

at small lags tends to be small. As the lag increases so does gamma as the values

become increasingly dissimilar at larger lags. Figure 2.5a shows a typical vario-

gram of a stationary pattern (i.e. a pattern for which the mean does not change

with space). There are three parameters that need to be specified for a variogram,

two of which are the sill (which is the spatial variance of the overall pattern) and

the range (which is the spatial correlation length and a measure of how contin-

uous or smoothly varying the patterns are – large ranges relating to smoothly

varying patterns, short ranges relating to erratically varying patterns). If the

pattern is not stationary in the mean (i.e. exhibits a spatial trend) it neither

possesses a sill nor a range (Figure 2.5b) but it may still be used for geostatistical

analyses. The third parameter is the nugget (Figure 2.5a), which represents the

variance of pairs of points that are at essentially the same location. Each of these

parameters, the sill, range and nugget can be interpreted in terms of the physical
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processes that lead to the pattern. The sill is a measure of the overall variability of

the process. The range is a measure of the spatial scale of the process. The nugget

can be interpreted as the sum of two variances related to two distinct phenomena

(see e.g. de Marsily, 1986, p. 304). First, a non-zero nugget can be due to random

measurement errors rather than a feature of the physical process. In this case,

even if the samples are very closely spaced, there will be some variance between

the measured data. This part of the nugget is equal to the measurement error

variance. Second, a non-zero nugget can be due to the data not having been

collected at sufficiently small spacings to reveal the continuous behaviour of

the phenomenon, i.e. the measurement spacing is too coarse to represent the

underlying process of interest. This part of the nugget is equal to variability at

scales smaller than the sample spacing and is also termed sub-grid variability or

‘‘apparent nugget’’ (de Marsily, 1986). An apparent nugget will disappear if the

data are collected at sufficiently small spacings.

Geostatistical approaches consist of two phases. In the first phase (termed

structural analysis) a variogram is estimated from the observed data. This is done

by plotting the variances of differences of the values of data pairs versus their lag

(i.e. plotting the sample variogram) and fitting a smooth function, known as the
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gram as it is often derived from hydrologic data with zero range.



theoretical variogram, which is assumed to be the variogram of the population.

There are a number of functions that can be used for the theoretical variogram,

but it is common to use an exponential function or a power law function. The

parameters of the chosen function define the sill, range and nugget used for the

interpolation. In the second phase, a spatial pattern is estimated from both the

data and the characteristics of the variogram, based on Best Linear Unbiased

Estimation (BLUE). Linearity implies that the estimated value at any point is a

linear combination of all of the measurements, with a different weight for each

measurement (these weights are calculated as part of the method). The estimates

are required to be unbiased (i.e. the mean of the data and the mean of the

interpolated pattern must be identical) and the estimates are required to be

‘‘best’’ or optimal in the sense that the variance of the estimation error is mini-

mised. Combination of these three criteria (linear combinations of data points,

unbiased and optimal estimates) results in a system of equations which is solved

for the unknown weights. There are a wide range of geostatistical estimation

methods which differ in the assumptions about the way the random function

varies spatially and in the way they are constrained by other information, result-

ing in different levels of complexity of the interpolation method. One of the

simpler and widely used methods is Ordinary Kriging (Journel and Huijbregts,

1978).

The main difference between kriging and splines is that spline interpolation,

being a deterministic approach, assumes that the surface is one unknown func-

tion, while kriging assumes that the surface is a random variable and attempts to

estimate the expected (most likely) value at any point. In practice, kriging and

splines can give very similar results as exemplified in Figure 2.4d,e. The advan-

tage of kriging is that measurement errors can be more directly introduced

through the nugget (Figure 2.4f, solid line). However, kriging is less robust

than splines as it heavily depends on the proper selection of the theoretical

variogram which is sometimes not well defined. If, for example, too small a

value for the range is specified, the interpolated pattern may look like Figure

2.4f (dashed line) where the interpolated surface approaches the mean at a certain

distance from the data points.

Geostatistical methods are probably the most widely used interpolation meth-

ods in catchment hydrology, but in practice there are three main pitfalls that

should be recognised:

1. Often the nugget of the estimated variogram is of similar size to the sill, i.e.

closely spaced pairs of points are no better correlated than points that are

far apart (Figure 2.5c). This undermines the central assumption of geo-

statistics that the spatial correlation (i.e. the variogram) is useful for spatial

interpolations. If one does use this type of variogram for interpolation, the

interpolated value will be equal to the mean of all data points everywhere

(except near the data points if the nugget is zero), i.e. it is similar to the

dashed line in Figure 2.4f. As a remedy, one can either use auxiliary data to

improve the interpolation (see later) or one can resort to hand-drawn
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contours from the data, thereby implicitly introducing expert knowledge

on the expected appearance of the underlying pattern. An example where

this is often necessary is the spatial interpolation of extreme storm rain-

gauge readings where hand-drawn contours are used because more ‘‘objec-

tive’’ methods will usually give very unrealistic patterns. This is because the

spatial scale of the phenomenon (extreme rainfall) is usually much smaller

than the spacing of the raingauge data.

2. The theoretical variogram estimated from the data not only depends on

the underlying process, but also on the scale of the sampling, and on how

well the range, sill and nugget can be defined. Provided that the sample

spacing is sufficiently small to capture the variability of the phenomena

of interest, the range parameter provides a measure of the scale of the

underlying process. But if the sample spacing is too large to define the

variability of the phenomena, the range of the variogram tells us nothing

about the scale of the underlying process. When comparing case studies

at vastly different scales, it is common to find a significant increase of the

estimated range with the spacing of the data (e.g. Gelhar, 1993, Figure

6.5). This may well be just an artefact of the sampling scale, resulting

from a sample spacing that was too big to properly define the small-scale

variability of the process and a sample extent that was too small to

properly define the large-scale variability of the process (Blöschl, 1999).

The key point is that a variogram can be derived for any data, but the

range only has significance for interpretation of physical processes if the

data are spaced closely enough and cover a large enough area to capture

the process scale variability. This means that a variogram can not be

simply transposed across scales and should be estimated from data at the

same scale as the study of interest.

3. The third problem is when the spacing of the data is uneven in x and y and/

or if the underlying patterns show linear features. This is best explained

through example. Consider a series of transects of soil moisture down a

hillslope and across a wet gully (Figure 2.6). Along the transect, there is a

rapid increase in soil moisture as we move from the hillside into the gully.

We have closely spaced the sampling points to reflect this rate of change

and any interpolation algorithms would work adequately along the trans-

ect. In the across-transect direction (i.e. along the axis of the gully) the

rates of change might be slower, hence our choice of using transects. But

the distance between adjacent transects is too great for the interpolation

algorithm to ‘‘fill the gaps’’ between transects. We might be able to look at

the data and intuitively draw contours (implicitly using our understanding

of the phenomena) but the automated interpolation algorithm cannot do

so, and the resulting patterns will be very poor (Figure 2.6, bottom). For

the simple example in Figure 2.6 this problem can be overcome by

accounting for anisotropy (i.e. where variograms computed in different

directions differ in their range), but this is not possible for real world

problems in catchment hydrology, which are always more complex, invol-
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ving a number of valleys with different directions. The most efficient alter-

native to hand drawing contours is to use auxiliary data to improve the

interpolation.

(b) Interpolation Methods That Use Auxiliary Data

There are two ways in which spatial interpolation methods can use auxiliary

data: dual-step and single-step methods. Dual-step methods treat the relationship

to the auxiliary variable and the actual spatial interpolation separately. One

widely used method, representative of this genre, is the external regression

approach for spatially interpolating, say, mean annual rainfall in mountainous

terrain. In the first step, a regression between terrain elevation and mean annual

rainfall is calculated for those locations where both rainfall and terrain elevation

are available, and the regression line is used to estimate rainfall everywhere. The

regression can be either made over the entire domain or over a moving neigh-

bourhood (a window). At the locations where data are available, the rainfall so

estimated will be different from the measured rainfall as the regression line does

not exactly fit the data. These differences (i.e. the residuals) can, in a second step,

be spatially interpolated with any of the methods discussed above. The final

interpolated surface is then made up of the sum of the regressed values for any

point and the interpolated residuals. The advantage of this approach over simply

interpolating the data without auxiliary information, is that it extracts the small-
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Figure 2.6. Schematic example illustrating effect of uneven spacing on interpolation. Top:

Hypothetical spatial pattern of soil moisture in a valley (the valley is along the left–right direction

in the figure) with larger soil moisture (dark) in the gully and lower soil moisture (light) on the

hillslope. Centre: three transects of soil moisture samples across the valley where dot size represents

the magnitude of the soil moisture values. Bottom: Interpolated pattern of soil moisture based on

the samples in the centre of the figure.



scale patterns from the auxiliary data in addition to using the large-scale,

smoothly varying component from the original data, while a simple interpolation

will neglect the small-scale variability. This type of approach is fairly robust and

can give excellent results (see also the example in Chapter 9 where the method

was used for smoothing out sample noise).

Single-step methods are more elegant and tend to give slightly better results as

they are based on joint optimality criteria for the original data and the auxiliary

data (Deutsch and Journel, 1997). Conceptually, single-step methods can be

based on an extension of two-dimensional interpolation methods that do not

use auxiliary data to a third dimension. Often the third dimension is elevation.

In both spline interpolation (e.g. Hutchinson, 1993) and kriging (e.g. Jensen,

1989), this can be done by introducing a generalised lag (or distance) between

two points, that is the square root of the sum of the weighted squared distances in

x, y and z. The weights (or factors) account for anisotropy (i.e. the interpolated

surface usually varies more quickly with elevation than horizontally) but other-

wise the method is the same as for splines and kriging, described earlier. An

alternative is to use some sort of submodel, i.e. a relationship between the aux-

iliary data and the original data that is built into the interpolation scheme. Again

this can be done for splines (which are then termed partial splines, Hutchinson,

1991) and for various variants of kriging. The variants of kriging include external

drift kriging (Ahmed and de Marsily, 1987) where the existence of a linear

relationship between the additional information and the original data is postu-

lated and the auxiliary variable is assumed to be error free. The interpolated

patterns hence look very similar to the pattern of the auxiliary variable, i.e. a

lot of spatial structure is imposed. The linear relationship is implicitly calculated

by the method from the data and only the variogram of the original data needs to

be specified by the user. The variants of kriging also include co-kriging where the

covariance (or the cross-variogram) between the auxiliary variable and the ori-

ginal variable is exploited. Both the auxiliary and the original variables may be

subject to measurement error. This method imposes less structure than external

drift kriging and hence the interpolated patterns tend to be smoother. However,

in co-kriging, the appropriate choice of the variograms (of the auxiliary data and

the original data) and the cross-variogram is not straightforward and needs to

meet certain criteria for the method to work (e.g. Journel and Huijbregts, 1978;

Deutsch and Journel, 1997). Both external drift kriging and co-kriging require

the additional information to be numerical, such as a wetness index, rather than

categorical such as land use or soil type. Methods such as Bayes Markov Kriging

(Zhu and Journel, 1993), or the simpler Bayes Markov Updating (e.g. Bárdossy

and Lehmann, 1998) can be used to incorporate this type of categorical informa-

tion and so enable a wide range of auxiliary information to be utilised.

Bárdossy and Lehmann (1998) also illustrate what the implications are for soil

moisture patterns of a particular choice of an interpolation method. They show

that, with sparse data, the interpolated patterns vary enormously depending on

which method is used, highlighting the fact that the modeller must use a large

amount of judgement in determining which interpolated pattern is the ‘‘best’’. It
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is clear that no matter which method of spatial interpolation using auxiliary data

is used, the key question to be addressed is whether, for the particular application

under consideration, the patterns imposed by the auxiliary information are

indeed those likely to be present in the phenomena being represented – i.e.

how valid are the assumptions underlying the relationship between the auxiliary

data and the parameters of interest, and, even if the relationships are sound, how

will the errors associated with them affect the modelling exercise.

(c) Stochastic Simulations

Geostatistical interpolation methods such as kriging are ‘‘best’’ estimators (i.e.

they give the most likely value of the variable between observations) and hence

they smooth out the small-scale variability between the observations. There is a

class of methods that preserve the small-scale variability. These are generally

referred to as conditional (stochastic) simulation and do not give the most likely

pattern, but rather a suite of equally likely patterns that all exhibit realistic spatial

variability (i.e. multiple realisations). Each realisation is one possible scenario,

which represents both the individual observations and the variogram structure of

the set of observations. The term ‘conditional’ refers to the patterns being ’con-

ditioned’ to the observations, i.e. they reproduce the observations exactly.

Examples of conditional simulations are Sequential Gaussian Simulation (SGS)

and Sequential Indicator Simulation (SIS) (Deutsch and Journel, 1997). SGS

assumes that all values (both low and high values) are well represented by a

single variogram. It is termed ‘sequential’ because the stochastic simulation pro-

cedure first assigns the observed values to the nearest interpolation grid nodes,

and then determines the value at a randomly chosen grid node on the basis of the

variogram and the grid values that have previously been assigned. SIS is similar,

but different variograms are used for low and high values, based on the indicator

approach (see e.g. Loague and Kyriakidis, 1997; Western et al., 1998b). There are

also unconditional simulations which satisfy the variogram structure but do not

match the observations. One example of an unconditional simulation technique is

the Turning Bands Method (Mantoglou and Wilson, 1981). It is based on one-

dimensional stochastic simulations along lines (or bands) in different directions

which are then projected onto the two-dimensional grid. There exists a wide

spectrum of both conditional and unconditional stochastic simulation techniques

based on various assumptions on the type of variability to be represented. A

detailed review with applications to hydrology is given in Koltermann and

Gorelick (1996).

(d) Disaggregation and Aggregation

While the approaches discussed above are methods for estimating patterns

from points, disaggregation methods estimate patterns from spatial average

values. For example, if we know an estimate of catchment average soil moisture

from water balance calculations, one may be interested in estimating the spatial

pattern of soil moisture from this average. This is done by using disaggregation

methods. While interpolation involves a change of scale in terms of the spacing,
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disaggregation involves a change of scale in terms of support, i.e. the support is

decreased. The opposite transformation of disaggregation is aggregation (i.e. a

number of point values in space are combined to form one average value) which

corresponds to an increase in support scale. Aggregation reduces the spatial

variance and this reduction can be estimated from the variogram by regularisa-

tion methods referred to earlier (e.g. Journel and Huijbregts, 1978; Vanmarcke,

1983). Conversely, disaggregation increases the spatial variance. The spatial pat-

tern of say rainfall in a region will always have a larger variance than the catch-

ment average rainfalls in the same region (Sivapalan and Blöschl, 1998). In order

to disaggregate average values into spatially variable values, additional informa-

tion is needed for which assumptions must be made. Process understanding and

auxiliary data can also be used in disaggregation approaches. Disaggregation

methods based on auxiliary data are very similar to interpolation methods and

can involve, for example, relationships between soil moisture and the topo-

graphic wetness index, or between snow depth and terrain elevation. In these

examples, a catchment average soil moisture (or snow depth) would be spatially

disaggregated based on the spatial pattern of wetness index (or terrain elevation).

Stochastic disaggregation methods are very similar to stochastic simulation meth-

ods but are conditioned on spatially averaged rather than on point values as

discussed above, i.e. the patterns generated reproduce both the variogram and

the spatial averages exactly. An example for the rainfall case is given in Chapter

4. For many cases, one can assume that the aggregated value is simply the

arithmetic average of the individual values, in which case the variable is said

to average linearly. In catchment hydrology there are many processes that do

average linearly; in particular, those for which a conservation law (of mass or

energy) holds. Examples include rainfall or snow water equivalent. However,

other variables and, in particular, model parameters, do not average linearly

(i.e. the aggregated average value is a more complicated function of the indivi-

dual values). For example, if we aggregate snow albedo in a physically realistic

manner, the aggregated value will not simply be the arithmetic average of the

individual point values. In a similar vein, model parameters such as hydraulic

conductivity do not average linearly, and neither do landscape surface para-

meters, used for estimating evapotranspiration (e.g. see Chapter 5). These para-

meters can therefore not be simply (linearly) disaggregated, but need more

complicated procedures (see e.g. Wen and Gómez-Hernández, 1996; Michaud

and Shuttleworth, 1997; Becker et al., 1999).

This question of linearity/nonlinearity in aggregation and disaggregation is

central to the use in modelling of ‘‘effective’’ parameter values. An effective

parameter refers to a single parameter value assigned to all points within a

domain, such that the model based on the uniform parameter field will yield

the same output as the model based on the heterogeneous parameter field

(Blöschl and Sivapalan, 1995). This is an important issue in modelling spatial

patterns in catchment hydrology and is revisited in Chapter 3.

In the following, we will discuss specific problems with the spatial interpola-

tion of a number of variables that are important in catchment hydrology, and
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discuss types of terrain information and other auxiliary data that can be used to

improve the spatial interpolation of these variables.

2.3.3 DEMs, Terrain Indices, and Other Surrogates

The most commonly used data in measuring, analysing and modelling spatial

processes in catchment hydrology are probably Digital Elevation Models

(DEMs). Digital Elevation Models are spatial fields of terrain elevation values

that are usually arranged in a regular square grid or in other arrangements such

as a Triangulated Irregular Network (TIN) (see Chapter 3). DEMs are the basis

of catchment representations in most distributed dynamic models of catchment

processes and they can be used for calculating terrain indices that may assist in

the spatial interpolation of hydrological variables. It is important to realise that

DEMs are always obtained by interpolation, and interpolation artefacts may

affect the dynamic models and terrain indices in which they are used. There

are a number of ways in which DEMs can be derived, including digitising con-

tour lines from topographic maps, ground surveys using theodolites or levels, and

stereo interpretation of pairs of aerial photographs, all of which will contain

measurement errors in position and elevation. Common to all of these methods

is that the elevation readings are point values (i.e. the spatial support is small)

usually at irregular locations. In order to make them useful for applications they

are almost always interpolated to a regular grid or to other DEM structures. This

interpolation involves filtering which effectively increases the support of the spot

height, i.e. each (interpolated) value in a DEM is then no longer representative of

a single point, but of an area around it which may be on the order of the grid size

(due to the interpolation). This may look like a theoretical issue of little practical

relevance, but on closer inspection the support has very practical implications

when it comes to any sort of further interpolation or modelling of dynamic

catchment response. Here it becomes important to know just what the DEM

represents. For example, does the pixel value represent the average, the lowest

point within the pixel or some other measure of the variability within the pixel?

(see e.g. Rieger, 1998). This affects how well features such as lines of steepest

descent (i.e. flow paths) are described, which are important when calculating the

upslope contributing area for a grid element as flow accumulation algorithms are

very sensitive to the way in which the terrain surface is conceptualised (Costa-

Cabral and Burges, 1994). This is a particular problem when the resolution of the

DEM is coarse relative to the scale of variability of the real terrain such as in

heavily incised landscapes. So in addition to the positional and elevation errors of

the DEM (which could be random or systematic), there will be artefacts intro-

duced by the manner in which the DEM was interpolated from the raw data.

There is a range of software for deriving DEMs that takes into account most of

these problems. These packages can be based on spline interpolation (e.g.

ANUDEM, Hutchinson, 1989) or kriging interpolation (e.g. SCOP, Molnar,

1992). The quality of DEMs, for hydrological applications, can be improved
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by making use of the stream network (e.g. Hutchinson, 1989) and there are a

range of algorithms to remove pits (artificial depressions) in DEMs.

Once a Digital ElevationModel has been established for a catchment, it can be

used for deriving terrain indices. Terrain indices are variables that usually com-

bine a number of terrain attributes (such as local slope) in a way that represents

the most important spatial features of a hydrological process (Moore et al., 1991).

Terrain indices have been suggested for numerous processes and there is some

debate in the literature on how accurate terrain indices can be (e.g. Western et al.,

1999a). While it is always useful to invoke process interpretations for giving

guidance on selecting a particular index, the main reason for the popularity of

terrain indices stems from the general availability of Digital ElevationModels and

the ease with which terrain indices can be derived. In some instances the relevance

of a particular surrogate is not obvious and may depend on the timescale con-

sidered and/or may change with time. For example, elevation is often used as the

main surrogate for spatially interpolating rainfall, the rationale being that oro-

graphic barriers tend to enhance rainfall. From a physical perspective one might

expect terrain slope to be the more significant parameter, but it is true that eleva-

tion is often very well correlated with mean annual rainfall. However, this correla-

tion drastically decreases to next to zero as one moves down in timescale to daily

rainfall or hourly rainfall, as in most climates the increase in mean annual rainfall

with elevation is mainly due to more frequent rainfall events rather than higher

rainfall intensities (e.g. Obled, 1990). This implies that for estimating spatial

patterns of hourly rainfall, elevation will be a very poor surrogate.

Another example of the use of terrain indices is runoff generation, for which a

widely used surrogate is the lnða= tan�) wetness index of Beven and Kirkby

(1979) where a is the specific upslope contributing area (i.e. the area above a

segment of a terrain contour divided by its length) and � is the local slope of the
terrain. Both quantities can be derived from a DEM (e.g. Costa-Cabral and

Burges, 1994; Rieger, 1998). The assumptions underlying this index are, among

others, that the dominating runoff-generating mechanism is saturation excess,

and the surface slope is an accurate measure of the gradient-driving subsurface

lateral flow. However, in many climates the dominating mechanism (Dunne,

1978) not only depends on soil type and depth but also on rainfall intensity

and duration which will clearly vary seasonally and from event to event, as

well as spatially. The lnða= tan�) wetness index will therefore only be a useful
surrogate for those situations where the underlying assumption of saturation

excess is valid. If other runoff generation mechanisms (such as infiltration excess

overland flow) prevail, other surrogates should be used to estimate spatial pat-

terns of runoff generation.

There are a large number of other surrogate or qualitative measures used in

catchment hydrology that do not use terrain. These include patterns of the vege-

tation type for inferring moisture availability patterns or recharge patterns (see

Chapter 12) and geophysical information (e.g. ground-penetrating radar) for

inferring patterns of subsurface flow (e.g. Copty et al., 1993). Another applica-

tion for the use of auxiliary data is patterns of soil hydraulic properties which are
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needed for any spatial hydrological modelling. A commonly used approach to

deriving patterns is based on relationships between soil type (often defined by %

sand, silt, clay, organic matter, and perhaps bulk density) and soil hydraulic

properties (e.g. saturated conductivity, porosity, soil water release characteris-

tics). These are called ‘‘pedo-transfer functions’’ (e.g. Rawls et al., 1983; Puckett

et al., 1985; Romano and Santini, 1997). A map of soil type provides the spatial

patterns for estimates of soil hydraulic properties, resulting in ‘‘patchy’’ maps like

those from Thiessen polygons. The rationale behind the use of pedo-transfer

functions is that the grain size distribution (defined by the soil type) should

also be relevant to the pore size distribution (which in turn is related to soil

hydraulic properties). Unfortunately, this is not often the case because peds

and cracks, rather than the grain size distribution, tend to dominate the hydraulic

properties. It is therefore not uncommon for soil properties to vary as much

between soil types as within a soil type (e.g. Chapter 10; Warrick et al., 1990)

and for other influences such as terrain to be important to soil hydraulic proper-

ties (Gessler et al., 1995). Ignoring these considerations has a direct impact on the

subsequent modelling. For example, simulations of soil moisture may have sharp

boundaries at the interface between different soil types with different porosities

(Chapters 6, 9, 10) and infiltration excess runoff will never occur if a single value

of hydraulic conductivity is used that is greater than the input rainfall rates (see

Chapter 10 where more realistic methods that incorporate differences both within

and between soil types are discussed).

To illustrate some of the issues of interpolation related to sampling and the

use of terrain indices as auxiliary data, we will use some very high-resolution soil

moisture data. This data was collected during a field experiment during October

25–26, 1996 on a 102� 68m plot in the Tarrawarra catchment (see Chapter 9).

The sampling grid was 2� 2m which gave a total of 1734 measurement points.

TDR probes were inserted vertically to 30 cm depth at each location. The mea-

surement error was estimated as 3%ðV=VÞ2. The soil moisture data are shown in
Figure 2.7a. The plot includes a terrain convergence (centre left) where the soil

was wettest but additional controls such as evaporation and soil properties have

produced a soil moisture pattern with complex features.

The first example illustrates the effect of noise due both to measurement error

and to small-scale variability and how it can be reduced by interpolation

schemes. Figure 2.7b shows a pattern where the data have been filtered using

kriging with a variogram nugget of 3%ðV=VÞ2 to represent the measurement

error. This is simply an application of ordinary kriging where values are

estimated at the same locations as the samples rather than in between as with

kriging used for interpolation. This filtering can be thought of as an aggregation

of neighbouring samples (see Section 2.2.2) to remove the measurement error. We

would have obtained a similar pattern had we sampled multiple times at each grid

location (to reduce measurement error), but this was not possible for logistical

reasons. A comparison of patterns of original data and with the error removed

also indicates that in this case the noise problem was not significant. To show

the effect of a larger measurement error, a random error (variance equal to
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40%ðV=VÞ2 was added to the original data (Figure 2.7c). This reduced the ‘‘signal
to noise ratio’’. It is clear that the ability to resolve the pattern visually signifi-

cantly decreases. This pattern was also filtered using kriging and a nugget of

43%ðV=VÞ2 (i.e. the estimated measurement error plus noise) which gave the
pattern in Figure 2.7d. It is noteworthy that even for the large noise case, filtering

can very efficiently remove the noise, as the pattern of the filtered image is remark-

ably similar to the pattern of the original data with themeasurement error removed

(Figure 2.7b). However, this is only possible because a truly random error (‘‘white

noise’’) has been added. If the error shows consistent spatial patterns, high-noise

cases will be greatly in error and filtering will not improve the pattern.

Figure 2.8 shows the effects of different types of interpolation. For the sce-

narios, nine sampling points at a 30� 40m spacing were assumed to be known

from the pattern and the other values were assumed to be unknown. 30� 40m

might be a more typical spacing for soil moisture measurements in small research

catchments. The patterns shown in Figure 2.8 are based on the nine samples from

the original data (Figure 2.7a) and nine samples from the data with added noise

(Figure 2.7c).

Consider first the samples from the original data. In Figure 2.8a, we have

assumed that we know nothing extra about the data and applied the Thiessen

(nearest-neighbour) method to produce 2� 2m interpolated patterns from the

30� 40m data. The interpolated pattern consists of rectangles because of the

regular location of the samples. Although the main feature (higher soil moisture

in the centre of the plot) is retained, one would clearly not consider this pattern to

be a good representation of the true pattern (Figure 2.7a,b). A more judicious

choice of interpolation method is ordinary kriging (Figure 2.8b) which produces

much smoother and more ‘‘likely’’ patterns. However, the main features of the

spatial arrangement remain unchanged, and the interpolated pattern is still sig-

nificantly different from the true pattern. In Figure 2.8c, we have used auxiliary

data consisting of a radiation weighted wetness index (Western et al., 1999a)

shown in Figure 2.7e. External Drift kriging was used to interpolate the 30� 40

m soil moisture samples, using the 2� 2m radiation weighted wetness index, onto

a 2� 2m grid (Figure 2.8c). This pattern is quite similar to the real pattern with

the wet band in the gully being obvious. Next we repeated the External Drift

kriging but this time using a topographic aspect index (Figure 2.7f) (Western et

al., 1999a) as the auxiliary data. The interpolated pattern (Figure 2.8d) does not

improve over the case without auxiliary data (Figure 2.8b). Clearly, selection of

the ‘‘right’’ auxiliary variable is important for improving the interpolated pattern,

and when an auxiliary variable that does not represent the main features is used (in

this case aspect index) the interpolated pattern will remain poor or can even

deteriorate as compared with not using auxiliary data. The linear features in

Figure 2.8d are an artefact of the method which uses a finite local neighbourhood

(search radius) for obtaining a relationship between soil moisture and the auxili-

ary data. When this search radius is increased to a large value, greater than the

plot size (Figure 2.8e), the artefacts vanish, but the interpolated pattern is no more

accurate than the pattern without auxiliary data (Figure 2.8b).
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For the non-contaminated data we can resolve the broad patterns of soil

moisture using interpolation of the widely spaced data if we choose an appro-

priate auxiliary variable (in this case a radiation weighted wetness index), but

this ability is reduced with the contaminated data. We repeated the preceding

scenarios using the ‘‘noisy’’ data of Figure 2.7c. The Thiessen method produced

a poor representation (Figure 2.8f). Using ordinary kriging (2.8g) was also

poor. Using the radiation-wetness index as an auxiliary variable in External

Drift kriging only slightly improves the interpolated pattern (Figure 2.8h). Use

of topographic aspect index as the auxiliary variable has no positive effect

(Figure 2.8i,j) and the artefacts are worse than in the non-contaminated case.

Hence, if the data are poor (low signal to noise ratio) using auxiliary data

cannot significantly improve the interpolation. This is because the External

Drift kriging procedure derives the relationship between auxiliary data and

the variable of interest from the two data sets (i.e., the data sample and the

auxiliary data) and with a lot of noise, the relationship is poor, hence the

interpolated pattern is not very good.

Whatever interpolation technique and/or auxiliary information is used, the

important point to realise is that by choosing a particular technique for devel-

oping a spatial pattern, we have implicitly made some assumptions about the

spatial structure of the variable. These assumptions will carry through all sub-

sequent simulations. If the structure is wrong, and the variable is important, the

modelling exercise will be severely constrained from the outset. On the other

hand, a prudent choice can significantly improve the results of a spatial model-

ling exercise. The decreasing cost of computer power has enabled the more

widespread use of sophisticated interpolation methods. GISs have in-built ana-

lysis tools allowing a range of interpolation methods to be used with a mini-

mum of effort. But all of these are based on some assumption about the

distribution of the parameter in question. Simple approaches are inherently

no more or less value-free than the complex approaches. The important ques-

tion is whether the assumed spatial pattern that underlies the interpolation/

extrapolation method best represents the nature of the phenomena controlling

the pattern. This can be assessed by using as much process understanding as

possible.

2.4 GUIDANCE ON SAMPLING AND INTERPOLATION IN PRACTICE

This chapter has been presented in two sections, Sampling and Interpolation.

Our desire to measure patterns means that these two issues are intimately linked –

we want to use measurements (usually at points) to derive patterns (usually via

some sort of interpolation). Both of these issues depend on the depth of under-

standing we have about the underlying processes of which we are making mea-

surements (note that strictly we do not measure the process itself but some

feature of it that lends itself to measurement). This is the ‘‘chicken and egg’’

dilemma referred to earlier. We cannot define an ‘‘ideal’’ sampling scheme or
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choose the best interpolation method without knowing about the variability of

the feature being measured, but we probably do not know this variability without

measuring it! We are forced to draw on understanding of the processes involved

and be prepared to modify sampling or interpolation methods as more informa-

tion becomes available.

The next section presents a list of basic questions which help to gather the

information needed to determine a sampling programme or choose an ideal

interpolation method. We then work through an example, applying this list to

a real sampling problem to illustrate the procedure and highlight the compro-

mises that are required in practice.

A) What are the processes we are trying to capture with the measurement
programme? What is the variability in time and space of the feature of the
process that we will be measuring?

. Which variables should we measure and how representative are they of

the process?
. What is the typical length scale of the feature of interest?
. How quickly does the feature change and are there particularly impor-

tant timescales (e.g. diurnal, seasonal etc.)?
. What are the minimum and maximum values that are expected to be

measured?
. Do we have predictive methods for defining the variation of the feature

and how accurate are these?

B) For sampling, the next step is to define in more detail the specific
requirements of the exercise.

. What measurement device (or devices) should be used?

. What is the accuracy of the measurement device?

. What is the sampling support (time and space) of the device?

. Over what extent (time and space) do we want to make measurements?

. What are the practical constraints related to time, cost and the logistics of

the measurements to be made? (these will indicate the possible number of

samples and so the spacing of measurements).
. Are there alternative variables to be measured that perhaps are less

representative of the process but can be more easily collected?

C) We then need to try to match the needs of the sampling exercise with the
variability in the feature being measured and the characteristics of the
measurement device. In this step we need to recall that:

. if the spacing is too big compared to the feature of interest, we will not

characterise small-scale variability (it will become ‘‘noise’’);
. if the extent is too small, we will miss out on the large-scale pattern and

so measure a trend;
. if the support is too large, small-scale variability is smoothed out.
. if the sampling error is large compared to the variance of the feature, we

will not detect the pattern.
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Compromises will always be needed and, because of lack of knowledge, there will

be some guesswork (see example below).

We can then collect the data.

D) For interpolation, the next step is to look at the data set more closely and
ask how well did the sampling programme capture the underlying
variability?

. If the data very well define the patterns, we can use one of the simpler

methods described above. The choice of method is unlikely to be too

important in this case. Interpolation could be used to take account of the

measurement error by smoothing the pattern.
. If not, do we have auxiliary data or understanding available that could be

used to ‘‘add information’’ using one of the more sophisticated interpo-

lation techniques?
. If not, we can still interpolate the data but we will have little idea of how

well the resulting pattern represents reality. Regrettably this is often the

case!

The following example relates to the sampling exercise that produced the soil

moisture data used in Chapter 9 (see also Western and Grayson, 1998).

A) We were interested in runoff processes, the water balance and the seasonal
changes to patterns of soil moisture in the root zone (say 300 mm) of a
small (10.5 ha) pasture covered catchment in a humid climate. We did not
know the detail of variability in time and space but we expected that:

. We should measure volumetric soil moisture content which would very

well define spatial soil moisture patterns and should allow important

insights into runoff processes in the catchment.
. Variability would be due to rainfall, topographic position, time of year

and soil characteristics. Soils were quite uniform but initial tests indicated

that there was short-scale variability of moisture content of the order of

1–2%V/V. Slope lengths were of the order of 50–100 m and rainfall

occurred throughout the year.
. Soil moisture would change immediately in response to rainfall but

slowly in response to evaporation and drainage, e.g. an evaporation

rate of 2 mm=d would change the water content of the top 300 mm by

only 1.5%V/V per day. Seasonal changes would be large, due to big

differences in evaporation between summer and winter. We expected

that topography would be important to the lateral redistribution of

soil moisture.
. Soil moisture would vary between permanent wilting point and satura-

tion (approximately 10%–50%V/V).
. We did have predictive methods for defining variability but we did not

know their accuracy – we wanted the data to help test and develop these

methods.
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B) We identified the specific requirements of the sampling exercise by initial
field and laboratory tests and by using the manufacturer’s specifications:

. We chose Time Domain Reflectometry equipment for sampling soil

moisture. We were intending to use 300mm probes to be inserted verti-

cally into the soil.
. The accuracy of the TDR was tested by taking multiple field measure-

ments and comparing them to gravimetric samples. The combined error

of the measurement and small-scale soils variability was estimated to be

4–5 (%V/V)2. With a small-scale variability of 1–2 (%V/V)2, the mea-

surement error is about 3 (%V=VÞ2.
. The support of the TDR is a volume defined approximately by a cylinder

of length 300 mm and diameter 100 mm.
. The overall extent we wanted to cover was the whole catchment of 10 ha.

We were planning to sample for at least one year to get a complete

seasonal cycle.
. We wanted to be able to sample the whole area in a day to minimise

errors due to evaporation or drainage between the start and the end of

sampling. We could reliably sample at the rate of about 60 measurements

per hour.
. In this case, soil moisture was the key variable as we were interested in

the catchment water balance and it could be relatively easily measured

with the equipment we had available. Often the choice of variables to be

measured is not so simple, as the measurement methods can vary greatly

in terms of resources needed. An example is hydraulic conductivity where

methods range from undertaking soil particle size analysis combined with

pedo-transfer functions for estimating hydraulic properties, through to

using field infiltrometers, to taking soil cores for analysis in a laboratory,

with each method having large differences in speed of application, mea-

surement accuracy and measurement support.

C) We tried to match the needs of the sampling exercise with the hydrologic

variability as follows: Given the sampling rate and desire to complete sampling in

a day, it appeared that around 500–600 measurements could be taken. We

wanted to return to the same places each time, so a grid sampling seemed appro-

priate. Because of the shape of the catchment, the direction of most of the

hillslopes and our interest in topographic effects, it made sense to sample on a

regular, rectangular grid. A simple calculation leads to a grid spacing of

10� 20m. This gave us around ten measurements on every hillslope and a few

measurements in the gully, so this should capture topographic effects. The small

support compared to the spacing meant that we had to accept a reasonable

degree of noise. With an expected minimum soil moisture of 20%V/V and a

maximum of 40%V/V for one survey we guessed that the spatial variance would

be on the order of 10 – 20 (%V/V)2 which is still large as compared with the

measurement error variance of 3 (%V/V)2 and implies a signal-to-noise ratio

on the order of 5. We could have taken multiple measurements at each location
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(and subsequently a coarser grid) to reduce this noise. For example, five samples

at each spot would have reduced the error to one-fifth, i.e. 0.6 (%V/V)2 which

gives a much better signal-to-noise ratio of about 25 but only 100 locations

sampled at a spacing of about 25� 50m. At this spacing only very few samples

would have been located in the gully area. This was a classic compromise between

accuracy and pattern detail. The noise problem was significant in the summer

when the overall range of soil moisture was low and of a similar order to the

noise. In these conditions we had to accept that we would not be able to resolve

patterns well. Nevertheless, we judged, based on the generally expected variabil-

ity and range of soil moisture over the whole sampling period, that it was better

to keep the spacing small than improve the accuracy at the cost of pattern detail.

As for temporal sampling, we were interested in seasonal changes, could afford

10–12 sample runs per year (so could resolve seasonal effects), and needed to try to

minimise the effects of particular rainfall events. We therefore did not sample

during significant rain. At times when the catchment wetness was rapidly changing

(spring and autumn) we sampled more regularly than during the summer and

winter when overall changes were slower. We could not totally remove the effects

of particular events, but had detailed meteorological and runoff measurements

that were used to interpret how representative the measured patterns were.

D) As for interpolation of the data sets collected over the whole catchment, we

decided that we would not interpolate but rather assume that for visual presenta-

tion of the data, the measurement support was actually 10� 20m (see Figures in

Chapter 9). We did undertake interpolation for one piece of analysis and this is

explained in Chapter 9 – we undertook a two-step process where the data were

regressed against a combination of terrain parameters and the residuals were

smoothed on the basis of estimates of measurement error, then added back to

the regression values. Its effect was to produce a pattern smoothed on the basis of

measurement error which could then be directly compared to the model, where

this error was not represented. In other cases we interpolated the modelled soil

moisture to match the measurement locations because the variability in modelled

output was smoothly varying and therefore less affected by the interpolation

method.

We will finish this chapter by reiterating that no data transformation method

for generating patterns from point measurements, no matter how sophisticated,

can generate knowledge. The method must be chosen so as to maximise the use of

available information (both in the data itself, and the users’ knowledge of the

processes operating). The ideal interpolation approach exploits both the data and

an understanding of the processes that lead to patterns in the variable of interest,

and so mimics the shape and spatial arrangement of the patterns expected from

the process. A poor interpolation approach is one that simulates a spatial struc-

ture that is at odds with knowledge about the system. The numerical sophistica-

tion of the technique is no measure of its quality.

The important point is that there are interpolation schemes of different com-

plexity (in the way they use information contained within the data, the extent to
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which they utilise additional information, and how faithfully they reproduce the

data as opposed to the statistical characteristics of the data); by choosing any of

them we make an assumption about the nature of the underlying pattern, and the

quality of interpolation reflects the validity of that assumption. Similar consid-

erations apply to sampling. The extent to which we are likely to capture the ’true’

hydrological patterns by a sampling exercise depends on: the scale of the pro-

cesses compared with the scales we are interested in; the accuracy of the data and

quality of correlations between surrogates and the values of interest (accurate or

more representative data requiring a smaller number of points); and the complex-

ity of patterns/processes (rich patterns requiring a larger number of points, unless

we have some process understanding that can define certain features of the

pattern). While there are no hard and fast answers to the practical problems of

sampling design – of how many points and where, when and how to make

measurements – careful consideration of the issues raised in this chapter should

assist in designing a sampling scheme that best meets the requirements and con-

straints of a particular study.

The emphasis in this chapter has been on using process understanding to

guide sampling and interpolation as this is the key to successfully capturing

patterns in catchment hydrology. This understanding can be further exploited

(and challenged) when we move into dynamic catchment modelling.
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3
Spatial Modelling of Catchment Dynamics

Rodger Grayson and Günter Blöschl

3.1 INTRODUCTION

In the previous chapter, we addressed the issues associated with data and sam-

pling of physical phenomena as well as methods for the interpolation of spatial

patterns. We believe that these spatial observations are vital to improving our

understanding of catchment hydrological response. But measured patterns (or

patterns interpolated from measurements) are of limited use without a frame-

work within which they can be exploited. We need to use the patterns in a way

that lets us test hypotheses. Mathematical modelling provides a powerful tool for

this purpose. This modelling can take many forms, the most relevant to the topic

of this book being spatially explicit models of catchment surface and subsurface

response. These models are used for a range of purposes from tools for testing

hypotheses about the behaviour of natural systems and putting data from

research catchments into a consistent framework (the chapters in this book are

examples), to practical applications such as erosion and transport modelling and

simulation of the effect of land use change – in fact anything influenced by

hydrological response.

This chapter is about the basic structure of, and approaches to process repre-

sentation in, spatial models. We introduce the concepts of model calibration and

testing, focussing on the way in which spatial patterns can be used to inform

model development and reduce model uncertainty. Finally we look at approaches

to the evaluation of spatial predictions from spatially explicit models.

3.2 SPATIAL MODELLING CONCEPTS

As scientists and engineers, our interest in the hydrological response of catch-

ments ranges from basic understanding of processes to prediction under changed

conditions. We use models for each purpose – to see how well we can simulate

measured responses (i.e. to test how well our conceptual understanding and its

manifestation via the model reproduces ‘‘reality’’); and to predict what might
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happen in the future. These models combine our understanding of the natural

system with observations of the system.

The observations we make are, and will always be, just peep-holes into the

complexity of the natural system. Even if we were able to measure every aspect of

the water and energy cycles that occur in a catchment, we would still have a

picture only of what is happening now under present conditions and could not

determine what would occur under changed conditions without some sort of

extrapolation. In order to make sense of our ‘‘peep-hole’’ measurements, or to

extrapolate beyond what we have actually observed, we need to make use of our

basic understanding of physical systems and a convenient way to do that is with

models.

Every model is a simplified representation of some part of reality. The art of

the modeller is to determine, for the ‘‘part of reality’’ in which he or she is

interested, what are the key processes that dominate the response at the scale

of interest. These processes may be represented in detail, while others may either

be ignored or represented simply. This step is usually called ‘‘conceptualisation’’

and represents the modeller’s hypothesis about the way nature works in the

context of the modelling problem. The resulting model is a mathematical expres-

sion of this hypothesis and is in a form that can be tested.

Figure 3.1 shows a photograph of a soil cross-section in which lateral subsur-

face flow is occurring, and a typical conceptualisation of this process. This con-

ceptualisation can be turned into a mathematical model via the application of

equations for flow through porous media, such as are described later in the

chapter. The model does not show all the intricate detail of the real world.

Indeed, the reality and the model are very different. The art of the modeller is

to know just how these differences might affect the modelling results, and

whether a different sort of model might be more appropriate.

In principle, anything can be modelled. The question is ‘‘how well does the

model represent reality?’’, and we cannot answer that without knowing what is

the ‘‘reality’’. In this regard, model building shares the ‘‘chicken and egg’’ pro-

blem referred to in Chapter 2; i.e. in order to build (or choose) an appropriate

model, we need to understand a lot about the processes that are important, yet

often these cannot be identified until we have tried some modelling. This situa-

tion is shown schematically in Figure 3.2 where we have also linked in sampling.

In an ideal world, we begin with some process understanding, do some sampling

to improve that understanding, then, when we have enough understanding to be

able to attempt a conceptualisation, we build a model. Hopefully this model helps

us understand the processes a little more and, perhaps with the help of some more

sampling, we iteratively refine our modelling and understanding. In the ‘‘real

world’’, this loop cannot go on forever and when it is broken, all of the remaining

inconsistencies between reality and the model have to be accepted and somehow

dealt with by the modeller. As with the sampling and interpolation issues

described in Chapter 2, knowing when to ‘‘break the loop’’ and how to deal

with the remaining inconsistencies between reality and the model can only be

done effectively with a sound appreciation of the dominant physical processes. In

52 R Grayson and G Blöschl



modelling catchment hydrological response, this implies that we need a sound

understanding of all components of the hydrological cycle and have mathema-

tical descriptions for each – a daunting task indeed. Models are usually built to

focus on particular ranges of time and space scales and this helps us to make the

task somewhat more tractable. For example, models designed to simulate storm

runoff from particular rainfall events may safely ignore evaporation, or long-

term models of water yield may be able to ignore the detailed dynamics of surface

water flow.
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(a)

(b)

Figure 3.1. (a) Photograph of subsurface flow in the Löhnersbach catchment, Austria (courtesy of

Robert Kirnbauer and Peter Haas) showing exfiltration of saturated flow over an impermeable

layer; (b) a typical conceptualisation of the process shown in (a) used in distributed catchment

models.
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Basic approaches to modelling
The modelling literature is replete with different ways of classifying models.

Refsgaard (1996) presents an excellent description of model types and definitions

relevant to modelling. Singh (1995) discusses classifications in terms of how pro-

cesses are represented, the time and space scales that are used and what methods

of solution to equations are used. Here we focus on three basic features, useful for

distinguishing approaches to modelling in catchment hydrology – these are (i) the

nature of the basic algorithms (empirical, conceptual or process-based), (ii)

whether a stochastic or deterministic approach is taken to input or parameter

specification, and (iii) whether the spatial representation is lumped or distributed.

The first question is whether the model makes any attempt to conceptualise the

basic processes or simply operates as a calibrated relationship between inputs and

outputs. Empirical, regression or ‘‘black-box’’ models are based on input–output

relationships without any attempt to describe the behaviour caused by individual

processes. An example is runoff ¼ a � ðrainfallÞb, where we derive a and b via a

regression between measured rainfall and runoff. The next step up in complexity

would be conceptual–empirical models wherein the basic processes such as inter-

ception, infiltration, evaporation, surface and subsurface runoff etc. are separated

to some extent, but the algorithms that are used to describe the processes are

essentially calibrated input–output relationships, formulated to mimic the func-

tional behaviour of the process in question. The classical example is the

STANFORD watershed model (Crawford and Linsley, 1966), and derivatives

of this modelling genre are still in use all over the world. As the quest for deeper

understanding of hydrological processes has progressed, models based as much as

possible on the fundamental physics and governing equations of water flow over

and through soil and vegetation have been developed. These are often called

physically-based models and they are intended to minimise the need for calibra-

tion (i.e. model parameter optimisation) by using relationships in which the para-

meters are, in principle, measurable physical quantities. In practice, these

parameters can be difficult to determine so these models are best thought of as

complex conceptual models (Beven, 1989).

Another basic distinction between models is whether stochastic or determi-

nistic representations and inputs are to be used. Most models are deterministic

process understanding 

sampling 

modelling

Figure 3.2. Schematic diagram of the iterative

process of using understanding along with data

to develop models which improve our under-

standing and so on.
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– i.e. a single set of input values and parameters is used to generate a single

set of output. The term ‘stochastic’ in the hydrological literature tends to be

used synonymously with ‘statistical’, and implies some random component in

the model. In stochastic models, some or all of the inputs and parameters are

represented by statistical distributions, rather than single values. There is then

a range of output sets, each derived from different combinations of the inputs

and parameters and each of them associated with a certain probability of

occurrence. It is also possible to have stochastic representations for some

model components so that a given set of inputs can yield a range of output

responses. The stochastic approaches are often used in model sensitivity and

uncertainty analyses (see Section 3.4 and Chapter 11). Their advantage is that

they provide a conceptually simple framework for representing heterogeneity

when the explicit spatial or temporal detail is either not known (although at

least the relevant statistical properties need to be known) or is not important

(Jensen and Mantoglou, 1993).

Irrespective of these approaches to process conceptualisation, if we are con-

cerned with spatial patterns in landscapes, our models must represent these pro-

cesses in a spatially explicit manner. This is done by dividing the area to be

modelled into elements, within which the processes are represented. The nature

of these elements is discussed in the following section. The resulting models are

termed distributed models to distinguish them from lumped models that are not

spatially explicit – i.e. which treat catchments as a single unit and so average the

effects of variability of processes in space. These notions of lumped or distributed

do not indicate anything particular about the methods used for representing

individual processes, but simply indicate the approach to spatial representation.

In the next section we discuss details of spatial model structure and in reading

these details, it is useful to keep in mind the following ideas. Models of catchment

hydrology must represent complex systems made up of interactions between

many components, most of which vary in space and time. There is little point

in representing one component in great detail while greatly simplifying another

on which it depends. For example, soil erosion or water quality models may

contain great detail in the representation of soil detachment or chemical decay

of pollutants in transport, but if the basic runoff model that drives the hydrology

is simplistic and inaccurate, the benefits of the model detail cannot be realised.

Modellers need to balance the complexity of model components, recognising that

the model accuracy will be limited by the weakest important component – be it

process representation, spatial detail or difficulty in getting the data needed to

determine parameters or to test the model. There will also be practical limitations

imposed by things such as software availability and budgets. Although there is no

single answer to ‘‘what is the right model?’’ this chapter seeks to give guidance on

this issue. As shown in Figure 3.2, modelling is an iterative process and the point

at which we ‘‘break the loop’’ and actually use a model in a practical application

is dependent on factors that will be different for every modelling application. The

following section is a discussion of key aspects of spatial model structure that will

help a modeller decide when to ‘‘break the loop’’ and the consequences of

doing so.



3.3 SPATIAL MODEL STRUCTURE

This section presents some generic features of spatial hydrological models and

the pros and cons of the fundamental choices that a modeller makes when either

choosing (or building) a model for a particular application. It is not intended to

be a review of the myriad of models presented in the literature. Readers are

directed to books such as Singh (1995) or Abbott and Refsgaard (1996) for

collected summaries of models.

3.3.1 Spatial Discretisation

The fundamental building block of a spatial model is the model element. This

is the minimum unit within which we can explicitly represent spatial heterogene-

ity and so defines the scale to which we must interpolate input data and represent

the fundamental processes, as well as setting a minimum scale at which model

testing can occur.

In hydrology, the significance of topography (the fact that water generally

flows down hill!), and the relatively widespread availability of digital terrain data,

have meant that the choice of model element size and type is often dictated by the

way in which (and the scale at which) we represent topography. Topographic

representation does not have to define the way model elements are structured but

it commonly does so.

Terrain can be represented digitally in three basic ways (Moore et al., 1991) –

gridded elevation data, contour data giving x, y coordinates of points of equal

elevations, and irregularly spaced x, y, z data. These three forms of elevation

information translate to the four basic constructions for models of spatial hydro-

logical response (Figure 3.3).

By far the most common form of model construction is based on rectangular

(usually square) elements (e.g. Abbott et al., 1986; Wigmosta et al., 1994; also

Chapters 6, 7, 12 and 13). A small number of models use contour data to con-

struct a mesh of elements bounded by adjacent contours (equipotentials) and

orthogonal trajectories (streamlines). The best known examples are TOPOG

(Vertessy et al., 1993; Chapter 10) and Thales (Grayson et al., 1995; Chapter

9). Triangulated Irregular Network (TIN) based hydrological models develop a

flow mesh from the triangular facets derived by joining adjacent data points (e.g.

Palacios-Vélez et al., 1998). There are also some models that are not based

directly on digital elevation data but rather use a subjective discretisation of a

catchment. A well known example is the KINEROS model of Smith et al. (1995)

who define rectangular elements that preserve the key features of average sub-

catchment slope, flow path length and area (Chapter 6, Figure 3.3).

Each approach has its advantages and disadvantages as summarised in

Table 3.1. As noted in the Table, it is not a trivial exercise to route flow

through gridded elements. A multitude of approaches exist in the literature

from the simple D8 algorithm (O’Callaghan and Mark, 1984) which sends all

the water to the downslope neighbouring element that has the greatest elevation
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drop, to multiple flow direction algorithms (e.g. Quinn et al., 1991) and more

sophisticated approaches that approximate the flow tubes of contour based

models (Costa-Cabral and Burges, 1994; Tarboton, 1997). While the more

sophisticated approaches are more realistic than D8, the value of using them

depends on the quality of the original DEM (see Chapter 2, p. 39). Poor quality

DEMs are not magically improved by using more sophisticated terrain analysis

algorithms. Similarly, models that are rudimentary with respect to the way they
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Figure 3.3. Schematic diagram of the element geometry of the four process-oriented rainfall runoff

models. The contour based model (bottom right hand corner) shows the topography of the R5

catchment in Oklahoma (contour interval is 0.6m).



use terrain information may not benefit from better terrain analyses. These

more sophisticated methods, however, are more realistic and will not make

such problems worse, so are to be recommended. Contour/streamline

approaches have less ambiguity with the way in which terrain analyses are

applied. The flow direction is defined by the ‘‘flow mesh’’ and one-dimensional

flow is assumed in each flowtube. The problem is that some level of diffusion

across the streamline is likely in nature but cannot be easily represented.

Diffusion is due to surface roughness effects causing flow across the main
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Table 3.1. Approaches to explicit terrain representation

Approach Advantages Disadvantages

Gridded elements DEMs often available as

grids

Flow directions not

straightforward to define (see

Computationally simple to set text)

up dynamic models Uniform density of points

Many models available for means inefficiently large

use number of elements if detail

Simple to overlay other spatial

information

is to be maintained in key areas

of the terrain

Contours and

streamlines

More naturally suited to the

routing of surface flow

Setting up of flow mesh

requires specialised

Able to assume 1-D flow in

each element

software – software must

also be designed to avoid the

inefficiency of large elements in

gullies and small elements

in divergent areas

Does not allow flow to cross

streamlines (see text)

Few models are designed for

this structure

TIN facets Most efficient form of surface Flow routing is not trivial

definition – least number Data are not common (except

of elements for most terrain direct from field survey)

detail Few models are designed for

this structure

Conceptual elements Based on the assumption that Discretisation generally done

of hillslopes and it is only those features manually

stream segments preserved in the conceptual Uncertainty about the validity

elements (e.g. average slope, of the main assumption in

flow path length, area) that some applications

are really important to Few models are designed for

model response this structure

Able to assume 1-D flow in

each element

Lead to a small number of

elements - faster model

running times



slope and because the discrete nature of the elements causes significant differ-

ences in flow depths between adjacent elements, particularly in convergent

areas. This is illustrated in Figure 3.4 which shows a contour based discretisa-

tion of a micro-catchment (Figure 3.4a) used by Moore and Grayson (1991),

along with simulated and observed patterns of saturation (Figure 3.4b), and the

depth of saturated flow simulated in a number of elements across the valley

(Figure 3.4c). In reality, the differences in flow depth of the elements across the

valley were smoothed out due to lateral gradients in flow depths. While this

problem is well recognised in contour/streamline approaches, it has not been

overcome in the existing models. TINs are very efficient methods for represent-

ing terrain because the density of points can be varied to suit the complexity of

the surface, being dense where elevation is changing rapidly and sparse in

flatter areas. The problem with TINs for distributed modelling is that flow

paths are difficult to represent. Usually flow is represented as a network of

channels defined by the edges of the facets being ‘‘fed’’ by the area of each

facet. The subjective discretisation of a catchment into conceptual rectangular

elements used in KINEROS is a simple approach that results in many fewer

elements than is common in the previous methods. Goodrich (1990) showed

that the simple representations are a sound basis for hydrological modelling

and it is perhaps surprising that this method has not been more widely used.

The four methods of terrain discretisation described above are spatially expli-

cit methods as they directly define the terrain as it appears in reality. Distribution

modelling is a fundamentally different way of defining model elements.

TOPMODEL (e.g. Beven and Kirkby, 1979; Chapter 11) is the best known

distribution model but others exist such as RHESSys (Band et al., 1993) and

Macaque (Watson et al., 1998). In this conceptual approach, it is assumed that

particular parts of a hillslope will behave identically, from a hydrological point of

view, if they have the same value of a carefully defined parameter – in the case of

TOPMODEL, the wetness index of Beven and Kirkby (1979), lnða= tan�) where
a is the upslope area and � is the slope. The index is computed across the hillslope
(via analysis of a DEM for example) and the distribution of the index is then

discretised into intervals. The hydrological response of each interval is simulated

and then combined to give the response of the hillslope. Here the ‘‘model ele-

ments’’ are not contiguous parts of the landscape, but conceptual locations on a

hillslope. In their original forms, these models were not intended to be spatially

explicit. Indeed the whole idea of distribution models was to overcome the com-

putational burden of spatial representation. Nevertheless, it is possible for the

simulated response to be ‘‘mapped’’ back onto the landscape via the pattern of,

say, wetness index values (Quinn and Beven, 1993; Quinn et al., 1995). This gives

the impression of a spatially explicit model output, although the patterns are a

direct function of the underlying index. While TOPMODEL is the best known

model of this type, the distribution function approach can be used with any index

and is, for example, widely applied in snow modelling, where terrain elevation is

used as the index.
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Figure 3.4. (a) Topography and element network of a sandbed micro-catchment simulated using

Thales; (b) observed (lines) and simulated (stippled) saturated areas; (c) predicted flow depths and

surface elevation of elements in section B�B 0 marked in (b). (From Moore and Grayson, 1991;

reproduced with permission.)

(a)

(b)

(c)



Another suite of models base their representation of spatial response on the

concept of a ‘‘hydrological response unit’’ (HRU) (e.g. Leavesley and Stannard,

1995). It is assumed that a catchment can be subdivided into elements (HRUs)

which are a particular combination of elevation, land cover, slope, aspect, soils

and precipitation distribution. Each HRU is treated as a model element. These

approaches arise from the use of lumped conceptual models and provide a

mechanism for improving the representation of spatial heterogeneity in such

models. The extent of spatial linking between HRUs depends on the time steps

used in the models. For example, PRMS (Leavesley and Stannard, 1995) can be

run in a daily mode (where outputs from each HRU are simply summed to give

overall response) or a ‘‘storm mode’’ where HRUs are conceptualised as flow

planes emptying into a channel network down which flow is routed. Models using

the HRU structure provide spatial patterns of catchment response but the result-

ing patterns are heavily influenced by the original choice of HRUs and it is

common to have relatively few HRUs compared to the number of elements in

a terrain-based element discretisation.

In general, models based on elements defined by the terrain are more flexible

in their representation of spatial patterns because they tend to have many more

elements than HRU-style representations and are not constrained by the form of

a distribution function.

3.3.2 Element Size

The element size (or model discretisation) in grid-based catchment models is

often set to the resolution of the DEM that is available. As discussed in Chapter

2, DEMs are almost always interpolated from topographic maps or spot surveys

and are therefore associated with a range of potential interpolation problems.

These will carry through to the catchment model. It is common for ‘‘interpola-

tion artefacts’’ such as flats and pits to occur and it is necessary to carefully assess

the credibility of a derived DEM (Quinn and Anthony, in review) and remove

these artefacts based on a subjective interpretation of the landscape and addi-

tional information (e.g. Rieger, 1998). Also, the choice of element size sets a limit

to the level of terrain (and other) detail that can be explicitly represented in the

model.

If terrain detail at a scale finer than the element size is important to the

hydrological response of the system, this needs to be accounted for by the

approaches discussed in Section 3.3.4. A common example of this problem is

the presence of an incised stream or terrace on a flood plain. The details of the

feature and the terrain immediately around it are likely to be very important, yet

are unlikely to be properly represented. Furthermore, many of the characteristics

derived from DEMs such as slope and wetness index vary with the scale of the

DEM, and so parameters in the models that utilise these characteristics become

scale dependent (e.g. Wolock and Price, 1994; Zhang and Montgomery, 1994;

Band and Moore, 1995; Quinn et al., 1995; Gyasi-Agyei et al., 1995; Bruneau et
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al., 1995; Saulnier et al., 1997c). If we could define a particular length scale that

represented the natural small-scale variability of various catchment properties,

we could define an ideal scale for DEMs, but this is not possible so we must

accept the fact of model dependence on DEM resolution. This has important

implications for model calibration and validation, as model parameter values are

likely to change with the size of the elements.

In 1988, Wood et al. introduced the notion of the Representative Elementary

Area (REA), at least in part as a framework for thinking about what are appro-

priate element sizes for distributed models. They considered the REA to be an

area beyond which explicit representation of spatial variability was needed but

within which relatively simple, and spatially non-explicit approaches could be

used. In other words, the idea was to select model elements that are sufficiently

large to average out all the small-scale variability and the element size where this

occurs was the REA. Wood et al. (1988) have been interpreted as implying that

the REA may have a universal value. While the concept of a universal REA is

enticing, it is clear that the ideal size for a model element will be entirely depen-

dent on the processes being represented and the nature of the climate, terrain and

vegetation where the model is being applied (Blöschl et al., 1995; Woods et al.,

1995; Fan and Bras, 1995). Blöschl et al. (1995) illustrate the lack of a universal

size for the REA, via simulations with different dominant sources and scales of

variability in precipitation, soil and surface properties. The concept of the REA

is, however, important and highlights a critical issue – that variability can be

explicitly represented only at scales larger than the element size, while variability

at the sub-element scale must be represented in a lumped way – the total varia-

bility being the sum of the explicit and the sub-element variability.

The choice of resolution in spatial models therefore determines what varia-

bility can be explicitly represented (i.e. representing differences from element to

element) and what must be represented implicitly (i.e. within an element – see

Section 3.3.4). This will depend on:

(i) the scale and nature of variability of the dominant processes,

(ii) the structure of the model itself (in terms of how explicit and implicit

variability are represented),

(iii) what information is available to characterise the processes and variabil-

ity,

(iv) the purpose for which the model is being developed, and

(v) in addition there may be computational considerations.

To satisfy (i) we need to match the model element size to the scale of variability of

the dominant processes. Recall from Chapter 2 that scale incompatibilities can

occur when the model spacing, extent or support does not match that of the

process scale variability. Ideally we would choose an element size that captures

the variability of the main processes we are wanting to model, but this is not

always straightforward. In the time domain there are obvious considerations for

the choice of model resolution. For example, a resolution of less than six hours is

needed to properly resolve the diurnal energy cycle, but in the space domain often
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the choice is not so obvious as the ‘‘best’’ scale is likely to be either unknown, or

will be quite different for equally important processes. In some cases, a process is

so dominant that this choice is made easier. In Chapter 7, wind drift was such a

dominant process controlling snow depth that so long as this was represented

well, other processes could be ignored – the model discretisation only had to

match the needs of the snow drift representation. In most practical applications,

however, the choice of model element size will be a compromise and will depend

on the considerations discussed below.

The way in which we conceptualise the processes in a model also affects what

might be the ‘‘ideal’’ element size, and it is important to recognise that ‘‘finer’’ is

not necessarily ‘‘better’’. Watson et al. (1998), for example, showed that, despite

the obviously more realistic terrain representation of high-resolution DEM data,

simulations of runoff using a distribution function model were no better than

with a coarser scale DEM. This was because the basic structure of the model

could not make use of the additional terrain information in the detailed data.

This highlights the general point in (ii) that there will be interaction between the

structure of a model and the ideal size for a model element. The choice of element

size also depends on how much information is available on the variability that is

known (or assumed) to be present. We may have a model that can have very

small elements and, in principle, can represent great spatial detail, but if we do

not have the data to define the spatial variability of the model parameters, there

is unlikely to be value in using very small elements. Just as with the earlier

discussion related to Figure 3.2 and the broader modelling endeavour, we

could keep iterating for ever trying to define the ‘‘perfect’’ element size but

ultimately it is a pragmatic decision, specific to a particular problem. In parti-

cular, when distributed catchment models are used for predictions in practical

applications there may be a need for an output at a particular resolution. The

challenge then is to deal with the inconsistencies between the model and reality

imposed by that pragmatic choice. This is discussed further in Section 3.3.5.

It is likely that in the near future, GIS and computer technology will substan-

tially relax constraints imposed by computer run times, although it is clear, as

mentioned above, that improved computational resources will not make models

any more accurate representations of reality. But interesting new possibilities are

likely to arise, such as the use of nested models that have large elements in some

areas and small elements where detail is needed (something already done in fluid

dynamics). This may help overcome some of the problems identified here by

enabling areas requiring detailed simulations to be separated from those less

hydrologically active. The problem then will be to reconcile the way in which

processes are represented and parameters are determined at the different scales.

3.3.3 Linking Elements – Explicit Representation of Spatial Variability

The approaches to spatial discretisation provide a way of representing surface

topography in a computationally manageable form, but once we want to start
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routing flow, we must consider not only the (static) surface but also the dynamics

of water flow on the surface and in the subsurface. While full 3-D hydrological

models have been developed (e.g. Binley et al., 1989), their computational bur-

den, numerical instability and the fact that the level of information needed to run

them is rarely available, mean that they are not suitable for most modelling

applications. The vast majority of spatial hydrological models can be conceptua-

lised to have two primary flux directions, vertical and lateral, each of which can

be represented with varying degrees of complexity. The vertical fluxes are pre-

cipitation, evapotranspiration and infiltration into the soil, while the lateral fluxes

are the residual of the vertical fluxes and are generally separated into surface and

subsurface flow. A fundamental choice for the modeller is the extent to which

these fluxes are explicitly routed. The modeller must balance the complexity of

representation of each of these fluxes with the purpose to which the model will be

put. At one extreme is the case of land surface schemes in General Circulation

Models (GCMs) that generally contain a great deal of detail in the controls on

vertical fluxes, yet provide little or no lateral linking. This is because their pri-

mary purpose is to ‘‘feed’’ the atmosphere with the appropriate amounts of

energy and water with little interest in lateral components. In contrast, catchment

hydrological response is all about the lateral components.

Laterally, both surface and subsurface flow must be routed in some way, but

the timescale of these processes is very different. Surface flow velocities will be of

the order of 0.1 to 1 m s�1 while subsurface flow velocities (unless soil pipes or

large macro pores are present) are likely to be 1� 10�5 to 1� 10�8 m s�1 (or even

slower). Obviously the choice of routing method will depend on the timestep and

overall timescale of the modelling.

For models designed to simulate storm event response, the timestep is small

(of the order of minutes) and it is necessary to dynamically route surface flow

(e.g. Chapter 10 and Chapter 6). Both overland flow and channel flow are often

represented by the continuity equation (3.1); the kinematic approximation to the

momentum equation (3.2); and Manning’s equation (3.3) for the roughness term:

@QðAÞ

@s
þ
@A

@t
¼ qðtÞ ð3:1Þ

S0 ¼ Sf ð3:2Þ

Q ¼ S1=2f � n�1 � R2=3 � A ð3:3Þ

where Q is the discharge, A is the cross-sectional area of flow, s is the distance in

downslope direction, t is time, q is the lateral inflow (or outflow) rate per unit

length, S0 is the surface slope, Sf is the friction slope, n is Manning’s roughness

and R is the hydraulic radius. These are standard equations for which many

solution schemes have been presented (e.g. Moore and Foster, 1990). The

approach to spatial discretisation becomes important to the question of surface

flow routing because modelled flow path lengths vary depending on the different

types of terrain representation. The distributions of surface flow path lengths

from a contour based, and grid based (using the D8 algorithm) terrain represen-
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tation are shown schematically in Figure 3.5. The contour based representation

results in shorter path lengths than the grid-based approach where, particularly

with the D8 algorithm, zig-zag flow paths are defined. The differences in flow

path lengths will directly translate into differences in the hydrograph shape. In

practice, the flow resistance parameter n can be used to compensate for these

differences in model structure – i.e. to get the same runoff response from each

model, one would need lower n values in the grid-based terrain representation.

This is a clear example of how the choice of model structure interacts with the

parameter values.

In distributed models where the interest is on the seasonal water balance

rather than on the shape of the runoff hydrograph and the detailed within-

event processes, significantly larger time steps are used. If the model timestep

is large relative to the expected flow times for surface runoff, simple mass

accounting can be used without regard for dynamic routing. Daily models of

small catchment runoff are an example where this approach may be perfectly

adequate. This approach is used in Chapters 6, 9 and 11.

For subsurface flow, however, the response can be so slow that some sort of

explicit routing is needed. It is usual to assume that lateral flow occurs only under

saturated conditions – i.e. virtually all spatial hydrological models used at the

catchment scale ignore unsaturated lateral flow. Saturated flow is commonly

modelled by combining the continuity equation (3.1) with Darcy’s law:

Qs ¼ As � S0 � Ksat ð3:4Þ

Where Qs is the subsurface discharge, As is the cross-sectional area of subsurface

flow, S0 is the slope of the impermeable layer which is often set to the surface

slope, and Ksat is the saturated hydraulic conductivity. Note that (3.4) also makes

the kinematic assumption as the gradient of the head potential has been replaced

by S0. Some models (e.g. Thales, Chapter 9 and TOPOG, Chapter 10) route sub-

surface flow along with surface flow using the same flow mesh. They therefore

assume an impermeable layer that is parallel to the surface topography and over

which lateral flow occurs. Where there is interaction with local groundwater

systems, a more appropriate modelling approach is to use the downward ‘‘out-

flow’’ from the vertical flux balance to feed a saturated groundwater model. This

approach is used in MIKE SHE (Chapter 13) which also uses the same element
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grid for the surface and subsurface components, although other combinations are

possible (Chapter 12).

Spatial linking in distribution models is a different proposition again. In

TOPMODEL and its variants (Chapter 11), it is usual to use large timesteps

that allow for simple mass accumulation of surface flow, but the lateral linking

of subsurface flow is more difficult to conceptualise. As discussed earlier, these

models treat the ‘‘elements’’ as parts of the hillslope that have equivalent values

of, for example, a wetness index. These ‘‘elements’’ are not contiguous in space so

there can be no explicit routing of flow down a hillslope, as would be used in fully

distributed models. Subsurface flow is instead simulated in two different ways –

one for determining baseflow from a hillslope and the other for determining the

change in soil moisture storage for any hillslope interval. For each timestep, the

downward residual flux for each interval is added together to give a total input to

a conceptual store. In TOPMODEL, baseflow is then simulated as a function of

the store and the remaining water is redistributed across the hillslope according

to the wetness index distribution. This redistribution can be conceptualised as an

‘‘infinite lateral conductivity’’ whereby any differential recharge (in different

intervals or ‘‘elements’’) is immediately redistributed across the whole hillslope

every timestep. This imposes a large amount of spatial structure on results from

models such as TOPMODEL and may constrain their ability to represent spatial

patterns of water tables and soil moisture because the shape of the spatial pattern

is always directly linked to the wetness index pattern. Woods et al. (1997) and

Barling et al. (1994) introduce a dynamic nature to the standard wetness index

pattern but these ideas have yet to be incorporated into a distribution function

based hydrological model. A step towards this idea has been made by Watson et

al. (1998) who addressed the problem of representing lateral subsurface flow in

distribution function models in a different way. They consider that, at the other

extreme to the ‘‘infinite lateral conductivity’’ concept, there is a ‘‘zero lateral

conductivity’’ analogy, whereby any differential recharge is maintained within

the particular interval (‘‘element’’) and not redistributed at all. Under this con-

dition, the intervals can be thought of as a series of disconnected ‘‘buckets’’.

Watson et al. (1998) introduced a ‘‘redistribution factor’’ which adjusted the

level of redistribution between these two extremes. In testing on a catchment

in south east Australia, it was found that the model worked best when the factor

was very low, indicating that the model was behaving close to the ‘‘zero con-

ductivity’’ extreme with very limited lateral redistribution.

The same general considerations that were discussed for the choice of model

element size (p. 61) apply to issues of linking elements in distributed models.

Firstly it is necessary to consider the processes in relation to the time and space

scales of the modelling, e.g. surface runoff routing is important in storm models

but not in long-term yield (water balance) models. This gives an indication of the

appropriate model structure to use. In distributed models, spatial linking is con-

ceptually straightforward while this is not so in distribution models, although

some form of spatial linking can still be represented. The problem is generally

with obtaining the information to characterise the variability and set the para-
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meters, such as the flow resistance factor n in Manning’s equation (3.3) or Ksat in

Darcy’s equation (3.4). Here the way the processes are represented within a grid

element becomes important.

3.3.4 ‘‘Sub-Grid’’ Variability – Lumped Representation of Spatial
Variability

In Section 3.3.2 we concluded that the choice of element size is ultimately a

pragmatic decision and there will always be some processes and variability that

are important within an element. How then can this ‘‘sub-grid’’ or sub-element

variability be represented? Clearly, any representation will not be spatially expli-

cit, or else we would just be defining a smaller element size. Rather, these

approaches need to represent the effects of variability that the model cannot

resolve.

Consider Figure 3.6, which illustrates some of the issues in conceptualising

sub-element variability related to overland flow. In reality, flow patterns at the

micro-topographic scale (much smaller than elements in a distributed model)

will be highly complex (e.g. Emmett, 1970; Abrahams et al., 1989) which will

cause a highly variable depth distribution across the hillslopes (Figure 3.6a).

However, the way surface runoff is commonly conceptualised in an element is

as a uniform depth of flow defined by solving equations (3.1–3.3) (Figure

3.6b). This means that the flow resistance factor in (3.3) must somehow be

related to the sub-element scale microtopographic roughness. If the element

contains a channel, a stream or a rill (which can be considered as a very

small-scale channel), a further consideration is how to represent the ‘‘non-
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stream’’ parts of the element. These can be thought of as small catchments

which ‘‘feed’’ the channel (Figure 3.7b) or they could be thought of as sepa-

rate overland flow planes that produce shallow surface flow to be routed into

the next element (Figure 3.7a). The most common approach is the former, but

this is another example of the need to conceptualise the processes within an

element.

Clearly there is a strong interaction between the way we conceptualise the

process, the model structure we need to use, and therefore the parameters that we

need. In practice there are a number of general approaches to representing sub-

grid (or sub-element) variability of model parameters in distributed models of

catchment hydrological response.

Assuming that a point value is valid for a whole element is the simplest

approach – i.e. assuming the variance of the parameter within an element is

zero. This assumption is commonly made for parameters such as saturated

hydraulic conductivity (Ks) where a measurement from a field or laboratory

test (with a small support) is used to represent an entire element. The assumption

of zero variance is highly unlikely to be valid for parameters such as Ks because

blocks of soil the size of a typical model element (10s–100sm2) behave very

differently to soil blocks of the size that are used in laboratories. This leads to

the likelihood that the point-value approach will result in a poor model. When

one attempts to improve the model through, for example, calibration, the cali-

brated parameter no longer represents the point value but rather some sort of

average for the element – i.e. an ‘‘effective’’ parameter.

The effective parameter approach attempts to overcome the conceptual pro-

blems with point values. Effective parameters are single values that reproduce the

bulk behaviour of a finite area or a finite volume. They therefore cannot be

measured at a point and do not necessarily relate to point measurements at all.

Figure 3.8 illustrates the notion of effective parameters for saturated flow

through a porous medium where �eff is a value of saturated hydraulic conduc-

tivity that, when used in equation (3.4), simulates a discharge that is equal to

what would be expected from the heterogeneous (more realistic) block. In the

overland flow example of Figure 3.6, an effective Manning n would be a single

value that is able to reproduce, say, the overall hydrograph from the element

(although clearly it would not be able to also reproduce the flow depth and

velocity distributions). A great deal of work has been done on effective para-

meters, particularly for hydraulic conductivity in subsurface flow systems (e.g.
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Gelhar, 1993; Wen and Gómez-Hernández, 1996), infiltration and surface flow

parameters (Farajalla and Vieux, 1995; Willgoose and Kuczera, 1995) and soil

hydraulic characteristics for setting parameters in land surface schemes (e.g.

Kabat et al., 1997) – see review in Blöschl (1996). For some well-defined types

of heterogeneity, equations can be derived to calculate effective values from

statistics or descriptions of the heterogeneous field, but more generally, effective

parameters are defined empirically via calibration. An example from surface flow

is the work of Engman (1986) who derived effective values of Manning’s n for a

range of surface roughness types by analysing the outflow hydrographs from

many runoff plots with different surface treatments. While the simplicity of

effective parameters is attractive, there are problems with their use. For example,

it is possible to reproduce the effects on lateral flow of macropores by using

Darcy’s equation (3.4) and a very high value of hydraulic conductivity. While

the lateral flux values may then be correct, the distribution of flow velocities is

not (because macropores will flow quickly compared to flow through the soil

matrix) so simulations of, say, solute breakthrough curves will be incorrect. In a

more extreme example, Grayson et al. (1992a) obtained acceptable runoff simu-

lations using an effective value of infiltration to simulate infiltration excess sur-

face runoff from a catchment where saturated source area runoff occurred (i.e.

the physical process representation was wrong). It is also not guaranteed that

effective parameter values can be found, i.e. it may be that no single effective

parameter exists that produces the same response (discharge output in the exam-

ple of Figure 3.8) as the heterogeneous (more realistic) block for the process and

conditions considered. Binley et al. (1989), for example, were unable to define

effective parameter values for soil hydraulic properties in a coupled surface–

subsurface flow model. As modellers, we are often left with little choice but to

use the effective parameter approach, but we must recognise that effective para-
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meters may have a narrow range of application and an effective parameter value

that ‘‘works’’ for one process may not be valid for another process.

Sub-element variability can also be represented by distribution functions. In

this approach, the variability within an element is represented by a distribu-

tion of values and this distribution is used in the equations rather than a

single value. It is common to represent the distribution as a number of classes

(i.e. discretise the distribution) and apply the model equations to each class.

The element response is then the sum of the responses of the classes. In some

very simple models, it is possible to use continuous functions, e.g. Entekhabi

and Eagleson’s runoff model (1989) uses a distribution function for rainfall

intensity and one for infiltration rate which are then convoluted to give runoff

(those parts where rainfall intensity is greater than infiltration rate). Goodrich

(1990, Chapter 6) uses the more common discrete approach and represents the

sub-element variability of infiltration rates by conceptualising the planar ele-

ments of KINEROS as a series of parallel strips to which he applied saturated

hydraulic conductivity values according to a log-normal distribution.

Famiglietti and Wood (1994) used the distribution of Beven and Kirkby’s

wetness index to break up elements into intervals to which was applied a

local model simulating evaporation. One can even think of models such as

TOPMODEL being sub-element representations where the ‘‘element’’ is a

whole hillslope and the distribution function of wetness index represents the

sub-grid variability.

A third approach is to parameterise sub-grid variability directly. While this

approach has a long history in other geosciences such as meteorology, it has so

far rarely been used in hydrology. One example is the representation of rill over-

land flow within model elements by Moore and Burch (1986). The effect of rills in

an element is represented by a lumped equation:

R ¼ F � Am
ð3:5Þ

where R is the hydraulic radius, A is the cross-sectional area of flow and F and m

are parameters. These two parameters represent the detailed geometry of the rills

in a lumped manner. It can be shown that m equals 0.5 for trapezoidal or para-

bolic geometries compared to 1 for sheet flow (Moore and Burch, 1986), and other

studies have shown that in practice, m varies between these values (e.g. Parsons et

al., 1990; Willgoose and Kuczera, 1995). The parameters F and m can be calcu-

lated from a graph of R versus A which can be obtained from a microtopographic

survey of a small plot. These parameters can then be applied to the whole area

where that type of surface occurs. This type of parameterisation does represent

sub-grid processes in a realistic manner and it appears that there is opportunity for

further use of parameterisation in subgrid representations of catchment models.

3.3.5 What Complexity Is Warranted?

As we have argued throughout this book so far, process understanding, data

and modelling are linked in a potentially ‘‘infinite loop’’ where we get more
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complete representations and understanding in each iteration (Figure 3.2). At

some point we have to ‘‘break out’’ of the loop so we can actually use a model for

practical applications. When we do so, we have to accept the remaining incon-

sistencies between reality and the model. So when do we ‘‘break out’’? What level

of complexity do we need?

There are two fundamental approaches to these questions. The first is to begin

with the simplest model that is able to reproduce the measured system behaviour

and introduce added complexity only when it consistently improves the fit to

observations and satisfies our understanding of the system response (i.e. implies

hydrological behaviour that we know to occur). This approach (the ‘‘downward’’

approach) places a high priority on field data, parameter identifiability (the

notion that a set of optimum parameters can be well established) and testability.

It implies that we might ignore processes that we know to occur if their repre-

sentation does not improve measured model performance. This is the only

approach that strictly follows Popper’s (1977) notion of the scientific method

and the need for falsifiability, but in a practical application, it may result in a

model that is too simple to address the problem of interest.

The second approach is to model all the processes thought to be important,

and assume that because the conceptualisations of individual processes are

‘‘right’’, the overall model is ‘‘right’’. This is the ‘‘upward’’ approach.

Something closer to the second approach has been common practice in distrib-

uted catchment modelling, but leads to a model that is probably too complex and

cannot be properly tested. The large number of model parameters that result

from this approach leads to numerous combinations of parameter values giving

predictions of similar quality, i.e. the parameters are not identifiable (see Beven,

1989; Grayson et al., 1992a, b). In other words, when simulations based on

different parameter sets are compared to observations, it is not clear which set

of the parameters gives a better fit to the data.

This difficulty arises because the complex model is an ‘‘ill posed system’’ (in

a mathematical sense). Groundwater modellers have been aware of this for

decades and term it ‘‘non-uniqueness’’, while other terms are also used, e.g.

‘‘equifinality’’ (Beven, 1996). Many combinations of parameter values can lead

to similar simulations of observed behaviour such as runoff at the catchment

outlet or water level in groundwater bores. This implies that the observations

are insufficient to properly test the model structure or parameters, i.e. it is not

possible to identify the model structure or parameters. It also means that even if

a model is able to simulate a particular type of observation, it does not indicate

that other predictions made by the model are correct. For example, a model

may give good fits to streamflow at a catchment outlet, but this does not

indicate accurate simulation of streamflow at internal gauging stations or cor-

rect spatial patterns of saturation deficit. This has been clearly shown by many

researchers, yet is commonly ignored by model users who confidently display

spatial predictions based on an implicit assumption that because the outflow

hydrograph was correct, the internal predictions are also accurate (see Chapter

13 for further discussion). This problem of ‘‘extrapolation into the unknown’’
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(Bergström, 1991), becomes acute when, for example, untested spatial runoff

predictions are used as input to sediment or contaminant transport equations

that require accurate flow depth and velocity estimates. It is also a problem

for using these models to predict the effects of changing land use or climate,

because, although some model parameters can be altered to simulate the

expected effects of such changes, the uncertainty in the predictions is

unknown.

The fundamental problem is that many of the equations we use to represent

processes require calibration – their parameters cannot be directly measured.

This is true even of ‘‘physically based’’ equations because they are invariably

applied at a scale different to that at which they were derived. They then become

conceptual representations with scale dependent parameters (see Philip, 1975;

Klemeš, 1983; Hillel, 1986; Anderson and Rogers, 1987; Beven, 1989, 1996;

Grayson et al., 1992b; Refsgaard et al., 1996). There is also a strong argument

that some of these equations are wrong at different scales (e.g. Beven, 1996

argues that Darcian assumptions are simply wrong at the field scale). In any

case, every time a new (or more complex) process description is included in a

model, more parameters are added, each of which must either be calibrated or

have a value assigned. The complexity and scale-dependent behaviour of nature

is such that it is generally difficult to do this with any precision. The nonlinearity

of processes such as surface and unsaturated flow, or evaporation, exacerbates

the problem. Therefore, each new process introduces more ‘‘degrees of freedom’’,

making testing even more difficult.

Ultimately the simple ‘‘downward’’ and complex ‘‘upward’’ approaches

should converge since we want models that represent important spatial processes

but that can be tested for both their internal and lumped predictions. They need

to be tested well enough to know they are producing the ‘‘right’’ results for the

‘‘right’’ reasons. This will be possible only when there are sufficient observations

to enable each process representation and the interaction between them to be

tested. The use of new and different data is a vital step towards this convergence.

Examples of new data types include geochemical tracers that provide information

about flow pathways (Kendall and McDonnell, 1998), using multiple outputs

such as simulated streamflow and salinity simultaneously (e.g. Mroczkowski et

al., 1997) and of course, the motivator for this book, spatial patterns of hydro-

logical behaviour.

Each of the case study chapters is an illustration of where pragmatic

choices have been made regarding the appropriate level of model complexity

and the consequences of those choices. The choices can be viewed within the

context of Figure 3.2, i.e. deciding on the dominant processes, perhaps with

the help of some initial measurements, and then building (or modifying) a

model structure to represent those processes and collecting more data (and

especially spatial patterns) both to develop understanding of the processes and

to better represent them in the model. The general philosophy illustrated in

the chapters varies but is generally more akin to the ‘‘upward approach’’

although the approach used in Chapter 9 would be considered ‘‘downward’’

72 R Grayson and G Blöschl



with complexity being added where needed to better explain the spatial data.

An ‘‘upward’’ example is Chapter 6 where Houser et al. used a relatively

complex model (TOPLATS) but found that many of the components could

be ignored (in fact needed to be for good simulations), so long as the spatial

variability of precipitation was properly represented. Again this was made

possible by the extensive spatial data available.

Several of the case study authors conclude that their models probably need to

be more complex to deal with remaining inconsistencies between data and simu-

lations. For example: in Chapter 7, Tarboton et al. discuss the need for better

treatment of radiation and mass movement of snow in steep terrain; in Chapter 9,

Western and Grayson indicate that modelling of soil crack dynamics during

seasonal wetting and drying is likely to result in better simulations; in Chapter

10, Vertessy et al. indicate that further improvement may need pipeflow to be

explicitly represented; in Chapter 11, Lamb et al. discuss the possibilities of

changes that relax some of the constraints imposed by the TOPMODEL struc-

ture. In most cases, further data would be needed to test whether these added

complexities actually helped reconcile simulation and reality.

These case studies illustrate the ‘‘infinite loop’’ of Figure 3.2. At some

point we break out and leave some ‘‘loose ends’’ that can be resolved only

by re-entering the loop. When we face a modelling problem in practice, we

need a starting point in terms of model complexity. Figure 3.9 illustrates the

conceptual relationship between model complexity, the availability of data for

model testing, and predictive performance of the model. We use the term

‘‘data availability’’ to imply both the amount and quality of the data in

terms of its use for model testing. Having pattern data is equivalent to

‘‘large’’ availability while just runoff data would imply ‘‘small’’ availability.

We use the term ‘‘model complexity’’ to mean detail of process representation.

Complex models include more processes and so are likely to have more

parameters.
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Figure 3.9. Schematic diagram of the relationship between model complexity, data availability and
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If we have a certain availability of data (e.g. solid line in Figure 3.9), there

is an ‘‘optimum model complexity’’ beyond which the problems of non-

uniqueness described previously become important and reduce the predictive

performance. There are too many model parameters and not enough data to

test whether the model is working, or is working for the right reasons, which

means that both the model structure and the model parameters cannot be

identified properly. We can use a simpler model than the optimum, but

then we will not fully exploit the information in the data (e.g. intersection

of solid and dashed lines). For given model complexities (e.g. dashed and

dotted lines), increasing data availability leads to better predictive performance

up to a point, after which the data contains no more ‘‘information’’ to

improve predictions; i.e. we have reached the best a particular model can

do and more data does not help improve performance (the dashed and dotted

lines flatten out as data availability increases). In this case, we could consider

a more complex model to better exploit the information in the data, and this

is something considered in some of the case studies in this book. The more

common situation for practical applications of distributed modelling is repre-

sented by the intersection of the dotted and solid lines, where we are using too

complex a model with limited data and so have identifiability problems.

Increased data availability is needed to significantly improve the predictive

performance (Chapter 13).

Ultimately the answer to ‘‘what complexity is warranted’’ depends on the

objectives of the modelling exercise and knowledge of the system. The key

point is that it is not useful to add complexity when we have no way of

testing whether this improves a model or makes it worse. The topic of

model complexity has been a source of stimulating discussion in the literature

and interested readers may wish to consult some of the following (Bair, 1994;

Bathurst and O’Connell, 1992; Beck, 1987; Beven, 1987, 1989, 1996; Refsgaard

et al., 1996; Bergström, 1991; Grayson et al., 1992b; Jakeman and

Hornberger, 1993; Hillel, 1986; Konikow and Bredehoeft, 1992; Klemeš,

1983, 1986a; James and Burges, 1982; Morton, 1993; Oreskes et al., 1994;

Philip, 1975; Smith et al., 1994).

In order to know if a model is ‘‘improved’’, criteria need to be set that reflect

how the model will be used, i.e. that test the components of a model that are

critical to the output of interest. For example, if we want to simulate patterns of

soil erosion on hillslopes, we would need to test model predictions against flow

depth, velocity and sediment concentration from various places on hillslopes,

rather than just against catchment runoff and sediment load. Hence there is a

direct link between the purpose of the model, the level of complexity we can

justify, the details of the data we have for calibration and testing, and the criteria

we use to quantify performance.

The following sections summarise the conceptual underpinnings of model

calibration and testing, approaches to the representation of predictive uncer-

tainty, and how the value of added complexity, particularly in spatial models,

might be assessed.
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3.4 MODEL CALIBRATION AND TESTING

Model calibration is the process of choosing the ‘‘best’’ set of parameter values

while model testing is the process we go through in an attempt to define the

uncertainties in predictions, or at least get a feeling for their magnitude.

Calibration is a process of optimising a model’s parameter values to improve

the ‘‘fit’’ between simulated and observed catchment responses. The ‘‘fit’’ can

simply be a qualitative assessment of how close two time series appear (e.g. plots

of observed and predicted hydrographs, or observed and predicted spatial soil

moisture) but will generally be more quantitative.

An ‘‘objective function’’ provides a quantitative measure of the error between

simulations and observations. We seek to optimise parameter values so the

objective function is minimised. The choice of objective function determines

what part of a model’s performance is being tested. For example, when compar-

ing observed and predicted streamflow, a range of objective functions are com-

monly used, e.g.:

1. Sum of the squares of the difference between simulated and observed flows

(this emphasises large flows since larger absolute errors are likely to occur

compared to low flows, i.e. mainly tests whether the peaks match).

2. Sum of the absolute values of the differences between observed and simu-

lated flows (as for 1 but less sensitive because errors are not squared, i.e.

tests whether the water balance matches).

3. Sum of the ratio between observed and predicted flows (places more equal

emphasis on high and low flows since ratios are used but could result in

large absolute errors in extreme flows).

Note the different emphasis of each function on different flow components. In a

spatial context, we could use similar types of functions; e.g. we could apply 1 to a

point-to-point comparison of observed versus predicted patterns. It is likely,

however, that such simple functions would not exploit all the information in

the patterns and that more sophisticated approaches would be better tests of

model performance. Some more sophisticated approaches are presented in

Section 3.5.

Once an objective function is chosen (noting that this is a subjective task), it

can be minimised by either trial and error or an automated optimisation proce-

dure. Sorooshian and Gupta (1995) and McLaughlin and Townley (1996) present

reviews of approaches to calibration and automated optimisation in surface and

groundwater models respectively. They highlight a range of problems such as the

presence of multiple optima and strong correlations between parameters, which

can lead to the identification of a non-optimum set of parameters. These pro-

blems are the result of the large number of parameters in distributed models. It is

therefore common to try to reduce the number of parameters to be optimised, i.e.

reduce the ‘‘degrees of freedom’’. This is done by choosing a pattern for a spa-

tially distributed parameter and then calibrating usually a single parameter that

sets the values for the whole pattern. A common example relates to soil hydraulic
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properties. Because of their spatial variability, they are sometimes calibrated, but

in a distributed model, this may mean many thousands of ‘‘free’’ parameters (one

or more for every model element). Clearly this is not tractable, so a pattern may

be imposed, for example by the soil type, which sets the relative hydraulic proper-

ties for every element. A single parameter is then optimised that defines the

absolute values from the pattern of relative values. This reduction in degrees

of freedom makes the optimisation procedure tractable and significantly reduces

the identifiability problems discussed above. But of course it imposes a pattern on

the distribution of soil properties that may or may not be realistic (see examples

in Chapters 6, 9 and 10). Wetness indices can be used in the same way to define,

for example, the pattern of initial saturation deficit for a runoff model, leaving a

single parameter to be calibrated that sets the absolute value of the pattern (e.g.

Grayson et al., 1992a). Clearly this step of reducing degrees of freedom comes at

a cost and will undermine model performance if the choice of pattern is poor.

Once a model is calibrated and optimised, it needs to be tested. There is some

confusion in the literature about terminology related to testing (see Oreskes et al.,

1994; Konikow and Bredehoeft, 1992; de Marsily et al., 1992). These are dis-

cussed in detail in Chapter 13 in the context of using distributed models for

prediction in practical applications. Suffice to say here that the term verification

should be reserved for strict tests such as of model code where analytical and

numerical simulations are compared and should not be used in relation to model

testing against real data. On the other hand, validation is where observations and

simulations are compared using data that were not part of the calibration. As

discussed in Chapter 13, a model is validated for a particular application and a

successful validation in one example does not imply that the model is validated

for universal use. Again, objective functions can be used to provide a quantitative

assessment of the validation step.

The extent to which the validation step really tests the model structure and

parameters is obviously dependent on the type of data available for testing.

Klemeš (1986b) presented some standard approaches for lumped rainfall runoff

modelling, based on variations of ‘‘split sample’’ tests where the observed period

of record is split with some data used for calibration and the other for validation

and these two sets should be independent. These approaches and their applica-

tion to spatial modelling are described by Refsgaard in Chapter 13. The impor-

tant question to consider when assessing both the calibration and validation steps

is ‘‘just what is being tested?’’ i.e., how well do the comparisons test the model

structure, what can be inferred about the identifiability of parameters or the

confidence (predictive uncertainty) in simulations?

These questions can be answered qualitatively, but the complexity of distrib-

uted models has led to the development of more formal approaches. Uncertainty

in prediction of hydrological response can arise from four sources: uncertainty in

the input data due to sampling or interpolation error; uncertainty in simulated

responses due to model parameter errors; and uncertainty related to the hypoth-

eses that underlie the model itself and the model structure. Note also that there

may be uncertainty in the data against which the model output is calibrated and
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tested. This will affect the certainty we can have in model structure or para-

meters.

Quantifying these various sources of uncertainty and their effect on overall

predictive capability is an active area of research (e.g. Sorooshian and Dracup,

1980; van Straten and Keesman, 1991; Beven and Binley, 1992; Mroczkowski et

al., 1997; Kuczera and Parent, 1998; Gupta et al., 1998; Franks et al., 1998). The

more recent approaches make use of Monte Carlo simulation (i.e. running a

model many times using parameters or inputs drawn randomly from a particular

distribution (Tanner, 1992; Gelman et al., 1997). In principle, these methods

enable quantification of the different errors, have the ability to assess the value

of additional information in constraining model uncertainty and can compare

different model structures in terms of their ability to reproduce observed beha-

viour (see Chapter 11). But they are still being developed and are presently

limited by large computational demands, differing amounts of subjectivity and,

in some cases, methods that lump all errors into parameter uncertainty. Once

these limitations are overcome, these methods should gain wide use and will have

a major impact on modelling.

The stage of development and computational requirements of these sophisti-

cated methods means that most studies undertake only simple assessments of

errors and uncertainty such as ‘‘sensitivity analyses’’. In sensitivity analyses,

parameters are varied over particular ranges and an assessment is made of the

extent to which the output varies. This approach can give the modeller an idea of

which parameters dominate the model response – i.e. which are the crucial ones

to ‘‘get right’’, but allows for only limited consideration of the complex inter-

relationships between model parameters that generally exist, particularly in dis-

tributed models.

Another simple approach to assessing model quality is to carefully analyse the

residuals between observed and simulated responses. Unbiased and randomly

distributed residuals imply that the model does not contain structural problems

that lead to systematic errors, and that it exploits all of the information present in

the data. Small residuals indicate good model accuracy, and similarity between

the size of the residuals from the calibration and validation steps is another sign

that the model structure is good. Analysis of residuals was illustrated in Western

et al. (1999a), who used spatial plots of differences between measured and simu-

lated soil moisture (using a terrain index model) to illustrate that all of the terrain

‘‘signal’’ in the soil moisture measurements was represented in their model. The

remaining errors were not related to terrain and could have been either sampling

noise or due to randomly distributed soil or vegetation effects. Mroczkowski et

al. (1997) apply this approach in a more rigorous manner using multiple response

time series data to explore different structures for a streamflow and salinity

model and illustrate the value of different types of information for improving

the rigour of model testing.

The hydrological community still has a long way to go in model testing to

achieve comprehensive assessments of predictive uncertainty. Even the most

basic of testing approaches such as those discussed by Klemeš (1983) are often
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not applied, and application of the more complex approaches is rare. But it is

important to recognise that even the most sophisticated assessment of uncer-

tainty is useful only if we have detailed data available of a type that really

tests the basic hypotheses of the model. This is where the importance of patterns

becomes clear, yet ‘‘goodness of fit’’ measures for patterns are not well developed.

Indeed comparisons of observed versus simulated patterns rarely go beyond

simple visual comparison of the basic patterns, or at best, residual patterns.

The following section looks in more detail at approaches to pattern comparison.

It is likely that one day these may become part of comprehensive assessments of

predictive uncertainty based on spatial patterns, with the error analyses between

observations and simulations being used to inform model development.

3.5 SOME PATTERN COMPARISON METHODS

One of the basic motivations for this book is the belief that more refined and

insightful use of spatial patterns is vital for progressing the science of hydrology

and for better constraining the uncertainty in our predictions of the future. Each

of the case studies presented in this book makes comparisons between observed

and simulated patterns of various types to assist modelling and process under-

standing. In this section we introduce a number of possible methods for compar-

ing spatial patterns that have the potential for assessing the quality of

hydrological predictions. These methods have been selected because the results

from them can be interpreted hydrologically, thus enabling identification of

model components that are performing poorly and perhaps producing improve-

ments in hydrological understanding. Some of the methods have been used in the

case studies presented later, while others are logical extensions, which may be

used in the future. This is a very new area for hydrology and techniques are still

being trialed and developed.

3.5.1 Methods Used in This Book

Visual comparison of simulated and observed spatial patterns provides qua-

litative information about the predictive ability of a model and is used through-

out this book. Albeit simple and subjective, it is an extremely useful method as

areas of consistent error can be identified and it may be possible to make

qualitative associations with the model components causing the errors. The

disadvantage of this method is that it does not provide a quantitative measure

of model performance. Thus, it is not possible to extend this method to auto-

mated optimisation techniques which makes inter-model comparisons rather

subjective. Nevertheless, it is easy to implement, and, as will be illustrated in

the chapters that follow, enables a lot of insight into the model performance

and limitations.

Point-by-point comparison methods include both direct comparison of simu-

lated and observed ‘‘pixel’’ values as well as the mapping of residuals between
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observed and simulated patterns (see Chapter 9). These techniques can provide

information about bias (mean error), random simulation errors (error variance)

and any organisation that may be present. The mean error and the error

variance are similar to statistics used in traditional model evaluation using

time-series; however, they can be applied in a spatial context to test internal

model predictions. This method can also provide the spatial correlation struc-

ture (variogram) of the residuals, which gives information about the spatial

scale or correlation length of the errors (e.g. Western et al., 1999a). If the

correlation length of the errors is smaller than the model element scale, it

can be concluded that the errors are due to either measurement error or to

small-scale variability not resolved by the model. Since the model does not aim

to represent these features, it can be concluded that the model is performing as

well as can be expected (assuming there is no bias and a sufficiently small error

variance). If the correlation length of the errors is significantly longer than the

model grid scale, it can be concluded that there are patches where the errors are

similar; i.e. there is some problem with the structure of the model that causes

certain parts of the landscape to be better represented than others. A careful

analysis of the simulated response and an understanding of the model structure

gives guidance on potential model improvements. The point-by-point approach

is used in Chapters 7 and 9, 11 and 12.

An extension of the point-by-point approach, which accounts for measure-

ment error and sub-element variability that is not represented by the model, is to

smooth the observed pattern and then compare it with simulations on a point-by-

point basis. For the smoothing, geostatistical techniques such as kriging and

other interpolation/estimation methods can be used as illustrated in Chapter 2,

Figure 2.7. In a geostatistical approach, the nugget can be set to the sum of

measurement error and sub-element variability that is not represented by the

model. Point-by-point comparison between the ‘‘smooth’’ observed and simu-

lated patterns then allows the separation of the effects of apparent small-scale

variability (see Chapter 2, p. 32) and large-scale variability which should be

represented in the distributed catchment model. Chapter 9 makes use of this

approach (p. 230).

To gain further insight into which hydrologic process representations may or

should be improved in the model, errors can be analysed to ascertain whether

there is any relationship with topographic variables. Such relationships may pro-

vide hydrological insight into the cause of the errors. Relationships of this type

have been examined in Chapters 7, 8, 9, 11 and 12. For example, a relationship

between aspect and the error in simulated soil moisture probably indicates a

problem in simulating the spatial pattern of evapotranspiration. Likewise, a

relationship between a wetness index representing the control of topography

on soil moisture and the error may indicate problems with the simulation of

one of the lateral redistribution processes; e.g. if the gullies are simulated as

being too dry, it may indicate that subsurface flow is too small, perhaps because

macropore flow is occurring or because the conceptualisation of saturated/unsa-

turated fluxes is not correct.
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3.5.2 Opportunities for Future Pattern Comparison

A limitation of the methods above (except visual comparison) is that they do

not provide any information on lateral shifts – i.e. where the basic shape of

patterns is correct but their location is shifted. Optimal local alignment (e.g.

Bow, 1992) is a method used in pattern recognition and provides information

on space shifts between two patterns. A field of shift vectors is calculated in the

following way. Initially the whole domain is divided into subareas. Then correla-

tion coefficients between point-by-point comparisons of the observed vs. simu-

lated patterns are calculated for corresponding subareas. The relative position of

the two corresponding subareas is then changed (i.e. shifted) and correlations are

again calculated (i.e. a cross-correlation analysis). The optimum shift (i.e. opti-

mum alignment) is where the correlation is best. This approach has the potential

to identify model mismatches in the direction of the hillslopes as well as other

shifts such as those associated with biases due to aspect or the way soil para-

meters were imposed, or georeferencing problems. To use this method success-

fully, it would be necessary to have small subareas but there is a tradeoff between

having sufficient points in each subarea for accurate computation of correlations

and obtaining detailed spatial information (high resolution) in the resulting vec-

tor field. While appearing to be a sound approach, this method has yet to be

illustrated in the hydrological literature and a large number of points in space are

needed.

Because water flows through the landscape along pathways that are domi-

nated by the topography, pattern shifts may be associated with particular terrain

features. This could be explicitly taken into account when comparing simulated

and observed patterns. Transects of simulated and observed variables such as soil

moisture along and across topographically defined flow pathways could be exam-

ined to search for shifts between the simulated and observed patterns. Cross-

correlations between the simulated and observed patterns could also be calcu-

lated, but using a coordinate system consisting of topographic streamlines and

contour lines. This approach may be useful in identifying problems with the

lateral flow redistribution component of the models and may need fewer points

in space than the optimal local alignment method, but has yet to be illustrated in

the literature.

The preceding methods are applicable to patterns at specific points in time.

However, as illustrated in the case study chapters, changes in the patterns over

time provide additional information about the dynamics of the hydrological

system. By calculating differences between two observed patterns and comparing

the resulting spatial pattern of temporal differences with the equivalent informa-

tion from a model, insight into the dynamics of a landscape and the ability of a

model to capture those dynamics may be obtained. These dynamics will be

spatially variable. All the above methods can be applied to spatial patterns of

temporal differences. In Chapter 8, Troch et al. use temporal comparisons of

patterns from remotely sensed data using the point-by-point method and princi-

pal component analysis. In Chapters 7 and 9, the differences between patterns of
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snow cover and soil moisture respectively are compared to simulated changes in

model ‘storages’. There is clearly plenty of scope for development and application

of pattern comparison methods. We believe that pattern comparisons will ulti-

mately become a routine part of distributed model calibration and testing. They

will enable much more definitive tests of model performance to be made and

significantly improve the confidence with which we can claim our models do

indeed represent the right processes and get the right answers for the right rea-

sons.

3.6 FINAL REMARKS

In these introductory chapters, we have illustrated that natural spatial variability

is omnipresent and must be better understood if we are to advance our knowl-

edge of hydrological processes and improve hydrological prediction. We have

introduced some basic concepts to deal with spatial variability and the patterns it

manifests. Some specific tools that can quantify variability and allow it to be

represented in models were described in Chapter 2. We have proposed that better

utilisation of spatial patterns is necessary to properly test and develop the numer-

ous spatially explicit hydrological models that are presently available, and to

further our understanding of hydrological processes. The next two chapters are

reviews of spatial patterns in precipitation and evaporation. These are followed

by the case study chapters which are examples that will test whether our asser-

tions are sound.
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Patterns and Organisation in Precipitation

Efi Foufoula-Georgiou and Venugopal Vuruputur

4.1 INTRODUCTION

Rainfall possesses a complex spatio-temporal structure which has been the sub-

ject of many studies. Traditionally, applied hydrologists have recognised the

importance of this structure on runoff production, and have tried to analyse

and model it using simple descriptions, such as the depth–area–duration

(DAD) curves, the area-reduction curves, and the hyetographs or normalised

hyetographs (see Chow et al., 1988; Linsley et al., 1982; Viessman and Lewis,

1996). The DAD curves depict, for a given duration, the area of the storm over

which a given depth is equalled or exceeded. The area-reduction curves depict,

for a given duration again, the decrease of the maximum storm depth (measured

at a point) when it is averaged over increasing areal extent around that point. The

normalised hyetograph (or mass curve) depicts, at a particular location or as

average over an areal extent, the percentage of total storm depth (normalised

depth) versus the percentage of storm duration (normalised time).

The above are of course simple measures of the complex spatio-temporal

variability of the observed storm patterns, but still provide a means of comparing

observed patterns to each other or to extremes. They also provide the means of

parameterising design storms and reconstructing their spatio-temporal patterns

to be used in predicting design hydrographs through rainfall-runoff modelling.

For example, a 12-hour design storm depth at a point (computed from a fre-

quency analysis or from the Probable Maximum Precipitation methodology) can

be converted to ‘‘a design storm pattern’’ by assigning it a DAD curve and a

design mass curve. That is, the spatial internal structure of the design storm could

be reconstructed using the selected design DAD curves and an assumed shape for

isohyets, and the temporal distribution of the total rainfall depth over its dura-

tion could be obtained using the selected design mass curve. All these attempts to

reconstruct the space-time variability of a storm were based on the recognition

that this variability plays an important role in runoff production (e.g., see Kiefer
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and Chu, 1957; Huff, 1967; Pilgrim and Cordery, 1975; and Milly and Eagleson,

1988; among others). It should be noted that in the early hydrology days, due to

data limitations (typically one or a few raingauges over the basin) more detailed

descriptions of the storm spatiotemporal patterns were not possible.

The recognition of the importance of the small-scale space-time rainfall varia-

bility on runoff modelling led to considerable research efforts in developing

stochastic point process models or phenomenological spatiotemporal models of

rainfall which could be used to simulate precipitation patterns, conditional on

preserving a desired total depth (e.g., see Gupta and Waymire, 1979; Kavvas and

Delleur, 1981; Waymire et al., 1984; Valdes et al., 1985; Seed et al., 1999; see also

the review of Foufoula-Georgiou and Georgakakos, 1991). In more recent years,

the wide availability (at least in the United States) of NEXRAD or other radars

that continually monitor rainfall at high spatial and temporal resolution (typi-

cally pixels of 2 or 4 km and at intervals of 6–10 min) have provided unique

opportunities to better understand and quantify the small-scale rainfall variabil-

ity. These efforts have provided considerable insight on the effect of rainfall

resolution on the accuracy of runoff production estimates (e.g., see Kouwen

and Garland, 1989; Krajewski et al., 1991; Ogden and Julien, 1993, 1994;

Michaud and Sorooshian, 1994a; Obled et al., 1994; Faurès et al., 1995; and

Winchell et al., 1998) despite the still unresolved problems related to the accuracy

of the NEXRAD estimates of precipitation (e.g., see Collier and Knowles, 1986;

Pessoa et al., 1993; among others). Also, the need to unify descriptions over

scales (i.e., rainfall variability over a small area with rainfall variability over a

larger scale) and to parameterise subgrid-scale rainfall variability parsimo-

niously, has prompted the introduction of new ideas and tools for analysing

and modelling space-time rainfall patterns, namely, the ideas of scale-invariance

(see Schertzer and Lovejoy, 1987; Gupta and Waymire, 1990; Kumar and

Foufoula-Georgiou, 1993a,b; among others).

Scale invariance implies that variability of rainfall, or another quantity such

as rainfall fluctuations, exhibits a statistically similar structure under proper

renormalisation of space and/or time coordinates. The scale-invariance concept

for rainfall has been conceptually justified based on the idea that, after all, rain-

drops are tracers in the turbulent atmosphere and thus the documented presence

of scale-invariance in fully-developed turbulence might also be manifested in the

rainfall fields produced. Irrespective of the theoretical rationale and foundation

of the scale-invariance ideas of rainfall, compelling evidence has been accumu-

lated over the past decade that indeed some features of rainfall exhibit scale

invariance (for example, see Foufoula-Georgiou and Krajewski, 1995; and

Foufoula-Georgiou and Tsonis, 1996). This evidence has paved the way for

the development of new classes of space-time rainfall models which are applicable

over a large range of scales. Models based on scale invariance are considerably

more attractive compared to the previous generation of stochastic point process

phenomenological models in that they: (a) are much more parsimonious, i.e., 2 or

3 parameters versus 10 to 12 parameters in the previous models; and (b) are
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scale-independent, i.e., applicable to a wide range of scales without changes in

the model parameterisation or parameter values.

Another approach to the generation of high-resolution space-time patterns of

precipitation is via numerical weather prediction models. These models have been

considerably advanced in recent years in terms of physical parameterisations,

data assimilation and numerical schemes, but still require extensive computa-

tional resources to run at high resolutions (e.g., see Droegemeier, 1997).

Typically, they run in a nested mode where higher resolution domains are nested

within a larger lower resolution domain which provides boundary fluxes and

larger-scale environmental forcings to the smaller domain. The very high resolu-

tion domain involves sophisticated microphysics suitable to explicitly resolve

cumulus-scale convection. The outer domain typically uses convective parame-

terisation schemes which depend on the model resolution. The accuracy of quan-

titative precipitation forecasts (QPFs) produced by these models has not been

fully evaluated yet and is an issue of ongoing research (e.g., see Fritsch et al.,

1998). Moreover, several studies have demonstrated the sensitivity of the result-

ing precipitation patterns to the chosen convective parameterisation schemes

(even if these schemes are only used at the lower-resolution outside domain),

to the chosen model resolution, to the degree of prescribed heterogeneities, and

to the land–atmosphere exchange mechanisms embedded in the model (e.g., see

Kain and Fritsch, 1992; Sivapalan and Woods, 1995; Avissar and Liu, 1996;

Brubaker and Entekhabi, 1996; Wang and Seaman, 1997; Warner and Hsu,

2000; among others).

This chapter concentrates on stochastic descriptions of space-time rainfall

variability based on scale-invariant parameterisations. It reviews some of the

recent research describing and modelling spatiotemporal rainfall patterns and

demonstrates that indeed the seemingly complex patterns of rainfall exhibit

simple underlying statistical structures which can be unravelled with proper

methodologies. We focus only on spatiotemporal descriptions based on scaling

of rainfall fluctuations. Other descriptions based on multiscaling of rainfall

intensities or multiplicative cascades (e.g., Schertzer and Lovejoy, 1987; Tessier

et al., 1993; Over and Gupta, 1994; Seed et al., 1999) are not reviewed herein

and the reader is referred to the original publications for such developments

or to Foufoula-Georgiou and Krajewski (1995) for a brief review and further

references.

Our presentation in this chapter evolves around three major questions:

1. If spatio-temporal patterns of rainfall exhibit an organised structure, how

can this be used in building parsimonious models which are applicable over

a range of scales and can also be used for the purpose of downscaling (i.e.,

reconstructing small-scale variability from large-scale averages)? This last

issue is especially important given the increasing availability of remotely-

sensed data whose reliability is often considered adequate only if observa-

tions are averaged over large scales, and also given the need to interpret the

results of global or continental scale studies to the hydrologic basin scale.
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2. If rainfall spatiotemporal patterns exhibit organisation, how can this help

us to understand the still open question of relating the physics of the

atmosphere with the statistics of the produced precipitation patterns?

3. If documentable space-time organisation exists in observed precipitation

patterns, is the same structure reproduced by state-of-the-art numerical

weather prediction models which eventually will be used to predict future

storms and the resulting floods? And, moreover, what does the success or

lack of success of the model in reproducing this structure tell us about the

physics and parameterisations we currently use in atmospheric models?

4.2 SPATIAL RAINFALL ORGANISATION

To explain the idea of multiscale rainfall variability, consider the left-most field

of Figure 4.1. It represents the radar-depicted rainfall intensity field of an

extreme squall line storm of June 27, 1985 over Kansas and Oklahoma at

0300 UTC at a resolution of 4 km. If this field is degraded to different scales

e.g., 8, 16, 32, 64 km by averaging, then the question arises as to whether the

spatial rainfall variability of this field changes with scale in a systematic way.

Moreover, notice that when we average or filter the process at a small scale to

go to a larger scale, some ‘‘information’’ about its spatial variability is lost.

This lost ‘‘information’’ when going from one scale to a coarser one by aver-

aging can be preserved by keeping the so-called rainfall ‘‘fluctuations’’ (i.e. the

difference in intensities in adjacent pixels in terms of space and/or time). If the

variability of the rainfall intensities themselves does not exhibit a simple sta-

tistical structure over scales, could it be that such a structure exists in the

rainfall fluctuations?

Kumar and Foufoula-Georgiou (1993a,b) and later Perica and Foufoula-

Georgiou (1996a) performed a multiscale analysis of spatial rainfall fields using

a discrete orthogonal wavelet transform. This transform within the multiresolu-

tion framework of Mallat (1989) provides a filter which simultaneously keeps the

‘‘averages’’ (smoothed fields) and ‘‘fluctuations’’ (details lost) as the scale

changes. The two-dimensional orthogonal wavelet transform is a directional

filter, so it can handle anisotropy, and is a reconstructive filter so that from

the average field at 64 km and the fluctuations at scales 8, 16, 32 and 64 km,

the field at the smaller scale (higher resolution) of 4 km can be reconstructed. Of

course, statistical parameterisation of the details will result in a statistical recon-

struction of the high-resolution field. These ideas give rise to three important

questions: (a) does the spatial variability of the rainfall intensity fields at a range

of scales, exhibit a simple structure which can be parameterised with a few

coefficients?; (b) what about the structure of rainfall fluctuations or details as a

function of scale?; and (c) what physical parameters might control the way this

variability changes over scales?

These three questions were considered by Perica and Foufoula-Georgiou

(1996a,b) who analysed a large number of mid-latitude mesoscale convective
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systems monitored by the Oklahoma–Kansas radar during the May–June, 1985

period of the Preliminary Regional Experiment for Storm-Central

(PRESTORM) field program (see Cunning, 1986 for details of this experiment).

It was found that although rainfall intensities themselves did not have a simple

well-structured way of changing their variance as a function of scale, the ‘‘stan-

dardised rainfall fluctuations’’ i.e., rainfall fluctuations normalised by their cor-

responding-scale local rainfall averages, exhibited Normality and simple scaling,

i.e., their variance changed with scale in a log–log linear way. This is not surpris-

ing since the multiscale rainfall averages carry in them the signature of determi-

nistic background features which are particular to the rainfall-producing

mechanism, making it unlikely for them to exhibit simple scaling relationships

over a significant range of scales. However, once these underlying deterministic

features are removed by filtering, the remaining features (e.g., deviations from

local means or spatial rainfall gradients) do not seem to have a characteristic

length scale and are more amenable to stochastic parameterisations which might

present similarities over scales.

Specifically, let X� denote the value of the rainfall average at scale � at a
particular pixel, and X

0

�;i, the value of the rainfall fluctuation (difference of values

at adjacent pixels) at the same scale � and direction i (e.g., latitude, longitude and
diagonal). Standardised rainfall fluctuations at scale � and direction i are defined

as �i;� ¼ X 0
�;i

ffiffiffiffi
X

p
�. Perica and Foufoula-Georgiou (1996a) computed these stan-

dardised fluctuations using an orthogonal Haar wavelet transform and found

that between scales of 4 km and 64 km, for which data were available, �i;�
exhibited Gaussianity and simple scaling implying that

��;L1
��;L2

¼
L1
L2

� �H

ð4:1Þ

where ��;L is the standard deviation of � at scale L km and H is a scale-indepen-

dent parameter. The values of H varied between 0.2 and 0.5 for several mid-

latitude mesoscale convective systems from the PRESTORM data set. The

dependence of H on direction was not very pronounced but H was found to

be strongly dependent on the convective instability of the prestorm environment,

as measured by the convective available potential energy, CAPE (in m2s�2)

H ¼ 0:0516þ 0:9646 � ðCAPE	 10�4Þ ð4:2Þ

(see Figure 4.2). CAPE is the buoyant energy available to a parcel rising verti-

cally through an undisturbed environment and is a measure of the potential

instability at middle to upper atmosphere. It is defined as

CAPE ¼

ðEL
LFC

g �
�c ��env

�env

� �
dz ð4:3Þ

where �c is the potential temperature of an air parcel lifted from the surface to

level z, �env is the potential temperature of the unsaturated environment at the
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same level, LFC is the level of free convection and EL is the equilibrium level

(e.g., see Air Weather Service, 1979; General Meteorological Package

(GEMPAK), 1992).

The empirical relationship between H and CAPE is useful since CAPE can be

computed from observed sounding data or by a numerical weather prediction

model and then H can be estimated from (4.2) and used to infer the variability of

rainfall fluctuations at any scale, given the variability at a reference scale (see also

Perica and Foufoula-Georgiou, 1996b). For more information on the linkage of

CAPE, and some other meteorological parameters, to statistical parameterisa-

tions of rainfall fluctuations, the reader is referred to Perica and Foufoula-

Georgiou (1996a). Application examples are given in Section 4.4.1.

4.3 SPATIOTEMPORAL DYNAMICS

Spatial and temporal features of rainfall are not independent of each other but

relate in ways specific to the physics of the storm-generating mechanisms. Thus, a

lot of insight may be gained by studying simultaneously the spatial and temporal

patterns of rainfall. Recently, Venugopal et al. (1999a) developed a methodology

under which space and time structures of rainfall can be studied simultaneously

at a multitude of scales. Using this methodology, they demonstrated that there

exists a simple scale-invariant spatiotemporal organisation in rainfall patterns

which can be unravelled by proper renormalisation of the space and time coor-

dinates.

Let ILi;jð�Þ and ILi;jð� þ tÞ represent rainfall intensity values averaged over a box

of size L centered around spatial location ði; jÞ of the precipitation field at two
instants of time � and �+ t, respectively (Figure 4.3). The evolution of the field at

scale L and a time period t was characterised in Venugopal et al. (1999a) by the

differences in the logs of the rainfall intensities � ln I , i.e.,
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Figure 4.2. Scattergram indicating the relation-

ship between the scaling parameter H of the stan-

dardised rainfall fluctuations and the Convective

Available Potential Energy (CAPE) in m2=s2 of
their prestorm environment. Data were used

from several midlatitude mesoscale convective

systems of the PRESTORM field program

(after Perica and Foufoula-Georgiou, 1996a).



� ln Ii;j;�ðL; tÞ ¼ ln ILi;jð� þ tÞ
� �

� ln ILi;jð�Þ
� �

ð4:4Þ

computed at all spatial locations ði; jÞ. This selection (as opposed to the simpler

selection of intensity differences, i.e., ILi;jð� þ tÞ � ILi;jð�Þ
� �

) was made since there is

evidence that the rainfall process is not additive but rather multiplicative, that is,

normalised rainfall fluctuations, �I=I � ðI � I 0Þ=ðI þ I 0Þ=2 in the terminology of

Figure 4.3, and not fluctuations �I themselves, are independent random vari-

ables and spatially uncorrelated (see Venugopal et al., 1999a). This implies that

fluctuations of ln(rainfall), i.e., � ln I ¼ ln I � ln I 0 are independent and also

spatially uncorrelated random variables and can be easily characterised statisti-

cally.

The measure described above was evaluated for all locations ði; jÞ and all time

instants �, and for various spatial and temporal scales, L and t, respectively. Then

assuming stationarity in space (i.e., independence of the specific ði; jÞ position)

and selecting stationary regions in time (i.e., regions where the statistics of � ln I

do not fluctuate significantly around their mean value for the region), the prob-

ability density functions (PDFs) of � ln IðL; tÞ were used to characterise the

evolution of rainfall at several spatial scales L and temporal scales t. Notice

that homogeneity in space is a reasonable assumption given that the radar

frame can be seen as a fixed window within which the moving storm is observed.

Thus, unless there is a specific reason to believe that a portion of the radar frame

receives statistically different rainfall than the rest of the frame, intensities (or

� ln I ’s) at all positions (i; j) are considered to come from the same probability

distribution.

Venugopal et al. (1999a) and Venugopal (1999) found, by analysis of several

storms in different geographical regions of the world (the tropical region in

Darwin, Australia; the forested region of Northern Saskatchewan, Canada;

and the Oklahoma region in the midwestern United States), that the PDFs of

� ln IðL; tÞ remain statistically invariant if space and time are renormalised with

the transformation t=Lz
¼ constant. That is, the evolution of the rainfall field at

scale L1 and during a time lag t1 is statistically identical to the evolution of the

rainfall field at spatial scale L2 and time lag t2, as long as

t1=t2 ¼ ðL1=L2Þ
z

ð4:5Þ

where z is the socalled dynamic scaling exponent.
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Figure 4.3. Schematic illustrating the

change in intensity of a field (rainfall in

this case) over a box of size L� L centred

around the location ði; jÞ during a time

interval t.



Table 4.1 shows the matrix of standard deviations of these PDFs of

� ln IðL; tÞ for different spatial scales, L, and temporal scales, t, for a stationary
portion of duration five hours of the December 28, 1993 storm in Darwin,

Australia (see Venugopal et al., 1999a for a description of this storm). Notice

that these PDFs are well approximated by normal distributions centred around

zero at all space and time scales (see Figure 4.4) and thus their standard deviation

completely parameterises them.

From Table 4.1, one can find, by interpolation, pairs of ðL; tÞ such that a
chosen value of the standard deviation �ð� ln IÞ remains constant. For example,

Table 4.2 displays pairs ðL; tÞ for which �ð� ln IÞ remains constant and equal to

0.6, 0.7 and 0.8, respectively. If these pairs satisfy t � Lz i.e., if the iso-standard

deviation lines plot linear on a log–log plot of L versus t, then the process is said

to exhibit dynamic scaling. Figure 4.5 (left panel) shows the log–log plot of the

values of Table 4.2. The fitted lines are for �ð� ln IÞ ¼ 0:8, 0.7 and 0.6 (top to
bottom) and give estimates of z equal to 0.51, 0.54 and 0.58, respectively.

Obviously, these iso-standard deviation lines are well approximated by straight

lines implying that rainfall evolution (as characterised by the PDF of � ln I)

exhibits dynamic scaling. Note that since the PDF of � ln IðL; tÞ is well approxi-
mated by a Normal distribution, scale-invariance of �ð� ln I) implies scale invar-

iance in the whole PDF. This was verified by computing (via interpolation) the

PDFs of � ln I at several ðL; tÞ pairs which satisfy t � Lz (for example, the pairs

in Table 4.2) and checking that indeed these PDFs remained statistically invar-
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Table 4.1. Standard deviations of � ln I (�ð� ln I Þ) with time lag (left to right) and aggregation
level (top to bottom), for a stationary region of the storm of Dec. 28, 1993, in Darwin, Australia

Time Lag t (min)

10 20 30 40 50 60 70 80

L (km) 2 0.58 0.77 0.89 0.97 1.05 1.11 1.17 1.21

4 0.47 0.67 0.79 0.87 0.95 1.01 1.07 1.12

8 0.35 0.55 0.67 0.76 0.84 0.90 0.96 1.01

16 0.23 0.40 0.53 0.63 0.71 0.77 0.83 0.88

Table 4.2. Time (in min) to ‘‘reach’’ different values of the standard deviation of � ln I (left to
right: 0.6, 0.7, 0.8) for various aggregation levels (top to bottom), for a stationary region of the
storm of Dec. 28, 1993, in Darwin, Australia. This table is formed by linear interpolation of the
values in Table 4.1

�ð� ln IÞ

0.6 0.7 0.8

L (km) 2 11.1 16.3 22.4

4 16.6 22.8 31.6

8 24.4 33.3 45.1

16 37.4 49.4 64.7



iant (see Figure 4.6). Similar results were found for several other storms in

Darwin, Australia (see Figure 4.5 for the storm of January 4, 1994), the

BOREAS region in northern Saskatchewan, and the midwestern United States

region (see Venugopal, 1999).
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Figure 4.4. Selected PDFs of � ln I (top: spatial scale of 2 km and time lags of 10, 30 and 50 min;

bottom: spatial scale of 8 km, and time lags of 10, 30 and 50 min) for a stationary region of the storm

of Dec. 28, 1993, in Darwin, Australia.

Figure 4.5. Plot illustrating the presence of dynamic scaling in the standard deviations of � ln I for

(a) a stationary region of the storm of Dec. 28, 1993 (left) and (b) a stationary region of the storm of

Jan. 4, 1994 (right) in Darwin, Australia.



The above results imply that, given the statistical structure of rainfall evolu-

tion at large scales, the structure at small scales can be statistically predicted.

Application examples are given in Section 4.4.2.

4.4 RAINFALL DOWNSCALING FOR HYDROLOGIC APPLICATIONS

4.4.1 Spatial Downscaling

Recall from Section 4.2, that knowing the spatial variability of rainfall fluc-

tuations at several intermediate scales permits the statistical reconstruction of the

rainfall intensities themselves from a larger scale to a smaller scale, e.g., from 64

km down to 4 km. Based on the scale invariance of standardised rainfall fluctua-

tions (equation (4.1)) and the relation of the scaling parameter H to CAPE

(equation (4.2)), a spatial rainfall downscaling scheme was developed and imple-

mented to several mid-latitude mesoscale convective systems with considerable

success (Perica and Foufoula-Georgiou, 1996b). This scheme is able to statisti-

cally reconstruct the small-scale spatial rainfall variability and the fraction of

area covered by the storm, given the large-scale rainfall field and value of CAPE

in the prestorm environment i.e., ahead of the storm (see Zhang and Foufoula-

Georgiou, 1997 for a numerical study of the spatial variability of CAPE and

definition of a representative value of CAPE for use in (4.2)).

This spatial downscaling scheme has the advantage that its parameterisation

is scale-independent and thus offers the capability of resolving the subgrid-scale

spatial rainfall variability at any desired scale (at least between 4 km and 64 km,
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Figure 4.6. For a stationary region of the storm of Dec. 28, 1993: Confirmation that the PDFs

remain statistically invariant under the transformation t=Lz
¼ constant. The top row shows PDFs

for �ð� ln IÞ ¼ 0:6, z ¼ 0:58 and pairs of ðt;LÞ which satisfy t=Lz
¼ constant (see Table 4.2). The

bottom row shows the same for �ð� ln IÞ ¼ 0:8, z ¼ 0:51. Similar result holds for �ð� ln IÞ ¼ 0:7,
z ¼ 0:54.



that the relationships were developed) without the need to consider a separate

parameterisation scheme at each scale. Figure 4.7 shows an example where the

downscaling scheme was used to disaggregate rainfall from the scale of 64 km to

the scale of 4 km. It is seen that the disaggregated field compares well to the

actual field. More details and a formal statistical comparison of these fields can

be found in Perica and Foufoula-Georgiou (1996b) and application to other

mesoscale complexes in Perica (1995). It is noted that recent evidence by

Zhang and Foufoula-Georgiou (unpublished manuscript) using multi-radar

data of the COMET project, suggests that the predictive relationships between

H and CAPE may hold up to scales of 256 km.
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Figure 4.7. Spatial downscaling of the June 27, 1995 storm over Kansas–Oklahoma at 0300 UTC

from 64 km to 4 km scale. A good agreement is found between the downscaled field (bottom right

panel) and the observed field at the same resolution (bottom left panel). The intensities have been

mapped onto the same 32 colours for display purposes.



4.4.2 Spatiotemporal Downscaling

Note that in the above spatial downscaling scheme, the spatial correlation of

the small-scale rainfall is well preserved (see Perica and Foufoula-Georgiou,

1996b). However, if the scheme is applied independently at different instants of

time, there is no guarantee that the temporal correlation (persistence) at the

subgrid scales will also be preserved. In fact, a wet pixel at one instant might

become dry at the next, still preserving the statistical spatial structure of the field.

This might be a problem if the downscaled values were to be used in a continuous

rainfall/runoff model where the ‘‘memory’’ of the system (e.g., soil moisture

accumulation) must be well captured for accurate runoff prediction.

Recently, Venugopal et al. (1999b) proposed a new downscaling scheme which

explicitly attempts the statistical preservation of both the spatial and temporal

correlation of rainfall at the subgrid scales. This scheme takes advantage of the

presence of dynamic scaling in rainfall evolution discussed in Section 4.3. There

are several technicalities in the implementation of the spatio-temporal downscal-

ing scheme, but the essence remains the following: small-scale space-time struc-

tures relate to larger-scale ones (in fact the PDFs of � ln I remain statistically

invariant) if an appropriate transformation of space and time, namely, t � Lz, is

applied. Thus, given the statistical structure of rainfall at large scale, the small-

scale space-time features can be statistically reconstructed based on dynamic

scaling. This model is schematically depicted in Figure 4.8 and extensively dis-

cussed in Venugopal et al. (1999b).

Figure 4.9 shows the results of applying this space-time downscaling scheme

to the storm of January 4, 1994 in Darwin, Australia. We started with the large-
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Figure 4.8. Schematic of the space-time downscaling scheme of Venugopal et al. (1999b) illustrating

how the framework of dynamic scaling is coupled with an existing spatial disaggregation scheme to

predict rainfall evolution at smaller space-time scales.



scale field at 32 km (top left panel) at an instant of time (1831 UTC). This field

was spatially downscaled to 2 km (see bottom left panel) using H ¼ 0:4 in the
scheme of Perica and Foufoula-Georgiou (1996b) discussed in the previous sec-

tion. Then, the space-time scheme of Venugopal et al. (1999b) was used to evolve

the 2 km field over time. It was assumed that large-scale (32 km) fields were

available to us every 10 minutes. These data were used to update the distribution

of changes at the large scale (32 km) which is identical to the distribution of

changes at the small scale (2 km) according to the dynamic scaling hypothesis we

put forth in Section 4.3.
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Figure 4.9. Storm of Jan. 4, 1994, in Darwin, Australia: Validation of the proposed space-time

downscaling scheme by comparing the predicted 50-min cumulative rainfall patterns (bottom right

panel) to the observed ones (top right panel).



Figure 4.9 (bottom right panel) shows the 50-minute cumulative rainfall fields

at a scale of 2 km predicted from the space-time downscaling scheme. In the same

figure, the observed 50 minute cumulative field is also shown for comparison (top

right panel). Visually, the space-time downscaled field compares well with the

observed field (see Venugopal et al., 1999b for an extensive quantitative compar-

ison). It is noted that, although for this storm the space-time downscaling scheme

seems to overestimate the extreme 50-minute accumulations slightly more than

the spatial downscaling scheme applied independently in time (see Figure 4.10),

the space-time scheme is able to reproduce the temporal correlation at the sub-

grid scales much better than the spatial scheme alone (see Figure 4.11).
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Figure 4.10. Storm of Jan. 4, 1994 in Darwin, Australia: Comparison of the observed 50-min

cumulative rainfall amounts (in mm) to those predicted by space-time downscaling (circles) and

spatial downscaling only (asterisks).

Figure 4.11. Storm of Jan. 4, 1994, in Darwin, Australia: Comparison of the temporal correlation at

the 2-km scale computed from the observed fields (asterisks), from the predicted fields by the space-

time downscaling scheme (circles) and by the spatial downscaling scheme only (dashed line).



Overall it is concluded that the space-time downscaling scheme discussed above

is able to successfully reproduce the spatial and temporal correlation of rainfall at

the subgrid scales given large-scale averages of precipitation and the downscaling

parameters, H and z (see also Venugopal et al., 1999b for other applications and

extensive quantitative evaluation of model performance). Providing downscaled

2 km precipitation fields in a rainfall-runoff model is expected to yield more accu-

rate estimates of runoff and other fluxes as compared to those that would be

obtained if the 32 km precipitation fields were used. Also, preserving temporal

persistence in the downscaled rainfall is important in many hydrologic studies

since the time-history of rainfall intensities is known to affect soil-moisture storage

and runoff production from a basin. The exact degree to which the predicted

runoff is affected by including or ignoring temporal persistence of rainfall at the

subgrid scale remains yet to be quantified. Such a study is currently in progress in

our group and the results will be reported in the near future.

4.5 CAN ATMOSPHERIC MODELS REPRODUCE THE OBSERVED
PRECIPITATION PATTERNS?

Accurate forecasting of the onset, duration, location and intensity of precipita-

tion via numerical weather prediction models, remains still a difficult challenge.

Generally efforts in model development (in terms of physical and numerical

advances) have outpaced efforts in detailed model validation. Specifically, meth-

ods that compare the forecasted high-resolution precipitation patterns to the

observed ones, such that deficiencies in microphysical parameterisations and

other small-scale structure representations can be depicted, lag behind.

Traditional measures of forecast performance are too coarse for this purpose

and provide only limited information about the ability of the numerical weather

prediction model to mimic the dynamical environment of the storm which cre-

ated the observed complex spatiotemporal rainfall pattern. Consequently, they

also provide limited feedback as to how to go about improving the model (in

terms of microphysical parameterisation, data assimilation, increased resolution,

etc.) since they cannot quantitatively assess the detailed effect of these improve-

ments on the forecasted precipitation pattern.

In a recent paper (Zepeda-Arce et al., 2000) several new multiscale statistical

measures which can depict how well the small scale-to-scale variability and orga-

nisation of the forecasted fields matches that of the observed fields were pro-

posed. It was demonstrated that indeed these measures are very informative

compared to traditional measures of forecast verification and may lead to useful

feedback for atmospheric model improvement. Some of these results are briefly

discussed below.

In Zepeda-Arce et al. (2000), the multi-squall line of May 7–8, 1995 over

Oklahoma was modelled by a state-of-the-art three-dimensional nonhydrostatic

storm-scale prediction model (the Advanced Regional Prediction System –

ARPS; see Droegemeier et al., 1996a,b; Xue et al., 1995; and Xue et al.,
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2000a,b). The simulated rainfall patterns (available at the model resolution of 6

km) were compared to the observed ones (available at the radar resolution of 4

km) over a range of scales. Specifically, the predicted and observed fields were

analysed for the presence of spatial and spatiotemporal scale invariances and the

results compared.

The 18 minute rainfall accumulations from the observed radar patterns and 15

minute accumulations from the predicted patterns were analysed for scaling in

spatial rainfall fluctuations. Good scaling was judged by a correlation coefficient

of R � 0:95 in the log–log plots of the standard deviations of normalised spatial
fluctuations with scale in the latitudinal and longitudinal directions andR � 0:9 in
the diagonal direction (since there is greater uncertainty in estimating these values

– see Perica and Foufoula-Georgiou, 1996b for their interpretation). Figure 4.12

shows the results of the analysis. When scaling was not present the estimated

values of H are given, but the lack of scaling is marked on the plot by a dark

square. As can be seen from Figure 4.12, the model was not able to reproduce the

pronounced temporal variation of H1, H2, and H3 during the storm evolution.

Moreover, no directionality seemed to be present in the observed patterns

(H1  H2  H3) while the diagonal component (H3) was significantly higher

than H1 and H2 (by approximately 0.2) in the model. Generally, it was found

that when scaling was present, Hmodel < Hobs. However, the standard deviations

of the normalised fluctuations in all directions were higher in the model than in the

observations, i.e., ��;model > ��;obs. These findings indicate that the model-pre-
dicted normalised rainfall fluctuations are in general more variable than the

observed ones. However, the growth of this variability with scale is slower in

the model than in the observations, at least for the longitudinal and latitudinal

components. The drastic change in the values of H during the period of t ¼ 11 to

13 hours (see Figure 4.12, top) was caused by the fact that at around t ¼ 11 hours,

a new squall-line started entering the domain of observation. This squall-line

stayed in the domain until the end of the simulation period while the original

squall-line moved out of the domain at around t ¼ 13 hours. During the transition

period (t ¼ 11 to 13 hours) the statistical structure of the precipitation field within

the domain of observation was different than before or after the transition. This,

however, was not reproduced by the model-predicted patterns which had constant

to only slightly increasing values of H during that period.

The radar-observed and model-predicted rainfall accumulations were also

analysed for the presence of dynamic scaling within a stationary region of a

few hours over which the mean and standard deviation of � ln I did not vary

significantly (see Zepeda-Arce et al., 2000 for details). For this region, the PDFs

of � ln I for spatial scales L ¼ 4, 8, 16, and 32 km and temporal scales t ¼ 6, 12,

18, 24, 30, 36, 42, 48, 54 and 60 min for the observed patterns were computed.

For the predicted patterns the spatial scales were L ¼ 6, 12, 24 and 48 km and

temporal scales were t ¼ 15, 30, 45, 60, 75 and 90 min. Then, the standard

deviations of these PDFs were computed and (by interpolation in a tabular

format) pairs of ðL; tÞ were found which resulted in the same values of the
standard deviation of � ln I (see discussion in Section 4.3). This was done for
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both the observed and predicted patterns. These pairs (L, t) were plotted on a

log–log plot as shown in Figure 4.13. It was observed that, to a good approx-

imation, the (t, L) transformation under which the standard deviation of � ln I

remained constant was of the form t/Lz
¼ constant (i.e., straight-line relation-
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Figure 4.12. Scaling parameters H1, H2 and H3 vs time from the 18-min observed (top) and 15-min

simulated (bottom) rainfall accumulation patterns for the May 7–8, 1995 storm. Dark squares

indicate the lack of scaling in normalised fluctuations.



ships on the log–log plots) for both the observed and predicted patterns.

However, the values of z (estimated from the slopes of the log–log plots) were

significantly different: z ¼ 1:4 for the observed patterns and z ¼ 1:0 for the pre-
dicted patterns. Also, the values of the standard deviations of � ln I were much

higher in the model than in observations. For example, in Figure 4.13, �ð� ln IÞ

for the observations and the model-predicted fields was 0.33 and 1.5, respectively.

This implies that for the same spatial scale and same time lag, the model-pre-

dicted fields change much more drastically over time than in the observations.

This is consistent with the visual comparison of the fields and also with the

differences in the estimates of z which as discussed below imply a faster temporal

decorrelation in the predicted than the observed fields.

To understand the significance of the z value consider L2 ¼ 2	 L1 in the

relationship t1=t2 ¼ ðL1=L2Þ
z. Then, for z ¼ 1 (predictions) we get t2 ¼ 2t1 and

for z ¼ 1:4 (observations) we get t2 ¼ 2
1:4

	 t1 ’ 3:4	 t1. This implies that

features twice as large will evolve two times slower in the predicted fields

while they will evolve approximately 3.4 times slower in the observed fields.

In other words, the predicted fields seem to have a faster decorrelation than the

observed fields. It is interesting to compare the results of Figure 4.13 (and 4.5)

with the schematic space-time diagram of hydrological processes in Figure 1.4

which shows a qualitatively very similar behaviour.

Another interesting comparison between the observed and predicted patterns

resulted from comparison of their Depth–Area–Duration (DAD) curves for 1-

hour duration. These curves plot depths of rainfall (here 1-hour accumulations)

versus area of the storm over which these depths are equalled or exceeded. DAD

curves compare the predicted and observed patterns in terms of their internal

spatial structure irrespective of their locations. It was found that while the DAD

curves tended to increase in the observed patterns from t ¼ 13 to 15 hrs, they
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Figure 4.13. Dynamic scaling in the observed and predicted patterns of the May 7–8, 1995 storm

over Oklahoma. For the observations, the iso-standard deviation line is for �ð� ln IÞ ¼ 0:33 and the
estimate of z ¼ 1:4; for the modelled field, �ð� ln IÞ ¼ 1:5 and z ¼ 1.



tended to decrease in the predicted patterns (see Figure 4.14). Obviously, the

tendency of the DAD curves to increase or decrease is related to the build-up

or dissipation of the storm which might not be well reproduced in the model at

least for the selected period of this particular storm. Such discrepancies would

have significant effects on the predicted runoff and careful investigation and

further study is warranted.

Overall, it was concluded that the above measures provided significant

insight into subtle differences between the space-time structure of the predicted

and observed patterns at a range of scales. These differences, although not

fully interpreted yet, are much more informative than typical measures of

forecast performance, such as threat scores and root-mean-square errors (see

Wilks, 1995; or Fritsch et al., 1998). In addition, the scaling measures are

normalised measures and are not influenced by how well the exact magnitudes

and exact locations of rainfall intensities are predicted. Thus, they provide a

direct assessment of how well the internal spatial structure and dynamics of

the observed and predicted patterns compare to each other at a range of

scales. It is hoped that these measures can provide useful feedback and gui-

dance for improving numerical weather prediction models and this is an issue

of current investigation.

4.6 CONCLUSIONS AND DISCUSSION

Many studies (for example, see Winchell et al., 1998 and references therein) have

documented that the small-scale space-time variability of rainfall patterns has a
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Figure 4.14. The solid lines show the DAD curves for t ¼ 13, 14 and 15 hrs computed from the

model-predicted 1-hour accumulation patterns; the broken lines show the same computed from the

observed patterns.



significant effect on the infiltration-excess runoff volume produced by a basin.

Thus, severe underestimation of the basin runoff may result when the small-scale

precipitation variability is ignored and a low-resolution precipitation input is

supplied into a distributed rainfall-runoff model. Similarly, if the small-scale

variability of rainfall is erroneously reproduced by an atmospheric model and

these predictions are used for hydrologic studies, a severe impact on the predicted

runoff hydrograph may result. Moreover, concerns about the effects of climate

change on water resources at the basin scale require the ability to downscale the

large-scale general circulation model (GCM) predictions and to reconstruct the

small-scale space-time rainfall variability to be used as an input to a hydrologic

model.

In this paper, a review of a class of current approaches in parameterising the

space-time variability of rainfall patterns at a range of space-time scales was

presented. Although we concentrated more on methodologies developed in our

group, other approaches such as Over and Gupta (1996), Seed et al. (1999) and

Marsan et al. (1996) could be used in a similar way. We favour approaches based

on scale-invariance because their parameterisations are scale-independent (for

example, parameters H and z in the schemes presented earlier). Such parameter-

isations are attractive because they are parsimonious and may be related to

physical properties of the storm environment as compared with parameters

which depend on scale.

It is reminded that if high-resolution precipitation patterns are available, H

can be estimated directly from them via a multiscaling analysis. However, if

only large-scale patterns are available and need to be downscaled, the para-

meter H needed in the downscaling scheme must be externally predicted or

assumed. The same applies for the parameter z. As discussed, the variability in

the parameter H has been found empirically to be well explained by the

variability in the convective available potential energy (CAPE) of the prestorm

environment (Perica and Foufoula-Georgiou, 1996a) and thus CAPE can be

used to predict H. Prediction of the parameter z, which parameterises the

space-time evolution of rainfall at a range of scales from a similar physical

observable quantity, has not been studied yet. It is anticipated that z might be

related to the temporal evolution of a vertical instability measure, for exam-

ple, the change of CAPE over time (@CAPE=@t) or to parameters describing
parcel buoyancy and vertical wind shear (for example, see Weisman and

Klemp, 1982). Empirical confirmation of the above assertions would require

extensive meteorological observations not typically available (for instance,

radiosonde observations are sparsely available in space and time). It could

also well be that z can be empirically related to the standard deviation of �

ln I of the evolving fields. Although some preliminary evidence suggests such a

possible relationship, a few cases deviated from this pattern. Analysis of more

storms from different regions of the world and different climates must be done

to provide an insight into the variability of the parameter z and its depen-

dence on statistical or physical parameters of the atmosphere. Also, controlled

experiments, via a state-of-the-art numerical weather prediction model which
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can simulate precipitation fields together with other physically-consistent para-

meters of the atmosphere, might provide a way of overcoming the lack-of-

dense-meteorological-observations gap and at least point to possible predictive

relationships of z which can be further verified from observations.

Once the parameters H and z are available, we presented evidence that the

space-time downscaling scheme developed by Venugopal et al. (1999b) is fairly

successful in reproducing not only the spatial correlation of the rainfall fields at

the subgrid scale, but also the temporal correlation. Preserving the temporal

correlation might be important when the downscaled precipitation fields are to

be used in a rainfall-runoff model or a coupled atmospheric-hydrologic model to

predict soil-moisture fluxes and water and energy partitioning over a basin. This

remains to be demonstrated via simulation studies.

For prediction of severe flood events several hours ahead of time, we rely on

state-of-the-art three-dimensional non-hydrostatic storm prediction models

which can predict rainfall patterns to be used in a hydrologic model. Although

numerical weather prediction models have advanced impressively over the last

decade, quantitative evaluation of their performance as far as their ability to

accurately reproduce the space-time structure of precipitation patterns at a

range of scales, lags behind. In this chapter, we have presented some recent

efforts to develop new multiscale measures for quantitative precipitation forecast

(QPF) assessment. Preliminary results suggest that numerical weather prediction

models might not always perform well in capturing the space-time organisation

structure of the observed rainfall fields and, in particular, they might have a

tendency to produce patterns with less scale-to-scale spatial variability and faster

temporal decorrelation. Analysis of more cases is needed to fully quantify dis-

crepancies between the statistical structure of predicted and observed precipita-

tion patterns and understand the sources (such as, physical parameterisations,

data assimilation methods, model resolution etc.) of these discrepancies. The

increased availability of high-resolution data from NEXRAD and increased

computational resources available for such studies offer unique opportunities

for scientific breakthroughs and advances in atmospheric/hydrologic research,

quantitative precipitation forecasting, and flood forecasting over small to

large-size basins.
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5
Patterns and Organisation in Evaporation

Lawrence Hipps and William Kustas

5.1 INTRODUCTION

The evaporation of water is a crucial process in hydrology and climate. When the

whole planet surface is considered, most of the available radiation energy is

consumed in this process. However, a global view alone is insufficient to explain

the codependence of surface hydrology and climate. Recent findings indicate that

spatial variations in surface water and energy balance at various scales play a

large role in the interactions between the surface and atmosphere. Advances in

remote sensing have hastened the awareness of the spatial variability of the sur-

face, and also offer some promise to quantify such variability. A point has been

reached where the quantification of spatial patterns of evaporation is required in

order to address current issues in hydrology and climate.

The evaporation of water at the surface and subsequent exchange with the

lower atmosphere is a complex process – even for local scales and simple surfaces.

When larger scales and spatial variations are considered, nonlinear processes may

become pronounced, and further difficulties arise. Because of its great importance

to hydrology and climate, considerable effort has been extended towards under-

standing and quantifying the evaporation process. Much is known about the

process for uniform surfaces at local scales. However, current issues in hydrology

and climate involve larger scales and non-uniform surfaces. Here there remains

much to be learned. Note that evaporation can follow several avenues, including

free water surfaces, soil surfaces, and transpiration by vegetation. Here we use the

term evaporation in a generic sense, so that it is inclusive of any of these pathways.

5.2 GOVERNING FACTORS AND MODELS

5.2.1 Governing Factors

Before contending with spatial patterns there must be clear understanding of

the processes important to a local surface. Because of the variety of ecosystems
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and environmental conditions, the importance of various factors on evaporation

differs from case to case. This can lead to confusion and improper generalisations

about how to approach the process. We commence with a brief overview of the

governing factors and subsequent interactions.

Water Supply
For land surfaces, the upper soil profile or root zone is the storage medium for

water. The depth of soil in which water content must be considered must be

commensurate with the root zone. Knowledge of surface water content alone

is insufficient. Although soil water availability is a necessary condition for eva-

poration, the rate is not only a function of soil water. However, spatial variations

in soil water play a direct role in spatial patterns of evaporation.

Available Energy
When water is sufficiently available, evaporation often proceeds at a rate that

is proportional to available energy, usually defined by Rn � G, where Rn is net

radiation and G is energy flowing into the soil. The large value of latent heat

causes a great deal of energy to be consumed when water is available. This has led

many models to treat evaporation as proportional to the available energy, and

reflects the historical bias of research towards surfaces with relatively large water

supplies.

Saturation Deficit
The very large negative values for water potential in the atmosphere require

more useful variables such as vapour pressure or specific humidity. The gradient

in humidity between the surface and the air has historically been replaced by the

saturation deficit of the air, in order to linearise equations and avoid explicit

dealings with surface temperature. When surface humidity values are large

enough, saturation deficit effectively represents the gradient in water potential.

Turbulence Transport
Supply of water, energy, and a gradient of humidity are not enough to main-

tain the process, however. The water vapour must be transported away from the

surface into the atmosphere, or the humidity gradient would soon decay and

reduce the evaporation. So wind and turbulence play a critical role in maintain-

ing values of saturation deficit. Unfortunately, turbulence is a very complex

process without an analytical solution. As a result, it is inevitably parameterised

in any treatment of evaporation.

Stomatal Conductance
Finally, when plants are considered, the situation becomes much more com-

plex. Plants are living things, which limits the use of physical laws and mathe-

matics to describe the processes. The response has been to focus on the behaviour

of the stomates, since water vapour must pass through these structures. Indeed,
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stomatal conductance is a key mechanism by which we account for the role of the

vegetation in this process.

Although stomatal conductance of plants has been studied for many years,

predicting the exact behaviour remains somewhat elusive. We know that there

are connections between stomatal conductance, transpiration, and several atmo-

spheric variables such as saturation deficit. The connections between the pro-

cesses are examined at scales from the sub-leaf to canopy by Jarvis and

McNaughton (1986). However, the concepts of cause and effect are tenuous.

Historically, stomatal conductance was assumed to respond to saturation deficit,

and thereby affect transpiration. However, Mott and Parkhurst (1992) showed

that transpiration may respond directly to saturation deficit, and stomatal con-

ductance adjusts in response to transpiration. Monteith (1995a) reanalysed 52

data sets, and concluded that they support this hypothesis. Monteith (1995b)

discusses the implications of this issue on approaches to model evaporation.

Clearly there are complex and nonlinear interactions between plant water status,

stomatal conductance, transpiration, and various atmospheric factors. The role

of living vegetation in the process is not treated very directly at present.

5.2.2 Problems of Nonlinearity

A major difficulty in modelling evaporation is the strong dependency among

the variables. In fact, there are no independent variables as such. Changes in any

of the critical factors in principle induce changes in all others, until a new equili-

brium can be reached. At small spatial scales the nonlinearities are not always

very evident. Hence, many of these have historically been ignored or hidden

inside the definitions of various parameters. Indeed, the common consideration

of a very shallow layer of atmosphere above the surface does not allow for many

of the critical feedbacks. The solution to this problem will be discussed shortly. It

involves examination of the entire atmospheric boundary layer.

5.2.3 Models Describing Evaporation

Penman–Monteith Equation
This expression is the most fundamental equation available to examine the

evaporation process. It is strictly valid for a leaf, but is generally considered at the

scale of a canopy. A uniform surface is implicitly assumed. The equation is

developed by linearising the vapour pressure gradient term, to remove any expli-

cit dependence on surface temperature. The final equation is:

E ¼
s � ðRn � GÞ þ � � cp �D=ra

sþ � � ð1þ rc=raÞ
ð5:1Þ

Here s is the slope of the saturation specific humidity versus temperature relation,

� is density of air, cp is specific heat of air, � is cp=L where L is latent heat of

vaporisation, D is saturation deficit or saturation minus actual specific humidity,

ra is aerodynamic resistance, and rc is stomatal resistance.
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The role of turbulence and stomatal behaviour are both collapsed into

resistance terms. Also note that for scales larger than a single leaf, the stomatal

resistance term represents some bulk or effective value for the surface. The value

of D is generally specified near the surface. Thus, there is no explicit allowance

for connections and exchanges with a deeper layer of atmosphere. This equation

is a diagnostic equation describing the relationships between key factors of the

system. It represents a tool to examine interactions between evaporation and

critical factors in the soil, vegetation, and atmosphere.

Simplifications for Special Cases
For extensive surfaces covered with vegetation, the evaporation is large and

convection is small. This leads to poor coupling between the surface and atmo-

sphere, and evaporation becomes energy limited. The evaporation flux by defi-

nition must approach the value of available energy. This value is called

equilibrium evaporation (Eeq). For extensive vegetated surfaces the actual eva-

poration is strongly proportional to Eeq. This led Priestley and Taylor (1972) to

propose that:

E ¼ � � Eeq ð5:2Þ

where � is a parameter, originally defined as 1.26, although McNaughton and

Spriggs (1989) demonstrate that � is not constant and depends on dynamic

interactions between the surface and atmospheric boundary layer. Nevertheless,

this equation is a useful tool for the special case of large and uniform regions with

complete vegetation.

Use of Surface Temperature to Estimate Evaporation by Residual
If the entire energy balance equation is considered, E can be estimated by the

residual if the other terms are calculated and measured. This involves determina-

tion of sensible heat flux (H). Remote sensing methods allow estimation of the

surface temperature, which can be used with air temperature to estimate H using

similarity theory, as described later. Since remote sensing techniques can some-

times retrieve spatial fields of surface temperature, such an approach can estimate

spatial distribution of evaporation. Examples of this approach will be discussed

in Section 5.6.

Coupling of Surface Energy Balance to the Atmospheric Boundary Layer
Most of the historical study of evaporation has been conducted at local scales,

and considered a layer of atmosphere only a few metres above the surface. This

ignores the role of large-scale atmospheric properties and the feedback between

the surface and the atmosphere.

Recently, several studies have demonstrated the need to consider a continuous

and interactive system that often includes the atmospheric boundary layer (ABL)

as well as the air above it. McNaughton and Jarvis (1983) and McNaughton and

Spriggs (1986) demonstrate how a growing ABL can entrain warm, dry air from

aloft which mixes down to the surface. This can raise the value of saturation
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deficit, and enhance evaporation rates. The system is coupled, in that changes in

the surface heat and evaporation rates affect the growth of the ABL, which in

turn can feed back to alter the surface fluxes. These processes were combined into

an elegant model posed by McNaughton and Spriggs (1986). These connections

between the surface energy balance and the ABL must be considered in the

process. They become especially important for regional scales, or to consider

spatial variations in surface fluxes.

5.3 ESTIMATION OF EVAPORATION RATES USING MEASUREMENTS

There are several approaches either to measure evaporation directly, or to esti-

mate it from other measurements. We will cover the most common and reliable

approaches.

5.3.1 Local Scales

Eddy Covariance
This is the most direct approach, and attempts to actually measure the flux.

The flux of water vapour can be described as:

E ¼ w � �v þ w
0

�
0

v ð5:3Þ

where �v is water vapour density, and w is the vertical wind velocity. The

primes indicate instantaneous deviations from the temporal mean. The first

term represents flux due to the mean vertical wind, while the second term is

the turbulence flux. In many conditions over flat surfaces with a suitable

averaging period, the mean vertical velocity should be zero. The first term

then vanishes, leaving:

E ¼ w
0

�
0

v ð5:4Þ

The turbulence flux is equal to the covariance of the vertical wind velocity and a

scalar such as water vapour density. In practice, it is not as simple as it appears.

Determination of the ‘‘suitable’’ averaging period, presence of non-stationary

conditions, non-zero mean vertical velocities, and other issues, pose challenges

to making quality flux measurements. These problems are discussed in Mahrt

(1998) and Vickers and Mahrt (1997). Some of these issues are also denoted in

Baldocchi et al. (1988).

Bowen Ratio
If the evaporation and sensible heat fluxes are expressed in terms of turbu-

lence diffusivities and gradients, then the ratio of sensible to latent heat flux, or

Bowen Ratio, can be approximated as:

B ¼
cp ��T

L ��q
ð5:5Þ
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Critical assumptions made here include equality of turbulence diffusivities for

heat and water vapour, and replacing finite differences for differential values

of gradients. The energy balance equation can be used with (5.5) to obtain:

E ¼
Rn � G

1þ B
ð5:6Þ

If measurements of available energy and vertical changes in temperature and

humidity are made, E can be calculated. This assumes that available energy

can be measured without error. For uniform surfaces with large values of vertical

gradients, the Bowen Ratio technique works well. However, for heterogeneous

surfaces, the assumption of equality in heat and water vapour diffusivities is

likely to be violated.

Flux Gradient Approach – Monin–Obukhov Similarity Theory
Monin-Obukhov Similarity theory (MOS) can be used to estimate the vertical

profiles of wind speed as well as momentum, heat and water vapour fluxes with

only a few parameters. It is based on an assumption that the turbulent transport

of a quantity is proportional to the product of the turbulence diffusivity, K, and

the vertical gradient in mean concentration C. The height-dependent eddy diffu-

sivity is assumed to be a function of the momentum transport and atmospheric

stability. For momentum, heat and water vapour, the gradients are related to the

fluxes using similarity parameters. Integrated forms of the resulting expressions

have been derived (Brutsaert, 1982).

The fact that stability functions continue to be modified, raises concern about

the reliability of using gradient type approaches for estimating fluxes. Large Eddy

Simulation (LES) suggests that boundary layer depth has an indirect influence on

MOS scaling for wind (Khanna and Brasseur, 1997). Williams and Hacker (1993)

show that mixed-layer convective processes influence MOS and support the

refinements made by Kader and Yaglom (1990). Clearly there are still consider-

able uncertainties as to the exact forms of the mean profiles as both surface

heterogeneity as well as mixed-layer convective processes affect the idealised

MOS profiles.

When surface values of temperature and humidity are determined, only values

at one height in the surface layer are needed, along with an estimate of the surface

roughness for momentum, zOm, and heat, zOh, and water zOw, and surface humid-

ity. For heterogeneous surfaces, zOh has little physical meaning, but there has

been more progress in relating zOm to physical properties of the surface (e.g.,

Brutsaert, 1982).

5.3.2 Regional Scales

Aircraft-based Eddy Covariance
Aircraft-based flux systems can in theory provide large-area flux estimation

both in the surface layer and throughout the ABL. However, in a number of field
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programs, the latent and sensible heat fluxes measured by aircraft tend to be

smaller than those measured by towers several metres above the surface

(Shuttleworth, 1991). Sampling errors for both tower and aircraft-based systems

are discussed by Mahrt (1998). Under nonstationary conditions, procedures for

estimating sampling errors are invalid. Moreover the flux estimate is sensitive to

the choice of averaging length. Vickers and Mahrt (1997) and Mahrt (1998)

describe the use of a quantity called the nonstationarity ratio, to define when

significant errors may exist in the measurements. Processing of aircraft measure-

ments is considerably more involved than tower data, and collection of the data is

quite expensive. However, it is the only method to directly estimate fluxes and

their spatial variations at regional scales.

Regional Fluxes and Properties of the ABL
Since the atmospheric boundary layer is connected to surface processes at a

regional scale, there must be a relationship between the regional surface fluxes

and properties of the ABL. One approach to this issue has been to use a similarity

theory for the ABL to estimate fluxes from vertical profiles of wind, temperature,

and humidity in the ABL (Sugita and Brutsaert, 1991) measured using soundings

from radiosondes.

A different approach presented by Munley and Hipps (1991), Swiatek (1992),

and Hipps et al. (1994), related temporal changes in ABL properties to surface

fluxes using fundamental governing equations for temperature and humidity. The

latter two studies suggested that horizontal advection in the ABL was an impor-

tant process affecting the ability to recover reasonable surface flux values. When

a crude estimate of this process was made, agreement of ABL estimates with

measured surface fluxes was reasonably good for two semi-arid ecosystems.

However, in the application of this approach over other semi-arid landscapes

containing significant variability in surface fluxes, greater discrepancies with flux

observations, especially in evaporation, have been found (Kustas et al., 1995;

Lhomme et al., 1997). One of the reasons for this scatter is footprint issues.

5.3.3 Footprint Issues

In order to interpret an estimate of a surface flux of mass or energy, one must

know from where the flux originated. A source area or region upwind of the

surface contributes to a measured flux at a given height. This source area is called

the ‘‘footprint’’ and is the area over which measurements are being influenced

(see Chapter 2, p. 19) The contribution from each surface element varies accord-

ing to upwind distance from the location of the measurement, and atmospheric

diffusion properties. In order to determine the region associated with a flux value

or the footprint, some type of model must be used.
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There are two main approaches in footprint models: analytical solutions to

the diffusion equation, and Lagrangian models. The analytical approaches derive

solutions to the diffusion equation using parameterisations such as similarity

theory for turbulence diffusion. There are also other critical assumptions

made, such as no spatial variation in the surface flux. This results in equations

that require only a few inputs, and are relatively easy to implement. Lagrangian

models are more complex and numerically simulate the trajectories of many

thousands of individual particles. Knowledge of the turbulence field is needed

to allow the trajectories to be computed. When the results of many particle

journeys are compiled, the relative contribution of various upwind distances to

the flux can be determined. Examples of the analytical category are Schuepp et al.

(1990), Horst and Weil (1992), and Schmid (1994). Lagrangian approaches are

presented in Leclerc and Thurtell (1990) and Finn et al. (1996).

For heterogeneous surfaces, knowledge of the footprint of any flux measure-

ment is absolutely necessary, in order to interpret spatial variations in fluxes. A

current limitation is that present footprint models generally assume a spatially

constant flux at the surface. In reality, fluxes will vary in space. The effects of

spatial variations in surface properties and fluxes on the resulting footprints

remain to be determined, i.e. the measurements represent the bulk effects but

we cannot use them to easily define detail of the spatial patterns.

5.4 SPATIAL VARIATIONS OF EVAPORATION

It is of great importance in hydrology to be able to quantify the spatial distribu-

tion of evaporation. It certainly has some connections to the traditional hydro-

logic outputs at the catchment scale, such as streamflow. However, the spatial

distribution of water balance, especially at larger scales, has strong connections

with the atmospheric conditions and hydroclimatology of a region. Qualitatively,

the important surface properties that relate to spatial variations in evaporation

are understood rather well. Spatial changes in water balance are connected to

those of the root zone soil moisture, vegetation density, stomatal conductance,

net radiation, saturation deficit, and turbulence intensity.

There have been some advances in determination of spatial fields of some of

the above properties using remote sensing information. In particular, net radia-

tion, surface soil moisture, and vegetation density can be estimated spatially with

remote sensing and auxiliary data (Kustas and Humes, 1996; Carlson et al.,

1994).

We can define several issues that pose difficulties in assessing the spatial

patterns in water balance, including difficulties associated with the definition and

description of heterogeneous surfaces, and the effects of such surfaces on fluxes

and the aggregation of fluxes over the landscape. These must be resolved in order

to develop the ability to quantify spatial variations in the surface fluxes.
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5.5 DIFFICULTIES POSED BY HETEROGENEOUS SURFACES

When surfaces are heterogeneous, several issues arise. First, most models and

measurement approaches either explicitly or implicitly assume a uniform surface.

Second, the spatial variability in critical properties can cause nonlinear processes

to become important.

5.5.1 The Notion of Heterogeneity

Heterogeneity is a rather descriptive term, and is often used somewhat

ambiguously. Unfortunately, there is at present no universal approach to quan-

tify the degree of heterogeneity. This is partly because the importance or effects

of nonuniformity seem to depend upon the process that is being considered. The

difficulty in quantifying what we mean by heterogeneity is indicative of the

complexity of the entire issue of water and energy balance of inhomogeneous

surfaces. Here we discuss some of the recent approaches to this problem.

Heterogeneity exists at all spatial scales, from variations within individual

leaves (Monteith and Unsworth, 1990), to the canopy level where evaporation

and sensible heat may originate from significantly different sources (Shuttleworth

and Wallace, 1985), to larger scales where nonuniformity can affect atmospheric

flow (Giorgi and Avissar, 1997). Besides scale, the type of heterogeneity may also

be important. For example, de Bruin et al. (1991) showed that variations in

temperature and humidity fields have a different effect on Monin–Obukhov

similarity than variations in the wind field.

For purposes of estimating evaporation either directly via measurement of

eddies, or indirectly using flux–gradient relationships, heterogeneity at the

canopy scale and larger is of primary concern. At smaller scales, physically-

based methods which consider both biological and fluid dynamics have been

developed for scaling from the leaf to canopy scale (Norman, 1993; Baldocchi,

1993). However, they can be quite complicated and may only be applicable under

ideal conditions, such as a canopy that is horizontally homogeneous (Baldocchi,

1993). The issue is how to define when the surface can no longer be treated as

homogeneous.

5.5.2 Determining when a Surface is Heterogeneous

No exact methodology or theory exists to determine a priori when a surface

can no longer be considered uniform. Measurement of turbulent fluxes and

statistics is one indirect method, where deviation of the Monin–Obukhov simi-

larity functions from those determined over uniform surfaces has been shown to

be an indicator of heterogeneity (e.g., Chen, 1990a,b; de Bruin et al., 1991; Roth

and Oke, 1995; Katul et al., 1995). Similarity theory requires the correlation

between temperature and humidity to be near unity. This is not true for non-

uniform surfaces (Katul et al., 1995; Roth and Oke, 1995), due to the source and/
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or sink of evaporation differing from that of sensible heat flux. Unfortunately,

these approaches do not provide a measure of the degree of heterogeneity.

Remote sensing may hold potential as a means of quantifying surface spatial

variability by calculating spatial power spectra for surface radiance or reflectance

values (Hipps et al., 1996). This requires pixel resolution fine enough to discri-

minate between plant and soil, which is often not available from satellites.

Moreover, the shape of spatial power spectra depends upon the spatial resolution

of the surface data (Hipps et al., 1995). This brings forward a critical issue. The

degree of heterogeneity or spatial variability may be dependent upon the spatial

resolution at which the surface is observed (see Chapter 2, p. 19).

Another indirect approach suggested by Blyth andHarding (1995) uses remote-

ly sensed surface temperature along with wind and temperature profiles in the

surface layer, to derive the roughness lengths of heat and momentum. The rela-

tionship between these values is related to heterogeneity of the surface. Both

theory and observations indicate that transfer of momentum is more efficient

than heat (Brutsaert, 1982). For homogeneous surfaces the ratio of roughness

length for momentum, zOM , and heat, zOH , is essentially a constant, usually

expressed as the natural logarithm lnðzOM=zOHÞ ¼ kB�1 where kB�1
� 2. Many

studies, especially for partial canopy cover surfaces, have found kB�1 significantly

larger than 2 with values generally falling between permeable-rough, kB�1
� 2,

and bluff-rough, kB�1
� 10 (Verhoef et al., 1997). So the ratio of the roughness

lengths is an indirect indicator of the degree of departure from a uniform surface.

This result is caused by several factors which include effects of the soil/substrate on

the remotely sensed surface temperature observation, canopy architecture and the

amount of cover (McNaughton and Van den Hurk, 1995).

5.5.3 Application of Single and Dual-source Approaches to
Heterogeneous Surfaces

There is a fundamental problem in representing a heterogeneous surface as a

single layer or source, which is implicit in the application of, for example, the

Penman–Monteith equation, because of the significant influence of the soil/sub-

strate on the total surface energy balance. Thus, the surface resistance to eva-

poration has lost physical meaning because it represents an unknown

combination of stomatal resistance of the vegetation and resistance to soil eva-

poration (Blyth and Harding, 1995). This has prompted the development of two-

source approaches, whereby the energy exchanges of the soil/substrate and vege-

tation are evaluated separately (e.g., Shuttleworth and Wallace, 1985).

Nevertheless, some studies reported the Penman–Monteith equation to be useful

for evaporation estimation over heterogeneous surfaces (e.g., Stewart and

Verma, 1992; Huntingford et al., 1995). In fact Huntingford et al. (1995)

found little difference in performance of two-source approaches versus the

Penman–Monteith for a Sahelian savanna. However, these studies arrive at reli-

able evaporation estimates only after the stomatal response functions are opti-
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mised with the measurements from the particular site. Therefore, as a predictive

tool, the Penman–Monteith approach will be tenuous for heterogeneous surfaces

without a priori calibration. By performing such a priori calibration, much sim-

pler formulations such as the Priestley–Taylor equation can yield evaporation

predictions similar to two-source approaches for heterogeneous surfaces

(Stannard, 1993).

5.5.4 Application of Surface-layer Similarity above Heterogeneous
Surfaces

For several decades Monin–Obukhov Similarity (MOS) theory has been used

to relate mean profiles of scalars and wind to the turbulent fluxes of heat and

momentum (Brutsaert, 1982; Stull, 1988). However, serious limitations exist in

the application close to the canopy due to roughness sublayer effects (e.g.,

Garratt, 1978, 1980). For heterogeneous surfaces we are presently unable to

resolve the relative influence of all the mechanisms involved, and more impor-

tantly have been unable to develop a unified theory to correct MOS for effect of

the roughness sublayer on mean profiles and turbulent statistics (Roth and Oke,

1995).

An example of the effect of heterogeneity on MOS profiles is shown in Figure

5.1 for a desert site containing coppice dunes and mesquite vegetation (Kustas et

al., 1998). In Figure 5.1 d0 is the zero plane displacement. This is a length to

account for the fact that in tall vegetation, the source and sinks are above the

ground surface, so the heights are specified as distances above a new reference

value which makes the relationship between fluxes and gradients valid. While the

roughness sublayer does not appear to affect the wind profile, the actual tem-

perature profile departs significantly from the idealised MOS predicted profile.

This is probably due in part to the complicated source/sink distribution of heat

(Coppin et al., 1986). Over this site, the heat sources are the interdune regions

and heat sinks are mesquite vegetation randomly distributed over the surface. As

a result, significant scatter between predicted and measured heat fluxes has been

reported using the above MOS equations (Kustas et al., 1998).

5.5.5 Effects of Heterogeneity on Surface Fluxes and Aggregation

As mentioned, determination of the spatial distribution of the critical surface

properties that relate to evaporation is becoming possible at many scales with

advances in remote sensing. However, there are issues about how to properly

determine and interpret variables of interest from remote sensing data. For

example, the interpretation of radiometric temperature in terms of the heat

flux process is far from simple (Norman and Becker, 1995). Remote sensing

estimates of vegetation are subject to variations in density and geometry. Only
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upper soil moisture can be estimated by remote sensing, while plants respond to

water in the entire root zone.

In order to model the fluxes, the actual patches of surface types must be

delimited. Identifying various patches is not trivial, as it requires determination

of the properties that are of hydrological importance, as well as the magnitude of

spatial changes which are significant. Also, the scales of heterogeneity must be

determined so that the models can be implemented at commensurate spatial

scales, i.e. the characteristic scale of the process must match the modelling

scale (see Chapter 2, p. 27).

However, even if there were complete knowledge of the distribution of the

critical biophysical properties of the surface, there are other issues to be

addressed. At some scales of heterogeneity, nonlinear effects may become

important. For example, the properties and processes at one surface may affect

those of a nearby surface. Several examples can be posed here. Significant

spatial changes in surface water balance, common in semi-arid regions, result
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in transport by the mean wind of heat and saturation deficit from drier to

wetter surfaces. This can enhance the evaporation and alter the energy and

water balance of the latter surfaces. This effect of advection on evaporation

is detailed in Zermeño-Gonzalez and Hipps (1997). In addition, Avissar (1998)

has shown results with mesoscale models that suggest secondary circulations

can form between warm and cool adjacent patches. These may carry significant

vertical fluxes of mass and energy, which will not be reflected in local measure-

ments of turbulence transport, nor accounted for in models treating each spa-

tial surface element independently.

Finally, the fluxes and governing properties do not both aggregate linearly.

The actual surface fluxes can be added linearly (the flux from each spatial element

can be summed, and normalised to yield average flux). However, the spatial

averages of the critical properties when input into the flux equation, do not

yield the correct value for the average flux (see the discussion on effective para-

meters in Chapter 3, p. 68). Since, we generally have available, at best, the spatial

distribution of the surface properties, the aggregation up to larger regions is a

problem.

Ultimately, the above factors create difficulties in properly aggregating the

fluxes up to larger regions. This so-called aggregation problem remains unsolved

in a general way at present. However, remote sensing may provide spatially

distributed hydrologic information critical in addressing scaling issues (Beven

and Fisher, 1996). There are several directions which have been posed. These

include the determination of effective parameters for surface properties (Lhomme

et al., 1994), and treating surface properties as probability density functions, and

inputting them into mesoscale atmospheric models (Avissar, 1995). We do not

directly address this issue here, but simply note that the spatial distribution of

evaporation and the aggregation problem are ultimately connected.

In the meantime there have been attempts to estimate spatial patterns of

evaporation using a combination of modelling and remotely sensed information.

As a result of the problems discussed above, these methods can be used only

under restrictive assumptions and require data that is not commonly available.

Nevertheless, they provide a way forward.

5.6 EXAMPLES OF ESTIMATING SPATIAL VARIATIONS OF EVAPORATION

Surface energy balance models using remotely sensed data have been developed

and used in generating spatially distributed evaporation maps (Kustas and

Norman, 1996). For many of these models, surface temperature serves as a

primary boundary condition (e.g., Bastiaanssen et al., 1998). Clearly, the spatial

variation of surface temperature is not enough to estimate the variation in eva-

poration since the amount of vegetative cover, water deficit conditions, and

aerodynamic roughness strongly influence the turbulent transport and thus the

aerodynamic–radiometric temperature relationship (Norman et al., 1995).

Promising approaches described below, explicitly evaluate flux and tempera-

ture contributions from the soil and vegetation using the conceptual modelling
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philosophy of Shuttleworth and Wallace (1985). The modelling strategy is to

consider the Penman–Monteith type of approach strictly for the vegetated

fraction, and a similar resistance type analogue for the soil component (i.e. a

two-source approach). In this case, the vapour pressure gradient term is not

linearised as in equation (5.1), but is a function of the vegetation and soil

temperatures which is derived from remotely sensed observations of canopy

cover and surface temperatures and model inversion. Along similar lines, the

approach of Norman et al. (1995) uses the Priestley–Taylor approximation for

the vegetated component only, but with the extension that the alpha value can

approach zero (i.e., no transpiration). This is necessary since the model is

constrained by both the energy balance and radiative temperature balance

between model-derived component temperatures and the remotely sensed sur-

face temperature observations.

While the above formulations address the issue of aerodynamic-radiometric

temperature relationships, determining spatially distributed heat fluxes at

regional scales will invariably require incorporating surface–atmospheric feed-

back processes. Several approaches have made significant progress in this area.

Following Price (1990), Carlson et al. (1990, 1994) combined an ABL model

with a soil–vegetation–atmosphere–transfer (SVAT) scheme for mapping sur-

face soil moisture, vegetation cover and surface fluxes based on a fundamental

relationship between vegetation index (i.e., cover) and surface temperature.

Using ancillary data (including a morning sounding, vegetation and soil

type information), root-zone and surface soil moisture are varied, respectively,

until the modelled and measured surface temperatures are closely matched for

both 100% vegetative cover and bare soil conditions. Further refinements to

this technique have been developed by Gillies and Carlson (1995), for poten-

tial incorporation into climate models. Comparisons between model-derived

fluxes and observations have been made by Gillies et al. (1997) using high

resolution aircraft-based remote sensing measurements. Approximately 90% of

the variance in the fluxes was captured by the model for the conditions of

their study.

The Two-Source Time-Integrated model of Anderson et al. (1997) (presently

called ALEXI), provides a practical algorithm for using a combination of satel-

lite data, synoptic weather data and ancillary information to map surface flux

components on a continental scale (Mecikalski et al., 1999). The ALEXI

approach builds on the earlier work with the Two-Source model (Norman et

al., 1995) by using remote brightness temperature observations at two times in

the morning hours, and considering planetary boundary layer processes. The

methodology removes the need for a measurement of near-surface air tempera-

ture and is relatively insensitive to uncertainties in surface thermal emissivity and

atmospheric corrections on the GOES brightness temperature measurements.

Anderson et al. (1997) and Mecikalski et al. (1999) have shown that surface

fluxes retrieved from the ALEXI approach compare well with measurements,

albeit under some restrictive assumptions. The ALEXI approach is a practical

means to operational estimates of surface fluxes over continental scales with 5–10
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km pixel resolution. It also connects the surface properties and processes with the

development of the atmospheric boundary layer, which is necessary to realisti-

cally describe the system.

A relatively simple two-source model using the framework described by

Norman et al. (1995) has been used to generate surface flux maps (Kustas and

Humes, 1996; Schmugge et al., 1998). The model was designed to use input data

primarily from satellite observations. Several simplifying assumptions about

energy partitioning between the soil and vegetation reduce both computational

time and input data required to characterise surface properties. The inputs

include an estimate of fractional vegetative cover, canopy height, leaf width,

surface temperature, solar radiation, wind speed and air temperature. The remote

sensing data from the Monsoon ’90 experiment (Kustas and Goodrich, 1994),

conducted in a semi-arid rangeland catchment in Arizona, have been used to

evaluate the model. An example of an evaporation map generated from the two-

source model is shown in Figure 5.2. A Landsat-5 TM image was used to gen-

erate a fractional vegetative cover and land use map for deriving vegetative

height and roughness. A network of surface flux stations (approximate locations

displayed as discs in the figure) provided spatially distributed solar radiation,

wind and air temperature observations (Kustas and Humes, 1996). Aircraft sur-

face temperature observations for a day with the largest variation in moisture

conditions were used. The pixel resolution is 120 m, similar to the resolution of

Landsat TM thermal band. The calculated latent heat flux field shows a wide

range in values from about 50 to nearly 500Wm�2. This variation is due in part

to a recent precipitation gradient over the study area, with essentially no rainfall

occurring in the western quarter of the image and gradually increasing to sig-

nificant amounts in the north-eastern portion (Humes et al., 1997). In addition,

the model computes higher evaporation rates for the areas along the ephemeral

channels (the green and blue stripes) which contain more and taller vegetative

cover, since there is typically more available water in these areas.

Comparison of model versus observed half-hourly latent heat flux from the

flux measurement sites is illustrated in Figure 5.2 (values in Wm�2). There is

qualitative agreement between model and observed fluxes (i.e., higher observed

latent heat fluxes are in areas with higher modelled fluxes). However, it is not

straightforward to determine how to weight the pixels within the source footprint

of the observations. Note that patches with the highest and lowest latent heat

fluxes were not within the observation network. This makes it difficult to validate

regional flux models with a network of local flux measurements in heterogeneous

regions (Kustas et al., 1995). Several pixels surrounding the eight surface flux

stations were averaged for three days in which soil moisture conditions were

different. The comparison between model and observed latent heat fluxes is

illustrated in Figure 5.3. A standard error of approximately 30Wm�2 and R2
¼

0:8 is obtained. These are similar to the results found in the other modelling

studies described above.

These examples illustrate that, despite the conceptual problems identified ear-

lier in the chapter, we have made progress towards methods for estimating spatial
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variations in evaporation. Presently, these are applicable only under special cir-

cumstances, requiring detailed remote sensing data, cloud-free conditions, some

limiting assumptions related to the ‘‘footprint’’ problem, and provide only a

snapshot view of spatial variations.
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Figure 5.2. Evaporation image created from remote sensing data collected during Monsoon ’90

used in a simple two-source model described in Norman et al. (1995) and estimates of evaporation

from metflux stations (discs). Note that the size of the discs does not represent the measurement

area. See also Kustas and Humes (1996).
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5.7 CURRENT FRONTIERS IN EVAPORATION RESEARCH

There are several problems that presently limit our abilities to examine and model

spatial variations in evaporation. These include capabilities of making accurate

measurements of critical processes over appropriate scales, as well as missing

theoretical knowledge about processes and scaling issues.

5.7.1 Measurement Issues

Available Energy
Ultimately, the energy and water balances are inextricably connected. When

we consider spatial distribution of fluxes, it is necessary to measure or estimate

available energy at various spatial scales. This remains a serious difficulty.

Remote sensing information offers promise to allow estimates of spatially dis-

tributed net radiation (Diak et al., 1998). However, soil heat flux remains a more

serious difficulty, especially for heterogeneous surfaces. In such cases, measure-

ments of spatial averages are nearly impossible, as the number of sites required is

likely prohibitive. There are some studies that have related the ratio of G=Rn to

remotely sensed radiance indices (Kustas and Daughtry, 1990) and some analy-

tical treatment of this issue (Kustas et al., 1993). However, there is as yet no

general solution to this problem.

Longer Timescale Estimates Covering Seasonal and Yearly Trends
There are relatively few studies that have produced a good set of spatially

distributed flux measurements to validate models. In addition, these have been

generally conducted over rather short time periods, for a variety of reasons. We

need to examine the seasonal changes in the fluxes themselves, as well as proper-

ties and processes that connect to evaporation and water balance at catchment

scales. Little such information is presently available. Some attention is needed to

acquiring more data at sites over a number of seasons.

5.7.2 Modelling Issues

Aggregation
Earlier, we briefly addressed the complex issue of aggregation, or how to scale

processes and fluxes over a range of spatial scales. Because of the depth and

complexity of the subject, we did not cover it in detail. Ultimately specifying

spatial variations in evaporation and water balance and their implications to

climate will be predicated upon reaching an adequate solution to the scaling or

aggregation problem. Currently we appear to be missing fundamental ideas to

allow a general theoretical solution to the problem. The atmospheric modelling

community involved in Soil–Vegetation–Atmosphere Transfer (SVAT) schemes is

starting to recognise the potential of remote sensing information in addressing

scaling and aggregation issues in hydrology and meteorology (Avissar, 1998).

Preliminary studies using remote sensing data with SVAT schemes indicate the
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effects of using aggregated information on large-scale evaporation estimates is

relatively minor (e.g., Sellers et al., 1995; Kustas and Humes, 1996; Friedl, 1997).

This result, however, depends on the scale of heterogeneity (Giorgi and Avissar,

1997) and on the sensitivity of the model parameterisations to surface properties

affecting evaporation (Famiglietti and Wood, 1995). We still lack the knowledge

to make any general conclusions about these issues.

Combining Surface–Atmospheric Interaction with Remote Sensing
Approaches
Earlier, we pointed out current research efforts attempting to merge ABL

models with SVAT schemes. The reason for doing this is that wind, temperature

and humidity profiles within the fully turbulent region of ABL (i.e., mixed layer)

relate to surface fluxes integrated upwind having length scales several orders of

magnitude larger than the ABL depth. With ABL depth, typically on the order of

1 km during daytime convective conditions, the wind and scalar quantities should

reflect integrated values of surface heterogeneities roughly 10 km upwind.

Therefore, by combining spatially variable information on vegetation cover

and type and surface temperature from remote sensing with ABL processes,

there is the potential of creating the appropriate links between spatially variable

surface fluxes and atmospheric feedbacks. The three examples discussed in

Section 5.6 demonstrate possibilities of such an approach. They also indicate

the issues involved in linking the ABL, SVAT models, and remote sensing data

to represent heterogeneous surfaces. There are still processes not yet expressed in

these approaches, such as local or mesoscale advection effects.

5.7.3 Conclusions

As our understanding of hydrology and climate has advanced, the importance

of evaporation and its spatial distribution has become more evident. Although

there is a wealth of theoretical and measurement information available about

evaporation, most of it is confined to rather uniform surfaces, and small spatial

scales. Even in these cases, all is not yet known.

The current issues in surface hydrology and climate demand attention to

spatial and temporal distributions of evaporation at a range of scales. The feed-

backs between the evaporation at the surface and atmospheric processes and

circulations are often intricate, and cannot be generally ignored. Inevitably this

involves dealing with heterogeneous surfaces, which at best stretch the limits of

many of our current approaches. However, the advent of remote sensing infor-

mation offers to make available the spatial variations of several critical surface

properties. The key is how to properly connect this information to the actual

fluxes. At this stage we have relatively few cases available where these issues can

be carefully examined on the landscape, but clearly some real progress has been

made in this issue.
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6
Runoff, Precipitation, and Soil Moisture at Walnut Gulch

Paul Houser, David Goodrich and Kamran Syed

6.1 INTRODUCTION

The research presented here was undertaken at the Walnut Gulch Experimental

Watershed (30�43 0N, 110�41 0W) near Tombstone, Arizona, which is operated

by the Southwest Watershed Research Center (SWRC), Agriculture Research

Service (ARS), U.S. Department of Agriculture (USDA). The extremes in rain-

fall and temperature in this region lead to great spatial heterogeneity in soil

hydrological processes. Observations from a series of nested gauging stations, a

dense network of precipitation gauges, and remotely sensed soil moisture esti-

mates, in concert with specialised remote sensing, surface characterisation, and

numerical simulation have led to numerous insights into the nature, causes, and

effects of hydrologic spatial patterns in this semi-arid catchment. The nature,

representation, and interrelation of spatial rainfall patterns and their impact on

the spatial distribution of runoff and soil moisture is described. Additionally,

the representation of this spatial behaviour through the integration of observa-

tions in a distributed hydrologic model using data assimilation methods is

assessed.

6.1.1 Description of Study Area

The Walnut Gulch Experimental Watershed (Figures 6.1 and 6.3) was

selected as a research facility by the United States Department of Agriculture

(USDA) in the mid-1950s. Prior appropriation water laws resulted in conflicts

between upstream land owner conservation programs and downstream water

users. Technology to quantify the influence of upland conservation on down-

stream water supply was not available. Thus, scientists and engineers in USDA

selected Walnut Gulch for a demonstration/research area that could be used to

monitor and develop technology to address the problem. In 1959, facilities

needed for soil and water research in the USDA were identified in a United
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States Senate Document (U.S. Senate Committee, 1959). The Southwest

Watershed Research Center in Tucson, Arizona, USA, was created in 1961

to administer and conduct research on the Walnut Gulch watershed (Renard

et al., 1993).

The Walnut Gulch Experimental Watershed (WGEW) is defined as the upper

148 km2 of the Walnut Gulch drainage basin in an alluvial fan portion of the San

Pedro catchment in southeastern Arizona (Figure 6.1). Depth to ground water

varies from 45m at the lower end to 145m in the centre of the catchment. Soil

types range from clays and silts to well-cemented boulder conglomerates, with

the surface (0–5 cm) soil textures being gravelly and sandy loams containing, on

average, 30% rock and little organic matter (Renard et al., 1993). The topogra-

phy can be described as gently rolling hills incised by steep drainage channels

which are more pronounced at the eastern end of the catchment near the

Dragoon Mountains. The mixed grass-brush rangeland vegetation, which is typi-

cal of southeastern Arizona and southwestern New Mexico, ranges from 20 to

60% in coverage. Grasses primarily cover the eastern half of the catchment,

while the western half is bush-dominated.

This rangeland region receives 250–500 mm of precipitation annually, with

about two-thirds of it as convective precipitation during a summer monsoon

season. The balance of precipitation falls during winter frontal storms of Pacific

origin (Figure 6.2) and potential evapotranspiration is approximately ten times

annual rainfall. The runoff in the ephemeral streams is of short duration and is

typically near critical depth (Renard et al., 1993).

Currently, eighty-five recording rain gauges, eleven primary catchment run-

off-measuring flumes, and two micrometeorological observation (Metflux) sta-

tions make the WGEW a valuable research location. During Monsoon ’90 (July

23 to August 10, 1990), eight Metflux stations provided continuous measurement

of local meteorological conditions and the surface energy balance, and extensive

remote-sensing observations were made (Kustas and Goodrich, 1994). Figure 6.3

shows some of the monitoring equipment and gives an impression of the land-

scape.
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Figure 6.2. Monthly average temperature, rainfall, and runoff for the Walnut Gulch Experimental

Watershed.
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Figure 6.3. Mosaic of three photos of the

WGEW: (a) catchment landscape, with the

city of Tombstone, Arizona in the dis-

tance; (b) a large runoff measurement

flume; and (c) the Lucky Hills metflux site.



6.1.2 Review

Many recent studies of hydrologic variability have shown that land surface

heterogeneity has a profound impact on hydrologic phenomena (Milly and

Eagleson, 1988; Pitman et al., 1990; Avissar, 1992). Spatial and temporal varia-

bility in meteorology (precipitation, wind speed, humidity, radiation, and tem-

perature), soils (hydraulic conductivity, porosity, water retention, topography,

and thermal properties), and vegetation (stomatal resistance, leaf area index,

albedo, and root depth) interact in a highly nonlinear manner to produce com-

plex heterogeneity in soil moisture, runoff, and evapotranspiration (Ghan et al.,

1997). Detailed analysis of surface observations have provided valuable insights

into the nature and causes of surface heterogeneity (Seyfried and Wilcox, 1995).

It is well established that variability in precipitation is among the most important

causes of variability in soil moisture and runoff (Ghan et al., 1997). However,

because soil moisture integrates the temporal variability of precipitation, knowl-

edge of the instantaneous precipitation distribution does not necessarily provide

a complete picture of hydrologic variability. The interrelations between the com-

plex processes causing hydrologic variability also change in time and space

(Seyfried and Wilcox, 1995).

Physically-based hydrologic models have great potential for helping to unra-

vel the complexities of hydrologic heterogeneity, by helping us to critically ana-

lyse the problem, organise our thoughts and data sets, and to test our hypotheses.

Modelling the impact of meteorologic, soils, and vegetation heterogeneity on

surface hydrology has taken two general directions: (1) spatially distributed mod-

elling that uses spatially distributed inputs of relevant soil, vegetation, and

meteorology to enable better prediction of hydrologic patterns; and (2) statisti-

cal-dynamical modelling approaches in which homogenous land patches are iden-

tified and modelled as a single unit. This facilitates the development of

probability density functions, that when combined with the physically-based

hydrologic equations, characterise the variability of the hydrologic system

(Avissar, 1992).

Numerous studies have investigated the nature and prediction of hydrologic

spatial variability at Walnut Gulch (Kustas and Goodrich, 1994; Schmugge et al.,

1994; Goodrich et al., 1994, 1995; Humes et al., 1997; Syed, 1994; Jackson et al.,

1993; Michaud and Sorooshian, 1994b; Houser et al., 1998, 2000. Generally, these

studies have shown that the highly convective, and therefore spatially variable

nature of precipitation, has profound impacts on the spatial distribution of soil

moisture and temperature, the production of runoff, and the partitioning of the

surface energy balance. The variability of soils and vegetation were generally

found to have a second-order modifying effect on the spatial variability imposed

by precipitation, and at high resolutions, surface temperatures and fluxes were

found to be strongly correlated with topography.

This chapter summarises the work on characterisation and simulation of

spatial variability of soil moisture and runoff in response to spatial precipitation

patterns at the WGEW. First, a discussion of patterns and characteristics of
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precipitation, soil moisture and runoff based on observations is presented in

Section 6.2. This is followed in Section 6.3 with a discussion of modelling and

spatial inferences of precipitation, soil moisture, and runoff.

6.2 OBSERVATIONS

6.2.1 Observed Spatial and Temporal Characteristics of Walnut Gulch
Precipitation

Knowledge of spatial and temporal characteristics of rainfall is crucial for

better understanding this important component of the hydrologic cycle and to

represent it more realistically in rainfall-runoff models. Various spatial storm

characteristics which are considered important in runoff production of a catch-

ment include, but are not limited to, areal storm coverage, its intensity patterns,

direction of storm movement (Osborn, 1964), its position within the catchment

(Michaud, 1992), and the extent and intensity of the runoff-producing storm core

(Koterba, 1986).

There are three factors which generally limit the reliability of these computed

spatial rainfall measures. First, there are inherent limitations in the data-collec-

tion procedures. The raingauge design, technician experience, and digitising

methodology play important roles in establishing the accuracy of the data.

Second, WGEW rainfall is observed at points scattered over a finite area. The

interpolation techniques generally used to generate a continuous representation

from point data have limitations. Third, interpretation of computed measures

may differ depending on the interpolation method used. It is appropriate to

devote some discussion to these limitations before describing the observed spatial

nature of rainfall in detail because precipitation is such a dominant driver of

catchment hydrology at the WGEW (see also Chapter 2 for a general discussion

of interpolation issues).

In Walnut Gulch, rainfall observations from more than ninety gauges are

available (Figure 6.1b). These are standard weighing type gauges that record

the cumulative depth of precipitation continuously as a line trace on a revolving

chart driven by an analog clock. The chart completes one revolution in 24 hours

and remains in place for seven days before it is replaced with a fresh chart. These

charts are manually checked and inferred for starting and ending times of rainfall

events. To identify spatial rainfall patterns, the point observations must be trans-

formed to a relatively continuous field, which is achieved by using spatial inter-

polation methods. Several methods of interpolation are available and each has its

strengths and weaknesses which are thoroughly documented in the literature

(Myers, 1994) and discussed in Chapter 2, pp. 26–45.

An analysis of Walnut Gulch rainfall data and a mathematically defined

synthetic surface showed that both kriging and multiquadric interpolation meth-

ods (Shaw and Lynn, 1972) such as splines, produce similar results based on

cross-validation residuals. Given these results, the multiquadric method was
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used here because it does not require a labor-intensive a priori definition of a

variogram or correlogram.

A total of 302 summer thunderstorm events that occurred in the period from

1975 to 1991 were analysed, 85 of which produced runoff at the outlet of the

catchment. An event was defined as a rainfall episode separated from other

rainfall episodes by at least 1 hour. The rainfall data from all 91 gauges was

discretised into 10 minute time slices and then used in the multiquadric inter-

polation process to estimate rainfall values on a 100 m grid covering the entire

catchment which were used to compute the storm areal coverage, position, and

movement at a range of subcatchment scales.

At the Lucky Hills catchment scale (< 5 hectares), the assumption of spatially
uniform rainfall was tested by making measurements with 10 recording and 49

non-recording raingauges, 9 tilted non-recording gauges, and 3 vectopluvi-

ometers for a range of events during the 1990 monsoon season (Figure 6.1c).

The data were analysed to: 1) assess the precipitation measurement uncertainty

due to gauge type, calibration, data reduction and placement; 2) assess the

impacts of wind on precipitation observations; and 3) evaluate the impact of

spatial and temporal rainfall variability on the estimate of areal precipitation

over the catchment.

A histogram of areal total storm coverage for the 302 events is plotted in

Figure 6.4a. Slightly less than half the total number of storms cover the entire

148 km2 catchment. An event rarely delivers rain to the entire catchment instan-

taneously, but may affect large portions of the catchment over its entire duration.

The contrast between total storm areal coverage and within storm coverage is

illustrated in Figure 6.4b. The local nature and high spatial variability of these

convective storms is evident. About one-third of storms occur in the range of 30

to 50 km2 and about half are greater than 50 km2 with a maximum of 120 km2.

The spatial extent of storm cores was found to be even more limited. Out of a

total of 302 events, 53 events contained a high-intensity storm core (10 minute

intensity > 25mm/hr), of which about 25% were in the range of areal coverage

of 2 to 3 km2, 50% ranged from 3 to 9 km2 and the remaining 25% were larger

than 9 km2 with a maximum of 34 km2.

It is also interesting to observe how these storms, on average, grow and

decay in time. To examine this, the average of areal coverage of all storms

for each 10 minute time step was computed from a common start time

(Figure 6.5). The dotted line is the result of averaging every storm whether

or not it reported any rain in a particular 10 minute interval (n was always

302). The rapid growth of the areal coverage of a storm and its recession are

shown in Figure 6.5. When only those events that reported some rain in a

particular time step were averaged, the first 1.5 hours was largely unchanged,

indicating that most of the storms last more than 1.5 hours. However,

beyond 1.5 hours, there is a sharp deviation, indicating that the longer dura-

tion storms have substantial spatial coverage (greater than 50 km2). When the

average rainfall volume in successive time steps was plotted in a similar

fashion, its shape was very similar to the areal coverage plot except that
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its peak occurred at 70 minutes. This indicates that rainfall intensities typi-

cally peak in the first 1.5 hours of the storm even though the average storm

event lasts for 4.75 hours.

Due to the limited extent of runoff producing storm intensities and high

runoff transmission losses, the location of the storm core within the catchment

is also very important. An example is shown in Figure 6.6 for a storm that

occurred on July 30, 1989. The storm had two distinct periods of high-inten-

sity rainfall (Figure 6.6a). The first one occurred near the start of the event,

and was located near the catchment outlet (Figure 6.6b). This was followed by

a low-intensity period of about 90 minutes. The second high-intensity burst

then occurred, and was located near the head of the catchment (Figure 6.6c).

This example clearly illustrates that, in this environment, it may be difficult to

uniquely define a rainfall event using the arbitrary criteria currently utilised in
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Figure 6.4. (a) Spatial storm coverage on an event basis. (b) Spatial storm coverage averaged for 10

minute time increments through storm duration.

(a)

(b)



Walnut Gulch data processing, as these two periods of high-intensity rainfall

are likely to have been two independent thunderstorm cells.

At the small-catchment scale, the intensive observations made at Lucky Hills

– 104 resulted in several significant findings. It was found that the range of

observed variation over the catchment was greater than the variation that

would result from total measurement error (i.e. even at this scale spatial varia-

bility exists). An example of a storm (August 12, 1990) exhibiting the largest

absolute variation in rainfall over the 4.4 hectare Lucky Hills – 104 catchment

is shown in Figure 6.7. In addition, geostatistical analysis indicated the presence

of first-order drift with corresponding rainfall gradient ranges from 0.28 to 2.48

mm/100m with an average of 1.2mm/100m. These gradients represent a 4% to

14% variation of the mean rainfall depth over a 100m distance indicating that

raingauge location is particularly important if only one gauge is available. This

suggests that the typical uniform rainfall assumption is invalid at the 5 hectare

scale in regions where convective thunderstorm rainfall is significant. Spatial

rainfall variation at this scale is attributed to localised wind effects from down

drafts associated with the relatively random location of air mass thunderstorms

in relation to the catchment. The overall WGEW raingauge network depicted in

Figure 6.1b will not be able to resolve the rainfall spatial variations and patterns

at the 5 hectare catchment scale for storms such as those illustrated in Figure 6.7.

However, the density of the large area network is such that overall gradients in

rainfall depth of typical air mass thunderstorms are captured. This should allow

approximate estimation of the first-order drift noted for all but one of the storms

observed with the small area network at Lucky Hills. While it may be possible to

estimate gradients in rainfall depth with the large area network, rainfall maxima

or minima occurring between the gauges will not be resolved at the 5 hectare

scale. Spatial rainfall variation at this scale has important implications as testing

and validation of process-based hydrologic models are often conducted on small

research catchments using the spatially uniform rainfall assumption (single rain-
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gauge). The impacts of observed rainfall variability on runoff modelling at this

scale are discussed in Section 6.3.3.1.

6.2.2 Observed Spatial and Temporal Characteristics of Walnut Gulch
Soil Moisture

In Walnut Gulch, soil moisture observations were made by in-situ gravimetric

sampling, resistance sensors, and Time Domain Reflectometry (TDR) sensors, as

well as by microwave remote sensing. During Monsoon ’90, three replicate gravi-

metric surface soil moisture samples were collected daily at the eight Metflux sites

(Schmugge et al., 1994). These were converted to volumetric soil moisture using

bulk density measurements made at each site. The only continuous soil moisture

measurements made during Monsoon ’90 were those made with resistance sen-

sors (Kustas and Goodrich, 1994). They were placed at 2.5 cm and 5 cm below

the surface at all eight Metflux sites. These sensors are generally difficult to
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Figure 6.6. An example of spatial and temporal separation of high-intensity storm cells. (a) Spatially

averaged storm intensities (solid line) and storm centroidal position (dashed line) in 10 minute time

increments for the event of July 30, 1989. (b) Intensity contours during 40–50 minute interval. (c)

Intensity contours during 190–200 minute interval.



calibrate and tend to drift. Therefore, following the recommendation of Stannard

et al. (1994), the resistance data were calibrated against the gravimetric samples

and then used to interpolate gravimetric data to each model time step. TDR

measurements were made at daily intervals and at multiple depths down to

0.5m at two of the Metflux sites (Kustas and Goodrich, 1994).

Engman (1991) described NASA’s 21 cm wavelength (1.42 GHz), passive

microwave Push Broom Microwave Radiometer (PBMR) instrument as ‘‘a

mature and reliable instrument with a good history of soil moisture measure-

ments’’. This approach relies on the large dielectric contrast between water and

dry soil at long (> 10 cm) microwave wavelengths that causes the soil’s emis-
sivity to be a function primarily of moisture content. Vegetation can reduce the

range of microwave brightness variation, totally obscuring the soil moisture

signal if it is present in sufficiently large amounts. Fortunately this remote-

sensing technique works well because Walnut Gulch has minimal vegetation

(Schmugge et al., 1994).

During the Monsoon ’90 field campaign (July 23 to August 10, 1990), the

PBMR instrument was flown on board the National Aeronautics and Space

Administration (NASA) C-130 aircraft. Six days (July, 31 August 2, 4, 5, 8

and 9, 1990) of microwave brightness temperature were collected over an 8�

20 km area in the northeastern portion of the catchment (Schmugge et al.,

1994). The period was very dry prior to the first flight, which was followed

by 5 cm of rain falling over most of the study area on August 1, 1990. This
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Figure 6.7. Contour map of the rainfall depth for the storm of August 12, 1990 (interpolation by

isotropic kriging). Storm duration is 4 hours 42 minutes with about 75% of the rain falling in 26

minutes.



produced a significant decrease in brightness temperature (50 to 60K) on

August 2, 1990. The successive flights on August 4, 5, 8, and 9, 1990 showed

the effects of some smaller rain storms and drydown of the area. A strong

east-west spatial pattern is also evident and is strongly correlated to the

observed soil and vegetation gradients. The changes in brightness temperature

at six of the eight Metflux sites (Figure 6.1b) were well correlated with rain-

fall (R2 > 0:9) and in-situ soil moisture (R2 ¼ 0:8) (Schmugge et al., 1994).
The linear relationships established between microwave brightness tempera-

ture and gravimetric soil moisture at each Metflux site by Schmugge et al.

(1994) were used with an inverse distance weighting scheme to invert micro-

wave brightness temperature to soil moisture (Figure 6.8) (Houser et al.,

1998).

The PBMR data have been analysed using geostatistical methods (see Chapter

2). The analysis also showed that the correlation structure varies with time. The

July 31, 1990 PBMR observations, taken during dry conditions, show little spa-

tial correlation, i.e. there is only very short range correlation probably due to

random pattern of surface properties. One day after the large precipitation event

on August 1, 1990, the variogram changes to linear with a very small nugget and

a range beyond the observation area (15 km), i.e. the storm pattern imposes a

large-scale pattern on the brightness temperature. Three days after the August 1,

1990 storm, a range of about 3.5 km becomes apparent, that is, as the surface

dries, the scale of correlation decreases. Eight days after the storm, some spatial

structure is still evident in the PBMR variogram but there are also significant

random components in the pattern (Houser et al., 1998), i.e. the brightness

temperature pattern imposed by the storm is disappearing and the random pat-

tern of surface properties is dominating again.

A multispectral scanner was also flown on NASA’s C-130 aircraft during the

Monsoon ’90 field experiment. Using the NS001 thermal band (10.9–12:3 mm), in
conjunction with a radiative transfer algorithm (LOWTRAN 7) that corrected

for atmospheric effects on the signal, surface temperature distributions were

derived (Figure 6.8) (Humes et al., 1997). The image on August 1, 1990 shows

areas of low temperatures corresponding to isolated cumulus clouds. There are

also clear discontinuities between the two flight lines, which are attributed to the

time difference in data acquisition (see Humes et al., 1997). It is clear that the

surface temperature is strongly influenced by the surface soil moisture since it has

a high correlation with both the PBMR observations and the rainfall distribu-

tion, and also shows the effects of shading by topography and larger amounts of

vegetation in drainage lines.

In addition to the Monsoon ’90 PBMR remotely sensed and ground-based

gravimetric measurements, a similar suite of measurements was carried out over

Walnut Gulch in 1991 using ESTAR, the airborne electronically steered thinned

array L-band radiometer (Jackson et al., 1993). As in 1990, a wide range of soil

moisture patterns and conditions were captured as flights were made before and

after several significant rainfall events. With the ground-based data as well as the

patterns of soil moisture acquired in 1990 by the PBMR instrument, the viability
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of the ESTAR instrument for soil moisture estimation was established by this

study (Jackson et al., 1993).

Soil moisture patterns in the WGEW, as observed by both in-situ and

remote sensing, are complex, with large variability at all scales. However, some

spatial structure is evident, arising from highly-localised convective

precipitation, drydown processes, and surface characteristics such as soil and

vegetation type.

6.2.3 Observed Spatial and Temporal Characteristics of Walnut Gulch
Runoff

The interactions of rainfall patterns and antecedent soil moisture patterns will

of course play a role in determining patterns of runoff generation. The nested

structure of the runoff observation network within the WGEW affords an oppor-

tunity to examine spatial runoff patterns to some degree. In Figure 6.9 the runoff

per unit area for each of the gauged catchments resulting from the August 1, 1990

storm is illustrated as a circle at the outlet of each gauged catchment whose size is

proportional to the runoff magnitude. As expected, runoff was generated in

regions of high rainfall. Sufficient runoff was generated from this event so that

the flow was able to traverse approximately 15 km of dry ephemeral channel and

reach the overall catchment outlet. While many of the catchments produced no

runoff from the August 1, 1990 event, a more regular pattern of runoff distribu-

tion is observed for a ten year average (1969–1979). The general trend apparent

in this data is a reduction in mean annual runoff per unit area with increasing

drainage area.

These trends are consistent with the ephemeral semi-arid nature of the catch-

ment where runoff is not augmented by ground water inflows. Without a satu-

rated channel system, the dry loose alluvium present in the vast majority of the

larger channels is able to absorb a significant volume of surface runoff.

Depending on the location of rainfall, these channel transmission losses can

also significantly impact peak runoff rates (Renard et al., 1993). An example
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Figure 6.9. Runoff volumes and rainfall depths on Walnut Gulch from the storm of August 1, 1990.



of the impacts of channel transmission losses on runoff volume and peak runoff

rate is illustrated in Figure 6.10 for the event of August 27, 1982. This figure

depicts the storm isohyets and the hydrographs at flumes 6, 2, and 1. Because the

rainfall is isolated above these flumes the change in hydrograph runoff volume

and peak rate is solely attributed to transmission losses.

Channel transmission losses effectively decrease the correlation between rain-

fall and upland soil moisture patterns, and observed runoff. In the extreme case,

all locally generated runoff may infiltrate into the channels. In this case any

connection between rainfall and soil moisture patterns is severed downstream

of the terminal location of the runoff front. Goodrich et al. (1997) concluded that

explicit treatment of channel transmission losses is required for modelling catch-
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Figure 6.10. Storm total isohyets and hydrographs from flumes 6, 2, and 1 for event of August 27,

1982.



ments larger than roughly 40 hectares. In the case where two runoff events occur

over the same reach of channel within a short period of time (< 3 days), runoff
from the second event can be greatly enhanced as transmission losses are largely

satisfied by the prior event.

6.3 MODELLING AND SPATIAL INFERENCES

6.3.1 Precipitation Modelling

Spatial precipitation modelling efforts posed and tested using WGEW data

were initiated with extensions from point observations to area (Osborn, 1977);

depth–area (Osborn and Lane, 1972); and, point–area frequency conversions

(Osborn and Lane, 1981). These studies provide methods for areal distribution

of rainfall uniformly without internal storm pattern information. Several sto-

chastic models have also been developed to predict the spatial and temporal

distribution of thunderstorm rainfall (Osborn et al., 1980; Eagleson et al.,

1987; Islam et al., 1988; Jacobs et al., 1988). In general these models were able

to reproduce the main statistical features of rainfall patterns. However, model

stationarity assumptions limited model results as they were not able to describe

observed nonstationary storm behaviour.

While these models have some utility in predicting rainfall patterns that are

statistically similar to observations, the remotely sensed spatial patterns

(Section 6.2.2) have the potential to estimate observed spatial rainfall patterns

on an event basis. As noted in that section, Schmugge et al. (1994) found a high

correlation of change in brightness temperature between flight acquisition dates

and total inter-flight rainfall. The data from one set of PBMR flights in 1990

and two sets of ESTAR flights in 1991 are illustrated in Figure 6.11. As illu-
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Figure 6.11. Relationship between raingauge total and decrease in brightness temperature (�TB)

for three Walnut Gulch rainfall events. The lines are fitted exponential curves for the three events.



strated in the figure, a simple exponential model describes the relationship quite

well. The respective R2 values for this function are R2 ¼ 0:68, 0.83, and 0.79 for
July 31 to August 2, 1990 (labelled August 1, 1990), July 30 to August 1, 1991

(labelled 30 July 1991) and August 2 to August 3, 1991 (labelled 2 August 1991)

data. The variability in these relationships may be caused by differences in

within-storm rainfall intensity patterns, infiltration, or evapotranspiration.

The failure of the relationship above rainfall amounts of 30mm is likely the

result of two factors. First, for high rainfall amounts generating runoff, a

portion of the rainfall is conveyed offsite and is concentrated in channels. In

this case the full rainfall amount does not infiltrate and increase local soil

moisture. The second factor has to do with the dynamic brightness temperature

range of the L-band radiometer. For sparse vegetation the sensitivity of bright-

ness temperature (TB) is about 2.5K per percent of soil moisture. The dynamic

range, given constant physical temperature, can be estimated by multiplying the

sensitivity by the soil moisture range. Observed ranges of soil moisture vary

from 18% to almost 30% depending on soil type. The corresponding dynamic

range would vary from roughly 45 to 75K.

The relationships illustrated in Figure 6.11 can be inverted to predict rainfall

patterns. This analysis was carried out by Jackson et al. (1993) and comparison

between observed rainfall patterns from the raingauge network and those pre-

dicted using the patterns of change in brightness temperature are illustrated for

the two events in 1991 in Figure 6.12. The patterns predicted using changes in

brightness temperature are very similar to patterns obtained from interpolating

rainfall amounts from the dense raingauge network. As Jackson et al. (1993)

note, for sparsely vegetated arid and semi-arid regions similar to Walnut

Gulch, these results suggest the potential of using the change in brightness tem-

perature method to estimate rainfall over large regions which do not have rain-

gauge networks, provided a precipitation–�TB relationship is available.

6.3.2 Soil Moisture Modelling

6.3.2.1 Description of TOPLATS and its Application to Walnut Gulch

The TOPMODEL-based Land Atmosphere Transfer Scheme (TOPLATS)

(Famiglietti and Wood, 1994) predicts spatial distributions of land surface run-

off, energy fluxes, and soil moisture dynamics given atmospheric, soil, and vege-

tation information. It incorporates simple representations of atmospheric

forcing, vertical soil moisture transport, plant-controlled transpiration, intercep-

tion, evaporation, infiltration, surface runoff, and sensible and ground heat

fluxes. The model incorporates a diurnal cycle and is driven with standard

meteorological data with an hourly time step, this being considered sufficient

to resolve the dynamics of the land–atmosphere interaction. The subsurface

unsaturated soil column is partitioned into three layers, with the upper layer

corresponding to the microwave remote sensing penetration depth, the under-

lying root zone extending from the bottom of the surface zone to the depth of
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plant roots, and the transmission zone extending from the bottom of the root

zone to the top of the saturated soil.

The WGEW was modelled using TOPLATS in a spatially distributed manner

at a 40m resolution from July 23, 1990 to August 16, 1990. The TOPLATS

parameterisation was largely based on observations made during Monsoon ’90

(Kustas and Goodrich, 1994). However, eight model parameters were not

observed and had to be estimated or specified by model calibration (Houser et

al., 2000).

6.3.2.2 Spatially Distributed Model Forcing and Parameters

The multiquadric precipitation interpolation algorithm (Syed, 1994) was used

to produce spatially distributed precipitation values for the entire model domain

from the available raingauge data. All other meteorological forcing (air tempera-

ture, wind speed, humidity, and radiation) were assumed to be spatially constant

because observations from the eight Metflux stations contain insufficient infor-
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Figure 6.12. Rainfall maps for the Walnut Gulch study area. The isohyetal contour lines were

derived from the observations made by the WGEW raingauge network. The images of predicted

rainfall were obtained from the pre-storm to post-storm change in brightness temperature and the

exponential models illustrated in Figure 6.11. All values are in mm. Top: July 30, 1991 event;

Bottom: August 2, 1991 event. (Modified from Jackson et al., 1993.)



mation to derive spatially-variable meteorological forcing for the approximately

ninety thousand TOPLATS model grid points, and an eight-site average

decreases the impact of highly local meteorologic signals (i.e., solar radiation

measurement errors due to vegetation and topographic shading) on larger-area

simulation. Therefore, meteorological forcing was derived from averaging obser-

vations at the eight Metflux stations in place during the experiment (Kustas and

Goodrich, 1994).

It is thought that optimal implementation of a distributed hydrological model

requires the specification of spatial distributions of soil and vegetation para-

meters. Therefore, the required TOPLATS spatially variable parameters were

estimated using GIS maps of Walnut Gulch vegetation and soils; several exam-

ples of these spatially variable parameters are shown in Figure 6.13 and Houser

et al. (2000). Spatially distributed information on minimum stomatal resistance,

root depth, leaf area index, residual soil moisture, saturated soil moisture, satu-

rated hydraulic conductivity, percent clay, percent sand, effective porosity, and

topographic index at Walnut Gulch were used as parameters in the TOPLATS to

make spatially distributed predictions. All other parameters were held spatially

constant. The three TOPLATS soil moisture layers were initialised on July 23,

1990 based on catchment average in-situ TDR soil moisture observations.

The simulated spatial patterns of surface soil moisture at 12:00pm on August

7, 1990, using these spatially variable parameters, are shown in Figure 6.13. For

comparison, the results for a simulation using spatially constant soil and vegeta-

tion parameters are also shown. The spatially variable soil and vegetation para-

meters have a large impact on the spatial patterns of the simulation, which

appear unrealistic because they compare poorly with observed PBMR surface

soil moisture. A series of sensitivity simulations was performed to determine

which subset of spatial parameters contribute most to these patterns. The use

of spatially variable vegetation parameters has much less effect on predictions as

compared to soil parameters; it is likely that at the WGEW soil has more control

of soil moisture processes than vegetation. The parameter specifying saturated

soil moisture has the most influence on simulated spatial patterns, while those

which specify the percentages of sand and clay, the saturated hydraulic conduc-

tivity, and the residual soil moisture have a more moderate influence. Finally, the

spatially variable topographic index has very little influence on the simulations

because the process of water table interaction with the surface does not operate at

the WGEW.

The artefact of enhanced spatial soil and vegetation polygons apparent in

the simulations is probably not a simple mis-specification of parameter values,

rather it is an artefact of discretely assigning a single set of parameters (which

in reality would display high variability, see for example Chapter 10, Figure

10.4) to large areas. A more appropriate specification of spatial parameters

would be continuous, as obtained with remote sensing. It might be possible

to develop a smoothing algorithm that would use the soil polygon information

to approximate continuously varying, spatially distributed parameters. Because

the simulations using spatially constant vegetation and soil parameters compare
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well to the PBMR patterns, soil and vegetation parameters were assumed spa-

tially constant across the catchment in subsequent studies, leaving precipitation

as the dominant spatially varying entity (topographic index is also variable, but

with little effect).
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Figure 6.13. Spatially distributed topographic index (a); precipitation (b); vegetation (c); and soils

(d); for the Walnut Gulch Experimental Watershed. TOPLATS spatial predictions of surface soil

moisture at 12:00pm on August 7 1990 using spatially constant (e) and spatially variable (f) soils and

vegetation parameters (all simulations use spatially variable topography and precipitation). Push

Broom Microwave Radiometer (PBMR) derived soil moisture for August 5, 1990 and August 9,

1990 (Houser, 1996). The addition of spatially variable soils and vegetation produces unrealistic

polygon artefacts in the simulation.



6.3.2.3 Four-Dimensional Data Assimilation for Enhanced Soil Moisture
Pattern Identification

Errors in the structure, parameters, and forcing of TOPLATS can never be

fully rectified, and therefore lead to prediction errors. However, observations of

model states or storages, distributed in time and space, can be used to correct the

trajectory of the model, and reduce its prediction errors. Charney et al. (1969)

first suggested combining current and past data in an explicit dynamical model,

using the model’s prognostic equations to provide time continuity and dynamic

coupling amongst the fields. This concept has evolved into a family of techniques

(i.e., direct insertion, Newtonian nudging, optimal interpolation, variational,

Kalman filtering, etc.) known as Four-Dimensional Data Assimilation (4DDA).

TOPLATS was modified to allow the assimilation of soil moisture and other state

variables. The following description assumes assimilation of observed surface soil

moisture, �o, derived from the PBMR (as shown in Figure 6.8). However, with

modifications specific to the state variable, the following description can be used

to assimilate other variables, such as surface temperature.

A control and a direct insertion simulation are used as the basis for evaluating

the data assimilation runs. A control simulation (i.e., the simulation without data

assimilation) can be considered an extreme case, in which it is assumed that the

observations contain no information. The other extreme is direct insertion, where

it is assumed that the model contains no information. In this case, the model

prediction of surface soil moisture, �sz, is replaced with a PBMR soil moisture
observation, �o, whenever an observation is available. With direct insertion, no
data are assimilated outside the four-dimensional region (one time and three

space dimensions) where observations are available; therefore, any advection

of information is only accomplished via the model physics in subsequent

model integrations.

In a second data assimilation technique, which is termed ‘‘statistical correc-

tion’’, the mean and standard deviation of the surface soil moisture states in the

model are adjusted to match the mean and standard deviation of the observa-

tions. This method assumes that the statistics of the observations are perfect,

which is arguably more reasonable than assuming that each observation is in

itself perfect, as in direct insertion. It also assumes that the patterns predicted by

the model are correct but that the predicted surface soil moisture statistics con-

tain bias. As with direct insertion, advection of information into deeper soil

layers is accomplished solely through the model physics.

A third data assimilation technique called Newtonian nudging relaxes the

model state towards the observed state by adding an artificial tendency term

into the prognostic equations which is proportional to the difference between

the two states. These small forcing terms gradually correct the model fields which

are assumed to remain in approximate equilibrium at each time step (Stauffer

and Seaman, 1990). In this way, the model can be nudged toward observations

within a certain distance, and during a period of time, around the observations.

Newtonian nudging is implemented as follows:
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@�

@t
¼ Fð�; x; tÞ þ G� �W�ðx; tÞ � "�ðxÞ � ð�

0
o	�Þ ð6:1Þ

The model’s forcing terms are represented by F, � 0o is the PBMR surface soil

moisture observation at the model grid, and t is time. G� is the nudging factor

which determines the magnitude of the nudging term relative to all other model

processes, while the four-dimensional weighting function,W�, specifies its spatial

and temporal variation. The analysis quality factor, "�, varies between 0 and 1
and is based on the quality and distribution of the observations. Equation (6.1)

was implemented for all three TOPLATS soil layers.

The Newtonian nudging weighting function,W, at time, t, and location, x, for

each observation, I, is a combination of the horizontal weighting function, wxy,

the vertical weighting function, wz, and the temporal weighting function, wt, thus:

Wðx; tÞ 
 wxy �wz �wt ð6:2Þ

The horizontal weighting function can be defined by a Cressman-type hor-

izontal weighting function, as:

wxy ¼
R2 	D2

R2 þD2
; 0 � D � R ð6:3Þ

wxy ¼ 0; D > R ð6:4Þ

where R is the radius of influence, and D is the distance from the ith observation

to the gridpoint. The vertical weighting function, wz, is also a distance weighting

function, following Seaman (1990); thus:

wz ¼ 1	
jzobs 	 zj

Rz
; jzobs 	 zj � Rz ð6:5Þ

wz ¼ 0; jzobs 	 zj > Rz ð6:6Þ

where Rz is the vertical radius of influence, and zobs is the vertical position of the

ith observation. The temporal weighting function is defined as follows:

wt ¼ 1; jt	 t0j <
�

4
ð6:7Þ

wt ¼ 0; jt	 t0j > � ð6:8Þ

wt ¼
ð� 	 jt	 t0jÞ

�=4
;

�

4
� jt	 t0j � � ð6:9Þ

where t is the model-relative time, t0 is the model-relative time of the i
th observa-

tion, and � is the half-period of a predetermined observation influencing time
window.

The final data assimilation method explored here is statistical or optimal

interpolation, which is a minimum variance method that is closely related to

kriging. Statistical interpolation was implemented in all three TOPLATS soil

layers as follows (Daley, 1991):
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�AðriÞ ¼ �BðriÞ þ
XK
k¼1

Wik � ½�OðrkÞ 	 �BðrkÞ� ð6:10Þ

where K is the number of observation points, Wik is the weight function, �ðrÞ is
the soil moisture analysis variable, r is the three-dimensional spatial coordinates,

�AðriÞ is the analysed value of � at the analysis gridpoint ri, �BðriÞ is the back-
ground or first-guess value of � at ri, and �OðrkÞ and �BðrkÞ are the observed and
background values, respectively, at the observation station rk.

The weight function, Wik, is determined by least-squares minimisation of

equation (6.10), with the assumptions that �BðrkÞ, �BðriÞ, and �OðrkÞ are unbiased,
that there is no correlation between the model and observation error, that the

error correlations are homogeneous, isotropic, and time invariant, and that the

background error correlation, 
B, is horizontally and vertically separable (i.e.,

B ¼ 
Bxy
Bz) (Daley, 1991), thus:

XK
l¼1

Wil � 
Bxy � ðrl 	 rkÞ þ "
2
O � 
O � ðrl 	 rkÞ

� �
¼ 
Bxy � ðri	 rkÞ � 
Bz � ðzi	 zkÞ

ð6:11Þ

where 
O is the observation error correlation matrix, 
Bxy is the background
horizontal error correlation matrix, and 
Bz is the vertical error correlation
matrix. 
O and 
B were estimated using PBMR observations and corresponding
model predictions (Houser et al., 1998). The system of linear equations given in

equation (6.11) was solved using a Cholesky Decomposition (Press et al., 1986).

Each PBMR image contains over 35,000 observations, which requires solving a

system of 35,000 linear equations for each model grid point each time an obser-

vation was available. Clearly the computational resources needed for this task are

unreasonable; hence, a simplified method was required. This was accomplished

by (a) using a random subset of 100 PBMR observations, and (b) by using 100

‘‘super-observations’’, these being approximately 1 km2 PBMR soil moisture

averages.

Catchment average time series of surface and root zone soil moisture for the

various assimilations using all of the available PBMR observations are shown in

Figure 6.14. All of the data assimilation methods significantly and similarly

improved the simulation of surface zone soil moisture, with the exception of

direct insertion, which was unable to impose an entire catchment correction

and was therefore unable to adjust the model trajectory sufficiently. Nudging

had the clear advantage of providing smoother temporal adjustments. All simu-

lations produced identical surface zone soil moisture simulations after the storm

on August 12, 1990 because this storm saturated the surface zone causing all past

surface zone forcing to be forgotten, but this process does not occur in the

model’s root zone where memory of past assimilation is preserved. This sequence

of events is not unrealistic; rather, it suggests a time interval at which soil moist-

ure observations are needed for data assimilation, this interval being less than or

equal to the time between storm events. In the root zone, the simulated time
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series fell into two distinct groups corresponding to methods with and without

the capability for vertical assimilation of information. Among the latter group,

nudging assimilation performs a more conservative correction compared to sta-

tistical interpolation. None of the methods produced time series that matched the

in-situ root zone observations. However, it is important to bear in mind that with

only two in-situ root zone observations, the root zone spatial variability is not

adequately sampled.

The control run deviates most significantly from observations near the end of

the drydown on August 7, 1990, so this time is selected to demonstrate the

intercomparison between assimilation methods. It should be noted that four
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Figure 6.14. Comparison of TOPLATS catchment average surface and root zone soil moisture time

series for various assimilation studies. (From Houser et al., 1998; reproduced with permission.)



PBMR images were assimilated prior to this time, with the last assimilation

occurring on August 5, 1990. The spatial patterns of model-predicted surface

soil moisture for the different assimilation methods are shown in Figure 6.15.

The best spatial patterns are considered to be those without discontinuity at the

edge of the observed area, without numerical artefacts, and with a similar nature

to those produced by the model without assimilation.

Simple updating is unable to advect information horizontally, giving rise to an

undesirable discontinuity in the calculated soil moisture field and preserving all the

observational noise. Updating also is able only to impact root zone soil moisture

very slightly through model physics and preserves the discontinuity in this zone.

Data assimilation via statistical corrections is able to adjust the entire surface soil

moisture field to observed levels. It produces a soil moisture spatial field that does

not contain discontinuities or retain the observed spatial pattern. Newtonian

nudging also produces a spatial field of soil moisture without discontinuities.

Both the random and the super-observation statistical interpolation

approaches result in an undesirable linear streaking feature that extends outward

from the observed area that is an artefact of numerical procedures, or may be the

result of a violation of the statistical interpolation unbiased background assump-

tion. Statistical interpolation has the advantage of using error correlation func-

tions based on the characteristics of the observations and the model predictions.

However, it also has the disadvantage of being excessively demanding on com-

puter resources when addressed as a fully posed problem with remotely sensed

data, and it lacks the benefits of temporal assimilation.

There is a clear tradeoff between using a complex data assimilation technique

and the ability to use all the available data due to the large computational

burdens of performing data assimilation at fine resolutions using dense data

sets. As the complexity of the data assimilation model increases, the size of the

assimilated data set needs to decrease in order to maintain computational feasi-

bility. Complex methods have the ability to extract more useful information from

assimilated data, but simpler methods use more of the data to extract similar

information. This tradeoff allows simpler assimilation techniques to perform

almost as well as complex techniques. In general, this argument suggests the

use of assimilation methods that are of moderate complexity, that are sound

and computationally efficient, but use as much data as possible. If the informa-

tion in the data can be efficiently compressed or filtered before its use in data

assimilation, and if the mathematical solvers can be further optimised, it may be

reasonable to use larger data sets in complex data assimilation strategies.

6.3.3 Runoff Modelling

The range of runoff models applied to, or developed with, Walnut Gulch data

varies widely in both complexity and type. Early models included those based on

linear regression at annual time scales (Diskin, 1970) and stochastic models for

estimating the start of the runoff season, the number of runoff events per season,
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time interval between events, beginning event time, runoff volume, and peak

discharge (Diskin and Lane, 1972; Lane and Renard, 1972). More geometrically

detailed recent work by Syed (1994) further reinforced the importance of spatial

distributions of both rainfall and pre-storm soil moisture availability on catch-

ment runoff response using the 302 storm events discussed earlier with regression

analyses. Simple measures of spatial characteristics of rainfall considered indivi-

dually did not show a very high degree of correlation with either runoff volume

or peak rate of runoff for WG1 (the whole experimental catchment). The highest

correlation, R2, was found to be between precipitation volume and runoff volume

(R2 ¼ 0:59) and precipitation volume and peak rate of runoff (R2 ¼ 0:53).
However, when only the precipitation volume of the storm core

(intensities > 25mm=hr) was considered, the coefficients of correlation increased
to 0.71 and 0.76, respectively. This clearly illustrates that the high-intensity por-

tions of the storm core are directly related to runoff production.

A large number of other models have also utilised data from Walnut Gulch

for development or validation. These include CREAMS (Knisel, 1980); SPUR

(Lane, 1983a,b; Renard et al., 1993); ARDBSN (Stone et al., 1986); WEPP

(Lopes et al., 1989); and CELMOD5 (Karnieli et al., 1994). A particularly well

adapted model for use in arid and semi-arid regions where transmission losses are

important was developed by Lane (1982).

6.3.3.1 Description of KINEROS and Its Application to Walnut Gulch

KINEROS is a physically based, event-oriented kinematic runoff and erosion

model (Smith et al., 1995) that was also developed and tested using WGEW data.

In this model, catchments are represented by discretising contributing areas into

a cascade of one-dimensional overland flow and channel elements using topo-

graphic information. The infiltration component is based on the simplification of

the Richard’s equation posed by Smith and Parlange (1978):

fc ¼ Ks
eF=B

ðeF=B	1Þ
; and B ¼ G � " � ðSmax	SIÞ ð6:12Þ

where fc is the infiltration capacity (L/T), Ks is the saturated hydraulic conduc-

tivity (L/T), F is the infiltrated water (L), B is the saturation deficit (L), G is the

effective net capillary drive (L), " is the porosity, Smax is the maximum relative

fillable porosity, and SI is the initial relative soil saturation. Runoff generated by

infiltration excess is routed interactively using the kinematic wave equations for

overland flow and channel flow, respectively stated as:

@h

@t
þ
@� � hm

@x
¼ riðtÞ 	 fiðx; tÞ; and

@A

@t
þ
@QðAÞ

@x
¼ qlðtÞ 	 fci ðx; tÞ ð6:13Þ

where h is the mean overland flow depth (L), t is time, x is the distance along the

slope (L), � is 1.49 S1=2=n, S is the slope, n is Manning’s roughness coefficient, m
is 5/3, riðtÞ is the rainfall rate (L/T), fiðx; tÞ is the infiltration rate (L/T), A is the
channel cross-sectional area of flow (L2), Q(A) is the channel discharge as a
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function of area (L3=T), qlðtÞ is the net lateral inflow per unit length of channel
(L2=T), and fciðx; tÞ is the net channel infiltration per unit length of channel
(L2=T). These equations, and those for erosion and sediment transport, are
solved using a four-point implicit finite difference method (Smith et al., 1995).

Unlike excess routing, interactive routing implies that infiltration and runoff

are computed at each finite difference node using rainfall, upstream inflow, and

current degree of soil saturation. This feature is particularly important for accu-

rate treatment of transmission losses with flow down dry channels. To explicitly

account for space-time variations in rainfall patterns the model computes, for

each overland flow element, the rainfall intensities at the element centroid as a

linear combination of intensities at the three nearest gauges forming a piece-wise

planar approximation of the rainfall field over the catchment (Goodrich, 1990).

The interpolated centroid intensity is applied uniformly over that individual

model element. To represent small-scale variability of infiltration that is beyond

the scale of discretisation (sub-metre to metre), the model assumes the saturated

hydraulic conductivity (Ks) within an overland flow element varies log-normally

(Woolhiser and Goodrich, 1988; Smith et al., 1990) (i.e., it uses a sub-grid dis-

tribution function parameterisation as discussed in Chapter 3).

Validation of the KINEROS model is reported by Goodrich (1990), Goodrich

et al. (1993), and Smith et al., (1995) on four Walnut Gulch subcatchments

(Lucky Hills ðLHÞ-106, 0.4 ha; LH-102, 1.4 ha; LH-104, 4.4 ha; and WG-11,

631 ha). For the Lucky Hills catchment, rainfall inputs were obtained from two

raingauges, and for WG-11 ten raingauges were used. The validation process

consisted of a split sample test (Chapter 3, p. 76 and Chapter 13, p. 340) with

the calibration phase using approximately ten observed events on each catchment

and a validation phase in which an independent set of roughly twenty runoff

events were used to assess model performance using the coefficient of efficiency,

E (Nash and Sutcliffe, 1970) (Table 6.1). The model was calibrated by adjusting
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Table 6.1. KINEROS calibration and verification coefficient of efficiency for runoff volume and
peak discharge

Basin

Calibration efficiency Verification efficiency Maximum no.

of model
elementsVolume Peak Volume Peak

1 2 3 1 2 3 1 2 1 2

LH-6 0.98 0.97 0.81 0.95 0.94 0.86 0.98 0.98 0.79 0.77 30

LH-2 0.97 0.88 0.88 0.97 0.93 0.93 0.93 0.92 0.93 0.89 68

LH-4 0.97 0.96 0.89 0.98 0.88 0.88 0.99 0.99 0.92 0.96 235

WG-11 0.86 0.84 0.49 0.16 243

1 – two raingauges in Lucky Hills, ten raingauges in WG-11, using the maximum number of overland

and channel flow elements

2 – two raingauges, one overland flow element, no channel elements

3 – one raingauge, maximum number of overland and channel flow elements

� – If the model predicts observed runoff with perfection, E ¼ 1. If E < 0, the model’s predictive
power is worse than simply using the average of observed values.

_________________________ ___________________



three parameters: basin-wide multipliers on n, Ks, and CVKs. The multipliers scale

the model element input parameters while maintaining relative differences based

on field observations. Using this approach, the overall dimension of the adjus-

table parameter space remains small (see Chapter 13, pp. 342–3 for a discussion

of this approach). By using the nested catchments LH-106 and LH-102 (see

Figure 6.1) within catchment LH-104, internal assessment for the model’s ability

to reproduce runoff patterns was also possible.

As judged by the efficiency statistics, the model provides remarkably good

predictions of runoff volume and peak response for the Lucky Hills catchments.

An overall assessment of internal model accuracy using the nested catchments

gives an E of 0.91 and 0.86 for LH-106 runoff volume and peak rate, respectively,

and comparable LH-102 E values of 0.96 and 0.97. These high values of E

obtained by using LH-104 multipliers for the internal catchments suggest a

good deal of internal model accuracy. On WG11 the model performed reason-

ably well for the calibration event set, but E dropped off considerably for the

verification event set due to overprediction of the two largest events in the

verification set.

While we can represent a wide range of geometric catchment complexity, it is

not clear just how much is required to best represent hydrological response. Does

the use of a great number of model elements, and therefore a great amount of

distributed input, actually improve the simulations or can simpler geometries do

just as well? Which components can be simplified and which must have their

spatial detail preserved? Geometric model complexity and catchment heteroge-

neity are closely related. More complex model representations (i.e., more over-

land flow and channel model elements) more closely preserve the catchment

patterns of topography and channel networks. Large-scale orthophoto maps

were used to discretise the catchments into a large number of elements, and a

geometric simplification procedure based on stream order reduction was devel-

oped (Goodrich, 1990). Successive levels of reduction in model complexity were

then carried out to assess the impacts of simplification on simulated runoff

response. It was found that adequate representation of concentrated channel

routing imposed a fundamental limit on simplification because concentrated

channel flow can only be converted to overland flow with a distortion of the

hydraulic roughness to a certain degree. For catchments greater than 1 hectare it

was found that an average area for first-order channels should be roughly

10–15% of the total catchment area (Goodrich, 1990).

The relative impact of geometric versus rainfall pattern simplification was also

assessed. The error introduced when the model was simplified to a single over-

land flow plane with two raingauges as input was less than or equal to the error

when one raingauge was used in the Lucky Hills catchments as input to a model

with the maximum number of elements corresponding to the most complex geo-

metric catchment representation (see Table 6.1). This result was even more pro-

nounced in the larger WG-11 catchment when one versus ten raingauges was

used (Goodrich, 1990). Therefore, unless there are major differences in land use,

basin discretisation should not exceed the ability to resolve input rainfall variability.
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The uncertainty in rainfall input due to small- and large-scale spatial variability

suggests that the confidence in the calibration can only be equal to or less than the

certainty of rainfall input data.

Faurès et al. (1995) assessed the impacts of Walnut Gulch rainfall variability

on runoff simulations in the LH-104 catchment using KINEROS (Figure 6.16).

Data from combinations of five recording raingauges were input into

KINEROS for the event of August 3, 1990. These simulations produced a

range of variation for simulated peak runoff rate and runoff volume of

15mm/hr (CV ¼ 38:8%) and 2.6mm (CV ¼ 40:0%), respectively. The varia-
bility in runoff model results emphasises the importance of adequately sampling

the spatial distribution of rainfall in the catchment. It was also found that

model output variation as a function of the number of raingauges was generally

greater for small events than for large ones. This reflects the difficulty of

modelling small runoff events when runoff to rainfall ratios are low and mea-

surement error may be a larger relative percentage of the input rainfall signal.

This would be expected whenever relative infiltration and rainfall rates are

close, resulting in small runoff ratios. In this case, the model becomes very

sensitive to both input and parameter patterns. If the uniform, single raingauge

assumption were used during parameter fitting in spite of spatial variability

comparable to that observed here, the variation in simulated hydrographs
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Figure 6.16. Simulated hydrographs for five combinations of one, two, three, and four raingauges in

Lucky Hills-104 (August 3, 1990 event).



could be mistakenly assigned to variability of other model parameters or errors

in the model structure.

Finally, the relative importance of PBMR derived remotely sensed soil moist-

ure patterns (Section 6.2.2) on runoff simulations on the larger WG-11 catchment

is examined. KINEROS is very sensitive to the estimate of the pre-storm initial

relative soil saturation, SI (Goodrich, 1990). An average SI was derived for each

of 256 model elements (3.4 ha mean overland flow element area) from five PBMR

overflights, three of which are illustrated as volumetric soil moisture in Figure 6.8

(Goodrich et al., 1994). An increase in the variability of SI with increasing mean

SI was observed; however, the highest mean SI observed was 0.45 on a zero to

one scale, so the generally postulated decrease in variability as SI approaches one

was not observed (Goodrich et al., 1994). Attaining a very high average SI may

not be realised given the rapid drainage of the coarse soils of WG-11 and the

difficulty of obtaining an aircraft overflight immediately following an intense

convective thunderstorm.

In order to assess the relative importance of variability in initial soil saturation

and variability in precipitation, a simulation study was performed using different

combinations of observed patterns in soil saturation (from PBMR data) and

precipitation (from multiple raingauges). The impact of simplifying the represen-

tation of initial soil saturation was assessed by comparing the highly complex SI

pattern (256 SI values) to a single catchment average SI representation (Figure

6.17). For rainfall simplification, the case of using observations from ten rain-

gauges in and near the catchment is compared to using rainfall from a single

central raingauge (uniform rainfall). The rationale for using average SI but a

single raingauge (rather than average of the ten, which would be less variable) is
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that average SI data may become widely available from low spatial resolution

sensors, while only single raingauges are usually available and applied uniformly

to large areas.

The comparisons were made for three PBMR derived sets of SI (August 2, 4,

and 5, 1990) and for five storms, two of which occurred during the period of

PBMR overflights and three historical storms that had relatively small runoff

volumes and distinct rainfall patterns. The October 21, 1978 event was relatively

uniform, the June 24, 1986 event had high rainfall gradients in the upper central

portion of WG11, and the August 10, 1986 event produced steep precipitation

gradients in the lower portion of WG11. The magnitude of these storm/runoff

events means that the influence of SI on runoff generation is large because the

rainfall depth is of the same order as the soil water deficit (Goodrich, 1990). The

absolute percentage change in peak runoff rate ranged from 0.5% to 12.3% for

SI averaging and over 400% for rainfall simplification. Based on these results, a

simple basin average of remotely derived SI estimates at the medium catchment

scale (6.31 km2), with a greater knowledge of spatial rainfall patterns, appears to

be adequate for runoff simulation. This implies that the relatively coarse resolu-

tion of potential space-based microwave instruments may be entirely adequate

for defining distributed pre-storm initial soil water content conditions for rain-

fall-runoff modelling in semi-arid regions, provided ground truth data are avail-

able (Goodrich et al., 1994).

6.4 CONCLUSIONS

Our understanding of the complex hydrological processes active in semi-arid

regions has been greatly enhanced through numerous studies of rainfall, runoff,

and soil moisture patterns at the USDA-ARS Walnut Gulch Experimental

Watershed in southeastern Arizona. Extremes in rainfall and temperature in

this region lead to great spatial heterogeneity in soil hydrological processes.

Accurate spatial and temporal knowledge of precipitation totals and intensity

were found to be the most important factor in determining hydrologic catchment

patterns in this region. Convective rainfall is highly localised with observations

indicating that rainfall from raingauges six or more kilometres apart can be

considered independent. Significant rainfall variability is also apparent over

scales of several hundred metres as rainfall gradients ranging from 0.28 to

2.48mm/100m were observed over a 4.4 hectare catchment. This suggests that

the typical uniform rainfall assumption is invalid at the 5 hectare scale in this or

similar environments. Soil moisture patterns were profoundly impacted by pre-

cipitation. Remote sensing techniques also show potential for indirect estimation

of rainfall at ungauged catchments.

The correlation structure present in the PBMR derived soil moisture changes

as the surface dries following a rain storm. Storms impose large-scale correlation

which decreases as the soil dries and the random (small-scale) effects of surface

characteristics begin to control soil moisture variability.
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The techniques of data assimilation were successfully applied to obtain better

soil moisture estimates using a distributed model and remote sensing data.

Overall, the Newtonian nudging method has the most desirable features for remo-

tely sensed soil moisture data assimilation. It is the only true four-dimensional

data assimilation method used in this study, and it produces relatively continuous

soil moisture time series and reasonable spatial patterns. There is a clear tradeoff

between using a complex data assimilation technique and the ability to use all the

available data. The use of assimilation methods that are sound and computation-

ally efficient and use as much data as possible is preferred.

The relationships between storm size, location and pattern, and the scale and

geometry of the catchment are delicate and should be carefully considered when

interpreting or modelling hydrological processes. A critical process in this region

is ephemeral channel transmission losses. Spatially distributed models that expli-

citly treat runoff routing and channel abstractions are considered essential. This

is supported by good calibration and verification results of models with explicit

physically-based routing and infiltration components using the nested gauge

data.

The conclusions described here must be considered in the context of the semi-

arid Walnut Gulch environment. It should be reiterated that runoff is almost

exclusively generated via an infiltration excess mechanism and annual potential

evapotranspiration is roughly ten times greater than annual rainfall in this envir-

onment. In this influent environment, with annual runoff decreasing with increas-

ing catchment size, it was found that runoff response becomes more nonlinear

with increasing catchment size. Our increased understanding of this environment

would not have been possible without the long-term, spatially dense observations

made at the WGEW. We strongly encourage the continued operation and

improvement of this exceptional outdoor laboratory.
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7
Spatial Snow Cover Processes at Kühtai and Reynolds

Creek

David Tarboton, Günter Blöschl, Keith Cooley,
Robert Kirnbauer and Charlie Luce

7.1 INTRODUCTION

In many climates, predicting and understanding the spatio-temporal variability

of snow-related quantities plays a key role in catchment hydrology. Practical

applications include the prediction of snowmelt induced floods and the estima-

tion of water yield from snow-covered catchments for water resources manage-

ment. The snow cover is also a key link in the climate system via its effect on the

surface energy and water balance, so its accurate representation is essential to a

better understanding of climate effects on the hydrological cycle. Modelling the

spatio-temporal variability of snow-related quantities is complicated by the inter-

related and multiscale nature of the processes involved. Natural snow variability

is extreme and although snow related data such as snow water equivalent is often

available in considerable temporal detail as time series (e.g. the US SNOTEL

network, NRCS, 1998), the spatial resolution of snow-related data is notoriously

poor. Often, at best, a few point measurements are available in the catchment of

interest and, because of the extreme spatial variability, point data are not very

representative of the spatial patterns and/or the spatial averages. Although run-

off does provide a spatially aggregated estimate of melt water yield from a

catchment, it is not possible to infer the actual melt processes and their spatial

distribution from runoff data alone. Recently, progress in remote sensing of snow

has shown potential. Snow-covered area can be measured using a variety of

methods. However, remote sensing of snow water equivalent has not been suffi-

ciently developed for operational observation of deep snowcover in rugged

mountain terrain (Elder et al., 1998). Therefore it has been suggested in the

literature (e.g., Blöschl et al., 1991b) to use snow cover patterns for evaluating

and improving distributed snow models. This is consistent with the general thrust

of this book of using observed patterns for assessing distributed models. As

compared to other components of the hydrologic cycle described in this book

such as rainfall, runoff and soil moisture, snow has the definite advantage that
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the patterns are actually visible to the eye. However, snow cover related fluxes,

state variables and model parameters are highly variable in space and time.

This chapter addresses the issues of spatial variability in snow cover and snow

water equivalent, and the processes responsible for this variability. The chapter

starts with a brief description of the physical processes involved in snow accu-

mulation, redistribution and melting with an emphasis on their spatial variability.

A few key modelling approaches are summarised. Two case studies in different

snow environments are discussed to exemplify the range of snow processes typi-

cally encountered in catchment hydrology. The first case study is set in the

Austrian Alps and is representative of the high alpine environment where snow

redistribution by avalanching and differential melting caused by terrain aspect

are major sources of spatial variability. The second case study is set in the

Western U.S. rangelands where slopes tend to be flatter and wind drift is a

major source of spatial snow variability. We conclude with a few remarks on

the future of distributed snow modelling and use of spatial patterns to improve

model confidence.

7.2 SPATIAL VARIABILITY OF SNOW-RELATED PROCESSES

7.2.1 Snow Accumulation and Melt at the Point Scale

Snow accumulation and melt is spatially variable due to the spatial variability

in the driving processes and inputs. This spatial variability in turn results in

spatially variable surface water inputs from snowmelt that affects runoff and

soil moisture discussed in other chapters of this book. The spatial variability

of snow-related processes has been discussed in detail by Obled and Harder

(1979) and Hardy et al. (1999), and others. Here we will only give a brief review.

At a point, the accumulation and ablation of snow is a process involving

fluxes of energy and mass across the snow–air and the snow–ground interfaces.

Energy exchanges include shortwave solar radiation (direct solar radiation and

diffuse solar radiation), terrestrial/atmospheric longwave radiation, turbulent

fluxes (sensible and latent heat exchanges between the atmosphere and snow),

energy fluxes associated with exchanges of mass (the energy that comes with

falling rain and is carried away by meltwater), and conduction between the

snow and underlying ground (i.e. ground heat flux). In alpine environments,

radiation fluxes are usually larger than sensible and latent heat fluxes, but in

lowlands where snowmelt tends to occur in early winter they can be much smaller

(e.g., Male and Gray, 1981; Braun, 1985). Advective exchanges and the ground

heat flux are usually very small, but their integrated effect over a season can be

significant. Mass exchanges consist of precipitation inputs, meltwater release, and

condensation/evaporation/sublimation, the latter being very small. The dynamics

within a snowpack are quite complicated, involving energy and mass fluxes due

to conduction, thermal radiation, vapour diffusion, meltwater movement, set-

tling and compaction. Some of these processes lead to the formation of ice layers,
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which impede the downward propagation of infiltrating meltwater, resulting in

concentrated finger flow and sometimes lateral flow (Colbeck, 1978, 1991).

7.2.2 Spatial Patterns of Snowmelt Processes

Energy exchanges are the main processes responsible for the differential melt-

ing of snow in a catchment. The spatial variability of direct solar radiation within

a catchment is dominated by terrain slope, aspect and shading. Direct solar

radiation per unit horizontal area averaged over a time interval from t to

tþ�t may be expressed as

Qsi ¼ Io � Tf �
1

�t cosS

ðtþ�t

t

cosð ðtÞÞdt ð7:1Þ

where Io is the solar intensity (4914 kJ m
�2 hr�1 or 1367 W/m2), Tf atmospheric

transmissivity, S the local slope angle and  ðtÞ the time varying illumination
angle, defined as the angle between the surface normal and direction to the

sun. In mountain regions, terrain shading can be important in which case the

integral above should only be evaluated for times when direct radiation is inci-

dent, i.e. the point is not shaded by nearby terrain. The time varying illumination

angle can be accurately computed from analytical expressions and tabulated

values (Dozier, 1979). Atmospheric transmissivity depends upon weather condi-

tions and cloudiness and therefore gives rise to the largest uncertainties in esti-

mation of incident radiation. Simple approaches to quantifying atmospheric

transmissivity include those of Bristow and Campbell (1984) based upon diurnal

temperature ranges and Neuwirth (1982) based on visual observations of cloudi-

ness (i.e. the fraction cloud cover of the sky). More elaborate methods integrate

radiative transfer throughout the atmosphere (e.g. ‘‘LOWTRAN 7’’, see Kneizys

et al., 1988). The spatial distribution of atmospheric transmissivity in a catch-

ment is random and hence essentially unpredictable but fortunately, if integrated

over a period of say a few weeks, its effect on snowmelt tends to average out, so

approximating transmissivity as constant over a study area is usually reasonable.

Part of the atmospheric transmissivity reduction in direct radiation is due to

scattering and about one half of the scattered energy reaches the surface as

diffuse radiation (the other half going out into space) (Dingman, 1994).

Diffuse radiation tends to increase in cloudy conditions when more of the inci-

dent radiation is scattered. In a catchment, the spatial pattern of diffuse radiation

received by the snow surface depends on the fraction of the sky dome that is

visible from each point. This fraction can be quantified in terms of the sky view

factor, Vd . The sky view factor is based on the assumption of isotropic radiation

and is defined as the ratio of the radiation incident on a point accounting for

slope, aspect and terrain obstructions, to the equivalent radiation incident on a

flat and unobstructed surface. Vd only depends on terrain and does not depend

on time. For any point in time, incident diffuse shortwave radiation can be

estimated as
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Rslope ¼ Vd � � � Id ð7:2Þ

where Id is the isotropic diffuse radiation intensity. In mountain regions, solar

radiation reflected by surrounding terrain can also be important. It can be

approximated by (1� Vd) times reflected shortwave radiation (albedo times inci-

dent radiation). Procedures for computation of horizon angles and sky and

terrain view factors and discussion of their use, assumptions and limitations in

estimating radiation are given by (Dozier, 1979; Dozier and Frew, 1990;

Dubayah et al., 1990; Frew, 1990).

Part of the incoming solar radiation is reflected by the snow surface. The

ratio of reflected and incoming radiation is termed albedo, which can vary

considerably as a function of the condition and age of the snow surface.

Given the magnitude of the solar radiation term in the energy balance, modest

albedo changes are important to the snow surface energy balance. The albedo

of snow is generally at a maximum after a fresh snowfall and decreases with

time due to growth in grain sizes, and the accumulation of dust, soot and

debris on the snow surface (U.S. Army Corps of Engineers, 1956). The rate

of grain growth increases with snow temperature and in particular with the

presence of liquid water (Wiscombe and Warren, 1981; Dozier, 1987; Marshall

and Warren, 1987). The most important process controls on albedo are

reflected in the parameterisations suggested by various authors. Examples

include Rohrer (1992) and Dickinson et al. (1993) who proposed a parameter-

isation of albedo as a function of air temperature and time after snowfall, Brun

et al. (1992) who parameterised albedo as a function of time after snowfall,

grain size and grain type, and Marks and Dozier (1992) and Marshall and

Warren (1987) who modelled grain size increase and parameterised albedo in

visible and infrared bands as a function of grain size. Little is known about the

spatial distribution of snow albedo in catchments; the controls mentioned

above do suggest that albedo tends to be lower on south-facing slopes (in

the Northern Hemisphere) due to the more rapid grain growth as a conse-

quence of larger energy inputs as compared to other slope aspects.

Both the atmosphere and the snow surface emit black body longwave radia-

tion that is proportional to the fourth power of absolute temperature. Incoming

longwave radiation from the atmosphere is related to the vertical distribution of

air mass properties (air temperature, vapour pressure) and the presence of

clouds (Obled and Harder, 1979). While several parameterisations are available

based on surface air temperature and vapour pressure (see e.g., Price and

Dunne, 1976; Satterlund, 1979) there is considerable uncertainty in these esti-

mates due to atmospheric variability. Radiative transfer models (e.g.

‘‘LOWTRAN 7’’, see Kneizys et al., 1988) overcome some of this uncertainty

at the cost of more substantial data requirements. In a valley, incoming long-

wave radiation from the atmosphere is reduced because the adjacent mountains

obscure part of the sky. Like shortwave diffuse radiation, incoming longwave

radiation from the atmosphere is generally diffuse and its spatial pattern can be

represented by the sky view factor analogously to equation (7.2). However,
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scattered and emitted longwave radiation from mountainside slopes is present

and may be greater than atmospheric longwave radiation, particularly in steep

valleys and cirques where the slopes are snow free. For example, Olyphant

(1986) showed that the snowpack in cirques can have an additional longwave

radiation input from the surrounding terrain equivalent to 500mm melt when

integrated over an entire snowmelt season, as compared to flat terrain. Similar

to reflected shortwave radiation, it can be approximated by (1� Vd) times

terrestrial emissions from surrounding terrain.

Outgoing longwave radiation is on average greater than incoming longwave

radiation, resulting in a net loss of energy as thermal radiation from the surface.

The emissivity of snow is between 0.97 and 1 (Anderson, 1976) and night time

longwave radiation losses under clear skies are responsible for considerable cool-

ing of the snow surface. However, actual heat loss is limited by the small thermal

conductivity of the snow which may vary depending on snow surface properties.

The spatial distribution of longwave radiation emitted by the snow in a catch-

ment is rather complex, being controlled by the spatial pattern of surface tem-

perature, which in turn is controlled by the overall heat budget of the snow. Cold

snowpacks (prior to any melting) have low thermal conductivity which results in

limited outgoing longwave radiation and large night-time depressions in surface

temperature. The presence of liquid water in the snow near the surface, due to

melting or rain, alters this significantly. The surface temperature remains close to

freezing (0 �C) until this water refreezes. This unfrozen water near the surface

represents a considerable storage of latent heat of fusion energy that may be

radiated away. Melting and refreezing also results in crusts at the snow surface

with altered thermal properties (conductivity and density). These processes are

the compound effect of total net energy exchanges and vary spatially because of

the terrain effects on incident radiation energy inputs.

Incident radiation (both shortwave and longwave) on snow beneath the vege-

tation canopy is limited by the radiative transmissivity of the vegetation

(Verstraete, 1987, 1988; Verstraete et al., 1990) which is related to leaf area

index defined as the ratio of the total surface of leaves above a ground area to

that ground area, as well as leaf shape and orientation. Vegetation has a lower

albedo than snow, and therefore absorbs more incident radiation and may be

warmer than the surrounding snow surface. Vegetation emits longwave radiation

proportional to the fourth power of its absolute temperature which results in

localised melting around sparse vegetation. Vegetation also provides greater sur-

face roughness, reducing wind speeds at the surface of snow beneath vegetation

which affects the turbulent energy transfers mentioned below. In sparsely vege-

tated areas, the persistence of snow patches associated with patches of vegetation

is a source of spatial variability, due to vegetation shading as well as wind

sheltering and accumulation of snow drifts (Seyfried and Wilcox, 1995). The

spatial pattern of vegetation is naturally quite variable due to temperature, radia-

tion and moisture variability and the biological needs of different species and in

most environments it is controlled by human activity which adds additional

variability. This spatial variability influences the distribution of snow, and is
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influenced by snow distribution in a synergistic relationship. Snowmelt supplies

water for vegetation. Snow also affects the environment in which vegetation

species need to survive.

Turbulent energy transfers comprising sensible and latent heat fluxes are a

significant component of the snow energy balance. Sensible heat fluxes depend on

the temperature gradient and turbulent diffusion due to wind. Latent heat fluxes

depend on the vapour pressure gradient and turbulent diffusion due to wind.

Latent heat fluxes consist of evaporation and condensation of liquid water, and

sublimation of ice (Male and Gray, 1981; Bras, 1990). Surface roughness and the

profile of wind velocity with height control turbulent diffusion. Turbulent trans-

fer rates also depend on atmospheric stability, which is a function of the tem-

perature gradients (Brutsaert, 1982). Snow surfaces with surface temperature

limited to remain at or below melting (0 �C) almost always have a stabilising

effect on the atmosphere, tending to reduce turbulent diffusion. Spatial variabil-

ity of topography and vegetation result in spatial variability in wind, wind pro-

files and turbulent energy fluxes which affect the spatial patterns of snow.

Windspeed is higher on exposed ridgetops than in valleys. Windspeed is also

higher on upwind than on downwind slopes. The variability of wind will be

discussed below in the context of wind redistribution of snow where it has a

greater effect. The same wind spatial variability that results in snow redistribu-

tion also has spatially variable effects on turbulent exchange.

7.2.3 Spatial Patterns of Snow Accumulation Processes

Snowfall and snow redistribution by wind are the main processes responsible

for the differential accumulation of snow in a catchment.

The main control on snowfall patterns is elevation through its control on the

state of precipitation. The state of precipitation (rain or snow) depends upon

air temperature at the time of precipitation. The lapse rate of air temperature

with elevation results in snow at higher elevations and rain at lower elevations.

The snow line (the elevation separating rain from snow) varies for each pre-

cipitation event. Rain on snow may cause snowmelt at lower elevations, while

at high elevation there is additional snow accumulation. The net effect of these

processes is a strong dependence of snow accumulation on elevation. In addi-

tion to the effects due to the state of precipitation discussed above, topography

also influences the pattern of snowfall and accumulation through orographic

effects on atmospheric processes. Heavy precipitation occurs on slopes where

atmospheric flow is forced over mountain ranges. Orographic lifting may also

induce instability in the atmosphere, triggering convective precipitation (e.g.,

Dingman, 1994). On the downwind side of mountain ranges, precipitation is

reduced because orographic lifting and condensation have stripped moisture

from the atmosphere. Approaches to modelling orographic precipitation

range from empirical correlation of precipitation with elevation, the so-called

hypsometric method (e.g., Dingman, 1994; also see Chapter 2, pp. 35, 40), to
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models that empirically and dynamically model atmospheric flow and snowfall

(Rhea, 1978; Peck and Schaake, 1990; Barros and Lettenmaier, 1993, 1994).

The scale of spatial patterns associated with orographic effects is generally quite

large (1 km or more) relative to the variability associated with, for example,

slope and aspect effects on radiation (10 to 100 m).

In steep terrain, deposited snow frequently sloughs and avalanches, moving

downslope under the influence of gravity in sometimes catastrophic fashion,

coming to rest in less steep gullies and runout zones. The two main controls

on sloughing and avalanching are terrain slope and the stability of the pack.

Typically, hillslopes with slopes between 20� and 50� are prone to avalanching

while steeper and flatter slopes are not. Avalanches usually originate in weak

layers resulting from variable snow density, crystalline structure and lack of

bonding between new and old snow (e.g. McClung and Schaerer, 1993;

Armstrong and Williams, 1986). On flatter slopes the downslope component of

gravity is insufficient to overcome the shear strength of snow.

The redistribution of snow by wind is a complex process controlled by the

interaction of wind flow, topography, snow properties and surface roughness.

Processes involved include scour from upwind slopes, sublimation of suspended

and saltating particles, deposition on downwind slopes and especially behind

terrain obstacles, where flow separation occurs. Vegetation, through its influence

on surface roughness, limits the scour and enhances the deposition of blowing

snow. This effect of vegetation is only present while it is not buried by snow,

leading to the concept of vegetation holding capacity used in wind-blown snow

modelling (e.g., Pomeroy and Gray, 1995; Liston and Sturm, 1998).

This section has shown, in a conceptual fashion, the physical processes that

lead to spatial variability and spatial patterns in snow accumulation and melt.

These comprise multiple processes interacting across a range of scales. McKay

and Gray (1981) summarise the scales involved in various snow redistribution

processes:

. Macroscale: (104–105 m) Elevation, orography, meteorological effects such

as standing waves, flow of wind around barriers and lake effects.
. Mesoscale: (102–103 m) Redistribution due to wind and avalanches, deposi-

tion and accumulation related to elevation, slope, aspect, vegetative cover

height and density.
. Microscale: (10–102 m) Primarily surface roughness and transport phenom-

ena.

In the next section we review approaches for distributed snow modelling followed

by case studies where spatial patterns of distributed measurements and model

results are compared.

7.3 SPATIAL SNOW MODELLING

Spatially distributed snow models differ in terms of the degree of process repre-

sentation they involve. At one end of the spectrum are empirical methods that
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often use statistical relationships involving temperature, radiation and terrain

properties while at the other end are process based (dynamic) models

(Kirnbauer et al., 1994). One example of an empirical model for estimating

peak snow accumulation is the SWETREE model (Elder, 1995; Elder et al.,

1995, 1998; Winstral et al., 1999). This model is based on statistical analysis of

a very large number of snow water equivalent samples and uses binary decision

trees to predict snow water equivalent based upon indices for radiation, wind

exposure and other controls. These indices are used to subdivide a catchment into

classes, starting from the most important controls and proceeding to the less

important controls. A similar recent example is the model of König and Sturm

(1998) which is based on topographic rules using physiographic features such as

creek patterns, flat patterns, and slope patterns. These features are derived from a

visual analysis of aerial photographs, and for each of them, characteristic values

of snow depth and snow water equivalent are assigned. König and Sturm (1998)

examined their method in the Alaskan Arctic where slopes are much flatter than

in the catchments of Elder (1995) and where wind drift is the main process giving

rise to differential accumulation and melting. Another contribution to mapping

snow water equivalent is due to Woo et al. (1983) and Yang and Woo (1999)

which, similar to König and Sturm (1998), use topographic features, but their

approach is more heavily based on ground data. The advantage of this type of

model is a parsimonious model structure which implies robustness and ease of

use, but this comes at the cost of requiring a substantial database for calibrating

the model, usually consisting of both remotely sensed images and ground data.

An example of an empirical spatially distributed melt model is provided by

Williams and Tarboton (1999). This model separates the energy that causes

snowmelt into three components: a spatially uniform component, a component

that is proportional to elevation, and one that is proportional to solar illumina-

tion (which is determined from topography). Measurements of snowmelt at sev-

eral topographically unique points (called ‘‘index points’’) in a catchment are

related to elevation and solar illumination through regression in order to factor

the melt energy into the three separate components at each time step. Inputs from

snowmelt measurements at the index locations are used to calibrate the regres-

sion at each time step. Then the spatial patterns of solar illumination and eleva-

tion are used to predict the spatial distribution of melt over the whole catchment.

Process-based models account for both mass and energy exchanges and keep

track of state variables related to mass and energy over time. In this type of

model, the catchment is usually subdivided into model elements and point snow

models are applied to each element. There have been a large number of point

snow models developed in the literature that range in complexity and amount of

data used (e.g., Anderson, 1976; Blöschl and Kirnbauer, 1991; Jordan, 1991;

Kustas et al., 1994; Tarboton et al., 1995; Tarboton and Luce, 1996; Luce et

al., 1997). The main advantage of this type of model is that it allows a detailed

representation of the processes giving rise to differential melting and accumula-

tion. However, extension of point snowmelt models to catchments involves con-

siderable problems and uncertainty, part of which is related to scale issues (e.g.
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Kirnbauer et al., 1994; Beven, 1995; Blöschl, 1999). As discussed in a general

sense in Chapter 3, the fundamental questions involve the selection of model

elements, parameterisation of subgrid variability and nonlinearity, and distribut-

ing input data and model parameters across the catchment. Ways of selecting

model elements in distributed snow models are similar to those in other hydro-

logical models and include square grids, hillslope elements, and elevation bands

(see Chapter 3).

If these elements are small enough, a detailed spatially explicit approach is

possible. While this approach is conceptually simple and appealing, we must have

enough detailed information to determine site parameters and inputs to each

element. However, this is often not possible and element sizes are used that are

relatively large as compared to the characteristic scale of the underlying varia-

bility. Often, the effective parameter approach is used where it is implicitly

assumed that an average parameter over that element represents the combined

effects of the processes within that element (see Chapter 3, p. 00) but as snow

related processes are highly nonlinear, treatment of the variability within ele-

ments (i.e. subgrid variability) requires particular attention. Luce et al. (1997),

for example, showed that this approach may yield incorrect results once the

element area exceeds about 1 ha. An alternative is to use distribution functions

to represent subgrid variability. The distribution function approach so far has

not been widely used for representing subgrid variability in spatially distributed

snow models but it has a long tradition for representing spatial variability in

lumped catchment models. An early example is the areal depletion curve

approach of Anderson (1973), where an empirical function is used to relate the

areal extent of snow cover to mean areal water equivalent. A more recent exam-

ple is Luce et al. (1999) who show that the surface water input estimated from a

lumped model parameterised with a depletion curve derived from the distribution

of snow at peak accumulation, compares well with the surface water input esti-

mated from periodic measurements and from an explicitly distributed snowmelt

model. A drawback of using spatial distribution functions within each model

element is that one needs a minimum of two or three parameters to represent

the distribution functions rather than one single parameter as in the effective

parameter approach, but it is much better suited for representing the nonlinear

effects of the subgrid snow processes.

Distributing input data and model parameters across the catchment draws on

the understanding of the spatial variability of the processes driving snowmelt and

snow accumulation. Climatic data are usually available at one or two sites within

the catchment and snow courses usually provide just a few values of snow water

equivalent and snow depth, so distributing this information to every model ele-

ment requires assumptions to be made. This distribution procedure is essentially

an interpolation problem, i.e. a problem of determining patterns from points (see

Chapter 2). In the context of snow, auxiliary data for interpolation can be based

on terrain features such as slope, aspect, terrain shading and view factors that can

be directly computed from digital elevation models. As discussed earlier in this

chapter, this approach is particularly useful for estimating detailed spatial pat-
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terns of radiation inputs to snowmelt models (Dozier, 1979; Dozier and Frew,

1990).

One of the most important issues of spatial snow models is how to represent

snow redistribution by wind drift. There are three types of approaches in the

literature that differ in complexity. The simplest approach is to use wind drift

factors. The basic assumption of this approach is that the spatial patterns of

snow and/or snowfall are similar in all years. This similarity is based on the

rationale that topography is the main factor controlling wind drift and that

average wind speeds and directions only differ slightly from year to year. It

assumes that if snowfall is increased, the amount of accumulated snow water

equivalent will be increased proportionally and the spatial pattern due to drifting

will be the same. In an alpine environment, Kirnbauer and Blöschl (1994) found

that this is indeed the case, with acceptable accuracy. Once the time stability is

established, there are two possibilities of deriving the wind drift factors. The most

accurate approach is to sample snow water equivalent exhaustively in the catch-

ment (e.g. Cooley, 1988) and to derive snow drift factors from these data

(Tarboton et al., 1995; Luce et al., 1998). For larger catchments this is not

feasible, and relationships between wind drift factors and topographic attributes

have been postulated (e.g. Blöschl et al., 1991b; see discussion in Moore et al.,

1996). The parameters for these types of relationships can be estimated from

remote sensing data and/or ground measurements. A further step up in complex-

ity is quasi-dynamic models. A typical representative of this model genre is given

in Essery et al. (1999). They applied a model of wind flow over complex terrain to

arctic landscapes and used it to investigate joint probability distributions of wind

speed and blowing snow occurrence. Functions that describe the joint distribu-

tion were then used to scale results up from a single-column model of blowing

snow that presumes homogeneous terrain. Results are compared with results

from a distributed model and spatially distributed snow surveys from the

Arctic. The most complex models are dynamic models. One example is the

model of Liston and Sturm (1998) which represents snow transport resulting

from saltation and suspension, snow accumulation and erosion, and sublimation

of the blowing and drifting snow. It is driven by a wind model that computes the

flow field over the complex topography. Model inputs include climatic forcings,

as well as vegetation type which is used to determine a vegetation snow-holding

capacity that must be exceeded before any additional snow is available to be

transported by the wind. The complex air flow in an alpine environment provides

a challenge for these models, therefore in many cases one must resort to the more

empirical model types for representing snow redistribution by wind drift.

In the following sections we will present two case studies. The aim of the case

studies is to deterministically model spatially distributed snow processes in small

catchments. The case studies differ greatly in terms of their hydrological and

climatological settings, and in terms of the processes giving rise to spatial snow

variations. The Kühtai study is set in steep alpine terrain with high annual

precipitation, deep snowpacks and an extended ablation period. The Reynolds

Creek study is set in undulating rangelands where precipitation is low and most
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of the snowmelt occurs during a relatively short period. Radiation along with

sloughing, avalanching and wind redistribution are important at Kühtai, while

wind drift is the most important factor causing spatial snow variations at

Reynolds Creek. The catchments also differ in scale, the catchment of the

Kühtai study (9.4 km2) being about 40 times the size of the Reynolds Creek

study catchment (0.26 km2). Climate, terrain and scale have implications for

the type of data of snow variability used in the two studies. In the case of

Kühtai, remotely sensed snow cover patterns are used (binary values of snow/

no snow at about 15,000 pixels) while in the case of Reynolds Creek ground data

of snow water equivalent (sampled on a regular grid of about 300 points) are

used.

7.4 KÜHTAI CASE STUDY

The Längental catchment is located in the Kühtai region, Tyrol, in the Austrian

Alps. The catchment is 9.4 km2 in size and elevations range from 1900 to 3050 m

above sea level. Geomorphologically, the basin consists of two major units

(Figure 7.1). The lower part comprises east and west facing slopes including

talus fans with typical slopes of 35 to 40�. The upper part in the south west is

open to the east. The south-east edge of the basin is formed by three prominent

cirques. Most of the catchment lies above the timber line and there are only a few

scattered larches and cembra-pines. The flat areas are covered by alpine meadows

and the steep areas are rock and debris. Average annual precipitation is about

1200mm, 50% of which falls as snow. Temperatures average 10 �C in summer

and �5 �C in winter (Figure 7.2, dotted line). In the lower parts of the catchment

the snow cover period typically lasts from November to May, reaching maximum

snow depths of about 1.5m in April. The upper parts of the basin are bare only

for a few weeks in August or September and maximum annual snow depths are

on the order of 4m. Snowmelt occurs in several episodes during the period from

March to late June. Redistribution caused by wind drift, avalanching and slough-

ing substantially affects the spatial distribution of snow.

In the mid 1980s the Kühtai snow monitoring station was established next to

the catchment outlet and was the place of detailed snow hydrological studies

(Kirnbauer and Blöschl, 1990). When we considered extending the point-scale

studies to the entire Längental catchment, we soon realised that the key to

successfully representing the spatial patterns of snow processes would be to get

data on the spatial variability of snow depth. There were a number of problems

specific to the Längental catchment not usually encountered in research catch-

ments. First, the catchment is inaccessible for weeks at a time due to avalanche

hazard. Some of the steep slopes and cliffs sometimes do have snow accumula-

tion but are time consuming to access. Also, the size of 9.4 km2 with the given

logistic constraints made exhaustive sampling of snow depth not an option. We

considered a number of possibilities to work around these problems. The first

idea was to place a large number of snow stakes in the catchment during the
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summer and read snow depth using binoculars. We were hoping to get snow

depth to an accuracy of 0.2m at 100 locations within the catchment. However, it

soon became clear that this was not a feasible option because of the rocky

subsurface, snow creep and potential problems with conservationists. As an

alternative we considered using aerial stereo photographs to estimate the eleva-

tion of the snow surface and then calculating snow depth by taking the difference

between snow and terrain elevations. With the scale of the photos envisaged we

were hoping to get snow depth to an accuracy of 0.5m exhaustively in the

catchment. However, initial tests showed that there is not enough visual contrast

on the snow surface for accurate stereo photo interpretation and we therefore

abandoned this option. Finally, we decided to use the spatial patterns of snow

cover only. Nine aerial surveys were undertaken during the 1989 ablation period,
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and oblique visual photos of the catchment were acquired. We marked the snow

boundary lines manually on the prints. The snow lines were subsequently digi-

tised as vector data, rectified by digital mono-plotting methods (Hochstöger,

1989), and rasterised. As a first step, a 5� 5m grid was used which was then

generalised to a 25� 25m grid based on the majority of snow-covered or snow-

free 5� 5m pixels in any one 25� 25m pixel (Blöschl and Kirnbauer, 1992).

Each pixel value therefore represents the average over the pixel area rather than a

grid point value. Although this methodology provided only binary information

of snow-covered and snow-free pixels, comparisons indicated that this informa-

tion was extremely accurate. We chose to have a large number of points with

simple information (i.e. binary values from photo interpretation) rather than

fewer points with detailed information such as is possible with snow courses

(see discussion on the trade-off between accuracy and spatial detail in Chapter

2, pp. 24–5).

However, we did also get some snow course data to complement the aerial

survey. A field program was undertaken in late April to assess the distribution of

water equivalent in the basin. As we could only sample a small number of sites,

the selection of sites was based on typical terrain types as outlined by Woo et al.

(1983) and Yang and Woo (1999). These sites included different elevations, slopes

and aspects. Measurements were designed to be representative of an area of

roughly 50� 50m each, accomplished by numerous snow-depth measurements

over that area and a few density profiles.

A snowmelt model (the Vienna University of Technology Snow – VUTS

model) was set up for the Längental catchment based on a 25 m grid. For

each grid element the energy balance components were simulated and the coupled

heat and mass flow within the snowpack was simulated by a multilayer model

(Blöschl and Kirnbauer, 1991). Atmospheric data used to drive the model

included incoming shortwave radiation, air temperature, humidity, wind speed
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and precipitation on an hourly basis. These variables were observed at the Kühtai

station (1930 m elevation) near the basin outlet. Cloudiness was determined from

visual observations. Additional air temperatures at Finstertal (2330 m elevation,

700 m east of the catchment boundary) were also used. Inputs of air temperature

were assumed to decrease linearly with elevation based on the readings at the two

stations. Wind speed and relative humidity were taken as invariant across the

catchment. Horizon shading, and aspect and slope dependence of solar radiation

input were accounted for by using equation (7.1). One of the essential assump-

tions was that terrain attributes could be used to represent the effects of wind

drift and sliding as discussed below. Also, as we were running the VUTS model

only for the ablation period, initial conditions for the spatial distribution of snow

water equivalent within the catchment had to be stated. For both snowfall and

initial snow water equivalent we postulated a wind drift factor F of the form

F ¼ ðaþ b �HÞ � 1� f ðSÞð Þ � ð1þ e � CÞ 	 0 ð7:3aÞ

f ðSÞ ¼
0 . . . S < c

S � c
d � c

. . . otherwise

(
ð7:3bÞ

where H is elevation, S is slope and C is terrain curvature at the grid scale of the

digital elevation model. For the case of solid precipitation a and b were chosen so

as to give a 30% increase of precipitation with elevation from the lowest to the

highest part of the catchment. For the case of initial snow water equivalent a and

b were estimated from snow course data. c, d and e were derived from an inter-

pretation of the aerial photos of the snow cover as c ¼ 10�, d ¼ 60�, and e ¼ 50m

(Blöschl and Kirnbauer, 1991). A discussion of this approach is given in Moore et

al. (1996).

Figure 7.3 (top) shows the initial snow cover pattern on April 24, 1989 as used

for the model initialisation. The other patterns are observations and simulations

for May 22, June 14, and June 26, 1989. There is a good agreement of percent

snow-covered area. Observed and simulated snow-covered areas, respectively, are

64% and 70% for May 22; 46% and 46% for June 14; and 31% and 33% for

June 26. Observed and simulated snow patterns are, overall, also quite similar

but there are some differences. We will use these differences to infer potential

misrepresentations of snow cover processes in the model.

The simulations for May 22, 1989 in Figure 7.3 indicate that in the northern

part of the catchment near the catchment outlet (particularly in the valley floor)

snow cover is slightly overestimated, and the simulated snow cover is spatially

more coherent than in the observations. This suggests that the VUTS model also

overestimated snow water equivalent in this part of the catchment. Conversely,

on June 14, 1989 the model tends to underestimate snow cover (and consequently

probably snow water equivalent) in the same part of the catchment, which must

be related to too fast a depletion of the snowpack from May 22 to June 14. These

inconsistencies are believed to be due to two reasons. (a) There was fair weather

with substantial melting from May 22–31, snowfalls in the entire catchment from

June 1–9, and again fair weather from June 10–14. While the model does simulate
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Figure 7.3. Observed and simulated snow cover patterns at Kühtai. Top left: observed snow cover

April 24, 1989 (initial condition). Left column below: observed snow cover on May 22, June 14, and

June 26, 1989. Right column: model simulations for the same dates. Dark areas denote bare ground

and light areas denote snow cover.



albedo as a function of time after snowfall, it is likely that the parameter value for

new snow albedo was set too low which caused an overestimation of melt,

particularly after the snowfalls. (b) The inconsistencies may also be due partly

to the effect of wind blown snow which, on May 22, accumulated in the valley

floor more strongly and, on June 14, depleted the north-west facing slopes in the

centre of the catchment more rapidly than predicted by equation (7.3). It is

important to note that equation (7.3) uses terrain parameters (including curva-

ture) at the grid scale of the terrain model (i.e. 25m) while the scale of wind drift

processes and the scale at which terrain affects wind drift patterns range from

smaller to much larger scales than 25m. One potential remedy would be to use a

wind drift factor F that also uses terrain information at larger scales that can be

derived from a lower resolution terrain model. This approach has shown poten-

tial in another Austrian catchment (Kraus and Blöschl, 1998). The simulations

for June 26, 1989 in Figure 7.3 indicate an overprediction of snow cover in the

south-eastern part of the basin which is formed by three prominent cirques. The

rockwalls of the cirques are bare during most of the ablation period and hence

may substantially enhance energy input to the snow cover in the cirque

(Olyphant, 1986). We therefore believe that part of this overprediction derives

from neglecting longwave radiation emissions from bare surfaces and their inter-

action with the snow cover.

To better visualise the effects of terrain on model results, the simulated snow

pattern for June 26, 1989 in Figure 7.3 was plotted as a perspective view and

compared to the oblique photo (Figures 7.4 and 7.5). One apparent inconsistency

of observed and simulated snow patterns is an underestimation of snow cover at

the base of the steep cliff in the centre of the photo. It is clear that a massive snow

deposit had formed there due to sloughing and wind drift from the upslope area.

Although equation (7.3) does account for wind drift, it does so in a simplified

way and does not explicitly route blown snow and avalanches. Although the

average conditions are captured well, situations such as the base of a steep cliff

are not represented so well. One potential improvement over equation (7.3)

would be a model that deterministically routes snow as a function of terrain

and wind conditions.

Another minor discrepancy in Figures 7.4 and 7.5 is that the simulations tend

to exhibit fewer small patches of snow. Clearly, they are related to small-scale

(subgrid) variability not explicitly accounted for in the model. Although it is not

clear how this subgrid variability affects the mean catchment simulations it does

highlight the limitations of using point measurements for representing spatial

averages of snow water equivalent and snowmelt.

Figure 7.6 shows an evaluation of simulation errors on an element-by-element

basis for June 26. The elements are subdivided into classes according to slope and

aspect separately for the upper part (> 2400m, dashed lines) and lower part
(42400m, solid lines) of the basin. The labels on the vertical axes relate to the
disappearance of the snow cover as simulated by the model. The percentage

denoted by ‘‘too late’’ refers to elements with snow cover simulated and bare

ground observed, i.e. an overestimation of snow cover, and the percentage
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denoted by ‘‘too early’’ (negative frequencies in Figure 7.6) refers to elements

with bare ground simulated and snow cover observed. For example, on south-

facing slopes with slopes around 30� and elevations > 2400m (i.e. the upper part
of the catchment) Figure 7.6 indicates that for 25% of the pixels in this class,

snow cover was simulated but bare ground observed, and for 10% of the pixels

in this class, bare ground was simulated but snow cover observed. The rest of the

pixels in this class (i.e. 65%) were correctly simulated as either snow covered or

bare. For most terrain classes, the simulation errors are less than 10% which

indicates good model performance. Figure 7.6 also indicates that there is a cer-

tain symmetry about west and east facing slopes, whereas the graph for north-

and south-facing slopes is nearly antisymmetric, with a tendency for south-facing
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Figure 7.4. Air photo of the upper part of the Längental catchment on June 26, 1989, showing grid

elements 25� 25m. (By permission of Bundesministerium für Landesverteidigung. From Blöschl et

al., 1991b; reproduced with permission.)



slopes to have too much snow in the model. This tendency suggests that errors

are related to solar radiation and specifically to albedo. There are two possible

reasons for this. (a) Albedo tends to decrease with the increasing grain size

associated with metamorphism (Colbeck, 1988). On south-facing slopes more

energy is available for metamorphism and hence albedo will decrease more

rapidly with time than on north-facing slopes. This aspect dependence of albedo

has not been accounted for in the model. (b) An alternative explanation is a

general overestimation of albedo along with an overestimation of sensible and

latent heat fluxes or longwave radiation inputs. Although on average over the

catchment these two potential errors may compensate, their aspect dependence

does not, as there may be too little net solar radiation input on south-facing

slopes as compared to north-facing slopes.
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Overall, the comparison of observed and simulated snow cover patterns indi-

cates that the basic model assumptions are realistic. However, there are subtle

differences that are very useful in diagnosing model inadequacies. In a parameter

sensitivity study (Blöschl et al., 1991a) it was found, not surprisingly, that catch-

ment runoff volume was very sensitive to a parameter controlling the average

snow water equivalent in the catchment while it was much less sensitive to the

spatial variability of snowmelt due to differential melting. On the other hand,

percent error in snow cover (as in Figure 7.6) was highly sensitive to a number of

model parameters associated with differential melting including albedo and para-

meters of equation (7.3). It can therefore be expected that catchment runoff and

snow cover patterns are complementary in identifying an appropriate model

structure, but the snow cover patterns allow a better identification of individual

processes. This complementary information underscores the value of spatial pat-

tern measurements and comparisons in model validation if one is interested in a

model of snow cover processes that is close to reality.

7.5 REYNOLDS CREEK CASE STUDY

The Upper Sheep Creek sub-basin within the Reynolds Creek Experimental

Watershed has been the location of a detailed study on snowpack variability

(Cooley, 1988). Upper Sheep Creek (Figure 7.7) is a 26 ha sub-basin located

on the east side of the Reynolds Creek Experimental Watershed (Robins et al.,

1965) in the western U.S. rangelands, Idaho. Elevations range from 1840 to

2040m. The terrain is undulating with maximum slopes of 25 �. The vegetation

is mostly low sagebrush and mountain sagebrush. Aspen grow in a strip along the

north-east facing slope where snow drifts form. Severe winter weather and winds

keep the aspen dwarfed to a height of about 4 m. Average annual precipitation is
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about 500 mm, with ephemeral runoff usually between February and July when it

is generated by snowmelt from deep drifts on the north-east facing slopes.

Temperatures average 17 �C in summer and �3 �C in winter (Figure 7.2, solid

lines). Various instruments that continuously monitor precipitation, incoming

solar radiation, wind direction and speed, air temperature, relative humidity,

snowmelt (snowpack outflow) and soil moisture and temperature were operated

from 1984 to 1996. In addition, snow depth and snow water equivalent measure-

ments at 30 m grid spacing were obtained on a number of occasions during this

interval using standard snow sampling techniques and the Rosen type snow

sampler (Jones, 1983). Each snow sample consisted of inserting the snow tube

into the snowpack to the soil surface, recording the depth of the snowpack,

removing the tube and recording the snow water equivalent as the residual of

the weight of the tube and snow sample minus the weight of the empty tube.

Manpower limitations were such that it required two storm-free days to fully

sample the complete 30 m grid (i.e. about 300 sampling points in space). As a

result, typically from four up to nine surveys were done in each year of sampling,

attempting to measure the build up and peak snow accumulation followed by

ablation. Density was determined for each sample at each grid point by dividing

measured snow water equivalent by measured depth. The advantages of this type

of snow sampling procedure are the amount of information obtained, i.e. snow

depth, snow water equivalent and snow density at each sample point as opposed

to more common methods of taking numerous snow depth measurements but

only very few snow density samples. When the snow cover exhibits considerable

variability in depth as is the case at Reynolds Creek, the density of the snowpack

also exhibits considerable variability, and this variability cannot be described by

only a few measurements. The disadvantage of this type of sampling procedure is

the amount of manpower required to get enough samples to define a pattern.

Also, there are snowpack conditions that limit its applicability, such as shallow

very dry snow where the snow sample will not stay in the tube and therefore a

snow water equivalent cannot be determined, although a depth can still be

recorded. Ice lenses in the deeper snowpack can also make it difficult or impos-
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Figure 7.7. Map of Upper Sheep Creek basin within Reynolds Creek Experimental Watershed.

Contour interval is 5 m. The catchment outlet of Upper Sheep Creek is on the left.



sible to collect samples of the snow water equivalent, but depth can usually be

obtained by repeated insertions of the snow tube in the same hole until the soil

surface is reached.

The patterns of snow accumulation and melt at Upper Sheep Creek are

dominated by drifting (Figure 7.8). Snow accumulation usually begins in

November and first appears on north-facing slopes and in brushy pockets. As

snowfall increases, the upper edges of drifts start to build on the leeward side of

the ridges and a general snow cover forms over most of the remaining catchment

area. Ridges and south-facing exposures usually experience several periods of

snow accumulation and melt during the winter due to strong winds and solar

radiation. The general snow cover and drifts normally continue to increase in

depth (and width in the case of drifts), often absorbing rain which occurs during

occasional warm periods, until maximum accumulation is reached, typically near

the beginning of April. After maximum accumulation occurs and melt begins, the

ridges and south-facing slopes are generally depleted of snow in a matter of

hours. The general snow cover melts next and most of the snow is melted within

a few warm days, leaving only the isolated drifts. These drifts persist, sometimes

into June or July, sustaining streamflow into late spring and summer.

A typical snow depth distribution is shown in Figure 7.9 for April 4, 1984

which represents conditions near the time of maximum accumulation and shortly

after a snowfall event (also see Cooley, 1988). This illustrates the pattern of

accumulation as it has been influenced by wind redistribution and variable radi-

ant energy. Depths varied from 0 to 3.8 m. The spatial variations in density for

April 4, 1984 are shown in Figure 7.10. Densities on this day were noted to vary

from less than 0.15 g/cm3 to over 0.50 g/cm3, and appeared to be related mainly

to depth, with density larger where the snow is deeper. This figure illustrates the

obvious limitations of uniform density assumptions, particularly when wind drift

is important.

The model used to simulate the spatial patterns of snow accumulation and

melt at Upper Sheep Creek was the Utah Energy Balance (UEB) model which

was applied at each 30 m grid point at the same locations as the snow sampling

grid. The UEB model is a single layer physically based point energy and mass

balance model for snow accumulation and melt (Jackson, 1994; Tarboton et al.,

1995; Luce et al., 1997, 1999). The snowpack is characterised using two primary

state variables, snow water equivalent, W [m], and the internal energy of the

snowpack and top layer of soil, U ½kJ m�2]. U is defined as zero when the snow-

pack is at 0 �C and contains no liquid water. These two state variables are evolved

according to energy and mass balance equations accounting for all terms in the

energy and mass balance, namely: net solar radiation, incoming longwave radia-

tion, outgoing longwave radiation, heat from precipitation, ground heat flux,

sensible heat flux, latent heat flux, heat removed with melt water, precipitation,

melt rate and sublimation rate. The model is driven by inputs of precipitation, air

temperature, humidity, wind speed and incoming solar radiation. Physically

based representations for the energy and mass fluxes are used. Snow surface

temperature, a key variable in calculating latent and sensible heat fluxes and

178 D Tarboton, G Blöschl, K Cooley, R Kirnbauer and C Luce



Spatial Snow Cover Processes at Kühtai and Reynolds Creek 179

(b)

Figure 7.8. Photographs of snowdrifts (a) at Upper Sheep Creek; and (b) in Reynolds Creek

Experimental Watershed.

(a)
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Figure 7.9. Snow depths at Upper Sheep Creek Watershed on April 4, 1984.

Figure 7.10. Snow density at Upper Sheep Creek Watershed on April 4, 1984. Units are [g/cm3].



outgoing longwave radiation, is calculated from the energy balance at the surface

of the snowpack where incoming and outgoing fluxes must match. This allows

the snow surface skin temperature to be different from the average temperature

of the snowpack as reflected by the energy content. This reflects the insulating

effect of snow and facilitates good modelling of the surface energy balance with-

out needing to introduce multiple layers and detail of within-snow energy trans-

fers. The model was run on a six-hourly time step.

Inputs of precipitation, temperature, relative humidity and incoming radia-

tion were measured at a weather station located centrally within the catchment

(Figure 7.7). This location is sheltered and below the drift, so it is subject to

minimal wind deposition and transport effects. Wind speed was measured at a

more exposed location (Figure 7.7) in order to be more representative of general

wind flow. With the exception of solar radiation, the climate variables were

assumed to be spatially uniform. Distributed solar radiation was calculated in

two steps. Pyranometer (incoming solar radiation) data at the weather station

was used to calculate an effective atmospheric transmission factor. Local hor-

izons, slope and azimuth were used to find local sunrise and sunset times and

integrate solar radiation received on the slope for each time step. The calculated

atmospheric transmission factor characterised cloudiness for incoming longwave

radiation calculations.

The UEB model does not represent the physics of snow drifting. Since obser-

vations show this to be important at Upper Sheep Creek, we accommodated this

in the modelling through the use of a snow drift factor (Jackson, 1994; Tarboton

et al., 1995). The fraction of precipitation (measured at a gauge) falling as rain or

snow is modelled as a function of temperature. The fraction falling as snow is

assumed to be susceptible to drifting. Snow accumulates in some areas (mainly

the lee of ridges) and is scoured from other areas (mainly ridges and windward

slopes). In the model this redistribution process, which really occurs after snow-

fall, is lumped together in time with the occurrence of snowfall. Snow accumula-

tion in a grid is modelled as snowfall multiplied by a drift factor, F , which is a

spatial field of distinct factors for each grid location. F does not change in time. F

is greater than 1 where accumulation is enhanced by drifting and less than 1

where scour occurs. In the application to Upper Sheep Creek, F was estimated by

calibrating the snow water equivalent obtained from the snow model at each cell,

Wm, against the observed values,Wo. The discrepancy between observations and

predictions over an interval between measurements is attributed to drifting and F

is adjusted until Wm equals Wo at the end of the interval. The calibration of F

assumes that the snowmelt model correctly accounts for all other processes (melt,

sublimation, condensation, etc.) affecting the accumulation and ablation of snow

water equivalent. Figure 7.11 gives drift factors F calibrated to match the snow

water equivalent on February 25 and March 26, 1986 (Jackson, 1994; Luce et al.,

1998). Values of F ranged from 0.2 to 6.8 with an average of 0.975.

The UEB model was used with drift factors calibrated from February–March

1986 to predict snow-cover patterns and surface water inputs for the 1993 water

year. This is a genuine split sample test (see Chapters 3 and 13), as the calibration
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and verification periods do not overlap. The results comprising maps of observed

and simulated snow water equivalent over Upper Sheep Creek are shown in

Figure 7.12a and b, respectively. From a visual comparison, the observed and

simulated patterns are quite similar but there are a few subtle differences. First,

the simulated drift is more sharply defined than the observed drift, and snow

water equivalent is overestimated in the north-west of the catchment. This sug-

gests that there was less snow drift in 1993 than in 1986. One potential remedy

would be to use a deterministic wind drift model (e.g. Liston and Sturm, 1998) to

better represent the variability of drifting from year to year. This is an option we

are pursuing in current research. Another difference between observed and simu-

lated patterns is that the model has a tendency to melt snow too rapidly, as

evidenced by the disappearance from the model of general snow cover on and

around pixel J10 (Figure 7.7) in early April. In the observations this snow cover

persists about two weeks longer. This rapid melting tendency is also noted in

Table 7.1, where during the ablation period simulated basin average totals are

less than observed. Plotting observed against simulated grid snow water equiva-

lent for each date (Figure 7.13) shows that the model generally overestimates

snow water equivalent for locations with moderate to high snow water equiva-

lents, but underestimates snow water equivalent where there is little snow, with

systematic overestimation most apparent in the early melt season. This is con-

sistent with the interpretation of a more uniform snow pattern in 1993 than in

1986, made above.

A sensitivity study was performed in order to assess the relative importance of

the various sources of spatial snow variability (Luce et al., 1997, 1998). Results

from one of the scenarios are shown in Figure 7.12c and Table 7.1 where the

model was run without the effect of drifting, i.e. the drift factor was set to 1

everywhere. In this scenario, spatial variability in snow water equivalent is
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Figure 7.11. Upper Sheep Creek drift factors calibrated from the 1986 snow cover period. (After

Jackson, 1994.)
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Figure 7.12. Snow water equivalent over Upper Sheep Creek on 9 dates of snow survey in 1993 for:

(a) observed; (b) simulated with drift; and (c) simulated without drift. (From Luce et al., 1998.

Copyright John Wiley and Sons Ltd. Reproduced with permission.)



mainly due to topographically induced variation of radiation inputs. Figure 7.12c

shows that in the no-drift case the spatial variability in snow water equivalent is

much smaller than in the original case where snowdrift is included. This smaller

variability highlights that, at Upper Sheep Creek, variation due to wind drift is

vastly more important than any other source of variation including radiation.

For a model to approach reality it is essential to properly represent wind drift

processes. The other difference between the no-drift case and the original case

with snowdrift is that in the no-drift case, the snow cover disappears much ear-

lier, and the average basin snow water equivalent is significantly lower (Table

7.1). This bias is clearly due to the nonlinear nature of snowmelt processes, where

the spatial average of spatially distributed simulations may be very different from

simulations based on spatial averages (Blöschl, 1999). This sheds some light on

the limitations of the use of effective parameters. In environments where the

snow cover is as heterogeneous as in this case study, effective parameter values

of snow models are likely to be greatly in error. More extensive sensitivity ana-

lyses (Luce et al., 1997, 1998) including comparisons with single or two-region

models, corroborate these findings and show that the fully distributed model with

distributed drift multiplier is the only model (of the ones tried) that predicts

significant melt late in the season, coinciding with the observed rise of the stream-

flow hydrograph.

This underscores the value of a spatially distributed modelling approach

incorporating spatial patterns describing the variability of the drift multiplier.

The essential prerequisite for this type of modelling is the availability of spatial

data, such as the observed patterns of snow water equivalent at Upper Sheep

Creek. For applying this modelling approach to larger catchments, methods will

be needed for predicting drift factors or alternative methods for representing

small scale variability.
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Table 7.1. Basin-averaged snow water equivalent (m) from observations and models

Date Observed Model with drift Model no drift

Feb 10, 1993 0.22 0.28 0.28

Mar 3, 1993 0.28 0.38 0.39

Mar 23, 1993 0.23 0.23 0.10

Apr 8, 1993 0.18 0.16 0.00

Apr 15, 1993 0.17 0.16 0.00

Apr 29, 1993 0.13 0.13 0.00

May 12, 1993 0.09 0.07 0.00

May 19, 1993 0.04 0.03 0.00

May 25, 1993 0.02 0.01 0.00



7.6 CONCLUSIONS

This chapter has examined the processes that lead to spatial variability in snow

accumulation and snowmelt in the context of two case studies. Although the

settings and methods of the two case studies were very different, the basic strat-

egy of model evaluation was similar and consisted of process-based reasoning

and analysis of both visual comparisons and pointwise statistical comparison of

simulated and observed patterns. In both case studies, observed spatial patterns

could be simulated only when particular processes were represented spatially.
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Figure 7.13. Comparison of observed and simulated snow water equivalent for each snow survey

date. Each point represents one grid value within the catchment. (From Luce et al., 1998. Copyright

John Wiley and Sons Ltd. Reproduced with permission.)



At Kühtai the general snow patterns could be well represented by the spatial

variability of radiation and a statistical representation of snow drifting but some

aspects of the measured patterns could not be simulated. These aspects included

enhanced snowmelt in cirques due to longwave emission from surrounding ter-

rain, which was diagnosed from an overprediction of snow cover in the cirques;

formation of a snow deposit at the base of a cliff due to avalanching which was

diagnosed from an underprediction of snow at the base of the cliff; significant

small-scale spatial variability of snow which was diagnosed from a visual com-

parison of patterns; and enhanced metamorphism and hence more rapid decrease

of albedo on south-facing slopes as compared to north-facing slopes which was

diagnosed from a slight tendency for overestimating snow on south-facing slopes.

For improved simulations of the spatial variations of snow accumulation and

melt these processes need to be modelled explicitly.

At Reynolds Creek the general snow patterns could be represented well by the

spatial variability of snow drifting. However some aspects of the measured pat-

terns could not be simulated. These included a slightly more uniform snow dis-

tribution due to less redistribution of snow in the later year relative to the earlier

year. This discrepancy was diagnosed from a visual comparison of patterns as

well as from a slight overestimation of snow water equivalent for locations with

moderate to high snow water equivalents but a slight underestimation of snow

water equivalent for locations with below average snow water equivalents as

indicated by error statistics. This indicates that the drift factors computed

from the 1986 snow data were more variable than the actual drift in 1993.

More generally speaking, this means that the model calibrated on one data set

does not necessarily perform as well on an independent data set. At Reynolds

Creek the dominance of wind drift was illustrated by running a model which

ignored drift but incorporated spatial variability in other processes. This resulted

in an almost uniform pattern.

Both case studies have demonstrated the value of observed spatial patterns for

diagnosing the performance of individual model components and for identifying

model structural issues and parameterisation. It is clear that the patterns have

provided more insight than a few point data or catchment average values from

runoff would have provided. We believe that, in the future, comparisons of

distributed model output with observed snow patterns will become part and

parcel of any snow-modelling exercise.
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8
Variable Source Areas, Soil Moisture and Active

Microwave Observations at Zwalmbeek and Coët-Dan

Peter Troch, Niko Verhoest, Philippe Gineste,
Claudio Paniconi and Philippe Mérot

8.1 INTRODUCTION

The variable source area concept is now widely accepted to explain storm runoff

production in humid regions. The concept was first introduced by Hewlett and

Hibbert (1967): ‘‘The yielding proportion of the catchment expands and shrinks

depending on rainfall amount and antecedent wetness of the soil’’. A major

feature of variable source areas is that the area over which return flow and direct

precipitation are generated vary seasonally and throughout a storm. The theory

was developed because of inadequacies with the Hortonian runoff production

mechanism (Horton, 1933) for describing storm runoff in humid catchments. In

most humid regions, infiltration capacities are high because the vegetation cover

protects the soil from rain packing, and because the supply of humus creates an

open soil structure. Under such conditions, rainfall intensities generally do not

exceed infiltration capacities. Therefore, Hortonian overland flow does not occur

on large areas of the catchment.

Research in the 60s and 70s on the variable source area concept was supported

by intensive field studies in small catchments (Hewlett and Hibbert, 1967; Dunne

et al., 1975; Dunne, 1978). These authors mapped the spatial patterns of satu-

rated areas and their seasonal fluctuations (e.g. Dunne et al, 1975, show seasonal

variation of the saturated zone in a small catchment at Randboro, Quebec). Since

then a number of modelling strategies, based on terrain analysis, have been

developed to explain and predict these spatial patterns of saturated areas

(Beven and Kirkby, 1979; Sivapalan et al., 1987; Barling et al., 1994). These

modelling efforts recognise the control that catchment topography, soils, ante-

cedent storage capacity and rainfall characteristics exert on the spatial extent of

the contributing areas. To link these hydrologic and geomorphologic character-

istics of the catchment to variable source areas, static and/or quasi-dynamic

wetness indices were introduced. Wetness indices have been used to define, at a

moment prior to storm rainfall, the readiness of a catchment to produce storm

runoff through the saturation excess mechanism.
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Routinely collected hydrologic data from catchments generally does not allow

full validation of these models. Often validation is solely based on a comparison

between observed and predicted streamflow records. This type of validation is

insufficient to draw conclusions about the accuracy with which these models

describe the temporal and spatial patterns of the contributing areas. More com-

prehensive validation procedures are required if we want to improve our under-

standing of these important hydrological processes. At first glance, it therefore

seems that the difficulty in collecting information on saturated areas in larger

catchments through field work hinders further progress.

Recently, however, new instruments have become available to the hydrologist,

in the form of active microwave remote sensors. Active microwave instruments

on board satellites offer tremendous opportunities to increase our observation

capacities of large catchments. First of all, they are all-weather instruments,

practically undisturbed by atmospheric conditions. Second, they are day and

night instruments since they do not depend upon an additional energy source

but produce their own electromagnetic energy to scan the Earth’s surface. Third,

when using a special technique called ‘‘synthetic aperture radar’’ (SAR), they

produce images with the required spatial resolution to be of use for catchment

modellers (pixel resolution typically on the order of 10 m). But the reason why

these instruments are powerful for observing variable source areas is the sensi-

tivity of the backscattered energy to soil moisture. Recent studies have demon-

strated the potential of observing soil moisture by means of SAR instruments

(Ulaby et al., 1982; Cognard et al., 1995). The main difficulty with SAR imagery

is that, not only soil moisture, but also surface roughness, vegetation cover and

topography have an important effect on radar backscatter. These interactions

make retrieval of soil moisture difficult and only achievable under particular

conditions, such as bare soil or surfaces with low vegetation cover (Altese et

al., 1996). It should be possible to separate the vegetation, roughness, topography

and soil moisture effects on radar response using multifrequency and/or multi-

polarisation measurements (Ulaby et al., 1996), but currently operational satel-

lites are not equipped with sensors that provide such data. It should also be

noted, the frequencies at which SAR operates provide soil moisture estimates

for only the top few cm.

In this chapter we present recent research on the use of multitemporal SAR

imagery to map the seasonal extent of variable source areas (Gineste et al., 1998;

Verhoest et al., 1998). The rationale of the proposed technique is based on the

observation that the seasonal variability of surface soil moisture content is highly

related to the occurrence or absence of contributing areas, as illustrated in Figure

8.1. At hillslope and catchment scales, soil moisture and its spatial and temporal

variability are fingerprints of several hydrologic processes. During rainy periods,

flow convergence results in relatively low temporal variability of surface soil

moisture in the vicinity of the drainage network because the soil is saturated

for much of the time. In contrast, areas located at or near hillslope tops will

exhibit more pronounced soil moisture variation in time due to successive wetting

during rainfall events and drying through evapotranspiration and redistribution
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during interstorm periods. Therefore, by analysing the temporal variability of the

observed radar signal during a winter season when the catchment is wet, parti-

cularly in the streamside zones, it should be possible to map the variable source

areas at the catchment scale.

The chapter is organised as follows. In Section 8.2 we give a short description

of the two experimental catchments used in this study, the Zwalmbeek in Belgium

and the Coët-Dan in France. In Section 8.3 we describe the field survey data that is

used to test the accuracy with which the proposed remote sensing techniques

predict the spatial patterns of seasonally observed variable source areas. Section

8.4 gives an overview of the multitemporal SAR data collected over the experi-

mental catchments and lists the different image processing procedures required to

prepare the SAR data for multitemporal analysis. Section 8.5 starts with a review

of earlier attempts to map variable source areas from SAR images. We then give a

detailed discussion of two new techniques that appear promising for mapping the

spatial extent of seasonal saturation-prone areas from multitemporal SAR

images. The first method uses the temporal standard deviation of radar back-

scattered energy to map variable source areas in humid catchments with low relief.

The second method, based on a principal component analysis, was developed to

overcome the restriction in the first method of needing low-relief catchments. It is

shown that principal component analysis allows separation of the different influ-

encing factors (topography, land use, soil moisture) on the backscattering coeffi-

cient, and therefore results in a more robust method of mapping variable source

areas. Finally, we summarise the main findings of this research in Section 8.6.
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Figure 8.1. Redistribution of soil moisture along a hillslope during wet season conditions (winter)

resulting in recharge areas with high temporal soil moisture variability and discharge zones with low

temporal soil moisture variability (�2� : temporal variance of soil moisture). (From Verhoest et al.,

1998; reproduced with permission.)



8.2 DESCRIPTION OF TEST SITES

8.2.1 The Zwalmbeek Catchment

The Zwalmbeek catchment (Figure 8.2a) is situated about 20 km south of

Ghent in Belgium (50�45 0N to 50�54 0N and 3�40 0E to 3�50 0E). It is a fifth

Strahler-order basin with a total drainage area of 114 km2, and a drainage

density of 1.55 km/km2. Rolling hills and mild slopes, with a maximum eleva-

tion difference of 150 m, characterise the topography (Figure 8.3a). Land use is

mainly arable crop farming and permanent pasture, but the south of the catch-

ment is partly forested. The degree of urbanisation is 10%, and is mainly

clustered in three small towns. The soil type in the catchment is predominantly

sandy loam (Belgian soil classification), with minor isolated patches of sand and

clay. The climatic regime is humid temperate with a mean annual rainfall of

775 mm, distributed almost uniformly over the year, and a mean annual pan

evaporation of 450 mm. The catchment is described in detail in De Troch

(1977).

8.2.2 The Coët-Dan Catchment

The Coët-Dan catchment (Figure 8.2b) is located near the town of Naizin,

Brittany, France (48�N and 2 �50 0W). It is a second Strahler-order basin with a

drainage area of 12 km2. Gentle concave slopes (in general less than 5 %, espe-

cially in the northern part) reflect the brioverian schists substratum with their top

overlaid by dystric or aquic eutrochrepts (brown acidic, weakly leached soils) and

their bottom by glossaquals (degraded hydromorphic soils) and fluvents (alluvial

soils). Agriculture is intensive (Figure 8.3b), and in winter the vegetation cover is

particularly low. A land use survey performed in the winter of 1992 revealed that

about 22% of the catchment was covered with meadows and young winter

cereals (crops 5 to 15 cm high), while about 44% was bare soil, sometimes

covered with corn stubble. The mean annual rainfall is about 700 mm uniformly

distributed over the year, and the mean annual runoff is estimated around 300

mm. For a full description of the hydrology of the catchment see Mérot et al.

(1994).

8.3 FIELD SURVEY OF VARIABLE SOURCE AREAS

8.3.1 The Zwalmbeek Catchment

The field data used to investigate the spatial patterns and seasonal exten-

sion of the variable source areas are derived from the Belgian soil map (scale

1:20,000). The Belgian soil map was produced during the 1960s and early

1970s for the whole territory, and contains information on soil texture, nat-

ural drainage conditions, and profile development. These soil characteristics

were derived from auger observations (using augers 1.25 m deep and 5–10 cm
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Figure 8.2. (a) Location map of the Zwalmbeek catchment; (b) location map of the Coët-Dan

catchment.
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Figure 8.3. (a) Photograph of part of the Zwalmbeek catchment; (b) photograph of part of the Coët-

Dan catchment (#Christian Walter, ENSAR-INRA, Rennes).



diameter) taken in the field with an average density of two samples per ha.

For our study site this means a total of about 23,000 samples. In addition,

soil profile pits were dug with a 1 m2 area, a depth of 1 to 2 m, and a density

of 1 pit each 1.5 km2. In this study we are mainly interested in the natural

drainage conditions of the soils. The drainage map of the Belgian soil map

classifies the different soils into classes ranging from well-drained to poorly-

drained soils, according to the bore hole field observations (Table 8.1). These

bore hole samples were used to measure the depth to gley and mottle. Gley

can be described as a blue-grey waterlogged soil layer in which iron is reduced

to the ferrous form. This layer can turn into a soil containing brownish

mottles due to oxidation of iron during intermittent dry periods. The occur-

rence of these features therefore indicates the change in water table height

between winter (mottle) and summer (gley).

Figure 8.4 shows daily rainfall for the winter period of 1995–1996 together

with the mean backscattered signal for the whole catchment, calculated from the

tandem pairs of the eight ERS-1/2 images (see Section 8.4 for more details on the

SAR images used in this study.)

8.3.2 The Coët-Dan Catchment

The field data associated with the study performed in the Coët-Dan catchment

were collected in one of the first-order subcatchments (drainage area: 1.2 km2),

located in the northwest of the catchment. This survey involved the mapping of

the saturated areas during the winter of 1992 by visual inspection and auger hole

sampling. The inset in Figure 8.5 shows the areal extent of the saturated areas as

observed on February 15, 18 and 21, 1992 (Salahshour Dehchali, 1993). During

the winter period of 1992, rain fell between February 8 and February 16 and was

followed by a drydown period which lasted till March 3 (Figure 8.12).
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Table 8.1. Natural drainage classes, Belgian nomenclature

Drainability index Average winter water table depth

(¼ depth to mottle) (cm)

Average summer water table depth

(¼ depth to gley) (cm)

b > 125 —

c 80–125 —

d 50–80 —

h 30–50 —

e 30–50 > 80

f 0–30 40–80

g — < 40

A (=b+c+d) > 50 —

D (=c+d) 50–125 —



8.4 SAR DATA COLLECTION AND PRELIMINARY PROCESSING

8.4.1 The ERS-Satellite SAR System

The SAR images used in this study originate from the ERS-satellite system.

The first ERS satellite (ERS-1) was launched in 1991. This satellite carries

several advanced Earth observation instruments, such as the Active

Microwave Instrument (AMI) which combines the functions of a synthetic

aperture radar and a wind scatterometer. The SAR instrument is a C-band

(5.3 GHz) radar operating in VV polarisation (Attema, 1991). One of the

products generated by the Processing and Archiving Facilities (PAFs) are

precision images with a spatial resolution of 30 by 30m and a pixel size of

12.5 by 12.5 m. During the winter of 1992, the satellite was put in the so-

called ‘‘ice-phase’’, allowing Earth observations at a limited number of loca-

tions with a repeat cycle of three days. The Coët-Dan catchment is located in

one of these areas with three-day repeat coverage. Between January 28 and

March 28, fifteen precision images (PRI) were collected over the catchment

(Table 8.2). In 1995, a second satellite (ERS-2) was launched and put in the

same sun-synchronous orbit as ERS-1, such that the time difference between

overpasses is exactly 24 hours (the so-called ‘‘Tandem-phase’’). From October

1995 to April 1996, four tandem pairs (8 PRI images) were collected over the
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Figure 8.4. Daily rainfall for the 1995–1996 winter period observed at the Zwalmbeek catchment.

Also indicated by the dashed line and right-hand scale is the average radar backscatter �0 for the
catchment calculated for each tandem pair of ERS-1/2 images (small �0 corresponds to dry condi-

tions). (From Verhoest et al., 1998; reproduced with permission.)



Zwalmbeek catchment (Table 8.2). In both cases, winter-time images were

selected in order to minimise changes in soil roughness, due to agricultural

activities, and vegetation characteristics, thereby minimising their effect on the

total radar backscatter.

8.4.2 SAR Image Calibration

After georeferencing the twenty-three images (eight for Zwalmbeek and fifteen

for Coët-Dan), the data had to be calibrated in order to be useful for multi-

temporal analysis. As stated before, in this study we have used SAR PRI (pre-
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Figure 8.5. Saturated areas observed from field campaigns on February 15, 18, and 21 for the Coët-Dan

catchment. The right image shows the saturation potential index (SPI) for the Coët-Dan basin, calculated on

the sequence of ERS-1 images taken during the winter period of 1992. The SPI varies from low (red) to high

(blue). Low (red) values indicate saturation prone areas.



cision image) data. SAR PRIs are subjected to engineering corrections and rela-

tive calibration to compensate for well-understood sources of system variability.

Absolute calibration of the precision images, on the other hand, has to be per-

formed by the user. The calibration procedure used here is described in Laur et

al. (1997). The digital numbers in the PRIs are related to the backscattering

coefficient through the following formulas:

A2
ij ¼ DN2

ij �
1

K
�

sin �

sin�ref

�C �
PRP

RRP
� PL ð8:1Þ

and

�0
¼

1

N

XN
i; j

A2
ijb ð8:2Þ

where N is the number of pixels within the area of interest (AOI), i.e., a group of

pixels corresponding to a distributed target in the image (e.g. bare soil field); i; j
are the range and azimuth locations of the pixels within the distributed target

containing N pixels; DNij is the digital number corresponding to the pixel at

location (i; j); Aij is the amplitude corresponding to the pixel at location (i; j);
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Table 8.2. Identification of satellite images used in the analysis of Coët-Dan and Zwalmbeek

Date Mission Orbit Track Frame Desc./Asc.

Images for the Coët-Dan Catchment
01/28/1992 ERS–1 2807 1 963 Ascending

02/06/1992 ERS-1 2936 1 963 Ascending

02/09/1992 ERS-1 2979 1 963 Ascending

02/12/1992 ERS-1 3022 1 963 Ascending

02/15/1992 ERS-1 3065 1 963 Ascending

02/21/1992 ERS-1 3151 1 963 Ascending

02/24/1992 ERS-1 3194 1 963 Ascending

02/27/1992 ERS-1 3237 1 963 Ascending

03/01/1992 ERS-1 3280 1 963 Ascending

03/04/1992 ERS-1 3323 1 963 Ascending

03/10/1992 ERS-1 3409 1 963 Ascending

03/13/1992 ERS-1 3452 1 963 Ascending

03/16/1992 ERS-1 3495 1 963 Ascending

03/22/1992 ERS-1 3581 1 963 Ascending

03/28/1992 ERS-1 3667 1 963 Ascending

Images for the Zwalmbeek Catchment
10/31/1995 ERS-1 22455 423 2583 Descending

11/01/1995 ERS-2 2782 423 2583 Descending

12/05/1995 ERS-1 22956 423 2583 Descending

12/06/1995 ERS-2 3283 423 2583 Descending

02/13/1996 ERS-1 23958 423 2583 Descending

02/14/1996 ERS-2 4285 423 2583 Descending

03/19/1996 ERS-1 24459 423 2583 Descending

03/20/1996 ERS-2 4786 423 2583 Descending



�0 is the backscattering coefficient corresponding to all N pixels within the AOI;

K is a calibration constant; � is the average incidence angle corresponding to the

AOI, which is calculated from the image geometry, the earth surface being repre-

sented by a reference ellipsoid (Goddard Earth Model, GEM 6); �ref is the ERS

reference incidence angle, i.e., 23:0�; C is a factor that accounts for updating the

gain due to the elevation antenna pattern implemented in the processing of ERS

SAR PRI products; PRP is the power of the replica pulse used to generate the

PRI product and is given in the header file of the PRI image; RRP is the replica

pulse power of a reference image taken over Flevoland (The Netherlands); and

PL is the analogue to digital convertor (ADC) power loss. For more details on

the calibration we refer to Gineste et al. (1998) and Verhoest et al. (1998).

8.4.3 Speckle Filtering

Radar images of homogeneous rough surfaces always show a granular pattern

called speckle. This noise-like phenomenon is the result of changes in the dis-

tances between elementary scatterers and the receiver caused by surface rough-

ness, so that the received waves, although coherent in frequency, are no longer

coherent in phase. SAR systems rely upon the coherence properties of the scat-

tered signals, making these systems susceptible to speckle to a much greater

extent than noncoherent systems, such as side-looking airborne radars

(Porcello et al., 1976). The presence of speckle noise in an imaging system reduces

resolution, and thus the detectability of a target, and also degrades the quality

and interpretability of the scene.

In SAR practice, speckle is suppressed by creating n-look images. These multi-

look images are obtained by averaging n independent samples (looks) of the same

scene. This reduces the variance of speckle by a factor n, but deteriorates the

spatial resolution by that same factor (see Chapter 2, p. 23). During the last

decade techniques that do not deteriorate resolution have been proposed for

speckle reduction. In homogeneous areas a box or lowpass filter (i.e. a moving

window averaging filter) is efficient. However, this kind of filter blurs edges,

strong point targets or high frequency texture variations (Nezry et al., 1991).

Therefore speckle filters which are adaptive to the local texture information

are recommended to apply to radar images. These filters smooth speckle in

homogeneous areas and preserve texture and high frequency information in

heterogeneous areas (Shi and Fung, 1994). Numerous types of adaptive filters

have been proposed and they generally weigh the central pixel value with the

neighbouring values (e.g. local mean value of the applied kernel as a function of

the local coefficient of variation). Nevertheless these filters suppress the noise

insufficiently along edges, roads or point targets (Nezry et al., 1991). In order

to get better speckle reduction results, Lopes et al. (1990) proposed to divide an

image into three classes. The first class corresponds to the homogeneous areas

within the image. In these areas the speckle can easily be reduced using a box

filter. The second class represents the heterogeneous areas in which texture has to
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be preserved, while reducing speckle. In this area the pixel value is replaced by a

weighted average of the original central pixel value and the mean value obtained

for the applied kernel. The third class corresponds to areas which contain iso-

lated point targets. In this case, the filter preserves the observed value of the

central pixel. The criteria for assigning pixels to one of these three classes and the

weighting function applied for the pixels in the second class, define the different

filters. In this study an adapted Lee sigma filter (Gineste et al., 1998) and the

Gamma Map filter (Lopez et al., 1990) have been used to reduce speckle in the 23

SAR images. For more information on these filters, we refer to Verhoest et al.

(1998) and Gineste et al. (1998).

8.5 SPATIAL PATTERNS OF VARIABLE SOURCE AREAS THROUGH
MULTITEMPORAL SAR ANALYSIS

8.5.1 Introduction

During the last decade, several SAR data analysis techniques have been pro-

posed to map the saturation-prone areas in catchments. Brun et al. (1990), based

on helicopter-borne C-band scatterometer data, proposed to map variable source

areas by applying a threshold on the backscattering coefficient. The reasoning

behind this method is that, when ponding occurs, the radar signal drops due to

specular reflection. They found that a threshold of �7 dB allowed estimation of

the spatial patterns in the variable source areas. If the method could be applied

successfully it would allow mapping of the extent of saturated areas on each day

of radar observations, thereby providing a sequence of variable source area

maps. This technique was tested by Gineste et al. (1998) based on the 15 ERS-

1 images given in Table 8.2, but was rejected as an accurate way to map variable

source areas. The main difficulty with an absolute threshold is that other surface

characteristics that influence radar backscatter, such as vegetation cover and

surface roughness when the terrain is not completely inundated, are not taken

into account.

Another method, proposed by Rignot and van Zyl (1993) and Gineste et al.

(1998), uses difference images to overcome the problems occurring with absolute

thresholding. These researchers found that a two-date difference image yields

more valuable information than the threshold method, but is still limited because

the analysed images should reflect extreme hydrologic conditions (inundated

versus dry) before the method becomes reliable. The method of differencing in

itself is further susceptible to other problems: changes will not be detected in the

same fashion in high intensity regions compared to low intensity areas, which

renders the method less reliable. Moreover, the differencing method is not very

robust since the radiometric errors introduced in the imagery during SAR pro-

cessing are multiplicative factors to the total radar intensity, which will not be

eliminated during the differencing.
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This problem can be overcome by dividing the intensity values of the two

dates instead of subtracting them. This ratio method is shown to be better

adapted to the statistical characteristics of the radar data, but only works well

when the number of looks is very high, since the method is very sensitive to

speckle noise. Rignot and Van Zyl (1993) found that, in order to detect changes

in radar intensity less than 2 dB with a confidence level better than 90%, the

number of looks must be greater than 64.

It is apparent from these trials, using change detection techniques, that accu-

rate and reliable mapping of saturated areas from one image or from a pair of

images is restricted to atypical situations. As an alternative, one can try to

analyse a sequence of images taken during a complete season. In the following

sections we present two recently developed techniques that appear promising for

mapping the spatial patterns in variable source areas.

8.5.2 Saturation Potential Index

Given the strong differentiation in temporal variability of soil moisture as a

function of the position along a hillslope (Figure 8.1), Gineste et al. (1998)

developed a technique based on the backscatter temporal standard deviation to

indicate the local saturation likelihood during the period of observations. This

standard deviation is termed the saturation potential index (SPI). It directly

reflects the fact that the more the backscattering coefficient from a point in the

landscape varies in time, the greater is the soil moisture variation at that point,

whereas saturation is expected to develop on parts of the catchment that are

usually wetter and thus subject to less soil moisture variation in response to

the hydrologic forcing conditions. The method uses the logarithmic transform

of the backscattering coefficient given by (8.2). Therefore the speckle noise

becomes additive and consequently exhibits the same strength regardless of the

absolute backscatter level. Moreover, it has been shown that the possible range of

backscatter variation with soil moisture remains about the same (on the order of

5 dB for soil conditions varying from dry to wet) independent of the roughness of

the surface (Altese et al., 1996). A measure of the local backscatter temporal

variation should thus allow an assessment of the extent to which the soils in the

catchments have departed from wet conditions.

Results of this method applied to the Coët-Dan data are discussed here.

Figure 8.5 shows spatial patterns of backscatter temporal variation (red areas

indicate low temporal standard deviation and thus saturation prone areas). The

pattern generally shows that the drainage lines as indicated by the stream net-

work have low temporal standard deviation indicating consistently wet areas.

The hillslopes have high temporal standard deviation indicating wetting and

drying. Zooming in on the subcatchment where detailed field observation of

the extent of saturated areas has been performed (inset in Figure 8.5) allows us

to compare the SPI with in situ observed saturated areas. Saturation around the

main streamline is generally well defined although the SPI appears to overpredict
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the saturated area on the downstream end of the image. The small saturated

branch on the south side in the middle of the image is well defined by the SPI.

The SPI underestimates the extent of the saturation up the main streamline.

Gineste et al. (1998) also showed that there was good agreement between spatial

patterns of saturation potential indices (SPI) and wetness index across the Coët-

Dan catchment. However, the backscatter temporal standard deviation cannot

be used directly over the whole catchment as a measure of saturation, as other

areas where little variability is to be expected (e.g., areas of dense vegetation such

as forests where microwave penetration is impeded) are not discriminated (e.g.,

the mid-east ridge area in Figure 8.5). Some of the areas with low temporal

standard deviation are not in forested or urban areas and so are likely to actually

be saturated areas but these are not well connected to the stream network. These

may be due to saturation caused by human activities in agricultural catchments

such as compaction of top soil by cattle, harvesting, ploughing, etc. but will not

contribute to runoff since they are not connected to the stream network.

The same method was applied to the data for the Zwalmbeek catchment.

Figure 8.6 shows the SPI with a reversed colour scale compared to Figure 8.5,

i.e. blue relates to small temporal standard deviation associated with wet areas

and red areas indicate high temporal standard deviation associated with areas

that drain freely. Here we can compare the SPI to the drainage network, and to

the drainage classes derived from the soils map. In Figure 8.6 the predicted

saturated areas broadly follow the drainage network. However, there is a shift

of the predicted saturated areas with respect to the drainage network, indicating

that there may be some topographic effects on computation of the SPI. We can

also compare Figure 8.6 with the right panel of Figure 8.8 which represents the

soil drainage classes. The poorly drained soils (class h+e+f+g) in the main

drainage line are reasonably well predicted but the spatial shift is highlighted

in the north west. Given the apparent confounding effects of topography, we

sought a more robust technique which can separate the topographic and land-use

effects from soil moisture influences on the total backscattering described in the

next section.

8.5.3 Principal Component Analysis

The principal components transformation is a standard tool in image

enhancement, image compression, and classification (Richards, 1986; Singh,

1989; Lee and Hoppel, 1992). It linearly transforms multispectral or multi-

dimensional data into a new coordinate system in which the data can be

represented without correlation. The new coordinate axes are orthogonal to

each other and point in the direction of decreasing order of the variances, so

that the first principal component contains the largest percentage of the total

variance (hence the maximum or dominant information), the second compo-

nent the second largest percentage, and so on. Images transformed by princi-

ple component analysis (PCA) may make evident features that are not
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discernable in the original data – local details in multispectral images, changes

and trends in multitemporal data – that typically show up in the intermediate

principal components.

PCA is widely used in optical remote sensing but less so in the more recent

area of SAR image processing. One example is provided by Lee and Hoppel

(1992), who used a modified principal component transformation on multi-

frequency polarimetric SAR imagery for reducing speckle and for information

compression. Another example is given by Henebry (1997) who used PCA on

a temporal series of twelve images for the production of a high spatial resolu-

tion/low spatial noise image that served as a template for georeferencing. One

of the principal components obtained could then be used for land cover

segmentation.
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Figure 8.6. Saturation potential index (SPI) calculated on the sequence of eight ERS images for the

Zwalmbeek catchment, ranging from low (blue) to high (red). (Note: colour map is reversed with

respect to the one of Figure 8.5 so blue areas are now saturation prone). The stream network (black)

is given in overlay. Notice the shift of the low SPI with respect to the river network.



Figures 8.7–8.9 show the images constructed for the first three principal com-

ponents computed from the eight Zwalmbeek images. Applying PCA to these

eight images leads to the separation of the information into several components

that can be attributed to different factors influencing the backscatter. The first

principal component (PC) accounts for 76.6% of the total variance, the second

component for 6.6%, the third for 5.9%, and each of the remaining PCs for less

than 4% (Verhoest et al., 1998).

Figure 8.7 compares the first component (left image) with a local incidence

angle image computed from the digital elevation model of the catchment. The

similarity between these two images suggests that topographic effects are respon-

sible for the largest contribution to the total variance in the sequence of SAR

images and dominate the backscattering signal. A sequence of images taken with

the same radar configuration and footprint (frame and track) will show a very

high correlation: slopes facing the satellite will consistently return more energy

than slopes turned away from the sensor. The principal component analysis has

brought out these highly correlated features in the first PC.

The left image in Figure 8.8 represents the second principal component. This

image displays a strong spatial organisation, with the highest values grouped

along the drainage network of the catchment. To test the hypotheses that the

information contained in this image is related to the drainage conditions of the
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Figure 8.7. First principal component image calculated for the Zwalmbeek catchment (left) and an

image of the local incidence angles calculated from the digital elevation model of the catchment

(right). The stream network (black) is shown in overlay in both images. (From Verhoest et al., 1998;

reproduced with permission.)



catchment, a drainage map for the Zwalmbeek was generated from the Belgian

soil map, and is shown in the right image of Figure 8.8. As can be noticed from

this figure, the poorly-drained soils (types e–h) tend to occur in the valley regions

of the catchment and correspond well with the areas with high second PC values.

This suggests a radar response, brought out in the second principal component,

to the soil moisture patterns that result from the drainage characteristics of the

basin. These patterns are not attributable to any single event, but reflect the

overall response of the soil to the rainfall and interstorm periods spanned by

the images, as illustrated by Figure 8.1. The pattern of the second PC in Figure

8.8 is similar to the SPI pattern in Figure 8.6, but the shifting due to terrain is

slightly less as is apparent in the drainage line in the north west of the catchment.

The third principal component (left image in Figure 8.9) shows the influence

of land cover and land use, as evidenced by its strong correlation with the

Landsat-derived map (right image in Figure 8.9) that highlights the forested

areas in the south of the catchment and the few towns on the basin. The land

use map is the result of a supervised classification performed on a Landsat TM

image of October 12, 1994. The classification resulted in ten classes, such as

woods, urbanised areas and several agricultural uses which are grouped together

as shown in Figure 8.9. In SAR images urban areas typically appear as bright

objects, and in a sequence of images such areas, with their relatively static fea-

tures, will produce a consistent backscattering signal. This is apparent if Figures
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Figure 8.8. Second principal component image calculated for the Zwalmbeek catchment (left) and

the drainage map for the catchment (right). The drainage classification scheme is explained in Table

8.1. (From Verhoest et al., 1998; reproduced with permission.)



8.6 and 8.9 are compared with low values in Figure 8.6 corresponding to woods

and urban areas. If there are few changes in major vegetation features over the

same sequence of images, each canopy type will also produce a typical and

temporally consistent radar response.

The fourth and subsequent principal components account for a very small

fraction of the total variance in the sequence of SAR images, and they do not

seem to reveal significant features. These PCs are characterised mostly by noise

(including speckle).

As was already mentioned, the second component shown in Figure 8.8 is

strongly related to the soil moisture response expected from rainfall and drain-

age/redistribution episodes and reflects the drainage characteristics of the soil.

This can be further illustrated by investigating the signal’s behaviour for the

negative and positive values of the second principal component. Pixels in each

image were assigned to two groups, one for positive PC2 and the other for

negative PC2. The average backscatter was then calculated for each group in

each image. Figure 8.10 plots, for each SAR image, the average backscatter

value of these two classes in the second PC. The negative class generally

corresponds to the well-drained soils, which are found upslope, while the

positive class mainly coincides with the poorly-drained areas. As was men-

tioned before, the discharge areas exhibit a lower temporal variability in soil

moisture content than the upslope areas, and this is reflected in the lower

variability of the radar backscattering for the positive PC2 areas during the
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Figure 8.9. Third principal component image for the Zwalmbeek (left) and a classified Landsat

image with forested and urbanised regions in the catchment highlighted (right). (From Verhoest

et al., 1998; reproduced with permission.)



winter period. During a drydown period, upslope areas show a larger decline

in soil moisture content than near-stream areas, which corresponds to a larger

decline in backscattered signal of the negative PC2 areas for the first four

images. The large rain event of February 13 is reflected in the large increase in

signal for both positive and negative PC2 areas. Over the course of the

following 24 hours, soil moisture was redistributed over the basin, leading

to a decrease of soil wetness in the recharge zones but little change in the

already saturated near-stream zones, as evidenced in Figure 8.10. Shrinkage of

the variable source areas over the following weeks accounts for the decrease

of the backscattered signal of the positive PC2 class.

Applying PCA on the sequence of ERS-1 images taken over the Coët-Dan

catchment, omitting the frost dates (January 28 and February 21), leads to

similar results as obtained for the Zwalmbeek catchment. As the Coët-Dan

basin is quite flat (slopes are generally less than 5%), the backscattered signal

is less influenced by the topography. Therefore, the first PC does not show the

topographic effects on the backscattered signal but rather shows variations in

land use. The second PC, as shown in Figure 8.11, generally corresponds well

to the SPI computed over the catchment (as in Figure 8.5). In the area covered

by the inset in Figure 8.5, again the general patterns are similar although there

is a difference in the upper section of the inset where the PC2 predicts a wet

area extending to the north of the stream, which is not apparent in either the

SPI image or the observed saturated area. Nevertheless, it can be concluded

that generally the saturation prone areas can be mapped using the principal
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Figure 8.10. Average radar backscatter values for the negative and positive PC2 values for the

Zwalmbeek catchment. (From Verhoest et al., 1998; reproduced with permission.)



component technique on a sequence of SAR images. Again, slicing the histo-

gram of the second PC into positive and negative classes leads to a similar

behaviour in the radar backscatter as was observed in the Zwalmbeek catch-

ment. In this analysis, the negative PC2 areas correspond to the saturation

prone areas observed during the field campaign. Figure 8.12 shows the large

temporal variability exhibited by the positive PC2 pixels which reflects wetting

from the first rainstorm in February and the drydown of the soil in those areas

thereafter, while the negative areas almost remain at the same level due to their

high moisture content.

8.6 CONCLUSIONS

Remote sensing offers great potential for mapping saturation prone zones

within a catchment. For two humid catchments in Western Europe, several

methods based on change detection techniques have been tested for this pur-
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Figure 8.11. Second principal component calculated for the Coët-Dan catchment. The stream net-

work (black) is given in overlay. (Red: negative values (saturation prone), blue: positive values.)



pose. Applying a threshold on the backscattering coefficient is not succesful in

delineating saturated areas since the choice of an absolute threshold cannot

take account of the several surface characteristics that influence the backscatter.

Other simple methods consist of differencing or using the ratio of SAR images.

The differencing technique yields more valuable information than the threshold

method, but still is limited due to statistical problems related to the speckle in

SAR images.

Based on the observation that soil moisture variability is a function of its

position along a hillslope, the saturation potential index was introduced. This

index is based on the temporal standard deviation of the backscattering coeffi-

cient at a certain location which is directly related to the variation of soil

moisture at that spot where small temporal variation indicates saturated

areas. This index compares well to field observed saturated areas for the

Coët-Dan catchment. However, for the Zwalmbeek catchment, which has a

more pronounced topography, influences of the change in local incidence

angle were introduced in the SPI. This problem is addressed by performing a

principal component analysis on the sequences of images. This technique can

separate topography and land use effects from the soil moisture influence on

the total backscattering. In particular, it was possible to detect changes between

scenes in the second principal component that could be linked to soil moisture

variations. The soil moisture patterns observed are consistent with the rainfall-

runoff dynamics of a catchment and coincide with the saturation prone areas
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Figure 8.12. Daily rainfall for the Coët-Dan catchment during the winter period of 1992. Also

indicated by the solid line is the average backscatter over the basin (expressed in digital numbers)

and the average radar backscatter values for the negative and positive PC2 values (dashed lines).



derived from information on the natural drainage condition of the soils in the

Zwalmbeek catchment. It should be noted that the presented methods have

been tested during the wet season only, as it can be assumed that they will

only be applicable under these conditions.

Full quantitative validation of these techniques would require extensive obser-

vations of saturated zones over large areas. Nevertheless, the results of these

ERS1/2 SAR analyses indicate that a quantitative representation of saturation

prone areas is now possible.
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9
Soil Moisture and Runoff Processes at Tarrawarra

Andrew Western and Rodger Grayson

9.1 INTRODUCTION

It has been recognised for at least two to three decades that saturation excess is

the dominant surface runoff process operating in most landscapes with a humid

climate (Betson, 1964; Dunne et al., 1975). This mechanism is associated with soil

moisture patterns characterised by high moisture zones in depressions and drai-

nage lines (Anderson and Burt, 1978a,b,c; Anderson and Kneale, 1980, 1982;

Burt and Butcher, 1985, 1986; Dunne and Black, 1970a,b; Moore et al., 1988a). It

has also been known that event based hydrologic models are sensitive to initial

conditions (Stephenson and Freeze, 1974). Blöschl et al. (1993) and Grayson et

al. (1995) showed that event hydrographs simulated by spatially distributed

hydrologic models were sensitive to the way in which the antecedent moisture

was arranged spatially (see Chapter 1, pp. 12–13 for more detail). However, until

recently there has been little spatial soil moisture data available that could be

used to determine the characteristics of soil moisture patterns in natural catch-

ments. Most of the data that were available were not sufficiently detailed to

provide spatial soil moisture patterns without significant ad hoc interpretation

of the data. It is important to recognise that catchment runoff does not give us

much insight into internal catchment processes (Grayson et al., 1992a,b). Given

that we want to understand runoff processes in catchments, it is necessary to

measure internal information, i.e. soil moisture patterns in this case.

The apparent importance of spatial soil moisture patterns, combined with

the limitations of existing data, motivated us to perform a series of experiments

in which we measured actual soil moisture patterns and used these patterns for

testing and developing distributed models. In addition to the soil moisture

patterns, we measured other key variables that would enable us to interpret

the observed patterns in terms of the controlling hydrologic processes. Our

aims centred on understanding the spatial variability of soil moisture, its repre-

sentation in geostatistical and hydrological models and its importance from the
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perspective of the hydrological response of the landscape. We were particularly

interested in the issue of spatial organisation of soil moisture patterns. In this

chapter we discuss the above aims, while keeping a particular focus on the

interaction between the field experiments and modelling and on using patterns

in model development and testing. Initially some background material is pre-

sented, and the design of the experiment and the justification for making spe-

cific measurements is discussed in some detail. Next the field site and the

observed soil moisture patterns are described. Then we discuss the Thales

model structure and parameterisation and the role of the data and our quali-

tative field observations in choosing them. Some model simulations are then

presented. The chapter concludes with a discussion of the model results, two

problems with the model structure that contribute to simulation errors, the

importance of different sources of spatial variability, and some general model-

ling insights.

9.2 MODELLING BACKGROUND

This section is intended to provide a brief overview of the types of models that

can be used for predicting soil moisture and runoff in small catchments. There

are essentially three different approaches that can be used: lumped models; dis-

tribution models; and distributed models. Lumped models are of no interest here

since they do not represent spatial variability. Distribution models represent the

spatial variability of soil moisture (or some related state variable such as satura-

tion deficit) using a distribution function. This distribution function can be

derived from the catchment topography, as is the case with Topmodel (Beven

and Kirkby, 1979; see also Chapter 3), or it can be a theoretical distribution

function, as is the case with VIC (Wood et al., 1992). From a water balance

perspective, these models operate as lumped models (i.e. the whole catchment is

represented using one store). However, where the distribution function is based

on the catchment topography, it is possible to map simulated soil moisture back

into the catchment to produce a simulated pattern (Quinn et al., 1995). To our

knowledge there has not been any detailed testing of soil moisture patterns

actually simulated by models such as Topmodel. However, a number of studies

have compared various terrain index patterns (on which Topmodel is based) with

soil moisture patterns (e.g. Anderson and Burt, 1978a; Anderson and Kneale,

1980, 1982; Barling et al., 1994; Burt and Butcher, 1985, 1986; Moore et al.,

1988a; Western et al., 1999a). Models incorporating distribution functions that

are not related to the topography do not allow the soil moisture patterns to be

mapped back into space; however, the statistical distribution functions used in

these models can be compared to the equivalent distributions derived from mea-

surements (see e.g. Western et al., 1999b).

Fully distributed, physically based hydrologic models explicitly predict the

spatial pattern of soil moisture by simulating the water balance at many points

in the landscape. These models are usually based on combinations of differential
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equations that describe the storage and fluxes of water within the catchment.

There have been some qualitative comparisons of soil moisture patterns with

these models, including that by Barling et al. (1994); however, more detailed

comparisons are rare. This chapter presents detailed comparisons between simu-

lated and observed soil moisture patterns for the Tarrawarra catchment and

describes the utility of high resolution spatial patterns for providing insights

into the modelling of hydrologic response.

9.3 THE TARRAWARRA EXPERIMENTS

9.3.1 Key Experimental Requirements

The aims of the Tarrawarra experiment can be broadly stated as being: to

understand the characteristics of the spatial variability of soil moisture at the

small catchment scale; to determine how well various techniques can represent

that variability; and to understand how that variability impacts on the hydrologic

response of the landscape. Of specific interest was the issue of how organised the

spatial variation of the soil moisture is in general and specifically how any orga-

nisation might reflect the organisation of the topography. These objectives could

not be met without detailed patterns of soil moisture, collected at a scale that was

appropriate and collected using a measurement methodology that could be reli-

ably interpreted. Because suitable data did not exist, it was necessary to collect

reliable soil moisture pattern data. The objectives above were of primary impor-

tance when developing our field methodology.

The methods chosen for collecting the soil moisture data had to meet four

criteria and followed the general approach to sampling design presented in

Chapter 2 (pp. 45–9). First, measurements had to be at sufficiently high resolu-

tion (small spacing) to resolve the important details of the pattern. Second, the

soil moisture measurement technique had to have an accurate calibration to soil

moisture. Third, the depth over which the soil moisture was measured needed to

be sufficiently large to be of hydrologic significance. Fourth, the extent of the

study area had to encompass at least a complete catchment, not just one hillslope.

Furthermore it was desirable to maximise the rate at which measurements could

be made and to minimise disturbance while taking the measurements since they

were to be repeated several times.

High-resolution measurement was essential to this project because we wanted

to examine the degree of organisation in the spatial soil moisture pattern. Low-

resolution data has a strong tendency to make spatial variation appear disorga-

nised. This is because details of the spatial pattern are not resolved (Williams,

1988). This problem is illustrated in Figure 9.1, which shows time domain reflec-

tometry measurements of soil moisture in the top 30 cm of the soil profile col-

lected at Tarrawarra on: (a) 10� 20m; and (b) 30� 60m grids. The 30� 60m

resolution pattern was obtained by subsampling from the 10� 20m resolution

pattern. Tarrawarra has two main drainage lines, which contained narrow bands
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of high soil moisture at the time of these measurements. These bands are evident

in the 10� 20m resolution pattern. The important point is that the top pattern

looks organised while the pattern at the bottom looks random, even though the

latter has been simply subsampled from the former. The difference in apparent

soil moisture pattern demonstrates the need for high-resolution sampling.

The reason for measurements that can be accurately calibrated to soil moist-

ure is, in one sense, obvious: it is always desirable to minimise noise in the data.

In another it is less obvious. We were interested in the spatial pattern of soil

moisture. If we had used a sensor that was significantly influenced by other

factors, such as surface roughness or vegetation, as well as by soil moisture,

the patterns we obtained would reflect both the soil moisture pattern and the
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Figure 9.1. Comparison of volumetric soil moisture patterns resulting from different sampling

resolutions. The pattern on the top is point soil moisture sampled on a 10� 20m grid. The pattern

on the bottom is the same data sub-sampled to obtain a pattern of point measurements on a 30�

60m grid. The top pattern appears organised while the bottom pattern appears random, even

though the underlying pattern is the same.

(a)

(b)



patterns of the confounding variables. With current technology, this excluded

remote sensing due to significant data interpretation problems with current

space-borne systems, which are all influenced by factors other than soil moisture

(see e.g. Jackson and Le Vine, 1996; and Chapter 8).

In landscapes where saturation excess runoff is important, it is the saturation

deficit over the whole soil profile that is of most interest. This means that it is

desirable to measure soil moisture over the entire vadose zone. This is a key

shortcoming of current soil moisture remote sensing systems, which are only

influenced by the surface soil layer (usually < 5 cm depth) and require assump-

tions about moisture profiles to estimate deficits.

The requirement for a complete catchment was primarily due to our interest in

the role of topography in controlling the soil moisture pattern and our interest in

the response of the landscape in general rather than individual hillslopes. By

sampling a whole catchment, a diverse range of topography was sampled.

When we were selecting the study site we looked for catchments that contained

both convergent and divergent slopes and a wide range of aspect. By doing so we

hoped to sample an area that would be fairly representative of the general land-

scape. A number of other criteria were also used when selecting the study site.

For experimental reasons it was desirable to have a catchment in which: satura-

tion excess was the dominant runoff mechanism; there was no artificial drainage,

roads, dams or irrigation; and the vegetation was permanent pasture. Permanent

pasture was desirable, as it would minimise the impact of spatial variation in land

management on the results. For logistical reasons the catchment had to be traf-

ficable and the soils had to enable TDR probes to be easily inserted (i.e. not too

many rocks).

9.3.2 Catchment Description

Tarrawarra is a 10.5 ha catchment in southern Victoria, Australia (37�39 0S,

145�26 0E) (Figure 9.2). The climate is temperate, the mean annual rainfall is 820

mm and the areal potential evapotranspiration is 830 mm. Compared with eva-

potranspiration, there is a significant rainfall deficit in summer and excess in

winter. The terrain consists of smoothly undulating hills (Figure 9.3). There

are no perennial streams and no channels within the catchment. The land use

is cattle grazing and the vegetation consists of perennial improved pastures. At

the catchment scale the vegetation cover was relatively uniform. On a few occa-

sions the vegetation was variable at a patch scale of 1–10m due to preferential

grazing by the cattle. There was also variability at the individual plant scale;

however, the percentage of plant cover was generally greater than 90%. This

plant and patch-scale variability may have contributed some small-scale varia-

bility to the soil moisture.

The bedrock is lower Devonian siltstone with interbedded thin sandstone

and local bedded limestone (the Humevale formation) (Garratt and Spencer-

Jones, 1981) at a depth of 0.5–1.5 m on the hillslopes and deeper in the
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Figure 9.2. The topography and locations of fixed measurement installation at the Tarrawarra catchment.

The contour interval is 2m.

Figure 9.3. A view of the Tarrawarra catchment looking north east from the catchment outlet.



drainage lines. The soils in the Tarrawarra catchment have been studied in

detail by Gomendy et al. (in preparation) and consist of two units (Figure

9.4). The soil on the upper slopes is a pedal mottled-yellow Duplex soil

(Dy3.4.1, Northcote, 1979), which is a texture contrast soil. The Duplex soil

has a 10–30 (typically 20) cm thick silty loam or silty clay loam A1 horizon, a

silty clay loam A2 horizon up to 45 (typically 20) cm thick and a medium to

heavy clay B horizon. Ironstone gravel often occurs, mainly in the A2 horizon.

The A1 and B horizons are moderately to strongly structured, while the A2

horizon shows massive to weak structure. The soil on the lower slopes and in

the depressions is a gradational grey massive earth (Gn3.9.1 or 2.8.1,

Northcote, 1979) soil with a silty loam A horizon 10–35 (typically 20) cm

thick which gradually transitions into a silty clay loam B horizon. The A

horizon is strongly structured and the B horizon is massive to weakly struc-

tured. The solum depth varies from 40 cm at some points on the ridge-tops to

over 2 m in the depressions. Water tables form in the A horizon during the

wetter months of the year. There is little physical difference between the surface

soils of each of these two groups. The surface soils crack during dry periods.

9.3.3 Experimental Methods

The system adopted to measure the soil moisture patterns was the Terrain

Data Acquisition System (TDAS) developed at the Centre for Environmental

Applied Hydrology, University of Melbourne (Tyndale-Biscoe et al., 1998).

TDAS is a ground-based system that includes Time Domain Reflectometry

(TDR) equipment for measuring soil moisture, a real time Differential

Global Positioning System (DGPS) for measuring spatial location and a com-

puter which displays real time spatial location, guides the user to the desired

sampling location and records the measurements. The real time DGPS system

allows accurate relocation of sampling sites. All the instrumentation is mounted

on an all-terrain vehicle, which is fitted with hydraulics for inserting the TDR

probes. A range of other instrumentation and soil sampling equipment can also

be mounted and recorded (Tyndale-Biscoe et al., 1998). TDAS is shown in
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Figure 9.5. TDAS allows 50–100 soil moisture measurements to be collected per

hour, which greatly reduces the logistical problems of collecting high-resolution

soil moisture maps. This would have been impossible with manual sensor inser-

tion. Another advantage of this system is that using hydraulics to insert the

TDR probes ensures that the probes are inserted much more smoothly, and

with minimal sideways force, compared to manual insertion. This minimises

disturbance to the soil and air gaps, which reduces the accuracy of TDR

measurements.

The actual soil moisture patterns collected at Tarrawarra generally consisted

of approximately 500 measurements on a 10� 20m grid. This grid spacing was

chosen as a compromise between time constraints, maximising the detail

obtained up and down the hillslopes, which was the direction in which we

expected the greatest variability to occur, and the advantages of maintaining a

similar spatial resolution in both grid directions (see Chapter 2, p. 48–9). Thirty

centimetre TDR probes were used to make the soil moisture measurements. This

means that the measurements represent the average volumetric soil moisture over

a depth of 30 cm at the measurement point. This depth was chosen to minimise

problems with bending TDR probes when they were inserted while obtaining a

good measure of the moisture in the unsaturated zone (at least during the wet

season). In space (i.e. as a map view) the TDR measurements represent the

average soil moisture over a very small area (i.e. support), which is of the

order of 10 cm� 10 cm (Ferré et al., 1998).
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The accuracy of the TDR measurements was assessed by comparing them

with gravimetric measurements collected in the field. The variance of the differ-

ence between the gravimetric and TDR soil moisture measurements was

6:6 ð%V=VÞ2. An analysis of the magnitude of different error sources indicates

that during normal operating conditions, approximately half of this variance is

due to errors in the gravimetric measurements and half due to errors in the TDR

measurements. This is also consistent with variogram nuggets found by Western

et al. (1998a) and with average variances for repeated TDR measurements in

small (0.25 m2) patches.

Neutron moisture meter measurements were also made at twenty points

across the catchment. This was done for two reasons. First, the TDR measure-

ments were not deep enough to extend over the whole unsaturated zone during

dry periods and it was important to obtain some information about soil moisture

behaviour at depth. Second, we wanted some information about the vertical soil

moisture dynamics. Subsequent analysis of the neutron moisture meter data

showed that between 40 and 60% of the active soil moisture storage was mea-

sured by the TDR and that during wet periods most of the variation in soil

moisture occurred in the top 30 cm of the soil profile. Neutron data were cali-

brated to soil moisture for the Tarrawarra soils.

A range of other data was also collected to complement the soil moisture

measurements. Further details of these data can be obtained from Western and

Grayson (1998). A series of piezometers measuring shallow water table eleva-

tions were manually read during the wet period to obtain information about

surface saturation directly. Detailed meteorologic and surface runoff measure-

ments were also made to enable the meteorological forcing and the catchment

scale runoff response to be characterised. A range of soil properties was also

measured.

When designing the measurement network we aimed to target our measure-

ments on the basis of our interests and on the scales at which variability

might be important. Because they were our main focus, the soil moisture

patterns were measured in as much detail as possible, at a scale that would

allow us to characterise the influence of topographic and terrain-related soil

parameters. However, logistical constraints limited the number of surveys to

about twelve per year. This means that we obtained twelve soil moisture

patterns in a year, although more frequent surveys would have been desirable.

To some extent this was overcome by making more frequent measurements

with the neutron moisture meter. Most meteorological measurements were

conducted at only one site since they were not expected to vary significantly

in space. However, they were measured frequently in time due to their high

temporal variability. Rainfall was measured at five locations around the field

site. This was done to measure the spatial variability of rainfall at the event

and longer timescales. These measurements illustrated that spatial variability

of rainfall was not a significant influence on the spatial pattern of soil moist-

ure measured with the TDR.
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9.4 OBSERVED VARIABILITY

Field observations are important for generating and testing hypotheses about the

processes controlling the behaviour of the catchment and hence are an important

aid in determining an appropriate model structure. Field observations may be

either quantitative measurements or qualitative observations of behaviour. Both

are useful when developing a model and are used here to progressively develop

the model structure. This approach allows us to maintain a relatively simple

model structure and a small number of parameters.

Figure 9.6 shows soil moisture patterns measured at Tarrawarra on twelve

occasions during 1996. Table 9.1 summarises the statistics of each pattern.

These observations can be used to generate hypotheses about how the catch-

ment behaves, particularly about the factors that control the observed spatial

patterns. Looking at the wet patterns (e.g. May 2, 1996), it can be seen that

there is a strong topographic influence on the soil moisture pattern. During the

dry periods (e.g. February 23) there is little topographic influence. This beha-

viour suggests that lateral movement of water in the shallow subsurface is

important during wet periods but not during dry periods. This observation,

together with the observation that the temporal behaviour of the soil moisture

is dominated by persistent wet periods and persistent dry periods, with rapid

changes between the two, led us to develop a hypothesis of preferred wet and

dry states (Grayson et al., 1997). The wet and dry states are characterised by

spatial soil moisture patterns that are topographically controlled and random

(unrelated to topography) respectively. This behaviour means that a model that

can simulate the moisture dependent lateral movement of water is required to

simulate the patterns.

Most of the soil moisture patterns collected at Tarrawarra show some aspect-

related differences in soil moisture. The northerly facing slopes are drier because

they receive more solar radiation (being in the Southern Hemisphere). This sug-

gests that there may be some spatial differences in evapotranspiration related to

radiation input. Hence, including this effect in the model is also important.

However, another potential explanation of this aspect-related effect is a differ-

ence in soil properties since, compared to the gradational soils, the duplex soils

are relatively more important (extend further downslope) on the north-facing

hillslopes. Thus this difference in soil type and associated characteristics also

needs to be incorporated in the model.

Several important qualitative observations were made at Tarrawarra that can

be used either in selecting the model structure or in testing model performance.

On one occasion (April 11, 1996) a rainfall event with quite high rainfall inten-

sities (up to 50mm/hr) was observed at Tarrawarra and there was no visual

evidence of infiltration excess runoff being produced and no runoff response at

the catchment outlet. Even if infiltration excess were produced under such con-

ditions, the cracking nature of the soils means that the water would soon flow

down a crack. On several other occasions, high rainfall intensities have been

measured without any runoff being produced at the flume. These observations
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suggest that infiltration excess runoff is not a significant process at Tarrawarra

and that detailed infiltration algorithms are not required in the model.

Another qualitative observation is that when the catchment ‘‘wets-up’’ during

the autumn period, the highly convergent areas around neutron access tubes 7, 11

and 18 are the first to become saturated. The gullies below these areas then

gradually saturate due to runon infiltration of the runoff from upslope and

any lateral subsurface flow that may be occurring. These initial wet areas can

be seen on April 13, 1996 (Figure 9.6) and the runon infiltration process was

observed visually and saturated areas were mapped (Figure 9.7) following further

rain on April 14, 1996. These observations suggest that runon infiltration should

be included in the model.

The above observations, together with the recognition that a long-term soil

moisture simulation requires allowances for evapotranspiration and possibly
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Table 9.1. Soil moisture statistics for the twelve moisture patterns used here

Soil moisture Antecedent precipitation

Mean
(%V/V)

Variance
(%V/V)2

Coefficient
of variation

10 days
(mm)

40 days
(mm)

14-Feb-96 26.2 10.6 0.12 58 98

23-Feb-96 20.8 5.3 0.11 0 97

28-Mar-96 23.9 7.1 0.11 7 89

13-Apr-96 35.2 12.3 0.10 65 145

22-Apr-96 40.5 14.6 0.09 71 215

2-May-96 41.4 19.4 0.11 6 172

3-Jul-96 45.0 14.0 0.08 20 25

2-Sep-96 48.5 13.9 0.08 22 108

20-Sep-96 47.3 15.2 0.08 36 117

25-Oct-96 35.0 19.2 0.13 15 84

10-Nov-96 29.3 10.8 0.11 35 71

29-Nov-96 23.9 6.28 0.11 12 61

100m
N

Figure 9.7. Saturated areas (shaded) at Tarrawarra mapped in the field on April 14, 1996. These had

developed since April 13 and were expanding down the drainage lines via a process of overland flow

and runon infiltration.



deep seepage, provide the basis for selecting an initial model structure which is

described in the next section.

9.5 THE THALES MODEL

The Thales modelling framework (Grayson et al., 1995) is used here. Several

significant modifications to the model described in Grayson et al. (1995) were

required. A general description of the model and a detailed description of the

modifications are provided here. Thales uses a computation network based on a

mesh of streamlines and elevation isolines. Pairs of streamlines form stream

tubes down which the lateral movement of water is simulated. Figure 9.8 shows

the stream tube network for Tarrawarra, as well as a schematic of the fluxes

through a computational element. As applied at Tarrawarra, rainfall and

potential evapotranspiration force the model. The model incorporates the fol-

lowing processes.

. Saturated subsurface lateral flow (kinematic wave).

. Saturation excess overland flow (quasi steady-state).

. Exfiltration of soil water.

. Runon infiltration of overland flow.

. Deep seepage.

. Evapotranspiration.

Except for deep seepage, these processes were included because our field observa-

tions suggested that they might have an important impact on the spatially dis-

tributed water balance and hence on the soil moisture patterns. Deep seepage was

incorporated because our water balance calculations and initial model results

suggested that evapotranspiration and surface runoff could not account for all

the outflows from the catchment.

Thales uses a water balance to simulate soil moisture for each element (Figure

9.8). Inputs of water to an element are rainfall, subsurface flow from upslope and

surface flow (with runon infiltration) from upslope. Outputs of water are evapo-

transpiration, subsurface flow to downslope, and surface flow to downslope.

Exfiltration is possible. Surface flow is generated when an element is saturated.

Infiltration excess overland flow is not simulated due to low (six minute) rainfall

intensities and the lack of surface runoff during periods without saturated con-

ditions (Western and Grayson, 1998).

In this version of Thales, a single store is used to represent the soil moisture

for each element and the element-average soil moisture, �, varies between the

permanent wilting point, �pwp, and saturation (i.e. porosity), �sat. When � is less
than the field capacity, �fcp, the vertical soil moisture profile is assumed to be

uniform. When � > �fcp, the vertical soil moisture profile is assumed to consist of

an unsaturated zone with a moisture content of �fcp above a saturated zone with a

moisture content of �sat. Under these moisture conditions, the depth to the water

table, dwt, can be calculated as:
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dwt ¼
�sat � �ð Þ

�sat � �fcp
� � � dsoil given � > �fcp ð9:1Þ

where dsoil is the soil depth. These soil moisture profile approximations are

appropriate for the shallow soils at Tarrawarra but are likely to be invalid

for deep soils where the dynamics of the unsaturated zone are important.

For calculating lateral subsurface flow, the soil profile is assumed to consist

of two layers. These layers can loosely be thought of as soil horizons. This flow

is routed using a kinematic wave description and Darcy flow. Lateral subsur-

face flow, Qsub, is allowed when part or all of the upper soil layer is saturated.

It is calculated as:

Qsub ¼ W � ksat � tanð�Þ � dupper � dwt
� �

dwt < dupper ð9:2aÞ

Qsub ¼ 0 dwt 	 dupper ð9:2bÞ

where dupper is the depth of the upper layer, W is the width of the stream tube

(computational element), ksat is the saturated hydraulic conductivity, and � is the

surface slope. The numerical scheme is similar to that used by Grayson et al.

(1995); however, the state variable for the subsurface has been changed from

water table depth to soil moisture for convenience. The depth of the upper

layer is assumed to coincide with the relatively high transmissivity surface soil

horizons (often the A horizon). This representation of the soil moisture store and
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Figure 9.8. The flow net for Tarrawarra used in Thales. A schematic of a typical computational

element is also shown.



lateral flow was used because the A horizon is significantly more permeable than

the B horizon, and is thus the dominant horizon for lateral flow, while the B

horizon contributes to active storage during dry periods.

Exfiltration occurs under saturated conditions where the capacity of the hill-

slope to transmit subsurface lateral flow is decreasing downslope. This may occur

due to topographic convergence, a downslope decrease in slope, transmissive

layer depth, or hydraulic conductivity or a combination of these factors.

Overland flow from upslope becomes runon infiltration if the element is unsatu-

rated. Deep seepage has been added to the long-term model. The rate of deep

seepage per unit plan area, qdeep, decreases linearly from the effective vertical

saturated hydraulic conductivity of the soil profile, kdeep, when � ¼ �sat to zero

when � ¼ �fcp.
Overland flow discharge is calculated as the total inflow to the cell, minus

the sum of subsurface outflow, deep seepage and evapotranspiration. Any water

required to bring the cell up to saturation is also subtracted and the overland

flow is assumed to be at steady-state during the time-step implying that the

water was immediately routed to the downslope element. This is different to

Grayson et al. (1995) where the surface flow is routed using a kinematic wave.

The quasi steady-state approach to simulating the surface flow taken here

allowed daily time-steps to be used, which resulted in large computational

savings compared to the short time-steps required for a kinematic wave solu-

tion of the overland flow. Given that our interest was in soil moisture patterns

and water balance, rather than event runoff, daily time steps were quite

adequate.

Evapotranspiration is assumed to occur at the potential evapotranspiration

rate (PET) when the soil moisture exceeds a stress threshold, �stress, and below

�stress it decreases linearly to zero at the permanent wilting point, �pwp.
Evapotranspiration, ET, is calculated as follows.

ET ¼ Pi � � � PETþ ð1� �Þ � PET � 	 �stress ð9:3aÞ

ET ¼ Pi � � � PETþ ð1� �Þ � PET �
� � �wp

�stress � �wp

� �
� < �stress ð9:3bÞ

Pi is the potential solar radiation index (Moore et al., 1991) and it accounts for

slope and aspect effects. � is a weighting factor which is applied to Pi and varies

between 0 (spatially uniform) and 1 (spatial pattern of potential evapotranspira-

tion fully weighted by direct solar radiation). The potential solar radiation index

varies seasonally as the solar declination varies.

9.6 DATA ISSUES

The key steps in this work really revolved around the design and execution of the

field experiments, the thought that went into developing the model structure and

the interpretation of the data and simulations. Most of the data handling steps in
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this study were straightforward. The input data required by Thales and the

methods used for model testing are described below.

9.6.1 Input Data

There are three categories of input data used by Thales as applied at

Tarrawarra: terrain data, soil/vegetation data and meteorological data. An initial

moisture pattern is also required. The terrain data consists of the geometric

properties of each element (excluding soil depths) and information about the

connectivity between elements. The derivation of this data from a vector (con-

tour) digital elevation model is discussed in detail by Moore and Grayson (1991)

and Grayson et al. (1995). The digital elevation model used at Tarrawarra is

based on a detailed ground survey (Western and Grayson, 1998) and is signifi-

cantly more accurate than many standard large (say 1:25,000) scale topographic

maps. TAPES-C (Moore et al., 1988b) was used to derive the stream tube net-

work for Tarrawarra (Figure 9.8).

The soils at Tarrawarra have been studied in detail by Gomendy et al. (in

preparation) who have identified two morphologically distinct soil profiles, a

Duplex (texture contrast) soil and a Gradational soil, which were described

earlier. In the model of Tarrawarra, the properties and depths within each of

these two soil units were assumed to be uniform and model elements were

assigned a soil type on the basis of the mapping by Gomendy et al. (in pre-

paration).

Three time-varying quantities are used to force the model. Daily rainfall

depths were obtained from the weather station data and were applied to the

catchment in a spatially uniform manner. Hourly potential evapotranspiration

depths were calculated using net radiation, wet and dry bulb temperature, wind

and soil temperature data from the automatic weather station and the Penman–

Monteith model (Smith et al., 1992). These were aggregated to daily values and

applied to the catchment in a spatially uniform manner. The potential solar

radiation index was calculated daily for each model element and was used as a

modifier to the potential evapotranspiration as specified in Section 9.3.

We set the initial soil moisture pattern on the basis of the soil moisture pattern

measured on September 27, 1995. The first results analysed were for February

1996, which was long enough after initiation to make the results independent of

initial conditions. It therefore would have been possible to have used an esti-

mated soil moisture pattern. It is worth noting that the period required to remove

the effect of initial conditions from a simulation (i.e. the spin-up time) depends

on the response time of the system. For soil moisture in a small catchment, this

period is likely to be several months. For this reason, event models require some

other approach that better reflects the true antecedent conditions at the time (see,

e.g., Chapter 10). For systems that take a long time to respond (e.g. most ground-

water systems) a much longer period would be required to spin-up the model

from estimated initial conditions.
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9.6.2 Testing data and methods

Three different data types were used to compare to model simulations for this

exercise. The most important are the soil moisture patterns measured with TDR.

These were measured on a regular grid, not at the computation nodes used in

Thales, hence some interpolation was required to allow quantitative pattern

comparison. The model results were interpolated to the sampling grid for the

following two reasons. First, the model results are very smooth in space and

hence can be interpolated with minimal smoothing error. Second, using a regular

grid implies a uniform spatial weighting in any comparison, whereas the compu-

tational network tends to be more heavily weighted (smaller elements) to the

hilltops. Other data that were compared with model simulations were the catch-

ment outflow hydrograph and the saturation deficit data calculated from the

NMM data.

The simulated soil moisture was compared with the measured soil moisture

using several different approaches. Simulated and observed patterns were com-

pared visually and error (difference) patterns were calculated and examined.

Summary statistics including the mean, standard deviation and root-mean-

square of the soil moisture simulation errors were calculated for each measured

soil moisture pattern. Time series of saturation deficits calculated from the NMM

data and simulated by Thales were plotted and compared for both individual

tubes and for all tubes averaged together.

Plots of the simulated and observed hydrographs and the difference between

the two were also examined, and the mean error and prediction efficiency for the

hydrographs were also calculated. The hydrographs were regarded as the least

important of the data sets for comparison since they only contain information at

the catchment scale about the percentage of saturated area well connected to the

catchment outlet and about baseflow processes integrated up to the catchment

scale.

9.7 MODEL PARAMETERS

There are eight parameters that need to be set for each element in this version of

Thales and one global parameter, �. For each element, the soil parameters are

�sat, �fcp, ksat, dsoil, dupper, kdeep, and the soil/plant parameters are �pwp and �stress.
With the exception of kdeep, all the parameter values used in the simulations here

were initially set on the basis of field measurements. Here we describe how these

parameters were initially set and then we discuss how the parameter values were

changed for the different simulations that were conducted.

Given that we are comparing the simulations with moisture measurements

over the top 30 cm of the soil profile, the water retention parameters were set to

reflect this soil layer. Bulk density measurements across the catchment indicated

that the mean porosity was approximately 50%. There were only small differ-

ences in mean bulk density between the different soil types and it was not clear

whether this was related to porosity differences or particle density differences
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(which might arise due to the spatial distribution of iron stone and stone).

Therefore �sat was set to 0.5. The driest set of TDR measurements (March 20,

1997 – not shown here) were used to set �pwp. �pwp was set equal to

�� � 	� ¼ 0:09, where �� ¼ 0:116 and 	� ¼ 0:025 are the mean moisture and

the standard deviation of soil moisture observed on that occasion, respectively.

The reason for selecting a moisture less than the mean to represent the wilting

point is related to the possibility that the moisture at some sites might be slightly

above wilting point. On this occasion, the neutron moisture meter measurements

at each site, were the driest recorded, or very close to the driest recorded.

The soil moisture patterns were carefully examined to determine when lateral

subsurface flow was evident and the mean moisture on these occasions was used

to set �fcp. On April 13, 1996 ð�� ¼ 0:35) lateral redistribution is becoming evi-

dent and it is also evident on October 25, 1996 (�� ¼ 0:35). On March 28, 1996

(�� ¼ 0:24) and August 3, 1997 (�� ¼ 0:27) lateral flow is not evident, while on

November 10, 1996 (�� ¼ 0:29) little or no lateral flow is evident. Therefore �fcp
was set to 0.3. �stress was assumed to be equal to �fcp.

The total active storage observed at each neutron access tube was estimated

by integrating the difference between the wettest and driest profiles at each site

over the depth of the access tube. This calculation assumes that the wettest profile

is representative of saturated conditions. Qualitative field observations suggest

that this is a reasonable assumption. The total storage used in the model [i.e.

dsoil � ð�sat � �pwpÞ] was then set equal to the mean total storage (210mm) plus one

standard deviation (38mm). A larger value than the mean was used since the

total storage at some sites may have been underestimated, due to either the

wettest measured profile not being saturated or the driest measured profile not

being representative of the driest possible conditions. The depth of the upper

layer was set to 400mm on the basis of observations of the depth of the A

horizon in the duplex soil.

A series of saturated hydraulic conductivity measurements were conducted

in the A horizon of the soil using the constant head well permeameter techni-

que (Talsma, 1987; Talsma and Hallam, 1980). These were used to set the

values of ksat in the model. The mean measured ksat was 19 mm/hr and the

standard deviation of the measurements was 26 mm/hr. Clearly these measure-

ments are highly uncertain. It is also important to note that the small-scale well

permeameter measurements are not necessarily representative of lateral flow at

larger scales, due to the influence of soil heterogeneity. Nevertheless a value of

20mm/hr was initially used for ksat. For most of the simulations kdeep was set to

zero.

The parameter in Thales that represents the spatial variability of potential

evapotranspiration is treated as a global parameter in the model. In these

simulations it took on two different values, 0 and 1. A value of zero was

used initially, which implies that potential evapotranspiration is spatially uni-

form. Subsequently a value of 1 was used, which implies that potential evapo-

transpiration varies spatially in direct proportion to the potential solar

radiation index.
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9.8 MODEL SIMULATIONS

A series of simulations was conducted with the Thales model. The first of these

used the basic model parameterisation above. This provided a simulation in

which the only source of spatial variability in soil moisture was lateral flow.

Subsequent runs modified this initial parameterisation and introduced spatial

variability in the potential evapotranspiration and soils. Table 9.2 provides a

summary of the parameters used in each run. When the initial run (Run 1) was

performed, it appeared that the drainage was too slow. Therefore two runs with

higher ksat values were performed. Run 3 resulted in drainage that appeared too

rapid. Thus run 2 most closely represented the effects of lateral flow. It should

be noted that the value of ksat used in run 2 is within one standard deviation of

the mean observed ksat and is greater than the observed mean, as would be

expected due to any effects of preferential flow. The only source of spatial

variation in runs 1–3 is lateral flow routed by the terrain. Spatially variable

potential evapotranspiration was added and runs 4–6 performed. These essen-

tially repeat runs 1–3 with spatially variable potential evapotranspiration.

In run 7, soil variability is introduced via the total depth. A regression rela-

tionship between the wetness index and the total soil depth (R2
¼ 66%), mea-

sured at each neutron access tube, was used to scale dsoil. This resulted in

shallower soils (less storage) on the ridge tops and deeper soils (more storage)

in the gullies. In run 8 soil variability related to soil type is introduced by using a

smaller depth for dupper for the gradational soil. The depth of 200mm was chosen

to coincide with the typical A-horizon depth observed in this soil.

Run 9 illustrates the performance of a single soil layer model (i.e. the whole

soil profile is laterally transmissive) with the same transmissivity as run 5. This

allows us to examine the value of using the two-layer soil representation. Run
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Table 9.2. Parameter values used in each simulation. Note that hsat ¼ 0.50, hfcp = 0.30, hstress

¼ 0.30, and hpwp ¼ 0.09 were fixed for all simulations.

Run k sat

(mm/h)

kdeep

(mm/h)

d soil

(mm)

d upper

(mm)

� Comment

1 20 0 600 400 0 Parameters set from field measurements

2 40 0 600 400 0 ksat doubled

3 60 0 600 400 0 ksat trebled

4 20 0 600 400 1 Spatially variable ET

5 40 0 600 400 1 ksat doubled

6 60 0 600 400 1 ksat trebled

7 40 0 varies 400 1 dsoil ¼ 216 � lnða= tanð�ÞÞ � 1480,

250 < dsoil < 760

8 40 0 600 4001 1 Variable upper layer depth related to soil type

2002 1duplex soil, 2gradational soil

9 26.7 0 600 600 1 Single layer model, run with same

transmissivity as run 5

10 40 0.013 600 400 1 Deep seepage calibrated to correct mean runoff



10 looks at how the simulations are affected by adding deep seepage to match

the mean simulated and observed runoff volumes (i.e. to close the water

balance).

9.9 RESULTS

The soil moisture pattern results of what we judge to be the most realistic simula-

tion (run 5) are presented first. Run 5 has spatially uniform soil depths and

parameters and includes potential evapotranspiration that is spatially weighted

according to the potential solar radiation index. Then, the patterns from the

other simulations are compared to this run. Finally, we return to run 5 and

compare simulated and observed saturation deficit time series and catchment

runoff. The runs are described in some detail to highlight how the measured

patterns and other data were used to identify model problems and successes.

Run 5 was judged to be the best by making visual comparisons of the simulated

and observed soil moisture patterns and visual examinations of the spatial pat-

tern of simulation errors (see Chapter 3, pp. 78–9). The winter and spring periods

were emphasised in this comparison because strong spatial organisation was

observed during these periods and because there was little difference between

the simulations during the summer period. It should be noted that the differences

between the runs were often subtle and that no one run was the best on every

occasion. Some indication of the differences between the runs can be obtained

from Table 9.3, which summarises the simulation error statistically. Three sta-

tistics are shown: the mean error; the root mean squared error; and the error

standard deviation. The root mean squared error incorporates the effect of both

bias and random error, while the error standard deviation is a measure of the

random error.

9.9.1 Soil Moisture Patterns – Run 5

Figure 9.9 shows the simulated soil moisture patterns for run 5 for 1996. Some

care in interpreting the small-scale variability is required when comparing

Figures 9.6 and 9.9. It is clear that the simulated moisture patterns are smoother

than the observed patterns. There are three key reasons for this. First, the soil

parameters are assumed to be spatially uniform in the model, whereas some

small-scale variability would be expected in reality. Second, the observed patterns

contain some measurement error. Third, the model support scale is of the order

of 20m while the measurement support scale is only 0.1m. If the observation

support scale was 20m, the small-scale (< 20m) variability apparent in the

observed patterns would be averaged out and the observed pattern would appear

much smoother. Thus some of the small-scale variability in the observed data is

not relevant to the model formulation and can be ignored when comparing the

observations and simulations. However, there are some small-scale features that

are critical to the runoff response of the catchment. These are the narrow bands
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of high soil moisture along the drainage lines. The model should be able to

capture these.

Figure 9.10 shows a smoothed version of the observed data. This smooth-

ing was performed in an attempt to remove the measurement error and small-

scale variability (i.e. increase the support scale) of the observed data, thereby

making it more comparable to the simulations (see also Chapter 3, p. 79).

There are a number of simple interpolation techniques available, such as

block kriging, that are capable of removing the measurement error variance

and increasing the support by some sort of smoothing procedure. However,

Soil Moisture and Runoff Processes at Tarrawarra 229

Table 9.3(b). The standard deviation of soil moisture simulation errors (%V/V) for each run and
each soil moisture pattern

Run 1 2 3 4 5 6 7 8 9 10

14-Feb-96 3.2 3.4 3.5 3.1 3.3 3.5 3.1 4.9 4.1 3.2

23-Feb-96 2.2 2.3 2.4 2.2 2.2 2.3 2.2 3.9 2.7 2.2

28-Mar-96 2.6 2.6 2.6 2.4 2.4 2.4 2.4 2.9 2.5 2.4

13-Apr-96 3.4 3.4 3.4 3.2 3.2 3.2 3.3 4.1 3.1 3.2

22-Apr-96 3.6 3.5 3.4 3.8 3.7 3.6 3.8 4.6 3.5 3.7

3-Jul-96 3.7 3.6 3.7 3.7 3.6 3.7 3.8 4.0 3.8 3.7

2-Sep-96 3.6 3.4 3.5 3.5 3.4 3.4 3.4 3.4 3.4 3.3

20-Sep-96 3.7 3.5 3.5 3.7 3.6 3.5 3.5 3.5 3.6 3.5

25-Oct-96 4.0 3.7 3.9 3.9 3.6 3.7 3.7 4.4 3.7 3.6

10-Nov-96 2.9 3.3 4.3 2.7 3.1 4.1 2.8 5.9 3.9 2.9

29-Nov-96 2.3 3.1 4.3 2.2 3.0 4.3 2.2 7.1 4.4 2.5

20-Mar-97 2.6 2.6 2.6 2.6 2.7 2.6 2.7 2.7 2.6 2.7

3-Aug-97 2.9 2.9 2.9 2.4 2.4 2.4 2.4 2.5 2.4 2.4

Table 9.3(a). The mean error in simulated soil moisture (%V/V) for each run and each soil
moisture pattern

Run 1 2 3 4 5 6 7 8 9 10

14-Feb-96 0.9 0.8 0.7 1.1 1.0 0.9 0.5 1.5 1.2 0.6

23-Feb-96 0.7 0.6 0.5 0.9 0.9 0.8 0.5 1.4 1.0 0.6

28-Mar-96 �0:4 �0:5 �0:5 0.0 0.0 �0:1 �0:1 0.3 0.0 �0:1

13-Apr-96 �0:6 �0:6 �0:7 0.1 0.1 0.0 �0:1 0.5 0.1 0.0

22-Apr-96 3.7 3.7 3.7 4.6 4.6 4.6 4.1 4.9 4.7 4.2

3-Jul-96 4.8 4.0 3.1 4.8 4.2 3.4 3.3 3.1 3.5 3.5

2-Sep-96 0.1 �0:1 �0:9 0.2 0.0 �0:7 �0:7 �0:8 �0:1 �0:5

20-Sep-96 2.3 2.1 1.6 2.4 2.1 1.7 1.9 1.7 2.0 1.9

25-Oct-96 6.1 5.8 5.0 6.4 6.2 5.4 4.6 4.8 6.1 5.0

10-Nov-96 6.6 6.3 5.5 7.0 6.8 6.1 4.8 5.2 6.8 5.4

29-Nov-96 3.4 3.4 3.0 3.9 3.9 3.5 2.0 3.4 4.1 2.6

20-Mar-97 �0:1 �0:1 �0:1 0.0 0.0 0.0 0.0 0.1 0.0 0.0

3-Aug-97 �4:2 �4:2 �4:2 �3:0 �3:0 �3:1 �3:1 �3:1 �3:1 �3:1



these techniques invariably remove organised small-scale features such as nar-

row bands of high soil moisture. Therefore, a more sophisticated approach

was adopted here. The smoothing was done in three steps. Firstly, a regres-

sion relationship was fitted between the soil moisture and a linear combination

of the wetness index and potential radiation index (see Western et al., 1999a

for a discussion of these terrain indices). The residuals from this regression

exhibited minimal spatial organisation. Secondly, residuals from this regression

were smoothed using a thin plate spline (Hutchinson and Gessler, 1994) so

that their spatial variance was reduced by an amount equal to the nugget of

the soil moisture variogram for that pattern (Western et al., 1998a). Note that

the nugget variance is assumed to be the sum of the measurement error

variance and the variance of the small-scale (< 10m) variability (see

Chapter 2, p. 32). Thirdly, the smoothed residuals were added back to the

estimated soil moisture obtained from the regression. By doing this we were

able to smooth the observed data without unduly distorting the moisture

pattern observed in the drainage lines. This was possible because the residuals

from the regression did not exhibit strong discontinuities around the drainage

lines, unlike the soil moisture itself.

Comparing Figures 9.10 and 9.9 indicates that the model generally captures

the seasonal trends in soil moisture. It also generally captures the existence of

topographic control. That is, when the observed pattern shows strong topo-

graphic control, so does the model, and when the observed pattern is random

(i.e. uniform with some random variation), the model predicts a uniform pattern.

Figure 9.11 shows maps of the errors (simulated minus smoothed observed

moisture) in the simulation. The error maps are a useful way of examining the

spatial characteristics of the simulation errors. For example, they can show

whether the errors are consistently related to terrain features, as is the case on
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Table 9.3(c). The root mean square soil moisture simulation error (%V/V) for each run and
each soil moisture pattern

Run 1 2 3 4 5 6 7 8 9 10

14-Feb-96 3.3 3.4 3.6 3.3 3.4 3.6 3.1 5.1 4.2 3.3

23-Feb-96 2.3 2.4 2.4 2.4 2.4 2.4 2.2 4.1 2.9 2.3

28-Mar-96 2.6 2.6 2.6 2.4 2.4 2.4 2.4 2.9 2.5 2.4

13-Apr-96 3.5 3.5 3.5 3.2 3.2 3.2 3.3 4.1 3.1 3.2

22-Apr-96 5.2 5.1 5.1 5.9 5.9 5.8 5.5 6.8 5.8 5.6

3-Jul-96 6.0 5.4 4.8 6.0 5.6 5.0 5.0 5.1 5.2 5.1

2-Sep-96 3.6 3.4 3.6 3.5 3.4 3.5 3.4 3.5 3.4 3.4

20-Sep-96 4.3 4.1 3.9 4.4 4.1 3.9 4.0 3.9 4.1 4.0

25-Oct-96 7.3 6.9 6.4 7.5 7.1 6.6 5.9 6.5 7.1 6.2

10-Nov-96 7.2 7.1 7.0 7.5 7.5 7.3 5.6 7.9 7.8 6.1

29-Nov-96 4.2 4.6 5.3 4.5 4.9 5.6 3.0 7.9 6.0 3.6

20-Mar-97 2.6 2.6 2.6 2.6 2.6 2.6 2.7 2.7 2.6 2.6

3-Aug-97 5.1 5.1 5.1 3.9 3.9 3.9 3.9 4.0 3.9 3.9
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November 10, when there was a strong relationship between aspect and simula-

tion error.

A detailed examination of the simulation results indicates that some of the

observed patterns are simulated very well, while for others there are some incon-

sistencies between the model and the observations. The three summer patterns

(February 14, February 23, March 28) are well simulated in terms of the average

moisture and the spatial pattern. The only inconsistencies are that the model

predicted some slight lateral redistribution during the rainfall events immediately

before February 14 and that there is a slight aspect bias in the simulation errors

for these patterns.

During April a large amount of rain fell and the catchment became sig-

nificantly wetter (Table 9.1). The model predicted the average soil moisture

well on April 13, but overestimated it on April 22. The observed patterns

illustrate the effect of lateral redistribution on the development of the wet

bands in the drainage lines. On April 13 the highly convergent areas at the

upper end of the drainage lines were becoming wetter and on April 22, fully

connected wet bands were present in the drainage lines (Figures 9.6 and 9.10).

Neither of the simulated patterns showed evidence of significant lateral redis-

tribution (Figure 9.9) and the error maps (Figure 9.11) show connected bands

in the drainage lines where the model has underpredicted the soil moisture.

The effect of lateral redistribution was also underestimated on May 2. This

points to a problem with the model formulation, which is discussed later.

There is no obvious aspect bias in the simulation errors for the April and

May patterns.

During winter the catchment soil moisture is very high and extensive areas are

saturated. The model predicts the average soil moisture correctly on September 2

and slightly overpredicts it on July 3 and September 20. Generally, the soil

moisture pattern is well predicted during this period. It should be noted that

the high (55%V/V) measurements observed in the drainage lines on September

2 and 20 are likely to be slightly too high due to surface water ponding introdu-

cing some measurement errors (by filling any gaps introduced by the TDR

probes).

At the end of September, the amount of rainfall reduced significantly and the

catchment began to dry. The patterns indicate that the model performs relatively

poorly during this period. The average soil moisture levels are overpredicted, the

effect of lateral redistribution is overpredicted, and there is a strong aspect bias in

the soil moisture errors (Figures 9.6, 9.9, 9.10 and 9.11).

In summary, when compared to the observed spatial patterns of soil moist-

ure, the model performs well during dry and wet periods. During the transi-

tion periods in autumn (dry to wet) and spring (wet to dry) there are some

differences between the simulated and observed patterns. Lateral redistribu-

tion is too slow during the autumn and it persists for too long during the

spring. We will return to the implications of this for the model parameterisa-

tion later.
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9.9.2 Soil Moisture Patterns – Other Runs

Here we compare the effects of different model parameter sets on the simu-

lated soil moisture patterns. These comparisons fall into four groups: the effect of

spatially variable PET; the effect of the ksat parameter; the effect of adding deep

seepage; and the effect of using different soil profile representations. Figure 9.12

shows observed and simulated soil moisture patterns for April 13, October 25

and November 10 for several model runs.

The first row of Figure 9.12 shows smoothed observed patterns and the sec-

ond row shows a simulated pattern from run 5, which is the base case. The third

row shows patterns from run 2. These patterns differ from run 5 in that they were

simulated with spatially uniform potential evapotranspiration (� ¼ 0, run 2). On

these dates, a strong aspect effect was apparent in the observed data (Figures 9.6

and 9.10). Comparing these patterns to the corresponding patterns from run 5,

we see that the differences between the south and north facing slopes are smaller

in run 2 than in run 5 on all three occasions. Introducing spatially variable PET

leads to the south facing slopes being up to 2%V/V wetter on April 13 and up to

1%V/V wetter on October 25 and November 10. The north facing slopes are up

to 1%V/V drier on April 13 and up to 0.7%V/V drier on October 25 and

November 10. For run 5, the differences between the steepest south facing and

steepest north facing slopes is 3%V/V on April 13 and 2%V/V on October 25

and November 10. This compares well with the observations on April 13. On

October 25 and November 10, the observed difference between the steepest south

facing and steepest north facing slopes is approximately 7%V/V, significantly

greater than for the simulations on these dates. This will be discussed further

below.

In the fourth row of Figure 9.12, simulated patterns are shown for run 6.

Comparing these patterns to those from run 5 illustrates the effect of increasing

ksat from 40 mm/h to 60 mm/h. In early autumn the increase in ksat makes little

difference to the simulated soil moisture pattern (less than 1%V/V on April 22),

while on May 2 the higher ksat leads to the gully being approximately 4%V/V

wetter, compared with run 5. The increasing effect of ksat during autumn is due

both to increased moisture content and increased drainage time. In winter (July

3, September 2 and 20 – not shown on Figure 9.12) the increased ksat leads to a

decrease of approximately 2%V/V in the soil moisture on the upper parts of the

hillslopes. In spring (October 25 and November 10) the difference is greater, with

the upper parts of the hillslope being 3–4%V/V drier than run 5 and the drainage

lines being 3–8%V/V wetter. The soil moisture pattern is most sensitive to ksat
during the spring when the hillslopes have been draining for a significant period.

In winter the hillslopes are regularly re-saturated by rainfall and the intervening

drainage times are relatively short.

Three alternative methods (to runs 1–6) for representing the soil in the model

were explored. Results from simulations 7, 8 and 9 are shown in rows 5, 6 and 7

of Figure 9.12. These included spatially variable soil depths (run 7), a thinner

transmissive layer for the gradational soil (run 8), and a single layer soil (run
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Figure 9.12. Observed and simulated soil moisture patterns at Tarrawarra for April 13, October 25, and

November 10, 1996. First row: smoothed observations. Second row: run 5. Third row: run 2 (� ¼ 0 i.e.

spatially uniform PET). Fourth row: run 6 (ksat ¼ 60mm/h). Fifth row: run 7 (variable soil depth related to

wetness index). Sixth row: run 8 (variable soil depth related to soil type). Seventh row: run 9 (single soil

layer). Eighth row: run 10 (as for run 5 but kdeep adjusted to match catchment annual runoff).



9 – entire soil profile is transmissive). Runs 7 and 8 include spatially variable

soils and the spatial variability is consistent with that suggested by field

observations. Run 9 includes a spatially uniform single layer soil.

Introducing spatially variable soil depths (run 7) has a marked effect on the

simulated soil moisture patterns due to the local changes in storage capacity.

The topographic effects were enhanced on many occasions due to the relation-

ship between topographic location (in terms of wetness index space) and

storage capacity. Generally this relationship caused the hilltops to respond

more quickly and the drainage lines to respond more slowly, compared with

run 5. The simulations with spatially variable soil depth generally led to

similar or poorer simulations of the patterns. Relative to the average soil

moisture, in autumn the hilltops were too wet, in winter the hilltops were

too dry, and the wet gully persisted for too long in the spring.

The changes to the soil representation in runs 8 and 9 both affect the profile

average moisture content above which lateral redistribution occurs. Introducing

the thinner transmissive layer for the gradational (lower slopes and drainage

lines) soil reduces the amount of lateral redistribution in the gradational soil

by a factor of two for fully saturated conditions and by more for unsaturated

conditions. Due to the discontinuity in lateral flow introduced at the boundary

between the duplex and gradational soils, the soil moisture patterns from run 8

tended to have a band of high soil moisture at the soil unit boundary. This band

is unrealistic. However, compared to run 5, some other features of the patterns

were simulated more realistically, such as the more rapid drying of the drainage

lines in spring.

Treating the entire soil profile as being laterally transmissive (run 9) led to an

increase in lateral flow for all moisture contents greater than field capacity, except

for saturated conditions when the lateral flow was the same as for run 5. This

increase led to lateral flow influencing the pattern more under drier conditions.

The topographically controlled pattern developed slightly more quickly during

the autumn but persisted for too long during the spring. There was also slightly

more lateral redistribution predicted during summer, which is inconsistent with

the observations.

Deep seepage was introduced in run 10 by calibrating kdeep to obtain the

correct annual runoff (this led to a decrease in simulated surface runoff from

0.51 mm/d to 0.39 mm/d for 1996, compared with run 5). As would be expected,

introducing deep seepage reduced the simulated average soil moisture. This

reduction was greater in the drainage lines during autumn and spring and on

the ridge tops during winter (when the drainage lines remained saturated). The

reductions in soil moisture rarely exceeded 1%V/V. The exception was in the

drainage lines during spring where reductions were up to 4%V/V (on November

29), compared with run 5, and the degree of topographic control was slightly less

for the simulated pattern on November 29. These results represent some

improvement over run 5, but some calibration against runoff was required to

achieve them.
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In summary, comparing the different simulation runs leads to the following

conclusions. To get the best representation of the soil moisture pattern at

Tarrawarra with Thales it is necessary to include spatially variable potential

evapotranspiration. The saturated hydraulic conductivity is only important dur-

ing wet periods following a long (compared to the subsurface flow response time)

period of drainage. Introducing spatially variable soil depths provided little over-

all improvement and caused problems near soil type boundary interfaces where

abrupt changes in soil properties caused anomalies. Deep seepage was needed to

close the water balance and the deep seepage parameter (kdeep) required calibra-

tion against runoff.

9.9.3 Saturation Deficits

Figure 9.13a shows time series of the simulated and observed saturation

deficit averaged over all twenty neutron access tubes. Note that simulated satura-

tion deficits are plotted only on days when observations are available to aid

comparison of the time series. The timing of the fluctuations in average satura-

tion deficit are modelled correctly. The magnitude of the fluctuations is also

reasonably well simulated; however, during the summer of 1996 (Jan–Mar),

the saturation deficit is systematically overestimated by approximately 50 mm.

During the transition periods when the catchment is wetting up (autumn) or

drying down (spring), the rate of change of simulated saturation deficit tends

to be too quick, particularly in spring. While this is consistent with the compar-

isons between the TDR data and the simulations during autumn (particularly

April 13–22), the simulated soil moisture reduces more slowly than the soil

moisture in the upper 30 cm (TDR data) during the spring (September 20 –

November 29).

Simulated and observed time series of saturation deficit are shown in Figure

9.13b for neutron access tubes 7 and 8 (see Figure 9.2). From the perspective of

the timing of saturation deficit fluctuations, tube 7 is typical of tubes in locally

convergent areas (i.e. tubes 2, 7, 11, and 18) and tube 8 is typical of all the other

tubes. We exclude tube 17 from the convergent group because it is not very

convergent from a local perspective and the saturation deficit observations sug-

gest that it fits better in the other group. The observations show that there is little

difference between the timing of the wetting between sites. The simulations are

consistent with this. During the spring, the drydown at tube 7 lags tube 8 slightly,

probably as a result of lateral redistribution. There is a much greater lag between

the drying of these two sites in the simulations.

9.9.4 Surface Runoff

The annual surface runoff during 1996 is overestimated by 31% in run 5. This

is equivalent to a 32% underestimation of evapotranspiration during the main

runoff-producing period (June 23 to October 9). This error can be easily cor-
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rected by adding a small amount of deep seepage to the model. Generally the

model simulates the occurrence of runoff events well. That is, events are simu-

lated on days when significant runoff occurred but not on days when no runoff

events were recorded. The notable exceptions to this are the first significant

recorded runoff events (Figure 9.14 – ‘‘A’’), when no runoff is simulated. This

is because simulated saturation deficits are too large in April (Figure 9.13a). It

should be noted that there is some uncertainty as to the exact magnitude of these

events as some flow bypassed the flume and the hydrographs had to be estimated.

Also, during a period beginning with the large event on July 30 (Figure

Soil Moisture and Runoff Processes at Tarrawarra 239

0

50

100

150

200

1/1/96 1/3/96 30/4/96 29/6/96 28/8/96 27/10/96 26/12/96

S
at

u
ra

ti
o

n
 d

ef
ic

it
 (

m
m

)

Simulated

Observed

0

50

100

150

200

1/1/96 1/3/96 30/4/96 29/6/96 28/8/96 27/10/96 26/12/96

S
at

u
ra

ti
o

n
 d

ef
ic

it
 (

m
m

) 7 - sim
8 - sim
7 - obs
8 - obs

(a) 

(b) 

Figure 9.13. (a) Time series of simulated and observed saturation deficits at Tarrawarra during 1996

for run 5. The saturation deficit was calculated as the mean saturation deficit at the twenty neutron

access tubes (Figure 9.2). (b) Time series of simulated and observed saturation deficits at neutron

access tubes 7 and 8 during 1996 for run 5. Note that simulated values are only shown for dates on

which observations were made.



9.14 – ‘‘B’’) and ending on September 12 (Figure 9.14 – ‘‘C’’), the model system-

atically overestimates the magnitude of the runoff events.

It should be noted that it is not possible to correct the error in mean runoff by

calibrating the evapotranspiration parameters, as these control the spatial dis-

tribution of evapotranspiration rather than its absolute value during high soil

moisture periods when the runoff occurs. Also it is unlikely that the potential

evapotranspiration is underestimated during this period, since this was a wetter

than average winter and the estimates used are already slightly greater than the

available average monthly regional estimates of potential evapotranspiration

(Wang et al., 1998). Obviously, it is possible to simulate the annual runoff cor-

rectly by adjusting the total storage in the model, but this results in a poorer

simulation when the timing of runoff events is considered.

The quality of the runoff predictions can be assessed using the prediction

efficiency (Nash and Sutcliffe, 1970); however, this is very sensitive to any bias

in the runoff predictions. For run 5 the predictive efficiency is only 41%. For run

10, when the deep seepage was calibrated such that the model correctly simulated

the annual runoff, the predictive efficiency is 63%. The events in April that the

model failed to simulate (Figure 9.14 – ‘‘A’’) account for half of the remaining

errors. If the runoff events on 17–19 April are ignored, and the deep seepage is

calibrated such that the model correctly predicts the total runoff in the remaining

events, the predictive efficiency can be increased to 82%.

9.10 DISCUSSION AND CONCLUSIONS

In this chapter, the Thales model framework has been applied to simulate the

hydrologic behaviour of the Tarrawarra catchment for a period of one year.

Detailed spatial soil moisture patterns, saturation deficit, soils, meteorological

and runoff data are available for this catchment. The simulations have been

compared to spatial patterns of soil moisture in the top 30 cm of the soil profile,

to saturation deficit measurements at individual neutron moisture meter tubes
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Figure 9.14. Simulated and observed runoff hydrographs at Tarrawarra during 1996 for run 5. ‘‘A’’, ‘‘B’’

and ‘‘C’’ identify events referred to in the text.



and at the catchment scale, to catchment scale runoff. The simulations were

conducted using a daily time step. The model parameters were set by a careful

analysis of the available field data, with some subsequent minor adjustment of

the saturated hydraulic conductivity parameters.

Given the limited degree of calibration, the model performed very well. The

seasonal changes in the soil moisture patterns were accurately simulated and the

seasonal changes in saturation deficit were also reasonably well simulated at the

catchment scale, although there was some tendency for the model to overestimate

the saturation deficit during summer. Of the three sets of data that the simula-

tions were compared to, the poorest performance was for the surface runoff. This

relates, at least in part, to the difficult challenge of simulating threshold processes

such as saturation excess runoff. The predicted runoff can be greatly improved by

calibrating the deep seepage component of the model so that the annual runoff is

correctly simulated.

The difference in the model’s ability to predict the soil moisture patterns and

the runoff has important implications. If one were to calibrate the model

against the soil moisture patterns, and then use the model to predict runoff

(i.e. take run 5 as being good), then one would overestimate surface runoff by

31% and explain only 41% of the observed variability in the runoff. Such

results would be considered poor in most modelling studies and would be

‘‘calibrated out’’ by adjusting parameters. However, if a model is calibrated

on catchment runoff only, one can expect substantial errors in the representa-

tion of the internal hydrological processes, which may cause predictions of

erosion and transport to be grossly in error. Thus, it is important to test models

against appropriate data, that is, data that directly tests the prediction in which

you are interested. Obviously, the type of data that is appropriate depends on

the purpose to which the model is to be put. Conceptually similar problems

have been documented by several other modellers (e.g. Grayson et al., 1992b;

Chapters 1, 3, 13).

While the results reported here were obtained with little calibration effort, it is

important to recognise that the highly detailed data set and the preliminary

analysis of the data were critical. For example, the storage values used in the

model were calculated from comprehensive neutron moisture meter data. Due to

the extreme conditions sampled by these measurements (we were lucky to have

had a very wet winter followed by one of the driest 18 month periods in the last

one hundred years), it was possible to calculate the active storage from observa-

tions. Similarly, we had soil moisture patterns at key points in time that allowed

us to estimate the field capacity and wilting point, and bulk density data that

allowed us to estimate the porosity. Due to the relatively simple, yet physical,

basis of the model structure and our detailed understanding of the behaviour of

the catchment (gained from the data), it was possible to obtain good estimates of

the parameter values a priori, rather than via detailed calibration, as is often

required. How well this approach would work in other catchments is an open

question. The key point is that, without such data, confidence that the model is

performing for the right reasons will be lacking.
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One aspect of this approach that is critical is the design of the field experi-

ments. It is important that the measurements made can be related to the pro-

cesses controlling the hydrologic response. For example, we would not have been

able to set the soil depth in the model without measurements of profile storage. It

is also important to have measurements that can be related to the limits between

which soil moisture can vary. Therefore, some knowledge of the (type of) key

controlling processes in the landscape of interest is highly valuable when design-

ing a field experiment. Attention should also be given to the degree of climatic

variability expected during a field experiment. It is important that the experi-

ments do not rely on the occurrence of a rare event, relative to the life of the

experiment.

While the modelling results reported here are satisfying, there are two pro-

blems with the model that have been identified by comparison with the measured

patterns of soil moisture. In autumn, the topographically controlled soil moisture

pattern is too slow to develop in the model and in spring the simulated soil

moisture and saturation deficits do not compare particularly well with the obser-

vations. There are likely to be separate causes for these two problems.

In autumn the key problem is insufficient lateral redistribution around April

13 and 22. One potential explanation of this behaviour relates to the fact that the

soils at Tarrawarra crack during dry periods. It is possible to simulate the

observed patterns on April 13 and 22 quite well using ksat ¼ 400mm=h and a

total soil depth of 500 mm. The key variable here is the high ksat value (the

shallower soil depth was used to correct the overestimated saturation deficit in

run 5 during this period). Given that the soils at Tarrawarra have a relatively

heavy (clayey) texture, such a high effective value of ksat is indicative of some

form of preferential flow. Using such a high ksat value during late autumn (May

2) and winter, results in a gross overestimation of the amount of lateral flow and

high base flow contributions. These results suggest that preferential flow paths

may be much more effective in autumn (as the catchment switches from dry to

wet) than in winter, when the catchment is very wet. The reduction in preferential

flow appears to be quite rapid, with little evidence for high effective ksat values on

May 2. Soil cracks would appear to be a likely candidate for explaining this

behaviour, given its temporal characteristics. Cracks persist during long dry

periods but close quickly at the end of such periods. The under-prediction of

lateral flow during the autumn period is the explanation for the failure of the

model to predict the onset of surface saturation in the drainage lines and the first

runoff events of the autumn (events ‘‘A’’ on Figure 9.14). This leads, in turn, to

the overestimation of soil moisture on April 22.

In spring, some systematic problems with simulating the drying of the catch-

ment exist. These are somewhat complicated in that comparison of the simula-

tions and the TDR soil moisture patterns indicates that the model dries too

slowly, while comparison of the simulated and observed saturation deficits indi-

cates that the model dries too quickly. In terms of the overall soil water balance,

the saturation deficit data is the more relevant data. However, the TDR data

provides more spatial detail. It is important to recall that the TDR data repre-
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sents the top 30 cm of the soil profile while the saturation deficit data represents

the complete profile.

When the soil profile dries there is a tendency for the upper soil layers to dry

more quickly due mainly to greater root activity in this zone. Thus the zone

measured by the TDR is drying more quickly than the zone measured by the

NMM and the zone simulated by Thales. This means that the poor comparison

with the TDR data is likely to be explained by the fact that the model does not

properly simulate the vertical dynamics of the soil moisture. This is also likely to

be a major reason why the model predicts a much weaker aspect effect than is

observed during the spring drying period. If all the water were lost from the

upper 30 cm of the soil profile, the simulated aspect effect would effectively be

doubled (i.e. a 4%V/V difference between north and south facing slopes) and

would compare much more favourably to the observations (� 7%V/V differ-

ence). To enable completely consistent comparisons between the model and the

TDR data, it would be necessary to model the vertical soil moisture dynamics.

This would involve using at least two soil moisture stores, with the associated

cost of additional complexity and parameterisation issues. However, the pattern

data indicate that this will be necessary to further improve the model perfor-

mance.

The rapid drying of the model compared to observed saturation deficits

during spring occurs on the hillslopes rather than in the drainage lines

(Figure 9.13). No surface runoff was observed or predicted during this period

and the problem remained when the deep seepage was set to zero. Therefore,

we can deduce that the evapotranspiration was overestimated during the spring

period. Two potential explanations exist. These explanations may also be rele-

vant to the overestimation of the saturation deficit during the summer period

(January–March). Firstly, the evapotranspiration could be overestimated as a

consequence of the soil moisture in the root zone (upper 30 cm) being over-

estimated, while in reality low root zone soil moisture was exerting a control on

the evapotranspiration rate. The problem of overestimating the drying rate was

evident on October 25 when the observed catchment average (upper 30 cm) soil

moisture was 35%V/V, and the soil moisture exceeded 30%V/V at most sites.

While this may provide part of the explanation, these soil moisture levels are

not likely to exert a sufficiently strong control on the evapotranspiration rate to

fully explain the error. Secondly, the evapotranspiration could be overestimated

due to invalid assumptions about the vegetation. For the purpose of estimating

potential evapotranspiration, it was assumed that the pasture could always be

represented by the ‘‘reference crop’’ (Smith et al., 1992). The reference crop is

an extensive surface of green grass of uniform height that is actively growing,

completely shades the ground and is not short of water. At the end of winter in

1996, the pasture at Tarrawarra was very short, and had been badly damaged

by cattle ‘‘pugging’’ the soil, which had been structurally weak due to water

logging. The relatively poor health of the pasture at that time may have led to a

reduction in the amount of evapotranspiration compared with that expected for

the reference crop.
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While there are some problems with the model’s ability to simulate transitions

between wet and dry seasons, the comparison of measured and simulated pat-

terns does provide substantial insight into the importance of different sources of

spatial variability at Tarrawarra. The only source of spatial variability in runs 1–

3 is the effect of terrain on the routing of lateral flow. Runs 4–6 also include the

effect of terrain on incident radiation and, hence, potential evapotranspiration.

Of these two terrain-related sources of spatial variation, the lateral flow contri-

butes most to the spatial variation of the simulated soil moisture. On most

occasions, introducing radiation effects leads to a small improvement in the

simulated pattern. Introducing spatially variable soils (runs 7 and 8) does sig-

nificantly change the simulated soil moisture patterns, which implies that cor-

rectly specifying the spatial variability of soil parameters is likely to improve the

model simulations. However, we have not been able to make consistent improve-

ments in the model performance at Tarrawarra using the currently available soils

data. Reducing the transmissive layer depth for the gradational soil did lead to

better simulations of the soil moisture in the drainage lines during summer and

spring, but at the cost of poorer simulations on the hillslopes.

Two problems currently hinder our progress in incorporating better soils

information in the model and are indicative of problems with soils data generally.

Firstly, there does not appear to be a correspondence between features of the soil

moisture patterns and the spatial distribution of soil types that have been mapped

in the catchment. It may be that there is limited correlation between the soil type

and relevant soil hydrologic parameters. In this case, treating the soils as distinct

types is of limited value (see also Chapters 6 and 10). Nevertheless a close exam-

ination of the residual plots does indicate some consistency in the pattern of

simulation errors (Figure 9.11) that may be related to soil variation. For example,

the simulated soil moisture on the hilltop in the south-eastern corner of the

catchment (Figure 9.2, near neutron tube 9) is consistently too wet (Figure

9.11). A second problem is obtaining useful spatial soil measurements. It is

difficult to convert observations of soil profile characteristics (i.e. soil type, hor-

izon depths) into values of hydrologic parameters such as field capacity, wilting

point and storage. Also, the combination of small-scale variability and the time-

consuming nature of soil property measurement often compromise quantitative

measurement approaches. Spatial characterisation of soil properties for model-

ling remains a difficult challenge.

One conclusion that we can draw about the representation of soils in the

model of the Tarrawarra catchment, is that characterising the soil as having a

transmissive layer underlain by a layer that simply acts as a store is an

improvement over using a single transmissive layer. While we have not

explored other options for describing the changes in hydraulic conductivity

with depth, we feel confident that this is a sound representation, at least for

the duplex soil.

This modelling exercise has made extensive use of soil moisture pattern data.

One of the issues faced when using data of this sort is the problem of comparing

observed and simulated patterns. Here we did this qualitatively using two com-
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plementary approaches. The first was to compare simulated and observed pat-

terns of soil moisture visually and the second was to calculate an error map and

examine that map visually. The comparison of simulated and observed soil

moisture patterns has given us greater confidence in the predictive ability of

the model. It was also valuable for identifying problems with the model structure.

For example, the poor simulation of the autumn patterns suggests that prefer-

ential flow paths due to soil cracks might be important. While this led to pro-

blems with the simulation of the runoff hydrograph during this period, the

hydrograph by itself would not have allowed us to understand the problem. In

all likelihood, the failure to simulate runoff during the initial events in autumn

would have been corrected by reducing the model storage, if the model had

simply been calibrated against runoff. Similarly, the soil moisture patterns and

the saturation deficit data allowed us to identify specific problems in simulating

the soil water balance during the spring period. The soil moisture patterns have

proved to be much more informative as to the integrity of process representations

in the model than has the catchment runoff. The only exception to this is that

runoff proved useful to test the bulk water balance. This could not be tested with

soil moisture alone.

The detailed spatial data have been extremely valuable for other analyses. The

seasonal evolution of geostatistical characteristics of soil moisture patterns in this

landscape were quantified and the scaling properties of the soil moisture patterns

were characterised (Western and Blöschl, 1999; Western et al., 1998a,b). It was

found that geostatistical regularisation techniques were able to predict the effects

of changes in scale (in terms of spacing, extent and support) on the variance and

correlation length (Western and Blöschl, 1999). Results of these analyses also

have implications for sampling strategies in terms of the number of measure-

ments required (Western et al., 1998a) and the measurement scale limitations

(Western and Blöschl, 1999) for obtaining geostatistically representative samples

of soil moisture. We have also made progress in the identification of representa-

tive locations for soil moisture measurement by demonstrating the existence of

sites that always have soil moisture close to the catchment mean moisture

(Grayson and Western, 1998). The soil moisture patterns have also been valuable

for characterising and predicting the spatial organisation of soil moisture. Soil

moisture patterns at Tarrawarra typically exhibit both random and topographi-

cally organised characteristics (Grayson et al., 1997; Western et al., 1999a). The

degree of spatial organisation changes seasonally and the organised component

of the variation can be predicted using terrain indices (Western et al., 1999a). The

existence of spatial organisation is related to the processes controlling the spatial

pattern. Spatial organisation is strongest when there is lateral flow occurring or

when the soil moisture is influenced significantly by up-slope processes (non-local

control). Little organisation is present when the soil moisture is locally controlled

and the main fluxes of water are vertical (Grayson et al., 1997). Detailed event

simulations indicate that spatial organisation has a significant effect on the rain-

fall-runoff behaviour at Tarrawarra (Western et al., 2000). Spatial organisation

can also be analysed within a geostatistical framework. Spatial connectivity is a
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spatial organisation feature that is not captured by standard geostatistical tech-

niques (variography). We were able to show that indicator geostatistics (indicator

variograms) are also unsuitable for characterising connectivity, despite sugges-

tions to the contrary in the literature (Western et al., 1998b). However, connec-

tivity statistics (Allard, 1994, 1993) provide an appropriate statistical tool for

characterising spatial connectivity (Western et al., 2000).

The use of patterns in model testing is valuable but has some limitations.

Many of the simulated patterns were quite similar and it was difficult to assess

visually which was the better simulation, especially when patterns for all

twelve occasions were considered. There is a need for quantitative pattern

comparison techniques that account for a range of different scales including

points, hillslopes and catchments. The statistics used for these comparisons

need to be chosen carefully so that hydrologically important aspects of the

patterns are compared. This might require the comparisons to focus on spe-

cific components of the landscape, for example, drainage lines rather than

ridge tops, or on correctly simulating pattern features such as connectivity.

It is also important that any quantitative approach be able to deal with

several different types of data. Here the combined use of soil moisture pattern,

saturation deficit time series and runoff time series data was extremely

valuable.
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10
Storm Runoff Generation at La Cuenca

Robert Vertessy, Helmut Elsenbeer, Yves Bessard and
Andreas Lack

10.1 INTRODUCTION

Dynamic, spatially-explicit models of storm runoff generation are needed to

underpin the prediction of particulate and solute movement through catchments.

When such runoff models are applied to these problems, the spatial pattern,

frequency and magnitude of overland flow must be simulated faithfully.

Remarkably, there are few studies reported in the literature that compare

model predictions and field observations of overland flow patterns at the catch-

ment scale. This seems to be partly due to the fact that overland flow within

catchments is notoriously variable in time and space, and is thus problematic to

measure. However, it is also true that model predictions of overland flow patterns

are rarely flattering when compared to reality, and this partly explains why few

studies have reported such results. In this chapter we illustrate that part of the

key to getting good spatial predictions of overland flow is properly representing

spatial variability in soil hydraulic properties.

There is considerable debate in the literature regarding the need and manner

in which to represent spatial variability of soil properties in runoff models. Smith

and Hebbert (1979) compared storm runoff generation on a simple plane in

which saturated hydraulic conductivity (Ks) values were either held uniform in

space, systematically distributed or randomly distributed. The various parameter

sets they compared produced very different results, though they noted some

situations where a uniform Ks value produced similar runoff results as a ran-

domly allocated log-normal distribution of Ks values. Binley et al. (1989) also

found that runoff predictions were affected by soil property representation in

their model, though they emphasised that the differences were only significant for

low-permeability soils, dominated by surface runoff processes. Grayson et al.

(1992a) detected only minor differences in discharge hydrographs on a catchment

dominated by saturated source area runoff when uniform and randomly distrib-
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uted Ks values were compared. Merz and Plate (1997) and Grayson et al. (1995)

illustrated that the spatial pattern of soil properties had different effects on

predicted hydrographs depending on the intensity and amount of rainfall relative

to the soil hydraulic properties and antecedent condition (see also Figure 1.6).

Smith and Hebbert (1979) and Grayson et al. (1992a) argued that spatial varia-

tion in Ks should be, at least in part, deterministic. They recommended against

allocating randomly variable Ks values in space without being sure there was no

deterministic component to the Ks patterns.

What seems to be lacking in the literature is the coupling of deterministic and

stochastic variation in soil properties and the joint representation of these in

distributed hydrologic models. Many catchment surveys reveal considerable spa-

tial variability in soil hydraulic properties (see for instance Loague and

Kyriakidis, 1997), though the median and standard deviation of property values

may still be distinguishable, statistically speaking, between different parts of these

catchments. This is well illustrated in the field data discussed by Elsenbeer et al.

(1992) for a tropical rainforest catchment in western Amazonia, where four

different soil types are distinguished and each has its own distinctive internal

variability. The superimposition of stochastic variation on top of deterministic

patterns of soil hydraulic properties, or any other system property for that mat-

ter, appears to be an approach rarely employed in distributed hydrologic model-

ling. One of the few exceptions is the KINEROS model described in Chapter 6,

where deterministic patterns of soil properties are imposed across the modelling

domain, but grid-scale hydraulic conductivity varies stochastically within an ele-

ment around its geometric mean.

Another key determinant in the success of any storm runoff modelling exercise

can be the manner in which initial moisture conditions are set in the model.

Stephenson and Freeze (1974) argued that the initial moisture state of the catch-

ment is the factor most likely to determine the outcome of an event prediction,

while Merz and Bárdossy (1998) have argued that initial conditions are less cri-

tical, particularly in the case of large events. These and other studies have demon-

strated that the importance of initial conditions depends on the dominant runoff

mechanisms. For saturated source area runoff, correct specification of the initial

saturation deficit is critical to accurate storm modelling. In the case of infiltration

excess runoff, the importance of initial conditions depends on the storm intensity

relative to the infiltration characteristics of the soil. If the storm is very much

larger or smaller than the infiltration rates of the soil, initial conditions are not

critical. When these are of similar magnitude, predicted runoff becomes highly

sensitive to initial conditions (see also discussion in Chapter 6, p. 155). A survey of

the literature reveals significant variation in the manner in which modellers deal

with initial moisture conditions in event-based simulations. For instance, Coles et

al. (1997) treated initial moisture conditions as a ‘‘black box’’ parameter, freely

adjusting it between events as a calibration parameter. Grayson et al. (1992a) used

the lnða= tan �) index to spatially modulate a single known or estimated moisture
value. Merz and Plate (1997) used actual soil moisture observations, interpolated

in association with the lnða= tan�) index, to initiate their simulations.
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In this chapter, we review our attempts to measure and simulate storm runoff

generation patterns across a small tropical rainforest catchment in western

Amazonia, La Cuenca. After many years of effort we have gained a thorough

understanding of storm runoff generation mechanisms within this catchment,

and have recognised the importance of spatial variability in soil hydraulic proper-

ties (Elsenbeer et al., 1992, 1995; Elsenbeer and Lack, 1996; Vertessy and

Elsenbeer, 1999; Elsenbeer and Vertessy, 2000). We have used our field knowl-

edge to develop and evaluate a simple, dynamic and spatially explicit storm

runoff model called Topog_SBM (Vertessy and Elsenbeer, 1999). In our quest

to predict the spatial distribution of overland flow, we have come to appreciate

the importance of spatial variability in soil hydraulic properties and the manner

in which this should be represented in distributed hydrologic models. We have

also compared different ways of initialising soil moisture conditions for our event

simulations and have shown that assuming steady-state drainage is an objective

and adequate approach to simulating initial soil moisture patterns.

Below, we describe the La Cuenca catchment, focussing on the measured

spatial variability in soil hydraulic conductivity across the catchment. We then

discuss observed mechanisms of storm runoff generation within the catchment,

yielded from a combination of hydrometric and hydrochemical studies. After

describing the Topog_SBM model briefly, we discuss four different ways in

which such a model can be parameterised in terms of soil hydraulic property

representation. Running the model on La Cuenca with each of these four differ-

ent parameter sets, we compare model performance in terms of outflow hydro-

graphs and spatiotemporal patterns of overland flow occurrence. It is shown that

the manner in which soil hydraulic properties are represented has modest con-

sequences for outflow hydrographs, but a very significant impact on simulated

spatial patterns of overland flow. We demonstrate that the best results are

obtained when deterministic and stochastic variations in soil properties are repre-

sented in the modelling process.

10.2 THE LA CUENCA CATCHMENT

La Cuenca is located in the Rio Pichis Valley in the Selva Central of Peru (75�5 0W,

10�13 0S) at about 300 m above mean sea level (Figure 10.1). It is a small first-order

basin, covering an area of 0.75 ha and spanning a relative relief of 28 m. La

Cuenca is characterised by short, steep convexo-linear sideslopes (up to 40�),

narrow valley floors, and deeply incised gullies near stream heads (Elsenbeer et

al., 1992). The catchment is covered by an undisturbed multi-storied primary

rainforest (Figure 10.2). Despite its very small size, the catchment includes at

least 57 different plant species, belonging to 25 families (Elsenbeer et al., 1994).

Mean annual temperature for the study site is 25:5 �C and mean annual rain-

fall is 3300 mm. Monthly rainfall is highest during December–March (up to 900

mm) and lowest during June–September (below 110 mm). Daily rainfall rarely

exceeds 100 mm. During our intensive study period, June 1987 to April 1989, the
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maximum daily rainfall amount was 70.3 mm and the maximum five-minute

rainfall intensity was 96.0 mm h�1 (Table 10.1).

Elsenbeer et al. (1992) defined three main land units in the catchment, differ-

entiated by topography and soil properties. These were the steep lower sideslope

(unit B), intermediate terrace (unit C), and gentle upper sideslope (unit D)

(Figure 10.3). Ultisols, observed over extensive areas of western Amazonia

(Buol et al., 1989), are the main soil type within the catchment, though

Inceptisols are present in land unit B. Soil depth across the catchment averages
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Figure 10.1(a). Location of the La Cuenca catchment. (From Elsenbeer et al., 1992; reproduced

with permission.)
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Figure 10.1(b). Topographic contours for the La Cuenca catchment (contour interval is 2 m).
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Figure 10.2(a). Photograph of the La Cuenca catchment.

Figure 10.2(b). Photograph of the overland flow detectors.



about 1.0 m, with only modest spatial variation. The soils tend to be slightly

(< 30%) deeper in the valley bottom than on the sideslopes. Elsenbeer et al.

(1992) measured saturated hydraulic conductivity (Ks) across the catchment at

various depths in the soil, involving 740 undisturbed small cores. On the basis of

a detailed statistical analysis, they were able to demonstrate statistically signifi-

cant differences between the Ks value distributions measured in the various land

units, despite the fact that each land unit contained huge variability within it.

Hence, they observed random variation imposed on top of a deterministic spatial

pattern of soil properties.

252 R Vertessy, H Elsenbeer, Y Bessard and A Lack

Table 10.1. Descriptive statistics pertaining to 214 individual rainfall events sampled at La
Cuenca, June 1, 1987 – April 18, 1989. I5 denotes maximum 5-minute rainfall intensity.

Variable Units Median Maximum Minimum

Rainfall amount mm 8.7 70.3 0.3

Rainfall duration min 170 960 10

I5 mm h�1 19.2 96.0 10
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C

C
D

S3

S2

S1

	0.0	 -	 20.0%

	20.1	 -	 40.0%

	40.1	 -	 60.0%

	60.1	 -	 80.0%

	80.1	 -	100.0%

	 S1-3:		continuous monitoring

		 sites of overland flow

		 pipe outlets

10m
N

Figure 10.3. Position of land units B, C and D in the La Cuenca catchment, showing the location of

major sub-surface pipes and the frequency of overland flow occurrence at 72 detector sites for 187

separate events, after Vertessy and Elsenbeer (1999).



Median values of Ks at the surface varied by an order of magnitude between

land units, with the highest values present in unit C and the lowest in unit B

(Table 10.2). Ks was found to decrease sharply with depth in all three land units,

though most sharply in land unit B. This has been attributed to higher clay

content at depth in the soils of this unit. In Figure 10.4, we show the cumulative

frequency distribution of surface Ks values for all three land units and for the

catchment as a whole. Each of the four cumulative frequency distributions shown

is approximately log-normally distributed. These distributions are used later in

the modelling analysis reported in this chapter.

The spatial and temporal frequency of overland flow occurrence was mea-

sured at La Cuenca using 72 overland flow detectors, similar to those described
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Table 10.2. Median K s values (m d�1) for various soil layers in land units B, C and D, after
Elsenbeer et al. (1992). Note that 1 m/d ¼ 41:7 mm/hr

Unit 0–0.1 m 0.1–0.2 m 0.2–0.3 m 0.3–0.4 m 0.4–1.0 m

B 1.09 9:50� 10�3 2:16� 10�3 3:46� 10�3 4:58� 10�3

C 11.09 8:98� 10�2 1:99� 10�2 2:50� 10�3 2:40� 10�4

D 8.02 2:59� 10�2 1:30� 10�2 3:46� 10�4 2:40� 10�4
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Figure 10.4. Various frequency distributions of surface saturated hydraulic conductivity, K0, mea-

sured in the La Cuenca catchment; these pertain to land units B, C and D, and the catchment as a

whole. The dashed lines highlight the median values. (From Vertessy and Elsenbeer, 1999; repro-

duced with permission.)



by Kirkby et al. (1976). The positions of the 72 detectors are shown in Figure

10.3, which also shows the observed frequency of overland flow occurrence at

each of the installation sites. Each detector consisted of a 25 cm long, 5 cm

diameter PVC tube, with one end sealed with a lid, and the other attached

to a Y-junction (Figure 10.2b). The bottom end of this junction was sealed with

a lid, serving as a collecting unit, the top end covered with a can. One third of

the PVC tube’s circumference was perforated with some 200 1-mm diameter

holes. The detectors were installed in such a way that the perforated portion

was in good contact with the soil, and that any intercepted overland flow would

drain towards the collecting unit. Overland flow was judged to have occurred if

the bottom of the collecting unit was completely covered by standing water, not

just by a thin film.

Overland flow was also monitored continuously at three sites. The monitoring

system at sites S1 and S2 (see Figure 10.3) was designed according to Riley et al.

(1981). A triangular layer of topsoil, about 5 cm thick and two metres wide at the

upslope base parallel to the contour lines, was carefully removed. The resulting

cavity was filled with concrete, and the upslope contact moulded in such a way as

to fit the microtopography of the soil surface. Strips of sheet metal were attached

to both sides so as to route any intercepted overland flow towards the downslope

apex equipped with a pipe, and further on to a series of connected 55 gallon

drums. One of these at each site was equipped with a float-operated water level

recorder. At site S3 (see Figure 10.3), a concentrated-flow line was intercepted

with a simple device fabricated out of sheet metal.

Three sets of observed rainfall events are used in this chapter. The first is a set

of 187 events for which data from the overland flow detectors is available and

frequency of occurrence of overland flow can be computed. The second is a set of

34 events that were used for runoff simulations. Thirdly, the 10 events from the

second set that overlapped with the first set are used to compare both the simu-

lated runoff and the simulated spatial patterns of runoff occurrence with the

respective observations.

10.3 STORM RUNOFF PROCESSES OPERATING AT LA CUENCA

Storm runoff in steep, humid, forested landscapes has traditionally been viewed

to occur primarily via subsurface pathways (Dunne et al., 1975). Overland flow in

such environments is often presumed to occur only as saturation excess in pre-

ferred topographic locations, namely valley bottoms and hillslope hollows. The

study of Bonell and Gilmour (1978) was one of the first to demonstrate that

overland flow could be widespread in a tropical rainforest setting, and display

patterns of occurrence not necessarily dictated by topography. Our findings at La

Cuenca concur with their observations.

For the La Cuenca catchment, previous studies have concluded that:

1. overland flow is generated frequently, both in the spatial and temporal

sense (Elsenbeer and Lack, 1996);
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2. changes in the K=SiO2 ratio in streamflow during storms indicate a sig-

nificant volumetric contribution of overland flow to storm runoff

(Elsenbeer and Lack, 1996);

3. overland flow is generated by infiltration excess (Hortonian), saturation

excess, and return flow mechanisms (Elsenbeer and Vertessy, 2000);

though the relative proportions of these are not known it has been

assumed that Hortonian runoff is infrequent as surficial hydraulic conduc-

tivities almost always exceed the maximum five-minute rainfall intensities;

4. topography exerts only a mild control on overland flow generation in this

catchment (Elsenbeer and Vertessy, 2000);

5. there is significant storm runoff generated through a shallow subsurface

pipe network, which emerges at the surface as return flow (Elsenbeer and

Vertessy, 2000).

The widespread occurrence of both overland and subsurface flow at LaCuenca,

and the manner in which they are generated, can be explained by the interaction of

catchment soil hydraulic properties and local rainfall characteristics. TheKs of the

soil decreases so abruptly with depth (Elsenbeer et al., 1992) that even low-inten-

sity rainfall is likely to generate shallow subsurface flow, if rain persists for long

enough (Figure 10.5). Low-intensity rainfall, however, is the exception rather than

the rule in this environment, which, together with a high-rainfall frequency, causes

a perched water table to reach the soil surface in many places, thus producing

extensive saturation excess overland flow (Elsenbeer and Vertessy, 2000).

By comparing surface Ks values with the observed maximum and median 5-

minute duration rainfall intensities (96 and 25 mm h�1, respectively), it is evident

that infiltration excess overland flowmay also occur in this catchment (dashed lines

in Figure 10.5). However, this tends to operate in small ‘partial areas’ only, usually
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confined to the steep lower sideslopes (unit B) where surficial Ks values are lowest

(Elsenbeer et al., 1992).

For several places within the catchment, overland flow can be clearly traced

back to the outlets of soil pipes (Figure 10.3). Elsenbeer and Lack (1996) argued

that this return-flow mechanism is at least as prevalent as saturation overland

flow in the catchment, and a strong determinant of the observed overland flow

pattern (Figure 10.3). As noted earlier, they measured overland flow continu-

ously at the three sites marked S1, S2 and S3 in Figure 10.3, across six events of

varying magnitude and duration. The total event overland flow volumes at sites

S1 and S2 ranged between 0 and 33 litres, whereas the total event overland flow

volumes from S3 (the only one of the three sites associated with a subsurface

pipe) ranged between 103 and 500 litres. At least six pipes of similar dimensions

have been detected across the catchments (Figure 10.3), though we have no

knowledge of the volume of flow emerging from these. On the basis of the

flow volumes emerging from the single pipe we have instrumented, it is concei-

vable that the total volumes of runoff emerging from pipes account for a large

proportion of total runoff during storm events. It is also worth noting that

because of its point-source origin, return flow from pipes tends to occur more

in concentrated flow lines, although this is also often a consequence of the rough

micro-topography of the forest floor. This has consequences for the ability of

such flows to re-infiltrate further downslope.

Hydrochemical measurements provide further insights into how storm runoff

is generated within the La Cuenca catchment. Elsenbeer et al. (1995) showed that

the chemical ‘‘fingerprints’’ of saturation overland flow, return flow, and subsur-

face flow at La Cuenca were each distinctive with respect to certain elements,

most notably potassium (K) and Silica (SiO2). Elsenbeer and Lack (1996) showed

how the fingerprints of stream discharge varied systematically throughout storms

in response to varying inputs of water from different hydrologic compartments in

the catchment. Invariably, the K=SiO2 ratio of the stream water rose and fell in

association with discharge, reflecting the importance of overland flow as a major

contributor to storm runoff (Figure 10.6).

Several studies have used hydrochemical information to ‘‘separate’’ the dis-

charge hydrograph into time-varying fractions of storm runoff generated via

different hydrologic pathways in catchments (Turner and Macpherson, 1987;

McDonnell et al., 1990). In conducting such separations, it is commonly assumed

that the signatures of the various hydrologic compartments do not vary in space.

Our field experience at La Cuenca tells us that such assumptions are invalid and

result in erroneous separations. Figure 10.7 shows the result of a chemical hydro-

graph separation into groundwater and overland flow components for a single

event at La Cuenca. By treating overland flow chemistry as a constant in space,

an apparent dominant volumetric contribution of overland flow results in the

separation for this event. However, by accounting for the measured spatial varia-

bility in overland flow chemistry, confidence limits may be attached to the separa-

tion. The shaded area in Figure 10.7 shows that, even in the generous case of a

90% confidence limit, uncertainty regarding the relative contribution of overland
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flow, especially near peak flow, is considerable. In the case of a 95% confidence

level (not shown), the lower limit for the overland flow contribution at peak flow

overlapped with the groundwater contribution. Such data highlight the impor-

tance of spatial variability in overland flow and its role in catchment storm runoff

production at La Cuenca.

10.4 THE TOPOG_SBM MODEL

The Topog series of models are designed to predict the spatiotemporal hydro-

logic dynamics of small (< 10 km2) heterogeneous catchments. Topog_SBM is

one of the several models in this series and was derived by hybridising elements of
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the spatially explicit, fully dynamic model, Topog_dynamic (Vertessy et al., 1993,

1996; Dawes and Short, 1994; Dawes et al., 1997) and the aspatial, quasi-

dynamic model, TOPMODEL (Beven and Kirkby, 1979; Beven, 1997). In

brief, Topog_SBM consists of:

. the contour-based ‘‘streamtube’’ network for surface and subsurface flow

routing, common to all Topog applications (see Figure 10.8),
. a simple bucket model for handling soil water fluxes in and between each

element (as opposed to the Darcy–Richards approach described for pre-

viously reported versions of Topog), and
. a one-dimensional kinematic wave overland flow module for simulating

surface runoff along the Topog ‘‘streamtubes’’.

Full details of the various components of Topog_SBM are given in Vertessy and

Elsenbeer (1999). Figure 10.9 provides a schematic representation of the model,

illustrating that it is capable of simulating infiltration excess, saturation excess

and exfiltration (or return) overland flow, as well as lateral subsurface flow

through the soil matrix. An underlying assumption of the model (borrowed

from TOPMODEL) is that Ks is greatest at the soil surface and declines expo-

nentially with depth through the soil profile. The model as used here does not

explicitly represent pipe flow.

Topog_SBM is a fully distributed model, meaning that each spatial unit (or

element) can be ascribed unique system properties if so desired. For each timestep

(a five minute interval was adopted here) and each catchment element, the model

computes water table depth, soil moisture storage, deep drainage loss, lateral

subsurface flow, and overland flow height, velocity and discharge. As the
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model is typically run for discrete storm events only, evapotranspiration pro-

cesses are ignored. Our choice of a five minute timestep was dictated by the

temporal discretisation of our rainfall input series. For such a small catchment,

a smaller timestep (say one or two minutes) may have been preferable.

Aside from a rainfall series to drive the simulation and the topographic data

used to derive the flow net, six model inputs must be specified for each element.

These are soil depth (z), saturated soil water content (�s), residual soil water
content (�r), saturated hydraulic conductivity at the soil surface (Ko), the rate

of Ks decay through the soil profile (m) and the Manning roughness value (n).

Each of these inputs may be considered to be uniform across the catchment, or

ascribed on an element by element basis, to represent spatial variability across the

catchment.

10.5 MODEL APPLICATION

The La Cuenca catchment was discretised into a network of 678 elements (Figure

10.8), resulting in a mean element area of 10.1 m2 and a maximum element area

of 35.9 m2. The element slope averaged 0.43 m m�1 and ranged between 0.02 m

m�1 on the floodplain and 1.92 m m�1 on the gully sideslopes. We represented the

catchment floodplain (about 9% of the catchment area) by allocating a low slope

(0.02 m m�1) to the bottom row of elements, which represent about 8% of the

catchment area.
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We compared four different ‘sets’ of parameter values, which were distin-

guished by the manner in which soil hydraulic properties were represented. In

set 1 (the ‘‘uniform’’ case) we applied the median value of the master Ko data

distribution (2.3 m d�1) to every element in the catchment. In set 2 (the ‘‘orga-

nised’’ case) we applied the median Ko value for land units B, C and D (1.2, 10.6

and 8.1 m d�1, respectively) to all elements lying within each of these units. In set 3

(the ‘‘random’’ case), we randomly allocated deciles of the master cumulative

frequency distribution ofKo values (see Figure 10.4d) across the whole catchment.

In set 4 (the ‘‘random&organised’’ case), we randomly allocated deciles of the

cumulative frequency distribution of Ko values for land units B, C and D (see

Figures 10.4a, 10.4b and 10.4c), to elements lying within each of these units,

respectively. It should be noted that we used a single random realisation of Ko

values for sets 3 (random) and 4 (random&organised) rather than multiple realisa-

tions as has been used by, for example, Smith and Hebbert (1979), Freeze (1980)

and Loague and Kyriakidis (1997). Because the measured variability of Ko is at a

small scale relative to the size of the catchment, we believe that multiple realisa-

tions would produce similar results to the single realisation used here. If the scale

of variability were larger relative to catchment size (such as the case of rainfall

patterns in Chapter 6, pp. 133–4) we would have to use multiple realisations.

In all sets, soil depth, z, was fixed at 1.0 m for the whole catchment, as field

observations did not reveal any significant variation in this quantity. Similarly �s
and �r were fixed at 0.4 and 0.05, respectively, for all sets, again because little

variability was evident in the field data gathered from the site. Preliminary model

sensitivity analyses we have conducted suggest that �s and �r values (when sys-

tematically changed across their natural range) have a minor impact on model

behaviour. Soil depth has a more significant effect, but the < 30% variation over

the La Cuenca catchment has a minimal effect on simulated runoff behaviour.

For sets discriminating between land units (sets 2-organised and 4-random&

organised), the Ko decay parameter (m) was set to 0.07, 0.02 and 0.01 for land

units B, C and D, respectively. For sets 1-uniform and 3-random, the mean of

these three m values (0.03) was adopted.

A single event (event 12) was used to calibrate the model for all four sets. All

simulations were initiated with a catchment wetness pattern derived from a

‘‘warm-up’’ simulation. The warm-up simulations involved applying a steady

rainfall input equivalent to the observed pre-storm runoff rate; the run was

terminated after the model produced a steady rate of runoff, equivalent to the

pre-storm rate. On average, the warm-up run lasted about 100 days.

For each of the four parameter sets, it was possible to ‘‘fit’’ the model dis-

charge hydrograph well to event 12, despite the fact that the observed hydro-

graph had a fairly complex shape. The Manning roughness parameters (n)

obtained from these calibrations were 1.2, 1.1, 0.7 and 1.1 for sets 1, 2, 3 and

4, respectively. These n values are much higher than commonly reported in the

literature, although Shen and Julien (1992) note that n can exceed 1.0 for extre-

mely dense vegetation (their Table 12.2.1, p. 12.15). Acceptable hydrograph

recessions could only be obtained by adopting such high n values. The model
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fit for set 4 (random&organised) is shown in Figure 10.10, illustrating that the

height and timing of both runoff peaks, and the shape of the runoff recessions

were faithfully reproduced by the model; similar quality fits were obtained for the

other three sets.

We simulated 34 individual events for La Cuenca, chosen to span a wide range

of rainfall totals, intensities and durations, and associated with varying antecedent

soil moisture conditions (Figure 10.11). Rainfall totals varied between 10.2 and

82.5 mm (Figure 10.11a), with maximum five-minute intensities (I5) ranging

between 31.2 and 82.8 mm h�1 (Figure 10.11b). Pre-storm runoff rates varied

between 0.005 and 0.37 mm h�1 (Figure 10.11c). Runoff totals varied between

1.3 and 44.8 mm (Figure 10.9d), and peak runoff rates ranged between 1.3 and

17.5 mm h�1 (Figure 10.11e). Times between the start and peak of runoff (time of

rise) ranged between 20 and 125 min, and averaged 40 min (Figure 10.11f). The

graphs showing the frequency distributions for rainfall and I5 also display the

distributions for a larger population of events (187 in total) which were associated

with the overland flow frequency observations shown in Figure 10.3. This shows

that the 34 events which we modelled were skewed towards higher rainfall mag-

nitudes and intensities when compared to the larger population of storm events.

10.6 MODEL RESULTS

Below, we explore how the model, when calibrated on the single event, performed

on the other 33 events using four different sets of input parameters.

10.6.1 Hydrograph Predictions

Figures 10.12 and 10.13 compare observed and predicted values of total run-

off, peak runoff and time of rise for all 34 events, with predictions shown for each

of the four parameter sets. Figure 10.12 shows observed values plotted against
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Figure 10.11. Hydrometric characteristics of the 34 events simulated in this study, highlighting the

model calibration event (event 12). The dashed lines in (a) and (b) refer to the characteristics for the

187 events associated with the overland flow frequency analysis reported in Elsenbeer and Lack

(1996).

Table 10.3. Statistics for the 10 overlapping events for which observed and predicted overland
flow frequencies were compared.

Event Duration
(min)

Pre-storm runoff
(mm h�1)

Total rainfall
(mm)

Maximum I5
(mm h�1)

1b 90 0.112 28.0 36.0

4b 110 0.267 34.2 64.0

4c 550 0.364 83.5 96.0

5 140 0.267 31.8 33.6

7 280 0.275 30.6 36.0

8 270 0.257 39.9 64.8

16 220 0.163 14.3 26.4

17 150 0.078 20.4 48.0

21 80 0.131 19.5 45.6

22 75 0.219 14.2 30.0

Median 145 0.238 29.3 40.8

Median34 128 0.125 31.4 51.4

The subscript 34 denotes that these are the median values for all 34 events which were simulated



predicted values, whereas Figure 10.13 compares the cumulative frequency dis-

tributions for the observed and predicted values. By examining Figure 10.12 we

can gain a sense of model error for particular events and thus detect where the

model fails. Figure 10.13 shows us how the frequency of predicted hydrograph

properties compares to what was observed in the field; this is most relevant when

considering the ability of the model to predict multiple events.

All four sets produced very good estimates of total runoff for most of the

events, with r2 values ranging between 0.95 and 0.97 (Figure 10.12a). The best

total runoff estimates were obtained from set 4 (random&organised), particularly

for the larger events. Figure 10.13a shows that all sets slightly underpredicted the

distribution of runoff values for the smallest 65% of events. It also shows that

set 4 (random&organised) yielded the best cumulative distribution of total runoff

volumes for the largest 35% of events.

Peak runoff was simulated less well by all sets, with r2 values ranging between

0.47 and 0.66 (Figure 10.12b). Generally, good peak runoff predictions were

obtained for events with small runoff peaks (< 6mmh�1) and large runoff

peaks (> 12mmh�1), though intermediate events were poorly simulated by all

sets. For the larger events, peak runoff was predicted best by sets 3 (random) and

Storm Runoff Generation at La Cuenca 263

0

10

20

30

40

50

60

0 20 40 60 80 100

observed
set 1
set 2
set 3
set 4

to
ta
l
ru
n
o
ff
(m

m
)

% of time exceeded

observed
set 1
set 2
set 3
set 4

observed
set 1
set 2
set 3
set 4

0

5

10

15

20

25

0 20 40 60 80 100

p
e
a
k
ru
n
o
ff
(m

m
h
-1
)

% of time exceeded

0

50

100

150

200

0 20 40 60 80 100

ti
m
e
o
f
ri
s
e
(m

in
s
)

% of time exceeded

(b) (c)(a)

Figure 10.13. Cumulative frequency distributions of observed and predicted (a) total runoff, (b) peak run-

off, and (c) time of rise, for all 34 events.
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4 (random&organised), and worst by set 1 (uniform). Similar conclusions can be

drawn from Figure 10.13b which shows that the predicted distribution of peak

runoff values was always lower than observed, except for the largest 10% of

events. The largest discrepancies occurred between the 20th and 40th percentiles.

Figure 10.13b also shows that set 4 (random&organised) predicted the most

accurate cumulative distribution of peak runoff values, and that set 1 (uniform)

yielded the worst results, although differences between the sets were small.

The time of rise predictions were generally good for all sets, with r2 values

ranging between 0.58 and 0.81 (Figure 10.12c). Set 3 (random) yielded the best

cumulative distribution of time of rise values, being quite close to the observed

distribution across the range of events (Figure 10.13c). Set 4 (random&organised)

predicted much greater times of rise than were observed for the largest 10% of

events.

In summary, reasonable catchment outflow hydrographs could be obtained for

34 events of varying magnitude and duration, using four different parameterisa-

tions of the model. This was achieved in spite of the fact that the model was

calibrated on a single event (event 12), and that fairly simplistic initial moisture

conditions were adopted in the simulations. Overall, sets 3 (random) and 4 (ran-

dom&organised) yielded the best results and set 1 (uniform) yielded the worst.

10.6.2 Overland Flow Predictions

As noted earlier, one of our main aims was to simulate credible spatiotem-

poral patterns of surface runoff generation across the La Cuenca catchment.

Figure 10.3 showed the frequency of overland flow occurrence at 72 detector

sites for a total of 187 events. In Figures 10.11a and 10.11b, we showed that

the distributions of total and maximum I5 values of rainfall for our 34 events

were much more skewed to ‘‘big events’’ than in the 187 events associated with

the observed overland flow data set. There are two reasons for this. First, when

selecting events to simulate, we tended to choose events that generated significant

streamflow. Many of the 187 events sampled for overland flow frequency simply

did not generate streamflow. Second, most of the 187 overland flow events were

sampled early in the field campaign when mild drought conditions were prevail-

ing, resulting in a greater than normal percentage of low-rainfall events.

Ultimately, overland flow frequency amongst the 72 detector sites was only

measured for 10 of the 34 events we simulated. These 10 ‘‘overlapping’’ events

were used as the basis to compare observed and predicted spatial patterns of

overland flow. The median event characteristics for these 10 events varied only

slightly from those for the full 34 modelled, the median event duration being 145

min as opposed to 128 min, the median event rainfall being 29.3 mm as opposed

to 31.4 mm, and the median maximum I5 value being 40.8 mm h�1 as opposed to

51.4 mm h�1.

Figure 10.14 compares observed and predicted frequency distributions of

overland flow occurrence for the 10 ‘‘overlapping’’ events at La Cuenca, and

illustrates the strong effect of soil property representation in the model. These
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data show what percentage of the model elements was predicted to generate

overland flow. Also shown is the observed frequency distribution of overland

flow at 72 detector sites for the same 10 events. Associated spatial patterns of

overland flow frequency for sets 1 (uniform), 2 (organised), 3 (random) and 4

(random&organised) are shown in Figure 10.15.

The observed overland flow frequency distribution shown in Figure 10.14

indicates a near-linear pattern, with overland flow being generated at half of

the detector sites for about half of the events. Only the tails of the distribution

diverged from this linear pattern.

Using set 1 (uniform), the predicted pattern of overland flow development is

strongly influenced by topographic factors, as soil properties are assumed to be

uniform across the catchment (Figure 10.15). In this case, overland flow is con-

centrated in valleys and along the bottom contour, which we have represented as a

floodplain by allocating low slope values to it. According to Figure 10.14, for set 1

(uniform) overland flow is generated over much less of the catchment area than is

observed for almost all events. Using set 2 (organised), the influence of spatially

variable soil is evident (Figure 10.15), with widespread occurrence of overland

flow in landscape unit B, which has the lowest median Ko value (Figure 10.4). The

associated frequency distribution for set 2 (organised) shown in Figure 10.14

indicates that overland flow occurs far more extensively than in set 1 (uniform)
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Figure 10.14. Comparison of the observed and predicted cumulative frequency distributions of

overland flow occurrence across the catchment for 10 of the events simulated. Predictions are

based on percentage of elements registering overland flow. Observations are based on the percentage

of the 72 detectors registering overland flow. Y-axis values of 0 and 100% equate to ‘never’ and

‘always’ in Figure 10.15. The curves shown were smoothed using a 5-point window. The horizontal

and vertical grid lines define the interquartile ranges for the x and y axes.
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for events ranked between the 10th and 40th percentile, but is of a similar pattern

for all other events. Again, this frequency distribution differs significantly from

that which has been observed in the field. In the case of set 3 (random), overland

flow is generated in a random pattern across the catchment (Figure 10.15), though

subtle topographic control is still evident. The pattern of runoff occurrence for set

3 (random) is dominated by extremes with a lot of elements showing no runoff and

a lot with almost always runoff. This is because the mean soil conductivity is of a

similar value to the precipitation intensities so, when randomness is introduced,

those elements with lowerK tend to ‘‘switch on’’ while those with higherK tend to

‘‘switch off ’’. According to Figure 10.14, set 3 (random) predicts that overland

flow is generated more widely than is observed for the smaller events (i.e. too

many elements are ‘‘switched on’’), and less widely than is observed for the wettest

half of events (i.e. too many elements are ‘‘switched off’’). A major failing of set 3

(random) is that it predicts overland flow to occur over at least 30% of the

catchment area for all events. Set 4 (random&organised) also displays a random

pattern of overland flow generation, but not the extreme pattern of set 3 (random).

The frequency of runoff occurrence is generally highest in land unit B and lowest

in land unit C (Figure 10.15). This is a consequence of the Ko values in land unit B

being almost an order of magnitude lower than those in land unit C (Figures 10.4a

and 10.4b). Figure 10.14 shows that set 4 (random&organised) predicts an over-

land flow frequency distribution which is very similar to the observed distribution,

particularly in the interquartile region. Beyond this region the model slightly

overpredicts the occurrence of overland flow for the wettest events, and under-

predicts its occurrence for the driest events.

Figure 10.16 provides for a visual comparison of the spatial patterns of

observed runoff occurrence with the simulations of Figure 10.15. It is clear
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Figure 10.16. Observed pattern of overland flow frequency across the catchment for the 10 ‘‘over-

lapping’’ events.



that the observations do not display the topographic or soil-property induced

spatial pattern seen in the simulations using set 1 (uniform) or set 2 (organised).

The simulation for set 3 (random) is generally characterised by extremes of no

runoff or always runoff being detected, but this pattern is not evident in the

observations. The pattern of runoff occurrences in the observations is best

matched by the pattern using set 4 (random&organised) where there is a full

spectrum of occurrences simulated.

10.7 DISCUSSION AND CONCLUSIONS

Whilst La Cuenca is a tiny catchment by any standard, it is characterised by

considerable spatial variability in soil hydraulic conductivity and complexity in

storm runoff generation. A large body of hydrometric and hydrochemical data

indicates that storm runoff production in this catchment is dominated by over-

land flow. The hydrometric evidence further indicates that the spatial pattern of

overland flow is governed by the distribution of soil hydraulic properties and that

subsurface pipe outlets are major point sources for overland flow generation.

Hydrochemical evidence shows that the K=SiO2 signature of overland flow is

spatially variable, indicating that it arises from a variety of pathways. Again,

subsurface pipes are believed to play an important role in overland flow genera-

tion and the chemical signature that overland flow assumes. As we showed ear-

lier, the volumes of overland flow generated by a subsurface pipe pathway could

be large, but this contention must be regarded as speculative because we only

have direct volumetric measurements from a single pipe. In hindsight, it would

have been wise to have continuously monitored flows emerging from the other

five pipes noted within the catchment (Figure 10.3).

We have described a fully dynamic and distributed storm runoff generation

model which was relatively simple to parameterise, but did not include the pro-

cess of subsurface pipe flow. In fact, a pipe flow process could have been invoked

in the model as such a capability exists in Topog_SBM. However, we chose to

ignore this process for two reasons. First, whilst we knew of the locations of up to

six pipe outlets, we had no knowledge of the pipe dimensions, nor their catch-

ment area. Second, because we had flow data for only a single pipe, we had no

means of evaluating model predictions of pipe flow dynamics.

Topog_SBM was applied to La Cuenca for a wide range of event con-

ditions, using four different sets of soil hydraulic properties, each of which

could be defended as legitimate representations of field data. In the simplest

case, set 1 (uniform), we ascribed the median Ko value to all elements within

the catchment. In the most complicated case, set 4 (random&organised), we

ascribed deciles from three different distributions of Ko values, randomly, to

elements residing within three different sub-areas (land units B, C and D). In

this latter case we represented both the stochastic and deterministic variabil-

ity in catchment soil properties, an approach rarely employed in distributed

hydrologic modelling.
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The four sets of model predictions of total runoff, peak runoff rate and the

time of rise at the catchment outlet were compared against field observations for

a total of 34 events. Relatively inferior hydrograph predictions were obtained

when it was assumed that soil hydraulic properties did not vary in space and the

median Ko value was ascribed to all catchment elements, set 1 (uniform). The best

results were obtained using set 4 (random&organised), in which the model repre-

sented the measured spatial variability of Ko values within and between land

units.

The discharge hydrograph differences between the four sets were relatively

subtle, when compared to the predicted differences in spatiotemporal patterns of

overland flow occurrence between sets. By randomly varying Ko across the catch-

ment as a whole, but assuming no deterministic pattern in that variability, set 3

(random), the simulated pattern of overland flow occurrence changed radically

but did not improve relative to sets 1 (uniform) and 2 (organised). By far the best

results were obtained using the parameterisation for set 4 (random&organised),

where measured spatial variability in Ko was represented within each individual

land unit. Further modelling efforts at La Cuenca could compare multiple rea-

lisations of random Ko fields (e.g. Loague and Kyriakidis, 1997) to assess how

much particular random patterns affect results, but given the small scale of

variability in soil properties compared to the catchment scale, it is unlikely

that the conclusions will differ appreciably.

From our results, we conclude that in order to get features of the spatial

patterns of runoff occurrence correct, it is necessary to represent spatial varia-

bility in soil properties. Yet, it is rare to find such detailed soil property data as

has been collected at La Cuenca, and in most modelling exercises of this kind the

soil property inputs are probably guessed. In cases such as La Cuenca where the

precipitation intensity is similar to the soil hydraulic conductivity, we suggest

that it is still probably best to conduct the fitting with a randomised log-normal

distribution of values such as those used in sets 3 (random) and 4 (random&or-

ganised), even if the distribution is entirely synthetic. On the basis of our findings

we recommend representing stochastic variation in soil hydraulic property

values, imposed on a deterministic pattern if multiple soil types are present within

the area of interest.

Our strategy for setting initial conditions warrants discussion. As noted ear-

lier, all of our event simulations were initialised with a soil moisture pattern

derived from a ‘‘warm-up’’ run, in which a steady rate of rainfall, equivalent

to the pre-storm runoff rate, was applied to the catchment. This approach was

predicated on an assumption that the catchment was small enough to have

drained to a near steady state condition prior to each storm. While the low

conductivity subsoils would require several days to drain to a near steady rate,

the more active upper 30 cm of soil could drain in a matter of hours. In Figure

10.11c we showed that the observed pre-storm runoff rates ranged between 0.005

and 0.37 mm h�1, so our event simulations were based on a very broad range of

initial moisture conditions. There were probably circumstances where the time

interval between successive events was too short for adequate catchment drainage
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to have occurred. There were four occasions where more than 10 mm of rain fell

within the 24 hours preceding the event to be modelled; conditions that might

invalidate our assumption of a well drained catchment prior to the storm. Two of

these events were simulated poorly and the other two were simulated quite well,

including one where 32 mm of rain fell only nine hours prior to the start of the

event simulated. Hence, poor hydrograph predictions cannot necessarily be

blamed on errors in assumed initial conditions. Ideally, we would have selected

events preceded by significant periods of no rain, thus reducing the possibility of

errors in initial conditions. However, as it rains at La Cuenca on most days

during periods of significant runoff generation (i.e. the wet season) this criterion

proved impossible to satisfy.

We now briefly describe three possible ways in which to improve the per-

formance of Topog_SBM in predicting the spatial patterns and temporal char-

acteristics of runoff for the La Cuenca data set. These include an alternative

way to prescribe initial moisture conditions, the incorporation of a fast subsur-

face flow path, and modifications to the soil water accounting scheme we have

used.

Firstly, more realistic initial soil moisture conditions might be obtainable by

letting the catchment drain from saturation until the pre-storm runoff rate has

been attained. This would probably yield a moisture pattern more like the one

that would occur under natural drainage between storms. However, as noted

earlier, only some of the model error we have detected is attributable to initial

moisture conditions, and the tendency in error is not at all systematic.

Secondly, by incorporating a rapid subsurface flow path into the model, we

could represent the pipe network that has been observed to operate at La Cuenca

during storm events (Elsenbeer and Vertessy, 2000). To some extent, the random

pattern of Ko values adopted in sets 3 (random) and 4 (random&organised) have

represented the effect of a pipe network by creating multiple point sources of

overland flow generation in elements with low Ko values. However, a rapid

subsurface flow path would result in the persistence of fast runoff after rainfall

has ceased and allow us to relax our dependence on unrealistic roughness para-

meter (n) values to model hydrograph recessions correctly. A simple algorithm

has been described by Bronstert and Plate (1997) which is within the

Topog_SBM model but was not invoked in this study. However, as argued ear-

lier, the geometry of the subsurface pipe network is unknown, and the parameters

underpinning this sub-model would thus need to be treated as ‘‘black box’’ or

calibration parameters.

Thirdly, some gains could be made by modifying the expression for Ks decay

with depth, as has been advocated in recent TOPMODEL applications

(Ambroise et al., 1996; Beven, 1997; Iorgulescu and Musy, 1997). The parabolic,

linear and power function decay models that have been proposed as alternatives

to the exponential decay model adopted in this study should be evaluated in

Topog_SBM on La Cuenca for the same events studied here. It is possible that

a more appropriate decay model would improve the hydrograph recession fits,

thus permitting some relaxation of the high n values we were forced to use.
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Concluding, we see a useful role for pattern comparisons in testing predictions

of storm runoff dynamics in heterogeneous catchments from distributed models

such as Topog_SBM. There are less complicated, and probably more accurate,

modelling methods available if one’s interests are confined to hydrograph gen-

eration. But, if the spatial pattern and magnitude of different runoff components

must be ascertained, as is required in pollutant transport or landscape evolution

modelling, then distributed models must be used. Though we regard it as vir-

tually impossible to replicate the exact pattern and magnitude of overland flow

across even the best parameterised and simple catchments, we do believe that it is

possible to approximate their functional behaviour. To achieve this, we have

argued that it is critical to represent spatial variability in soil hydraulic proper-

ties, both in a deterministic (pattern) sense and a random (variability) sense.

Future research in storm runoff generation modelling should focus on improving

ways of representing such variability as well as methods to prescribe initial

moisture conditions.
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11
Shallow Groundwater Response at Minifelt

Robert Lamb, Keith Beven and Steinar Myrabø

11.1 INTRODUCTION

The spatial distribution of perched or shallow groundwater is widely recognised

to be significant for physically realistic modelling of catchment runoff produc-

tion, especially within humid regions and areas of shallow soils. The distribution

of water stored as a dynamic, near-surface saturated zone has an important role

in theories of runoff production embodying the concept of a variable source or

response area, such as those of Hursh and Brater (1941) and Hewlett and Hibbert

(1967). Changing spatial distributions of shallow saturated storage may also

affect the dynamics of land–atmosphere fluxes (via supply of moisture to vegeta-

tion and the unsaturated zone) and water quality (by controlling the pathways

and residence times of flows within the catchment).

In Scandinavia, water table fluctuations have been shown to control the run-

off response of catchments where the saturated zone exists at a shallow depth in

the soil, and is therefore able to respond quickly to precipitation. For example,

Rodhe (1981) used isotope analysis in two catchments in Sweden to show that

discharge from shallow groundwater storage could constitute a large proportion

of the runoff during spring melt events. In two Norwegian catchments, Myrabø

(1986, 1997) has used observations of patterns of surface saturation or subsurface

groundwater levels to show that it is the dynamics of a shallow saturated zone

that control runoff production from a variable response area.

Measured data from the Seternbekken Minifelt catchment study of Myrabø

(1988) will be used in this chapter to test simulated spatial and temporal patterns

of shallow groundwater, using the distributed model TOPMODEL (Beven and

Kirkby, 1979; Beven et al., 1995), extending the work of Lamb et al. (1997,

1998a). TOPMODEL is based on an assumption that there is a unique relation-

ship between local saturated zone storage (or storage deficit) and position. Here,

position is expressed in terms of topography via the topographic index lnða= tan
�Þ of Kirkby (1975) or topography and soils via the soils–topographic index
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lnða=T0 tan�Þ of Beven (1986). Formally, a is the upslope specific area contribut-

ing to flow through a point (dimension L), tan� is the plan slope angle, used

to approximate the downslope hydraulic gradient in the saturated zone, and

T0 ½L2T�1
� is the transmissivity of the soil profile when just saturated.

Distributed approaches to modelling saturated storage vary in complexity

between the explicit physics of grid-based models such as variants of the

Système Hydrologique Européen (SHE) (Bathurst et al., 1995; Refsgaard and

Storm, 1995; Abbott et al., 1986), flow-strip representations such as Thales

(Grayson et al., 1995) or the Institute of Hydrology Distributed Model

(IHDM) (Calver and Wood, 1995), and the conceptual, ‘quasi-physical’

approach of TOPMODEL. As with the discussion in Chapter 3, no rigid system

of model classification will be attempted here, not least because some models are

capable of interpretation at several different levels.

Hydrological processes may be represented using different degrees of approx-

imation and different model structures. The models mentioned above (amongst

others) allow a ‘‘link to physical theory’’ (Beven et al., 1995) at the hillslope or

catchment scale by simulating the changing spatial patterns of water storage, or

storage deficit, over time. However, as argued throughout this book, compared

to the total number of catchment hydrology studies using distributed models,

there has been a general lack of attempts to test distributed simulations against

observed data. As discussed in Chapter 1, in large part this has been because of a

scarcity of suitable observations, in contrast to the much greater availability of

rainfall and streamflow records.

Whereas the use of data from large numbers of boreholes is routine in regio-

nal groundwater modelling, fewer measurement sites have generally been avail-

able for spatially distributed modelling of shallower systems and hydrological

response at the hillslope or small catchment scale. Probably the smallest catch-

ment used in this context was a 2 m2, artificial micro-catchment simulated using

the model Thales (Moore and Grayson, 1991; Grayson et al., 1995). More typical

field measurement densities were available for a 440 km2 catchment where

Refsgaard (1997, Chapter 13) compared observed water levels from eleven

wells with levels simulated using the model MIKE-SHE. On the hillslope scale,

observed piezometer data were compared to simulations made using the IHDM

by Calver and Cammeraat (1993). Studies reporting tests of TOPMODEL con-

cepts against observed shallow groundwater patterns will be described below.

The studies referred to have generally reported mixed results in reproducing

observed water table patterns. Predictions are often reasonably good for some

locations or on some occasions, but poor at other places or times. This can be

attributed to the limitations imposed by model assumptions in representing spa-

tially complex processes (Refsgaard, 1997) and the difficulty of estimating distrib-

uted model parameters, even when these have a clear physical interpretation in

theory (Beven, 1989; Grayson et al., 1992b). Although TOPMODEL has physi-

cally meaningful parameters, in the work presented here, we have not attempted

to fit these a priori using field measurements, but have instead used the exception-

ally dense and extensive distribution of shallow groundwater measurements avail-
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able for the Minifelt to estimate local parameter values by model inversion. In

effect, TOPMODELwill be used as a distributed-parameter model, but one that is

simple enough to be calibrated in the spatial domain using observed shallow

groundwater levels, i.e. simple enough for inversion to be tractable.

Bedrock underlying the Minifelt is thought to be relatively impermeable, at

least when considering the timescales of storm runoff responses, where it is the

dynamics of the shallow saturated zone within the overlying soils that are impor-

tant. This saturated zone is very shallow, generally only about one metre thick,

with the water table less than one metre below the ground. The situation is

therefore one of hillslope hydrology, rather than regional groundwater processes.

Hence, we will consider groundwater levels measured with reference to the local

ground surface, rather than as elevations relative to a fixed datum. The shallow

nature of the system promotes a direct topographic influence on the saturated

zone storage, which forms a convenient starting point for a simple distributed

model. Unlike many regional groundwater problems, the topographic catchment

boundary can be used as a very good approximation for the saturated zone flow

divide. However, the local heterogeneity of soils in the Minifelt weakens the local

influence of topography on the water table, and leads to a requirement for dis-

tributed soil parameters.

11.2 MEASUREMENTS AT THE SETERNBEKKEN MINIFELT

The Minifelt is a small (0.75 ha) natural catchment located in an area of pine

woods about 10 km west of Oslo, Norway, at an altitude of approximately 250

metres above sea level. An intensive measurement campaign was established in

1986 to investigate runoff processes, as reported in detail by Myrabø (1988,

1997). Soil conditions in the Minifelt are dominated by Quaternary till deposits,

with some bedrock outcrops, some areas of bog, and high organic content in

places, especially in the top few centimetres. The maximum soil depth is about

one metre. Saturated hydraulic conductivity was estimated by Myrabø (1997) to

have a mean value of the order of 0.01mh�1, and to vary between 0.0072 and

0.29mh�1. Sampled soil grain sizes vary from 0.02 to 20.0 mm, and there are also

many small boulders and macropores in the soil. Sampled total porosity varied

between 40% and 80%.

Flows at the outlet of the Minifelt catchment were gauged at a V-notch weir

where water levels were logged automatically. Precipitation, snowmelt and tem-

perature were also gauged nearby. Average annual rainfall and potential eva-

poration are about 1000 mm and 600 mm, respectively. A recent view of the site

is shown in Figure 11.1; vegetation is now somewhat denser than during the

period of field measurements used in this work.

A dense network of instruments measuring water table depths was established

in the catchment, as shown in Figure 11.2. Four observation wells of about 6 cm

diameter were installed in different topographic settings, located in Figure 11.2 at

the centres of the numbered circles. Water levels in these boreholes were mea-
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sured using pressure transducers, and recorded by data loggers every hour. There

are also 108 piezometers of about 2 to 3 cm diameter, in which manual observa-

tions of water levels were made on five occasions, spanning a wide range of

conditions. On each occasion, a reading was made in every piezometer, all piezo-

meters being read within a one-hour period, during which time the changes in

level were not observed to exceed 5 cm. The locations of the piezometers are

indicated in Figure 11.2 by triangle symbols. Surface elevations were surveyed at

each piezometer location, with reference to a datum at the catchment outlet, and

also at some points around the catchment boundary. Soil depths were also

recorded at the piezometer locations.

Although snowmelt is an important part of the overall annual hydrological

regime, it was not modelled in the present study, which concentrates on the

subsurface responses to rainfall. Periods influenced by snowmelt have therefore

been avoided.

The dynamics of the shallow groundwater control runoff production mainly

through a dynamic, saturated source area. However, other runoff processes can

also occur, including rapid lateral subsurface flux in macropores and coarse

organic material close to the surface, pipeflow and saturated zone discharge

into the stream.

11.3 MAPPING THE OBSERVATIONS

11.3.1 Terrain Data

Catchment-wide topographic data are needed to calculate the spatial distribu-

tion of lnða= tan�Þ. In the case of irregularly distributed spot height data, inter-

Shallow Groundwater Response at Minifelt 275

Figure 11.1. View of part of the Seternbekken Minifelt catchment. (Photograph taken in 1999.)
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Figure 11.2. Location map and plan of the Seternbekken Minifelt catchment. Triangle symbols
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polation is therefore required to estimate elevations throughout the catchment

(see discussion in Chapter 2, pp. 34–5). For this work, as in most TOPMODEL

studies, topography was represented in the form of a grid-based digital terrain

model (DTM). Interpolation of spot heights onto a regular grid raises the issue of

the choice of grid element size, or grid resolution. This problem has been inves-

tigated in the TOPMODEL context (see, for example, Quinn et al., 1995;

Wolock and Price, 1994; Saulnier et al., 1997b), but attention has generally

centred on the effects of changing grid resolution on spatially-averaged model

parameters and areally-integrated predictions. A number of studies have sug-

gested that changes in grid resolution can be compensated for by adjustment

of parameter values. Where explicit spatial predictions are to be made (and

tested), grid resolution is also important because predictions at a given location

will be a function of the local grid cell values of the topographic index

lnða= tan �Þ, which can change for different grid element sizes.

The link between TOPMODEL concepts and physical processes becomes

difficult to sustain for grid cells that are large compared to hillslope lengths

(Beven, 1997). For prediction of spatial patterns of the water table in the

Minifelt, a fine grid resolution is therefore desirable, and can be supported by

the available topographic data. However, there is a risk that a very high resolu-

tion DTM might contain significant false topographic features created during

interpolation. Hence a 2m� 2m regular grid was chosen, following the earlier

analysis of Erichsen and Myrabø (1990), as a compromise to capture real topo-

graphic detail without creating artefactual features.

Similar arguments apply to the choice of interpolation algorithm. Although

factors such as regularity of the original measurement sites, measurement density

and coverage may influence this choice, it is also likely that availability of con-

venient software and preferences established through previous experience will

play a part. In this case, a smoothed bilinear interpolation algorithm, also

used by Erichsen and Myrabø (1990), was chosen after qualitative comparisons

with other available algorithms and visual inspection of the catchment.

Contours derived from the DTM are shown in Figure 11.2. It will be seen that

the piezometer and topographic survey locations were chosen to coincide with a

number of hydrologically significant topographic features in the catchment, espe-

cially the main ‘‘valley’’ extending behind the outlet roughly along the horizontal

axis. Also present are a number of slight spurs and hollows, areas in which

piezometers were located.

Soil depth data from each piezometer location were also interpolated onto a

2m� 2m grid using the bilinear algorithm, and are mapped in Figure 11.3. The

pattern of soil depth, particularly along the main valley axis, shows a number of

depressions in the bedrock elevation which produce small areas of deeper soils,

separated by shallower sills. These features are verified from field observation,

and are not merely artefacts of interpolation, as can often be the case with such

‘‘sink’’ features. However, a lack of many soil depth measurement points between

the piezometers and the boundary does mean that the interpolated map is per-

haps less reliable in these areas.
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Choices of grid resolution and interpolation method are subjective, based on

experimentation with different options and assessment of the results given qua-

litative knowledge of the field situation (Chapter 2, pp. 45–9). In fact, it is recog-

nised that the chosen grid resolution does not capture the detailed

microtopography of the catchment, a factor that has to be considered when

interpreting measured data and assessing model predictions. However, the inter-

polated DTM does capture hydrologically significant landscape features of the

catchment that exist above the grid scale.

11.3.2 Mapping Groundwater Patterns

For each piezometer water level survey, �QQ was calculated as the average of the

discharge at the outlet at the start and end of the measurement period. Surveys

were carried out for �QQ equal to 0.1, 0.54, 0.61, 4.89 and 6.8mmh�1. All measure-

ments were taken during recessions, but rain occurred while the observations

corresponding to �QQ ¼ 4:89 and �QQ ¼ 6:8mmh�1 were being recorded. The piezo-

meter data were interpolated using the same bilinear algorithm and grid resolu-

tion applied to topography and soil depth. The observed spatial patterns are

shown in Figure 11.4.

As discussed in Chapter 2, it should not be overlooked that interpolation is

itself a form of modelling, and that interpolated maps can therefore only repre-

sent estimates of the pattern of water table depths. But despite the uncertainty

introduced by interpolation, it is useful to represent these data as spatial patterns

for comparison with the topographic and soil depth maps. In particular, com-

parison of the mapped water table data with the topographic contours shows

areas on side slopes that saturate under wet conditions despite there being no
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Figure 11.4. Measured water table depths, interpolated onto a 2m� 2m grid, for five discharges,

time-averaged over each piezometer survey period. Depths are in cm (positive downwards).



apparent slope convergence. In such locations, the water level observations reflect

spatial variations in soil properties or small topographic features not captured by

the DTM.

There is some correspondence between the pattern of soil depth and water

table depths close to the outlet, best seen for �QQ ¼ 0:1mmh�1. It would appear

from the mapped data that the reductions in soil depth approximately along the

valley axis affect the water table, which rises towards the surface just upslope of

the small areas where soil depth decreases. One hypothesis put forward to explain

this is that the reduction of soil depth, and likely consequent reduction in soil

profile transmissivity, combined with a very low topographic slope angle, creates

local conditions that favour exfiltration (or ‘‘run-on’’) from the saturated zone,

even under fairly dry conditions.

11.4 TOPMODEL

TOPMODEL was introduced by Beven and Kirkby (1979) as a quasi-physical

rainfall-runoff model, able to simulate the distribution of a dynamic storm runoff

source area on the basis of a topographic control on saturated zone storage.

Recent reviews of TOPMODEL concepts and applications have been provided

by Beven et al. (1995), Beven (1997) and Kirkby (1997). A complete derivation of

TOPMODEL theory will be omitted here, but may be found in the references

cited above. Here, we will concentrate on assumptions invoked in making dis-

tributed water table depth predictions using TOPMODEL concepts.

TOPMODEL provides a simple, yet physically meaningful model of basic

hillslope and catchment scale runoff processes, at least in relatively humid con-

ditions and where soils are shallow relative to slope lengths (allowing the assump-

tion that the local saturated zone gradient is approximated by the surface slope).

It can be shown (e.g. Kirkby, 1997) that TOPMODEL derives directly from

physical principles under an assumption that the rate of flux produced in the

saturated zone quickly becomes spatially uniform for any change in a uniform

input (or recharge) rate. This assumption has also been referred to as the ‘‘quasi-

steady state assumption’’ because it implies a spatially uniform transition

between steady state saturated zone profiles for a given discrete change in the

uniform recharge rate between successive time steps. The dynamics of the satu-

rated zone are thus represented as a succession of steady states (Beven, 1997).

The difference, at any point in the catchment, between the local storage deficit

due to gravity drainage D ½L� and the areal average deficit �DD is described in

TOPMODEL by the equation

�DD�D

m
¼ ln

a

tan�
� �

� �
� lnðT0Þ � lnðT0Þ
� �

ð11:1Þ

where � is the areal average of lnða= tan�Þ, lnðT0Þ is the areal average of lnðT0Þ

and m[L] is a parameter controlling a vertical change in soil profile transmissivity

with depth (see equation (11.2) below). The logarithmic terms in equation (11.1)

enter because of an assumption that the transmissivity T ½L2T�1
� of the soil
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profile decreases exponentially as a function of storage deficit and T0 , the trans-

missivity when the soil is just saturated, such that the local subsurface lateral flux

q ½L2T�1
� is given by the equation

q ¼ T � tan� ¼ T0 � exp
�D

m

� �� �
� tan� ð11:2Þ

When combined with a continuity equation, (11.2) has been found by Kirkby

(1988, 1997) to satisfy, to a good approximation, the assumption of spatial uni-

formity of flux production in the saturated zone.

Beven et al. (1995) show how a numerical integration of (11.2) at the base of

slopes along the channel network results in the following exponential lumped

storage equation for the total saturated zone specific discharge:

Q ¼ Q0 � exp
� �DD

m

� �
ð11:3Þ

where the intercept parameter Q0 ¼ expðlnðT0Þ � �Þ and Q has dimensions

[LT�1
�.

In equation (11.1), it may be noted that the position-dependent parameters

lnða= tan �Þ and lnðT0Þ are separated. If, as is often the case, the soil transmissivity

is assumed to be uniform, then lnðT0Þ ¼ lnðT0Þ everywhere and the right-hand

term vanishes. However, it is easily seen that equation (11.1) can be written in

terms of the soils–topographic index lnða=T0 tan �Þ if knowledge of the variation
of T0 in space is available. To date, TOPMODEL applications have not used

distributed soil transmissivities estimated directly by field measurements. Such

measurements are difficult to interpret, as the natural variation of soil properties

may be considerable, and it is difficult to match the scale of measurements with

the model grid scale. Also, inference of the saturated soil profile transmissivity T0

requires either depth sampling of (lateral rather than vertical) hydraulic conduc-

tivities, or reliance on the assumption of a known and fixed relationship between

conductivity and depth (to allow integration of the conductivity from a measured

surface value to the base of the soil).

Alternatively, local values of T0 and hence lnða=T0 tan�Þ can be estimated by

model inversion, given knowledge of D. Although deficits are difficult to measure

per se, observations of the depth z[L] to the water table can be used, provided

that a relationship is assumed between z and D. To keep the number of para-

meters as small as possible, most studies have assumed a simple linear scaling

between the depth to the water table and storage deficit, such that

z ¼
D

��
ð11:4Þ

where the dimensionless effective porosity, or storage coefficient, �� represents

the ‘‘readily drainable’’ fraction of the pore space between ‘field capacity’ and

saturation, and is assumed constant with depth.

Both soil transmissivity and effective porosity are likely to vary spatially in a

catchment and can, in principle, be represented in a spatially distributed manner
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in TOPMODEL. Furthermore, Saulnier et al. (1997a) have shown that m can

also be distributed in space. However, allowing three saturated zone parameters

to be distributed in space would increase the number of degrees of freedom in

fitting to distributed water table data. The m parameter, if spatially constant, can

be related directly to an integrated variable, streamflow, using (11.3) and is

therefore conveniently treated as a lumped parameter in catchment runoff stu-

dies, even though a physically more complete description of the catchment might

allow m to vary. Variations in soil properties may be more readily associated with

variations in transmissivity (which may in any case implicitly account for differ-

ences in soil depth) and effective porosity. Although a number of studies have

allowed T0 to vary in space, but assumed a constant value for effective porosity

(Lamb et al., 1997, 1998a; Seibert et al., 1997), the effective porosity can be

calibrated where, as in this case, data are available to describe the dynamics of

the water table. An implication of (11.1) is that points in a catchment having the

same values of lnða= tan�Þ and lnðT0Þ are predicted to respond identically, in

terms of storage deficit, to changing recharge. Successive simulated water table

profiles will therefore be drawn at different depths, but in parallel with each

other.

The moisture status of the unsaturated zone can be simulated in a distributed

manner using the saturated zone storage deficit for any value of topographic

index (and soil parameters) as the lower boundary condition on some model

for the unsaturated zone. To represent the unsaturated zone in a simple manner,

consistent with the overall level of simplification in TOPMODEL, unsaturated

zone storage was calculated here based on a simple combination of root zone

storage and a vertical time delay, as described by Beven et al. (1995).

The saturated zone in TOPMODEL can be derived (Kirkby, 1997) as a sim-

plification of an ensemble of parallel, variable width flow strips, represented by

the equation of continuity and a Darcian flow law (with fixed hydraulic gradi-

ents, assumed to equal local topographic slope). This formulation is not a fully

2D model in that there are no exchanges between adjacent flow strips, but can be

thought of as a simply-distributed kinematic model. The assumptions made in

TOPMODEL, especially the assumption of spatially uniform recharge, permit

straightforward analytical solution, although at the expense of somewhat simpli-

fied dynamics. For a comparison of TOPMODEL with an explicit, grid-based

model for topographically driven subsurface flow, see Wigmosta and Lettenmaier

(1999).

Surface water storage and overland flow occur in the Minifelt and present a

problem in formulating a minimally-parameterised distributed model. A key

difficulty is that the surface water can arise through a combination of processes,

namely extension of the saturated zone above the surface (as exfiltration), pond-

ing in sub-grid scale topographic depressions and lateral extension of the ‘‘chan-

nel’’ as stream levels rise. Calibration of TOPMODEL against observed

streamflows has produced very good simulations without any explicit model

for overland flow (Lamb et al., 1997), by treating surface water essentially in

the same way as the saturated zone. Physically, this approach represents a great
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simplification of processes, but has the advantage of parsimony in that no rough-

ness coefficients, wave velocities or time delay parameters need to be calibrated.

However, the simplifying assumptions do have to be carried through to the

analysis of distributed water table depths. This is the example of trade-offs dis-

cussed in Chapter 3.

Despite the ability to simulate distributed responses, the focus of most

TOPMODEL studies has been on areally-integrated simulation of runoff.

However, a number of studies have tested distributed aspects of the

TOPMODEL concepts (Ambroise et al., 1996; Moore and Thompson, 1996;

Jordan, 1994; Burt and Butcher, 1985) or used a distributed parameter approach

without testing (Coles et al., 1997). Two recent studies, in the Minifelt (Lamb et

al., 1997) and another small Scandinavian catchment (Seibert et al., 1997), have

reported tests of TOPMODEL in simulating extensive shallow water table depth

observations. In both studies, predictions obtained by the simple TOPMODEL

concepts were often in error locally, but could be improved by estimation of local

parameters; Seibert at al. (1997) used the water level observations to fit local

values of a ‘‘groundwater index’’, equivalent to lnða=T0 tan�) whilst Lamb et al.

(1997) explicitly estimated local values of log-transmissivity, but with spatially

constant ��. The following sections describe extensions to this work to investi-

gate the estimation of local values for both �� and lnðT0Þ, and to test the pre-

dictive performance of the resulting ‘‘spatially calibrated’’ model.

11.5 ESTIMATION OF �h AND lnðT0) USING TIME SERIES OBSERVATIONS

Calibration of TOPMODEL was approached in several stages. Firstly, ‘global’

(i.e. spatially-constant) parameters were estimated by fitting against observed

flow series from a period of six weeks in 1987, as described by Lamb et al.

(1997). Then, local values of the soil parameters �� and lnðT0Þ were calibrated

against measured water table depth data, initially using logged borehole water

levels from the 1987 period, then using two of the five piezometer surveys. The

calibration against logged borehole data was used to look at temporal dynamics

of the boreholes, while the separate calibration against piezometer surveys was

used to look at spatial patterns. Effective porosity, ��, affects the dynamics of

water level changes, and was calibrated using differences in water levels with

respect to simulated storage deficits. Transmissivity, lnðT0Þ, was then treated,

in effect, as a ‘‘correction factor’’ to adjust simulated water levels up or down

to match observations.

A random search procedure was used by Lamb et al. (1997) to estimate values

for the TOPMODEL saturated zone parametersm andQ0 by maximisation of the

Nash and Sutcliffe (1970) efficiency statistic (NSE) calculated on the difference

between observed and simulated streamflow. Because lnðT0Þ is the only unknown

factor inQ0, calibration ofQ0 effectively provides a first estimate of the mean log-

transmissivity, arrived at independently of any local values. The calibrated para-

meter values ofm and lnðT0) are 3.5 mm and 0.27 (T0 in m/h). The fit of simulated
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and observed flows over the calibration period, which contained several rainfall

events, including one large storm, was visually very good, with NSE ¼ 0:9 (see

Lamb et al., 1997, Figure 6), even without an explicit model for overland flow.

The parameters calibrated using flow data were applied in (11.1) to simulate

time series of the local storage deficit D at each of the four logged borehole

locations. To transform the simulated deficits to water table depths for compar-

ison with the observations, (11.4) was applied, requiring estimation of the effec-

tive porosity parameter �� for each borehole.

However, both lnðT0Þ and �� affect the simulated water table depth. To

estimate �� and lnðT0Þ independently, it is necessary to resolve this dependency.

By rearranging (11.1), it is possible to write expressions for the catchment mean

storage deficit in terms of both uniform soil parameters and distributed soil

parameters, such that

D̂Dþm �� ¼ �DD ¼ �� � zð Þ þm ���m � lnðT0Þ � lnðT0Þ
� �

ð11:5Þ

where

� ¼ ln
a

tan�
� � ð11:6Þ

The left-hand side of (11.5) states that the mean storage deficit in the catchment

can be expressed as a function of topography and a local deficit D̂D, where D̂D is

simulated using the parameters calibrated by fitting against observed flow data

(the ‘‘hat’’ notation is used here to emphasise that this term is a simulated storage

deficit). The same mean deficit is also expressed on the right-hand side of (11.5) as

a function of topography, the difference between mean and local log-transmis-

sivities, and a local deficit, DðzÞ ¼ ð�� � zÞ, estimated as a function of the

observed water table depth z.

If it is assumed that D̂D ¼ DðzÞ, then (11.5) will be true only if lnðT0Þ ¼ lnðT0Þ:
Any difference between the simulated storage deficit D̂D and the estimated deficit

ð�� � zÞ can thus be attributed to differences between the local transmissivity and

the global transmissivity, scaled by m, provided there are no significant timing

errors in the simulated storage deficit series.

Equation (11.5) can be rearranged to eliminate �DD and �, leading to an expres-

sion for the difference between the mean and local soil transmissivity parameters,

lnðT0Þ � lnðT0Þ ¼
D̂D� z ���ð Þ

m
ð11:7Þ

For the four boreholes in the Minifelt, small differences were found between the

timing of the responses of simulated deficits and observed water levels to rainfall

events, but the onset of recession periods was very nearly simultaneous (errors of

only one or two hours) for both time series. It was therefore concluded that (11.5)

and (11.7) could reasonably be applied during recession periods.

Assuming that the difference between local and mean log-transmissivities does

not change over time, and that the parameters m and �� are also constant in
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time, (11.7) can be used to express �� in terms of the simulated storage deficits

and observed water levels at times t and tþ�t, where

�� ¼
D̂Dtþ�t � D̂Dt

ztþ�t � zt
ð11:8Þ

and the subscripts denote time.

In applying (11.8), the time interval �t was set to be five hours and t was

chosen to coincide with a prolonged recession period such that values of z over

the interval tþ�t were centred about the mean water table depth in each bore-

hole. Values for �� were estimated in this way for boreholes 4 ð�� ¼ 0:06Þ, 5

(�� ¼ 0:04Þ, and 6 (�� ¼ 0:04), but not for borehole 7 because the observed data

at this location were of poorer quality, owing to instrument malfunction.

Simulated water levels are plotted along with the observed levels for boreholes

4, 5 and 6 in Figure 11.5.

Variations in simulated water table depths shown in Figure 11.5 appear to be

similar in amplitude to the variations in the observations, with the exception that

the simulated water table does not extend as far above the surface as the observed

water level at borehole 4, although the timing of simulated surface saturation is

approximately correct. This difference arises because, when applying (11.4) to
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Figure 11.5. Simulated and observed water levels in boreholes (BH): 4 (a); 5 (b); and 6 (c) using local

estimates of �� based on analysis of logged borehole data.



transform from simulated storage deficits to water table depths, the parameter

�� was set to be equal to one for negative simulated deficits (i.e. when the

simulated water table would be above the surface) to reflect the theoretical tran-

sition of porosity from a value less than one in the soil to exactly one in air.

However, it can be seen from Figure 11.5a that this theoretical condition,

when applied within the current model structure, is not consistent with the

data observed at borehole 4, where �� < 1 would give rise to an improved fit

between simulation and observations. There are two physical reasons for this

finding. One is that an abrupt transition to �� ¼ 1 above the surface oversim-

plifies the complex and continuous transition in the uppermost layers of the soil,

or in dense mossy vegetation and organic litter just above the soil surface.

Perhaps a greater influence on the observed water levels is the accumulation of

water in topographic features that are not properly represented in the catchment

DTM. Allowing �� to be less than one above the surface leads to improved

simulated water levels, but it must be recognised that the parameter then becomes

less physically meaningful, and would be functionally compensating for errors

and simplifications in the model.

The model results shown in Figure 11.5 are clearly biased, this being particu-

larly notable for borehole 5, where the simulated water table is approximately

0.2 m below the observed level for much of the series. This bias can be attributed

to a difference between local and mean log-transmissivities. Once �� is known,
the local log-transmissivity lnðT0) can be estimated by rearranging (11.7). For

each borehole, (11.7) was therefore applied with the same simulated deficits and

observed water table depths as used to estimate ��. The resulting estimated local

transmissivities for boreholes 4, 5 and 6 were T0 ¼ 0:81m2 h�1, T0 ¼ 0:14m2 h�1

and T0 ¼ 0:68m2 h�1 respectively. The simulated local water table depths were

then revised, using the local values of T0 and ��. These are shown in Figure 11.6,

plotted along with the observed water levels and the original predicted levels,

based on the global transmissivity formulation. It can be seen that the local

transmissivities effectively correct for much of the bias in the original simulated

levels.

11.6 ESTIMATION OF SPATIALLY DISTRIBUTED �h AND lnðT0) USING
SPATIAL OBSERVATIONS

11.6.1 Spatial Predictions for Uniform Soil Properties: The ‘‘Global
Parameter’’ Model

Simulations of storage deficits in the network of 108 piezometers were carried

out for each of the five sets of observed water table depths. This was done in the

space domain only by application of (11.1), under an assumption that the dis-

charge on each occasion represented drainage from the saturated zone alone,

allowing the observed discharges to be used to calculate the catchment mean

storage deficit in each case after rearranging (11.3). Although some of the piezo-
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meters indicate surface saturation (i.e. z < 0), use of the measured flow rates to

approximate the saturated zone discharge has been justified (Lamb et al., 1997)

on the basis that there was no rainfall during the measurement periods for the

three data sets for which �QQ � 0:61mmh�1, and that even under wetter condi-

tions, the ponded areas represent in large part extensions of the saturated zone,

arising due to local reductions in transmissivity, leading to exfiltration (or

‘‘return flow’’) accumulating on the surface in local depressions. Further discus-

sion of this approximation will be found at the end of this section.

Water levels at each piezometer location were first simulated using the global

transmissivity lnðT0Þ and an average value for �� of 0.05, which is the mean (to

one significant figure) of the estimates for boreholes 4, 5 and 6. The simulated

water levels can be considered as ‘‘validation’’ results for the global parameter

case, where the lumped saturated zone parameters were calibrated solely on the

basis of time series data. Simulated water levels are plotted as crosses in Figure

11.7, for each of the five values of �QQ, as a function of the local lnða=tan�Þ index
value. Also plotted as circles are the observed water levels. It can be seen that the

simple ‘‘global parameter’’ model is not able to explain the local variations in

water levels, the implication being that topography alone is insufficient to

account for spatial variations in the depth to the water table.
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11.6.2 Spatial Predictions for Distributed Effective Porosity: the
‘‘Distributed �h’’ Model

Spatially distributed values of �� were then calibrated as follows, using the

piezometer surveys for �QQ ¼ 0:1 and �QQ ¼ 0:61mmh�1. Equation (11.8) was

applied to estimate �� at each of the 108 piezometers, where instead of specifying

a time interval between t and tþ�t, the values of D̂D and z corresponded to �QQ ¼

0:1 and �QQ ¼ 0:61mmh�1 . These conditions were chosen to avoid using water

table measurements made at the two higher averaged flow rates, thus reducing as
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Figure 11.7. Piezometer water table depths, plotted against lnða=tan�) for the ‘‘global parameter’’

model (�� and lnðT0) both constant in space). Discharges for the five data sets increase as indicated

from graph (a) to graph (e). Circles are observations, crosses are simulated depths.



far as possible any overestimation of the ‘‘true’’ saturated zone discharge and

effectively integrating the estimate of �� over a vertical soil depth of the order of

10 cm, a much greater interval than that used in the case of boreholes 4, 5 and 6.

It will be realised that the centre of this interval was also closer to the surface in

places where the water table tends to be close to the surface.

The spatial pattern of �� is shown in Figure 11.8. The range between 0.02 and

0.40 encompasses 90% of the values, with a mean of 0.16. This may be compared

to a range of 0:1 < �� < 0:2, estimated from measurements in the field of drain-

able water content and total porosity. The largest calibrated value was 0.96.

Calibrated values of �� vary most in areas where the water table tends to be

closest to the surface. In areas where the water table is generally deeper, no large

calibrated values were obtained.

The spatial pattern of estimated �� values mapped in Figure 11.8 shows some

similarities with the patterns of observed water levels and surface elevations.

Particularly notable is the appearance of high values of �� along the main axis

of the valley, both close to the outlet and at the catchment boundary. These are

also areas where the water table rises above the surface, even at relatively low

flows (see Figure 11.4). Large estimated values of �� are to be expected in these

areas because of the use of data recorded close to or at the surface. However,

small estimated values of�� also occur in wet areas close to the catchment outlet.

It would be tempting to use the spatial patterns of soil depth, topography and

water table depths to postulate some more general relationship between these

variables and ��. However, any similarities between the patterns of these ‘‘inde-

pendent’’ variables and the spatial distribution of �� seem only to be very
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localised. When examined across the whole catchment, �� was found to be very

poorly correlated (R2
¼ 0:2) with the topographic index lnða=tan�Þ, and soil

depth (R2 < 0:1).
By applying the local values of �� to each piezometer location, revised simu-

lated water table depths were calculated, retaining the assumption of spatially

constant transmissivity. These simulated levels are shown in Figure 11.9, where

the data are plotted as a function of lnða=tan�). The data plotted in Figure 11.9b,

d and e are effectively ‘‘validation’’ results for the distributed-�� model since

these data were not used in the calibration of the distributed �� values. Data

shown in Figure 11.9a and c were used for calibration; however, it is worth
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Figure 11.9. Simulated and observed piezometer water table depths for the ‘‘distributed ��’’ model

(lnðT0) constant in space). Circles are observations, crosses are simulated depths.



noting again in this context that the local values of �� were calibrated on the

basis of differences between these two piezometer surveys.

Comparison with Figure 11.7 shows that estimation of local values for �� has
introduced a degree of spatial variation into the predicted water levels that is

similar to the variation in the observations. Qualitatively then, the ‘‘distributed

��’’ model appears more realistic than the original model, although there are still

many errors in the predicted water levels.

The root mean squared error (RMSE) for each set of simulated water levels

was computed for both the ‘‘distributed ��’’ and ‘‘global parameter’’ models (see

Table 11.1 below). Lower RMSE values for the distributed �� model confirm the

visual impression of an improvement in the simulated water levels.

11.6.3 Estimation of Distributed Transmissivities

Given knowledge of local values of ��, (11.7) was applied to calibrate the

local log-transmissivity at each piezometer. The simulated storage deficit D̂D was

calculated for �QQ ¼ 0:61mmh�1, representing the median of the range of flow

rates under which the piezometer data were collected. The resulting values of

lnðT0) are plotted as a contour map in Figure 11.10, and range from �10:3 to

24.4, with a mean of 2.5. However, 92% of the estimated values lie within the

range �5:0 < lnðT0Þ < þ5:0, for which the mean value of 0.77 is much closer to

the global log-transmissivity calculated from the calibrated value of Q0

ðlnðT0Þ ¼ 0:27).
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Physically, it might be expected that lnðT0) would be related to soil depth,

because, for any two locations having identical soil characteristics but different

soil profile depths, the lateral transmissivity when saturated would be greater for

a deeper profile. However, no clear relationship was found between local lnðT0)

and soil depth (correlation coefficient of �0:2). It can be seen from Figure 11.10

that the interpolated spatial pattern of lnðT0) is complex and not easy to inter-

pret, although there may be a weak correspondence between areas of low trans-

missivity and areas shown in Figure 11.4 to be wettest. An alternative

explanation could be that the local transmissivity parameter might act to com-

pensate for errors in estimating the ‘‘true’’ upslope contributing area from a

DTM. Such compensation could occur because of the interaction between lnðaÞ

and lnðT0) implied by the right-hand side of (11.1).

11.6.4 Spatial Predictions for Local Soil Properties: the ‘Distributed
Parameter’ Model

Water table depths were simulated using the ‘‘distributed parameter’’ model

(local estimates of �� and ln(T0) ) and are shown in Figure 11.11, plotted as a

function of lnða= tan�) along with the observed water levels. Because the data

sets for �QQ ¼ 0:1mmh�1 and �QQ ¼ 0:61mmh�1 were those used to calculate the

distributed parameters, it is not surprising that the simulated water table depths

for these two mean discharges fit very well to the observations (Figure 11.11a and

c). However, this outcome was, again, not inevitable, given that �� is computed

using differences between the two data sets, whereas lnðT0) is calculated solely on

the basis of the �QQ ¼ 0:61mmh�1 measurements (Figure 11.11c).

Also notable is the very close fit (RMSE ¼ 1:2 cm) between simulated and

observed water table depths for the �QQ ¼ 0:54mmh�1 data (Figure 11.11b), which

were not used in calibration. However, for wetter conditions ð �QQ ¼ 4:89 or

6:8mmh�1) it can be seen from Figure 11.11d and e that the distributed para-

meter model performs less well, leading to errors at a few locations that are as

large as those produced by the original, ‘‘global parameter’’ TOPMODEL.

Despite these errors, the RMSE results in Table 11.1 suggest that the distrib-

uted parameter formulation still performs better in predicting water table depths

for the wetter catchment conditions than either of the simpler models tested. The

model formulations are also compared in Table 11.2, which gives the frequency

(as a percentage of all piezometers) for which the local parameter models per-

formed better than the global case, irrespective of the magnitude of errors. These

results confirm the improvement in predictions made using distributed

parameters.

Spatial patterns of the simulated depth to water table were constructed by

interpolating TOPMODEL predictions, using distributed parameters, at each

piezometer site onto a 2m� 2m grid, using the same algorithm adopted for

the observed data. The simulated patterns are shown in Figure 11.12 and can

be compared to the observed water table depths in Figure 11.4. There is a very
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high level of agreement between the simulated and observed patterns. Recall that

the observed patterns for �QQ ¼ 0:1 and 0:61mmh�1 were used for calibration of

the spatially variable �� and lnðT0) so these patterns would be expected to be

almost identical (which they are). The observed patterns of depth to water table

are not appreciably different for the values of �QQ ¼ 0:54 and 0:61mmh�1, reflect-

ing the minor difference in magnitude of �QQ (i.e. the patterns are essentially for the

same runoff magnitude, albeit measured at a different time). The simulated

patterns are therefore also not appreciably different from each other or the

observed patterns. The simulated patterns for �QQ ¼ 4:9 and 6:8mmh�1 do differ
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Figure 11.11. Simulated and observed piezometer water table depths, using the ‘‘distributed para-

meter’’ model (�� and lnðT0) both spatially distributed). Circles are observations, crosses are simu-

lated depths.



from the observations with the width of the saturated area in the main drainage

line being over-predicted (i.e. too wet) and the depth to water table around the

boundary tending to be over-predicted (i.e. too dry). The general pattern is still

well simulated because this is dominated by the spatial pattern of the calibrated

�� and lnðT0). These parameters impose a basic pattern which is the same for

each wetness level; it just moves ‘‘up and down’’ depending on the overall wet-

ness. The key to such good agreement between Figures 11.12 and 11.4 is the

availability of enough detailed spatial observations to calibrate the spatial pat-

terns of �� and lnðT0).

As noted above, spatial parameter calibration and simulation were carried out

under an assumption that the recorded (averaged) flows during each piezometer

survey were discharged from the saturated zone alone. This assumption might

overestimate the true saturated zone discharge for the wetter conditions.

However, it is not at all certain what proportion of the flows recorded during

piezometer surveys should be assumed to have reached the outlet via a surface

‘‘storm runoff’’ route. Further complications arise because of macropore and

pipe flows, leading to rapid sub-surface responses, combined with relatively
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Table 11.1. Root mean squared errors (cm) for spatial water table simulations. Parentheses
indicate data sets used for calibration of local values of ln (T0)

Q (mmh�1)

RMSE

Global parameter1 Local �h 2 Distributed parameter3

0.10 22.5 10.4 5.5

0.54 15.0 9.4 1.2

0.61 14.7 9.1 (1:2� 10�5)

4.89 9.7 7.5 5.7

6.80 9.1 7.5 5.7

1 Spatially constant �� and lnðT0Þ
2 Local values of ��, spatially constant lnðT0Þ
3 Local values of �� and lnðT0Þ

Table 11.2. Frequency table for comparison of model formulations. Parentheses indicate data
sets used for calibration of local values of ln (T0)

Mean discharge (mmh�1) 0.10 0.54 0.61 4.89 6.80

% of points where distributed �� model is

better than global model

64 52 51 27 22

% of points where distributed parameter

model is better than global model

94 93 (100) 67 64

% of points where distributed parameter

model is better than distributed �� model

90 94 (100) 58 57
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Figure 11.12. Water table depths simulated using the distributed parameter model for the five time-averaged

flow rates corresponding to the observed water table patterns shown in Figure 11.4. Depths are in cm

(positive downwards).



low topographic gradients in the valley bottom, and the role of sub-grid scale

topography. The preceding results could therefore be altered by different

assumptions about the partitioning of the gauged runoff, although the principles

of the calibration approach are not affected.

To provide a simple test of implications of runoff partitioning, the satu-

rated zone discharge was adjusted for the two water table surveys

ð �QQ ¼ 4:89mmh�1, �QQ ¼ 6:8mmh�1) during which rainfall was observed.

Flows were reduced by an amount equal to the product of the rainfall

during the survey and the proportion of the catchment that was saturated

(as estimated from the interpolated water table maps in Figure 11.4). This

straightforward partitioning caused the assumed flow rates to be reduced by

up to approximately one-third of the recorded value. The reduced flow rates

lead to reductions in saturated zone discharge, implying slightly increased

catchment average storage deficits. Local deficits therefore increased uni-

formly, and calibrated transmissivities decreased slightly to compensate.

However, the effects on parameter estimates were only very slight. Water

levels were then simulated using the distributed parameter formulation;

root mean squared errors increased by no more than 11%, compared to

the results obtained for the original saturated zone flow rates.

11.7 UNCERTAINTY ESTIMATION AND SPATIALLY DISTRIBUTED DATA

The formulations of TOPMODEL developed in this chapter represent a very

simple approach to distributed hydrological modelling although establishing

the spatially variable values of �� and lnðT0) required a substantial amount of

spatial data. One of the main motivations for adopting a simple approach is to

obtain a model that has as few unknown parameters as possible. This has the

advantage of reducing the number of degrees of freedom present if the model has

to be fitted to observations of ‘‘output’’ or ‘‘internal state’’ variables, which are

often more accessible than physical measurements of parameters.

However, even using a simple and parsimonious model structure, there may

still be considerable uncertainty about the values of some or all of the model

parameters. A number of studies (e.g. Freer et al., 1996; Franks et al., 1997;

Lamb et al., 1998b) have used Monte Carlo methods with variants of

TOPMODEL to reveal that there may be multiple sets of parameter values

that lead to similarly acceptable simulations, judged in terms of various objective

functions. This behaviour, which is well known as ‘‘non-uniqueness’’ or

‘‘equifinality’’, appears to be a generic problem, and has been noted in a number

of contexts, such as groundwater modelling (Neuman et al., 1980), catchment

modelling (Binley and Beven, 1991; Duan et al., 1992), hydraulic floodplain

inundation modelling (Romanowicz et al., 1994), and in predictions of water

quality (Beck, 1987; Zak et al., 1997).

Parameter uncertainty resulting from the presence of equifinality can be

expected to lead to uncertainty in predictions. Uncertainty can also be expected
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as a result of the difference in hydrological models between the scale of model

solutions and the scale at which physical measurements can be made, as a result

of errors in measurements, and of errors in the translation of real processes to the

mathematical constructs used in all conceptual or physical models (also see dis-

cussion on pp. 19–22, 27 (Chapter 2) related to the matching of process, measure-

ment and model scales, and pp. 70–4 (Chapter 3) on model complexity).

Uncertainty about TOPMODEL predictions in the Seternbekken Minifelt

has been investigated by Lamb et al. (1998b). This work used the Generalised

Likelihood Uncertainty Estimation procedure (GLUE) of Beven and Binley

(1992), a Bayesian Monte Carlo method that can be applied to investigate

how different sets of observed data constrain parameter and simulation uncer-

tainty, i.e. to see how useful the detailed spatial measurements of piezometric

heads are as compared to other types of information such as runoff, or time

series of heads for a small number of piezometers. GLUE is a fairly generic

procedure and is easily implemented for nonlinear models of arbitrary complex-

ity, given sufficient computing resources. In the context of distributed subsur-

face hydrological modelling, GLUE can be related to Monte Carlo methods as

described by Peck et al. (1988). For comparison, a comprehensive treatment of

Bayesian parameter estimation in groundwater modelling has been given by

Neuman and Yakowitz (1979), whilst Cooley (1997) has compared various

methods for estimating confidence intervals for a nonlinear regression model

of a hypothetical groundwater system. The GLUE procedure will not be

described in detail here, but, briefly, involves random generation of a large

number, M, of independent sets of model parameter values (typically

M � 10,000). For each parameter set, a model simulation is performed, and

the value of a goodness-of-fit function or ‘‘likelihood measure’’ calculated. This

likelihood measure may be a function of one or more observed variables.

Parameter sets for which the likelihood measure falls below a specified thresh-

old are rejected as unacceptable simulators of the observed data.

For the Seternbekken catchment, Lamb et al. (1998b) used the following

function to define the likelihood measure L for the ith parameter set �i, given

observations Y, such that

L �i Yjð Þ ¼ exp �W �
�2e
�2o

 !
ð11:9Þ

where �2e is the variance of the simulation errors, �2o is the variance of the obser-

vations and Wi is a weight. Equation (11.9) has the property that when N dif-

ferent sets of observations Y1;Y2; . . . ;YN are combined using the principle of

Bayes’ theorem, the resulting ‘‘updated’’ value of L, is given by

L �i Y1;:::;N

��� �
¼

1

C
� exp � W1 �

�2e;1
�2o;1

þW2 �
�2e;2
�2o;2

þ � � � þWN �
�2e;N
�2o;N

 !" #

ð11:10Þ
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where the scaling factor

C ¼
XM
i¼1

L �ijY1;...;N

� �
ð11:11Þ

The exponential term in (11.9) implies additive combination of individual error

variance terms within the exponent of (11.10). This is an important feature if �i

successfully reproduces some sets of observations but is very poor at simulating

others; it may be considered undesirable in this case to reject �i, but this would

almost certainly happen if the individual variance ratios were multiplied together

directly. The weight given to the ith set of observations is controlled by choosing a

value for Wi.

Equation (11.10) was applied in the case of the Minifelt to examine the

changing statistical distributions of L conditioned on different combinations of

flow data, borehole water level time series and spatial patterns of piezometer

water table depths. Uncertainty bounds can be constructed for any simulated

variable using the array of values of L conditioned on any combination of

observed data sets as follows: First, the simulations at every ordinate (time

step or location) are sorted in terms of magnitude, and the corresponding dis-

tribution for L is found. Then, uncertainty bounds are drawn at values of the

simulated variable corresponding to selected quantiles of the distribution of L, in

this case the 10th and 90th percentiles.

The GLUE procedure was applied using the simple, ‘‘global parameter’’ for-

mulation of TOPMODEL to estimate the uncertainty about simulations of the

spatially distributed water table depths at every piezometer location and to assess

the utility of different sorts of data (catchment discharge, piezometric levels from

a few logged boreholes, levels from the 108 piezometers) in constraining uncer-

tainty. The main reasons for not using either of the distributed (local) parameter

formulations were the computational demands involved in generating sufficient

parameter sets to sample independently from a wide range of possible values for

local parameters at each of over 100 locations, and then storing the resulting

simulations.

Figure 11.13 shows, for three of the piezometer data sets, the uncertainty

bounds computed using spatially constant parameters, conditioned firstly on a

combination of time series observations (flows and logged borehole water levels),

secondly on the errors in simulating the 108 spatially distributed piezometer

water table depths and, thirdly, on a combination of the time series and spatially

distributed data. The flow and borehole data were given equal weighting with the

piezometer data in (11.10).

It can be seen from Figure 11.13 that, for the drier parts of the catchments

(small lnða=tan�Þ), uncertainty bounds conditioned on the patterns of piezometer

observations (dashed lines) are slightly narrower than the bounds conditioned on

time series data (dotted lines) while, for the wetter parts of the catchments (large

lnða=tan�Þ), they are wider. This indicates that in the drier parts of the catch-

ments that are closer to the ridges, patterns of depth to the water table are indeed
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valuable. However, in the gullies their value is significantly lower than that of the

dynamic information of streamflow and water table. This may be due to surface

water ponding in which case the piezometers do not contain much information

on the characteristics of catchment response. The combined case in Figure 11.13

(solid line) shows narrower bounds than either of the other two cases as the

simulations are constrained by both patterns and time series data. However,

this does not necessarily mean that constraining the parameters by both patterns

and time series data improves the accuracy of the distributed model. In fact, the

bounds of the combined case exclude a large proportion of the observations,

especially where the water table is high. In order to interpret this it is important

to realise that the total uncertainty of a model simulation is the sum of uncer-

tainty in the parameters, uncertainty in the inputs and uncertainty in the model

structure. The uncertainty bounds in Figure 11.13 only reflect uncertainty in the

parameters, assuming that the effects on the function L of data and model

structure errors are similar for all parameter sets. While we assume that uncer-

tainty in the inputs is relatively small, it is likely that if model structural uncer-

tainty were included in the GLUE procedure, the bounds would significantly

change to cover the larger scatter in the observed borehole data. Indeed, the

TOPMODEL concepts impose a relatively high degree of structure on the sys-

tem, as they are based on quasi one-dimensional (in the map view) flow redis-
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tribution. In order to obtain wider uncertainty bounds that may be more con-

sistent with the data in Fig. 11.13, one would therefore also have to vary the

model structure, in addition to the parameter values.

Some indication of the effects on local uncertainty of knowledge of water

levels at a number of points can be gained by examining simulation uncer-

tainty bounds for water levels in the four logged boreholes. These are shown

in Figure 11.14 for three of them, where two sets of bounds are drawn, the

first (denoted ‘‘conditioned on local data’’) being conditioned separately on

the observations in each individual borehole, the second being conditioned on

a combination of the errors in simulated water levels for the three boreholes

together.

Figure 11.14 shows that the uncertainty about simulated water levels is

comparable to that seen in Figure 11.13 for the piezometer water table depths.

The uncertainty bounds computed for the logged boreholes, conditioned sepa-

rately on the data from each location, do not vary greatly over time. This is in

contrast to the more dynamic observed levels. The apparent lack of response

may be a consequence of the simplification of subsurface dynamics inherent in

the TOPMODEL formulation. However, individual parameter sets can be
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found to simulate the water level data in each borehole quite well, as illustrated

in Figure 11.5. Other factors must therefore be considered to explain the rather

‘‘flat’’ uncertainty bounds. It was found by Lamb et al. (1998b) that the

immediate reason for the lack of realistic dynamics in the borehole uncertainty

bounds was uncertainty about the value of ��, brought about by the degree of

interaction in the model structure between parameters. This is consistent with

the interpretation of Figure 11.13. Inspection of Figure 11.14 shows that taking

account of observed water levels in all logged boreholes (dashed lines) generally

tends to increase the uncertainty about simulated water levels, with the excep-

tion of the first part of the record for borehole number 4. This suggests that the

addition of information from three points in the catchment does not constrain

the uncertainty about predictions made using the simple, global parameter

model at a given point but widens the range of possible parameter values

and therefore the range of possible simulation results. This finding is likely

to reflect the limitations of the model structure, suggesting that good simula-

tions cannot be obtained at different points using the same parameter values

everywhere.

11.8 SUMMARY

Observed spatial patterns of water table depth based on measurements at 108

locations have been used here to carry out spatial calibration of the distributed

rainfall-runoff model TOPMODEL. The model calibration was formulated in

three ways, as follows:

1. A ‘‘global parameter’’ case, where soil parameters have the same, areally

averaged value everywhere and the distribution of saturated zone storage

deficits is determined by topography alone.

2. A ‘‘distributed effective porosity (��)’’ case, where a catchment average

effective transmissivity is used such that topography alone controls the

distribution of saturated zone storage deficits, but the pattern of water

table depths also depends on locally-estimated values of ��.
3. A ‘‘distributed parameter’’ case, where the distribution of saturated zone

storage deficits is a function of topography and locally-estimated values of

the log-transmissivity, lnðT0). In this case, the final distribution of water

table depths also depends on locally-estimated values of ��.

The local parameters were ‘back-calculated’ using a subset of the available spatial

data. There is a risk that this method, like most model calibration procedures,

may introduce an element of circular reasoning; parameters estimated using a

given set of observations should be expected to lead to good simulations of the

same data. Testing of the model on data not used for calibration is a typical

response to this problem, and one that has been followed here (i.e. split sample

testing – see Chapter 3, p. 76 and Chapter 13, p. 340 for further discussion).

Spatial patterns of the calibrated local parameters were difficult to interpret.

Comparison with maps of topography, soil depth and observed water table

Shallow Groundwater Response at Minifelt 301



depths suggested some weak correspondence between the variables in limited

areas. However, correlation analyses showed there to be no general relationships

between these observed variables and the calibrated local parameters.

Despite the difficulty in explaining physically the patterns of the calibrated

parameters, it has been shown that estimation of local values greatly improves

the simulation of spatial patterns of water table depths over a range of condi-

tions. The results for the root mean squared errors (Table 11.1) of simulations

using the three TOPMODEL formulations showed clearly that the distributed

parameter model gives rise to relatively accurate simulations of water table pat-

terns within what remains a simple model structure. This was made possible by

the large amount of information on spatial patterns of water table depth which

enabled the spatial calibration to be carried out.

Although the global parameter formulation of TOPMODEL is quite suc-

cessful in simulating streamflows from the Minifelt catchment, it has been

shown that a topographic control on the spatial distribution of storage is not

a complete description for this catchment; spatial predictions made using the

same soil parameter values everywhere were in fact wrong in most places,

leading to a high degree of predictive uncertainty. The patterns of water

table levels have allowed us to develop a spatially-calibrated model while

retaining the original, simple structure. Even so, it has to be recognised that

model assumptions still differ in some important respects from physical pro-

cesses in the Minifelt. A further challenge will be to reconcile such differences

but this will not be possible with the present model structure. TOPMODEL as

used here greatly simplifies the spatial dynamics of catchment responses. In

particular, overland flow is not treated explicitly, macropore flow is not repre-

sented and the downslope dynamics of the saturated zone are represented as a

succession of steady states.

Despite these simplifications, subsurface water level responses in specific loca-

tions can be simulated reasonably well, and the pattern of the water table can be

reproduced realistically when local soil parameters are used. An important ques-

tion is whether or not the improved local predictions represent a meaningful

improvement in modelling capability. Ideally, confidence in the distributed para-

meter model formulation would be enhanced by a physically convincing explana-

tion for the values (and patterns) of the inferred, local parameters.

Unfortunately, this was not possible. Likely reasons include that the conceptual

definition of model parameters is not the same as the physical definition of

measured properties, and that model parameters may be compensating for the

effects of processes not explicitly represented in the model structure, possibly at

sub-grid scales.

Results from the GLUE procedure suggest that whilst local or ‘‘point’’ data

can help to constrain predictive uncertainty for distributed water levels, the

interaction between parameters can still produce rather wide uncertainty bounds.

This is also a consequence of limitations in the model structure which made it

difficult to determine the value of different types of data in constraining uncer-

tainty.
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Assessment of confidence in distributed models should include testing against

spatial data, both within an uncertainty framework and, where parameters can be

calculated directly, in a manner similar to the ‘‘split-sample’’ approach. We have

been fortunate to have access to detailed spatial data, allowing both these

approaches to be explored. It is to be hoped that the collection of such distributed

data sets will continue, both for the development of conceptual understanding of

hydrological systems and for the refinement of distributed models.
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12
Groundwater–Vadose Zone Interactions at Trochu

Guido Salvucci and John Levine

12.1 INTRODUCTION

The chapters in this book document sources of spatial variability of hydrologic

fluxes and moisture storage in catchments. Some variability reflects that of the

atmospheric forcing, and some results from the interaction of that forcing with

spatially varying soil, vegetation, and topographic properties. Part of the varia-

bility due to interaction, for example that arising from the dependence of soil

moisture on soil hydraulic properties during infiltration, may change from storm

to storm depending on storm intensity and duration (e.g. Salvucci, 1998).

Patterns that arise from the spatial distribution of groundwater–vadose zone

interactions, however, have a persistent nature due to the long timescales of

groundwater redistribution (see, e.g., Tóth, 1966). The existence, nature and

cause of these patterns in the Trochu catchment of Alberta, Canada, are the

focus of this chapter.

Throughout the chapter it is assumed that the dominant mode of this inter-

action (with respect to impact on spatial patterns) is the dependence of surface

fluxes on the position of the water table relative to the land surface. This assump-

tion is explored by coupling an equilibrium model (Salvucci and Entekhabi,

1995) that estimates long-term average water table dependent surface fluxes to

a groundwater flow model, and then comparing the model results with patterns

of recharge and discharge measured by Tóth (1966). The equilibrium model is

particularly well suited for comparison with Tóth’s measurements because the

latter are largely based on field observations of natural time-integrators of sub-

surface flow conditions (e.g. presence of salt precipitates). These measurements

are a mix of quantitative and observational indicators that provide a spatial

picture of long-term recharge and discharge locations.

The water table position relative to the ground surface is assumed to repre-

sent the dominant mode of interaction because it impacts on the partitioning of

rainfall in two important ways: 1) by bounding the moisture profile, and 2) by
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creating a potential source of capillary rise to the root zone. In areas of shallow

water table, the bounding of the moisture profile promotes runoff (Dunne and

Black, 1970b) and the potential for continuous capillary rise (Gardner, 1958)

maintains evapotranspiration at potential rates long after other parts of the

landscape dry out. The position of the water table, in turn, depends on the spatial

distribution of recharge, capillary rise, and surface water contacts (e.g. springs

and lakes). This interdependence of vadose zone and groundwater flows can be

viewed either as a consequence of coupled soil moisture and groundwater

dynamics, or simply as a constraint imposed by mass conservation; that is,

averaged over many wetting and drying cycles, the divergence of the groundwater

flow field, which depends on the groundwater pressure distribution and is thus

reflected in the water table topography, must balance the net of inputs from and

losses to the vadose zone.

12.1.1 Relation to Previous Studies

The central theme of this chapter, the continuity and interdependence of

groundwater and vadose zone flows, was recognised and explored in a series of

papers by Tóth (1962, 1963, and 1966). Therein a comprehensive analysis of the

spatial structure of recharge is detailed, and a theory of regional groundwater

flow that accounts for losses through the vadose zone as discharge from the

aquifer system is developed. In the third paper, Tóth describes how chemical,

biological and piezometric observations can be used to map the spatial distribu-

tion of aquifer recharge and discharge areas. In the first two papers he provides

methods by which the groundwater flow equation can be solved, for a given fixed

water table, in order to predict these patterns.

Despite the recognition of this interdependence three decades ago, many

models today either treat groundwater and vadose zone flow systems in isolation,

or at most treat conditions at the boundaries between them as fixed quantities.

When interactions at the boundaries are ignored, however, potentially important

feedbacks are not allowed to occur. For example:

1. Vadose zone analyses that assume a condition of gravity drainage at the

bottom of a soil column (e.g. Milly and Eagleson, 1987) may predict

recharge to groundwater in excess of what the underlying aquifer can

transmit;

2. Climate models that incorporate one-dimensional land surface parameter-

isations (e.g. Rosenzweig and Abramopoulos, 1997) and ignore lateral

groundwater redistribution may fail to simulate large low-lying areas

where moisture is evaporated long after higher areas dry out, thus under-

estimating evaporation and overestimating the sensitivity of evaporation

to model parameters;

3. Groundwater studies that take vadose zone inputs as independent of the

groundwater flow regime (e.g. Danskin, 1988) can predict artificially high

water tables, and those that fix the water table a priori and diagnose
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vadose zone fluxes from the groundwater divergence field (e.g. Stoertz and

Bradbury, 1989; Ophori and Tóth, 1989) may predict recharge in excess of

annual precipitation; and

4. Catchment models that account for near-surface lateral saturated flow (e.g.

Beven and Kirkby, 1979; Hatton et al., 1995), but fix the hydraulic gra-

dient to reflect surface topography, constrain the spatial variability of

lateral redistribution to be accounted for solely by changes in transmissiv-

ity. These models cannot account for the regional groundwater circula-

tions that maintain riparian zones (which in turn affect evaporation and

streamflow).

In summary, critical rate-limiting processes governing the local hydrologic cycle

may be overlooked when applying methods in which the coupling at the water

table is not specifically considered. This can have a large impact on the spatial

estimates of ET, recharge and surface saturation.

There is great difficulty in evaluating models and assessing the importance of

coupling because the relevant data is generally not available. The unusually

detailed observations of Tóth (1966) provide one of few data sets useful for

this purpose. In the following section we first describe the data and then present

a model that will enable the issue of coupling to be explored.

12.2 METHODS

12.2.1 The Study Area and Available Data

The catchment chosen for this study (Trochu) is located in southern Alberta

in the Canadian plains (Figure 12.1). This site was chosen because of the exten-

sively documented fieldwork undertaken in the area by Tóth (1966), and because

the poorly drained prairie topography emphasises the importance of three-

dimensional groundwater circulation in determining the water balance (Levine

and Salvucci, 1999a). The Trochu catchment is 16 km2 in area with low relief

(Figure 12.2). The maximum change in elevation from the water divide to the

outlet is approximately 100 m and the maximum slope is approximately 6%. The

general flow direction in the catchment area is west to east. The average slope

from the farthest point in the catchment to the outlet is under 2 %.

The soils in the study catchment are identified as thin black soils (combina-

tions of silt, sand and gravel) developed on glacial drift material (Bowser et al.,

1951). The bedrock consists primarily of nearly horizontal layers of sandstone

and siltstone with some discontinuous layers of claystone and shale (Carlson,

1969; Tóth, 1966). The vegetation in the area is primarily cultivated rapeseed,

alfalfa, and forage grasses with some small patches of aspen and willow trees

along the ridge lines. Precipitation and temperature (New et al., 1999) both peak

in the summer months (Figure 12.3), and the frost-free period typically begins in

May and ends between September and October (Tóth, 1966). Average annual

precipitation is approximately 440 mm.
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Tóth (1966) studied this catchment extensively in an attempt to determine

whether or not a correlation exists between physiographic features (e.g. vegeta-

tion types, presence of salt precipitates, moist depressions, well levels) and the

direction of groundwater movement. In this work he provides a table of 152 field

observations, 48 of which fall within the Trochu catchment. These observation

points are labeled on Figure 12.2 (and the subsequent maps in this chapter) as R

for recharge, D for discharge, C for creek bed and I for intermediate.

The categories were determined by applying Tóth’s (1966) criteria for eval-

uating surface observations and wells as follows. Sites classified as recharge

through chemical analysis are those where ground or surface water testing

showed low concentrations of dissolved minerals. Discharge sites were assumed

where high concentrations of dissolved minerals were present. Observations of

vegetation and surface salt deposition were used together to classify otherwise

dry observation points as either discharge or recharge points (Figure 12.2).

Where phreatic vegetation is present (e.g., slough grass, sedges and rushes)
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(Reprinted from Tóth, 1966; reproduced with permission.)
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Figure 12.1(b). Photograph of the Trochu catchment.
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without the presence of salt precipitates, the indication is that surface water

recharges in this area. Phreatophytes with salt precipitates or salt precipitates

alone indicate significant evaporation of groundwater, and so these points are

classified as discharge points. Where two sets of criteria (i.e. water chemistry,

vegetation, etc.) yielded different classifications, the point is labeled with both

classifications.

Springs, seeps and flowing shotholes were all classified as discharge loca-

tions. Creek beds can be either gaining or losing reaches and so are not classi-

fied as either recharge or discharge. Piezometric classification was based on

head to surface elevation comparisons. Where the head was near (< 3 m) or

above the surface elevation, a well was classified as being a discharge observa-

tion. Where head in a well was significantly lower than the surface elevation

(> 10m), the piezometric determination was that the well was in a recharge

zone. Between the two extremes wells were classified as being in intermediate

zones. This criteria was not directly indicated in Tóth (1966), but rather

inferred by comparing his reported measurements of depth to water against

his final recharge–discharge map. Well head data was used as the sole determi-

nant (i.e. without collocated chemical or botanical indicators) for approxi-

mately ten percent of the locations.

The resulting map (Figure 12.2) indicates a general pattern of recharge in

the highlands (e.g. north-west and south-east borders of the basin and the

north-west trending ridge in the northern third of the basin), and discharge

in the low-lying areas, especially near the basin outlet. It is important to
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Figure 12.3. Thirty year mean (1961–1990) of monthly temperature (crosses) and precipitation

(circles) for the Trochu region. (Data from New et al., 1999.)



remember that in this gentle prairie topography, mapped discharge locations

include both surface contacts where liquid water seeps out of the ground and

areas of persistent evapotranspiration of capillary rise. In the following section

a model is described that accounts for the continuity and interdependence of

such groundwater and vadose zone flows, and thus should be well-suited to

reproduce the observed patterns.

12.2.2 Model Review

The position of the water table is dependent on the convergence (divergence)

of groundwater flow, the amount of water being lost (gained) at the saturated/

unsaturated interface, and the location of direct aquifer–surface water contacts

(seeps, springs, lakes, etc.). The loss (gain) at the water table interface depends on

the partitioning of fluxes in the vadose zone.

The vadose zone receives water from rainfall and capillary rise, and loses

water through evapotranspiration and recharge. The rates of capillary rise,

recharge, infiltration and evapotranspiration are all influenced by the soil moist-

ure profile, depth to the water table, soil characteristics, and surface meteorolo-

gical forcing.

Changes in vadose zone characteristics (soil moisture, matric potential, etc.)

occur over short time and length scales, whereas the characteristic temporal and

spatial scales for groundwater flow are generally larger. To ease the resulting

computational burden of full saturated–unsaturated numerical simulations (e.g.

Freeze, 1971; Paniconi and Wood, 1993), Salvucci and Entekhabi (1995) built on

Eagleson’s (1978a–f) work to develop an equivalent steady state solution to the

Richards equation bounded by a water table and driven by climate statistics

(mean storm duration, intensity and frequency).

The climate statistics enter the model to parameterise the probability distribu-

tions of boundary conditions at the soil surface. Derived distribution techniques

are used to average the resulting moisture fluxes over the storm–interstorm time-

scale, therefore providing an estimate of the time-averaged soil water flow

through the vadose zone. This time–averaged flow, which may be downward

recharge or upward capillary rise, forms a groundwater divergence boundary

condition that is used to drive the spatially distributed groundwater model

MODFLOW (McDonald and Harbaugh, 1996). As is discussed further below,

the resulting distribution of water table depths influences the predicted vadose

zone flow, and thus iteration is required to find the spatial distribution of water

table depths for which the saturated flow divergence and vadose zone recharge

are at equilibrium.

It is assumed in the model that interstorm evaporation and transpiration are

driven by potential evaporation, but are influenced by both the mean root zone

moisture content and by interstorm sources (capillary rise) and losses (recharge)

below the root zone. The soil storage and infiltration capacities determine sur-

face runoff through storage excess and infiltration excess mechanisms. The
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storage capacity of the soil is determined by integrating the soil moisture deficit

from the surface to the water table. The infiltration capacity is governed by

gravity and matric potential gradients through a two-term Philip (1957) equa-

tion. The expected values of these soil and moisture dependent fluxes are

derived subject to random precipitation events by integrating the event fluxes

over probability distributions of storm intensity, duration and intermittency.

The fluxes through the vadose zone are determined by finding the equivalent

steady state soil moisture profile that yields closure to the surface water budget.

This profile is used as an initial condition for determining the infiltration and

evapotranspiration capacity of the surface. It provides a coupling to groundwater

by matching the time-averaged flux (recharge or discharge) and pressure head at

the mean position of the water table. Salvucci and Entekhabi (1994a,b) show, by

comparison with a long-term finite element simulation, that the equivalent steady

state moisture profile solution closely approximates the long-term mean vadose

zone flux over a wide range of soil texture and climate conditions.

An example solution, used below to drive MODFLOW over the Trochu

catchment, is illustrated in Figure 12.4 (the climate and soil parameters used in

this example are discussed later). Note that the dependence of the water budget

Groundwater–Vadose Zone Interactions at Trochu 311

0 50 100 150 200 250 300 350 400
50

40

30

20

10

0

10

20

30

40

50

F
lu

x 
(c

m
/y

)

Depth to Water Table (cm)

Z* = 176cm

Evapotranspiration
Net Recharge      
Surface Runoff    

Figure 12.4. Simulated, long-term mean surface water fluxes for various depths to the water table.

Silt-loam soil. Z�
¼ 176 cm. The first 45 centimeters above the water table are tension saturated.

(From Levine and Salvucci, 1999a; reproduced with permission.)



on the depth to the water table (Zw) occurs over a finite range from zero to the

depth at which net recharge equals the maximum recharge rate. For this soil (silt–

loam), the range of water table dependence is approximately 250 cm. There is a

depth to the water table (Z�) for each of the soil textures tested where the net

recharge equals zero. At this depth, the long-term mean of transient groundwater

losses due to capillary rise are balanced by the long-term mean of intermittent

gains through recharge.

As the depth to groundwater decreases from Z� to the tension saturated zone

(for the silt–loam soil between 176 cm and 45 cm), runoff increases, evapotran-

spiration increases up to the potential rate, and the net flux across the vadose

zone–water table interface is upward. Runoff (solid line in Figure 12.4) increases

due to a reduction in both the infiltration capacity and the storage capacity that

occurs for higher initial soil moisture content and reduced depth to the saturated

zone. Evapotranspiration (dotted line in Figure 12.4) increases to the climate

limited rate because capillary rise from shallow water tables is large enough to

replenish all water lost to evapotranspiration, even over long interstorm periods.

As the depth to saturation increases from Z�, evapotranspiration decreases, and

recharge increases to balance the net of infiltration over the reduced evapotran-

spiration. The decrease in evapotranspiration occurs primarily because moisture

supplied to the root zone by capillary rise decreases with increasing depth to

water table.

Note that the water table dependence of vadose zone fluxes disappears for

depth to water table greater than that at which both evaporation and net recharge

reach their asymptotic values. This implies that water table–vadose zone coupling

is insignificant in determining net recharge outside this range of depths.

The long-term mean of the net flux across the water table (the dashed line

plotted in Figure 12.4) is used as an input to the groundwater flow model,

MODFLOW, which is run in steady-state mode. This flux can be either positive

for deep water tables (recharge) or negative for high water tables (discharge/

capillary rise). This dependence provides a feedback between the surface water

balance model and the groundwater flow model (Figure 12.5) whereby high water

tables lose water to, and deep water tables gain water from, the vadose zone. The

methodology for coupling the water table dependent recharge/discharge flux to

the groundwater flow model is detailed in Levine and Salvucci (1999a).

12.2.3 Model Modifications

The vadose zone model presented in Salvucci and Entekhabi (1995, 1997) was

modified to account for winter precipitation and snowmelt. Snowmelt is divided

between storage excess runoff and infiltration according to the storage capacity

of the vadose zone. Cold season evaporation is assumed negligible. The infiltra-

tion from snow melt is added to the flux to groundwater, assuming that its effect

is mainly to increase soil moisture, and thus recharge, as a single pulse during a

period of low evaporation.
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The mean bare soil evaporation equation derived in Salvucci and Entekhabi

(1995, 1997) has also been modified to account for vegetation. The interstorm

transpiration is modelled as a two-stage process (unstressed and stressed), with the

transition time dependent on soil type, soil moisture and rooting depth (Levine

and Salvucci, 1999b). As for the other event-based fluxes in the model, the mean

transpiration is calculated by integrating over the probability distributions of the

time between storms. Because the modelled transpiration is more efficient than

bare soil evaporation, warm season recharge is negligible and the source of deep-

water recharge in Figure 12.4 is mainly melted winter precipitation. As will be seen

in the coupled model runs below, lateral groundwater redistribution of this winter

recharge makes up the moisture deficit (evaporation – rainfall – surface runoff) in

shallow water table areas throughout the rest of the year.

Groundwater discharge at the surface is simulated by distributing drains over

the surface using the drain package in MODFLOW (McDonald and Harbaugh,

1996). The stream networks predicted by the models were drawn using a flow

accumulation algorithm with weights determined from the sum of groundwater

discharge and surface runoff predicted at each cell.
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Figure 12.5. Equilibrium conditions at discharging (a) and recharging (b) sections of a hillslope. The

net recharge is positive (negative) for areas where the water table is deeper (shallower) than the

depth at which mean annual groundwater flux is zero for the simulated soil and climate conditions.

(From Levine and Salvucci, 1999a; reproduced with permission.)



12.2.4 Scenarios and Model Parameters

Following are short descriptions of estimated model parameters, discretisa-

tion choices, and soil–bedrock combinations chosen for model runs. Results,

discussions and conclusions are documented in the subsequent sections.

The groundwater model was run with one soil layer and six bedrock layers at

a horizontal grid spacing of 30 metres. The parameters in each layer were spa-

tially uniform. The groundwater divide was assumed to coincide with the surface

divide. The vertical spacing was variable, with the top layer thickness set to the

depth of unconsolidated material (derived from Carlson, 1969) and the lower

layers adjusted such that the modelled impermeable bottom was reached without

any layer being more than 1.5 times as thick as the layer above it. The modelled

impermeable aquifer bottom was placed at 500m above sea level (an average

depth of 385m below the surface). Following Tóth (1966), the bedrock is

approximated as a single homogeneous-isotropic unit. Drains were placed just

below the surface in each column in order to simulate springs and seeps if the

water table intersects the land surface at equilibrium conditions. All water leaving

the saturated zone via the drains is assumed to exit the catchment as stream flow.

A test run with 10metre horizontal grid spacing yielded nearly identical results,

most likely because the gentle topography of the prairie catchment is adequately

described by 30metre data.

The climate statistics required as input to the model (Table 12.1) were derived

from the long-term record (29 years) for Lacombe, Canada (52828 0 N, 113845 0 W)

provided by Environment Canada. This is the closest meteorological recording

station with long-term precipitation and potential evaporation records. The

potential evaporation data are pan evaporation multiplied by a single site-wide

adjustment factor. All climatic variables are assumed to be spatially uniform.

Results are presented for three simulations (Table 12.2) which include two soil

types (silt-loam and clay-loam) over low conductivity bedrock and one soil type

(silt-loam) over medium conductivity bedrock. The bedrock conductivities tested

(Table 12.3) were chosen to cover the range of values estimated by Tóth (personal

communication) in studies carried out over the Ghostpine and Three Hills Creek

areas for the Edmonton and Paskapoo geologic formations. The soil types were

chosen as representative of a silt-loam (similar to the local soil) and a clay-loam

to demonstrate the effect that soil type has on surface/aquifer coupling. The
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Table 12.1. La Combe climate parameters used in the simulations

Mean time between storms� 3.60 days

Mean storm duration� 0.92 days

Mean storm intensity� 1.08 cm/d

Mean evaporation� 0.37 cm/d

Winter precipitation (snow water equivalent) 9.96 cm

� Storm and evaporation statistics are for the 154-day average snow and frost-free period.

Source: Data from Environment Canada. Period of record is 1963 to 1992.



Brooks and Corey (1966) soil hydraulic parameters used to represent the soils are

listed in Table 12.4. For simplicity the area is modelled with complete vegetation

cover with an effective rooting depth of 45 cm. The model was also run for a two-

dimensional cross-section in order to illustrate the variety of scales of circulation

(local, intermediate and regional) making up the flow system. The two-dimen-

sional results are presented in Levine and Salvucci (1999a).

12.3 RESULTS AND DISCUSSION

12.3.1 Impact of Soil and Aquifer Hydraulic Parameters on Spatial
Patterns Induced by Saturated Unsaturated Zone Coupling

The influence of the coupling between vadose zone flux and depth to the water

table is evident in the maps of simulated net recharge (Figures 12.6, 12.7 and

12.8). Case I (Figure 12.6) shows strong recharge (red) and discharge (blue) and

many springs (white). Case II (Figure 12.7) shows strong recharge (red), dis-

charge (blue), and springs (white) occurring over a smaller percentage of the

area, and more extensive intermediate areas (yellow to pale orange) over which

coupling strongly influences the height of the water table. Case III (Figure 12.8) is

dominated by weak recharge (orange) and discharge (pale green) zones with

extensive intermediate (yellow to pale orange) zones. The higher intensity of

the recharge and discharge simulated in case I (and to a lesser extent case II)

occurs because the higher conductivity allows greater flow through the aquifer,

which in turn allows Zw to remain significantly below Z� over large areas.
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Table 12.2. Numbering of the case studies

Case number Soil type Bedrock type

Case I Silt-loam Medium conductivity

Case II Silt-loam Low conductivity

Case III Clay-loam Low conductivity

Table 12.3. Bedrock Conductivity

Bedrock type Saturated conductivity

(cm/d)

Low conductivity 0.2

Medium conductivity 2.0

High conductivity 20



Reducing the soil conductivity and increasing the soil water retention ability

(i.e. comparing case II, Figure 12.7 to case III, Figure 12.8) decreases the strength

of the recharge (red to orange) and discharge (dark blue to pale blue and green)

and yields larger midline areas (light orange and yellow). This compensation
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Table 12.4. Brooks and Corey parameters

Soil Type Saturated
conductivity
(cm/d)

Pore size
distribution
index

Effective
porosity

Bubbling pressure
head
(cm)

Clay-loam 3 0.44 0.45 �90

Silt-loam 30 1.2 0.35 �45

Sand-loam 300 3.3 0.25 �25

Source: Bras (1990)

Figure 12.6 Case I: Simulated equilibrium recharge, capillary rise, spring locations, and surface drainage.

Colour bar scales from maximum recharge (red, þ11 cm=year) to maximum capillary rise (blue,

�46 cm=year). Seeps are denoted by white pixels. Observation points are labelled as follows:

R ¼ Recharge, D ¼ Discharge, I ¼ Intermediate, C ¼ Creekbed. (From Levine and Salvucci, 1999a; repro-

duced with permission.)



occurs because the coupling effects for the clay-loam soil are active over a greater

depth than for the silt-loam soil, requiring a greater depth to the water table to

maintain recharge. The greater depth of interaction enables the feedback

mechanism to regulate the water table height more strongly by restricting the

saturated depth and hydraulic head in the relatively conductive soil layer, thus

restricting the ability of the groundwater to drain away recharge. The reduced

drainage potential, in turn, drives the water table back toward the equilibrium

distance (Z�) from the land surface.

Holding the soil type constant and increasing the bedrock conductivity (i.e.

comparing case I, Figure 12.6 to case II, Figure 12.7) reduces the water table

height, increases the strength and areal extent of recharge (red) and discharge

(blue and green) zones, and shrinks intermediate zones (yellow to pale orange).

The decrease in water table height under topographic highs weakens the impact

that vadose zone–water table coupling has on the extent and strength of recharge.

The decreased coupling under surface highs results in a larger amount of water
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Figure 12.7. Case II: Simulated equilibrium recharge, capillary rise, spring locations, and surface drainage.

Colour bar scales from maximum recharge (red, þ11 cm=year) to maximum capillary rise (blue,

�46 cm=year). Seeps are denoted by white pixels. Observation points are labelled as follows:

R ¼ Recharge, D ¼ Discharge, I ¼ Intermediate, C ¼ Creek bed. (From Levine and Salvucci, 1999a; repro-

duced with permission.)



entering the flow system. This increased groundwater flow cannot be removed

solely through evaporation in discharge areas, and thus surface seeps and springs

develop where the water table is at the land surface. A good example of this is

illustrated in case I (Figure 12.6) where springs (white) developed in most model

predicted discharge areas, strong recharge (red) extends over large areas of the

catchment, and only small zero net flux areas (pale orange) appear.

The significance of local variations in topography on the simulated spatial

distribution of recharge and discharge areas can be seen in the more strongly

coupled cases (II and III) (Figures 12.7 and 12.8). Note, for example, the dis-

charge areas predicted at the base of steep slopes and in local convergence areas

in the western portion of the study area. These areas are marked by a conver-

gence of the local topography (Figure 12.2) and groundwater flow. The effect of

the convergence of flow is to bring the water table closer to the surface, lowering

the hydraulic gradient (slowing the rate of groundwater flux), and increasing the

potential for discharge (through evaporation, springs or runoff production).
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Figure 12.8. Case III: Simulated equilibrium recharge, capillary rise, spring locations, and surface drainage.

Colour bar scales from maximum recharge (red, þ11 cm=year) to maximum capillary rise (blue,

�46 cm=year). Seeps are denoted by white pixels. Observation points are labelled as follows:

R ¼ Recharge, D ¼ Discharge, I ¼ Intermediate, C ¼ Creek bed. (From Levine and Salvucci, 1999a;

reproduced with permission.)



Case II (Figure 12.7) qualitatively captures many of the recharge and dis-

charge points in the catchment. Well captured are the discharge points near

the outlet of the catchment (eastern tip), the discharge areas along zones of

groundwater convergence (west central portion of the catchment), and the

recharge points near the higher elevation catchment boundaries (northern, south-

western and southern boundaries). Poorly captured are the discharge points that

occur along the side of the ridge forming the upper southwestern boundary, the

discharge areas that occur at the eastern edge of the ridge that extends south-

eastward from the upland area at the northern boundary of the catchment, and

the two recharge points that occur in the small valley that runs north from just

west of the southern tip of the catchment (lower right corner).

Case III (Figure 12.8) captures the discharge areas that occur along the base

of the ridge that runs south-east from the north-western boundary of the catch-

ment to just above the centre of the catchment. These areas are missed by cases I

(Figure 12.6) and II (Figure 12.7). This is an area where surface slope changes

abruptly from a downhill pitch to more level ground (Figure 12.2). The water

table in this region is fairly close to the surface for all the simulations, but for the

silt-loam cases it is still below Z�, and thus is predicted to receive water from the

vadose zone (Figure 12.4). Only in case III is Z� great enough that the simulated

mean flux at the saturated/unsaturated interface is toward the surface.

But case III fails to identify the recharge points located in the relatively flat

upland area in the northern portion of the catchment (pale orange, Figure 12.8).

This results from a competition between the relatively large depth to water table

(Zw) over which net recharge is negative for clay-loam soil (Z�
¼ 370 cm) and the

relatively shallow Zw (i.e. water table close to the ground surface) needed to

provide the gradient and transmissivity for driving groundwater flow through

the low conductivity aquifer. Together these effects act to restrict the strength

and extent of recharge zones, as shown for simple hillslopes in Salvucci and

Entekhabi (1995).

In case I (Figure 12.6), the higher lateral conductivity reduces the head gradi-

ent necessary to laterally drain groundwater recharge, resulting in a larger depth

to the water table. This lower water table decreases the area over which vadose

zone–water table coupling occurs. It results in larger and stronger recharge areas

(red/orange), almost non-existent midline areas, very small (but strong) discharge

areas (blue), and the development of significant areas of direct aquifer discharge to

the surface (white). This case fails to capture the discharge areas at the transitions

from steep hillsides to flat valley bottoms, but captures well the strong discharge

along the centre of the lower valleys in the catchment (as does case II in general).

All of the model simulations miss the discharge point closest to the south-

western boundary, approximately half-way up the catchment. This point is

located midway down a hillside and may be the result of a discontinuity in the

soil or aquifer material that creates a very localised flow system.

The matches between the model and field estimates for all three cases are

summarised in Table 12.5. This table lists the percentage of observations for

which the equilibrium model estimated the same direction of flow (recharge or
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discharge) as was estimated from the field observations. As might be expected

there is a tradeoff in which catchment parameters that lead to good estimates of

recharge location underpredict areas of discharge and vice-versa. In part this

results from the nature of the spatial structure; that is, recharge in one area of

the basin impacts discharge in others. Note also that the only spatially distributed

parameters in the model application were surface and bedrock topography.

Calibration to individual field observations could be made by adjusting local

soil hydraulic properties, but without independent measurements of these proper-

ties the significance of such calibration would be questionable.

12.3.2 Stream Networks Generated by Equilibrium Model

The model was also tested by comparing simulated to observed stream net-

works. The stream locations were predicted using a threshold-based accumula-

tion algorithm of surface runoff and spring flow. The predicted stream network

(shown in Figures 12.6, 12.7 and 12.8) thus reflects the surface and groundwater

dynamics to a much greater degree than simple contributing area methods (e.g.

algorithms that assume uniform runoff production across a basin).

The stream locations predicted for case II (Figure 12.7) are nearby to Tóth’s

(1966) three creek bed observation points and broadly correspond to the loca-

tions of streams plotted on the Canadian Centre for Mapping topographic map

for the area (which, unfortunately, is at a scale where what constitutes a stream is

somewhat subjective). In comparison with the mapped streams, the model over-

predicts stream development in the area of groundwater convergence that runs

north-south in the western portion of the catchment, and on the relatively flat

areas in the southern third of the central area. Differences in stream locations

generated from the simulated output may also be due to errors in the DEM,

terrain analysis, or mapped locations.

Note also that the stream lengths and patterns change with the changes in

patterns of recharge and discharge (Figures 12.6, 12.7, and 12.8). Case III (Figure

12.8) has the lowest overall groundwater flow, very little surface runoff, and high

evaporation, which together result in the development of only a small stream

network. The sources of the two streams that develop in this case are located in

areas of strong groundwater convergence and high water tables and not in areas

of weaker convergence. Case I (Figure 12.6) yielded a smaller stream network

than case II (Figure 12.7) because the deeper water table of case I (resulting from
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Table 12.5. Percentage of recharge and discharge points for which equilibrium model
estimates match estimates based on field observations

Observation type Case I Case II Case III

R 100 % 86% 57 %

D 67 % 78% 89 %



moderate bedrock conductivity) concentrates discharge in the lowest portions of

the catchment. These results indicate that for this climate, high drainage densities

would be expected in areas with highly conductive soils (to restrict evaporation)

and low permeability bedrock.

Because of limitations in the mapped stream locations, the comparisons

between mapped and predicted streams are of limited value. However, the strong

sensitivity of the network shape and extent on soil and bedrock properties sug-

gests that such comparisons could be useful for model calibration in situations

where the streams are mapped, based on direct field observations.

12.3.3 Benefits and Drawbacks of Vadose Zone–Groundwater Coupling
in Modelling the Spatial Patterns of Hydrologic Fluxes

In order to test whether water table coupling is a significant determinant in the

spatial structure of recharge/discharge zones, or if the structure is constrained

mainly by topography, a simulation was run holding the water table at the sur-

face. As shown by Stoertz and Bradbury (1989) and others, holding the water

table as a fixed boundary condition allows recharge to be estimated as the flow

divergence at the surface of the aquifer. Note, however, that Stoertz and

Bradbury (1989) proposed using the actual water table in such applications,

while in our case the water table was held at the land surface (as in Ophori

and Tóth (1989)). This was done because the water table data available from

Tóth (1966) were too sparse.

Because holding the water table at the surface determines a spatial distribu-

tion of net recharge without consideration of vadose zone flow processes, com-

paring the skill of this method with the skill of the equilibrium model runs

provides a simple test of the importance of two-way coupling. Furthermore, if

it was found that the uncoupled method was able to represent the observed

pattern of recharge and discharge, then topographic analysis alone could provide

a useful estimate of spatial patterns of groundwater flow in a similar fashion to

the way TOPMODEL (Beven and Kirkby, 1979) estimates spatial patterns in

runoff (see Chapter 11).

The resulting patterns of recharge and discharge (Figure 12.9) do vary in

general accordance with the observations of Tóth (1966). The amount of

recharge necessary to maintain the water table can be much higher than the

climate potentials. For example, recharge rates greater than 300 cm/yr are

required to balance groundwater divergence in some locations (e.g. the deep

red areas). Lowering the conductivity of the bedrock until the recharge areas

have physically realistic intensities (i.e. less than annual precipitation) causes the

disappearance of spatial patterns in recharge and discharge and eliminates almost

all lateral flow (Figure 12.10).

Note that the fixed water table method also overemphasises the impact of

small changes in topography by forcing the water table to reflect too closely the

surface topography. This creates a more irregular recharge–discharge field, and
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even highlights the triangular irregular networks formed in converting the surface

elevation contour map to a digital elevation model.

As discussed in the introduction, it is not surprising that uncoupled ground-

water models are susceptible to predicting recharge rates outside of reasonable

bounds. On the other hand, coupled models such as that presented here suffer

numerous limitations as well. Here the purpose was to show how observed

patterns of recharge and discharge can inform modelling, but if the model

were to be used for detailed predictions of spatially distributed catchment beha-

viour, one would need many more parameters in order to describe the meteor-

ological forcing, vegetation, and unsaturated hydraulic properties. Other

limitations (specific to the equilibrium model presented here) include the inability

to simulate transient groundwater response and the inability to account for

vertical soil heterogeneity in the vadose zone. This latter limitation could be

addressed by replacing the Eagleson-type equilibrium water balance function

(plotted in Figure 12.4) with the long-term mean flux partitioning predicted by

a Richards-based soil–vegetation–atmosphere transfer model driven by long time
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Figure 12.9. Simulated equilibrium recharge, capillary rise, spring locations, and surface drainage for an

uncoupled model run with water table held at the surface. Soil and bedrock parameters as in Case II.

Colour bar scales from maximum recharge (red, þ316 cm=year) to maximum capillary rise (blue,

�320 cm=year). Observation points are labelled as follows: R ¼ Recharge, D ¼ Discharge,

I ¼ Intermediate, C ¼ Creekbed:



records of meteorological forcing. Such a hybrid approach would not be limited

by soil homogeneity assumptions or other simplifying approximations that must

be made to derive the analytical flux capacity relations in the Eagleson (1978a–f)

and Salvucci and Entekhabi (1995) models. Whether or not relaxing these

assumptions would lead to better model results, or simply more parameters to

estimate, is an open question.

12.4 CONCLUSIONS

12.4.1 Modelling Spatial Patterns of Hydrologic Fluxes

The importance of accounting for two-way groundwater–vadose zone inter-

action when modelling the spatial distribution of surface fluxes has been demon-

strated through a comparison against Tóth’s (1966) field observations and

coupled and uncoupled model results. Allowing the position of the water table
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Figure 12.10. Simulated equilibrium recharge, capillary rise, spring locations, and surface drainage for an

uncoupled model run with water table held at the surface. Soil is clay-loam, bedrock conductivity lowered to

0.02 cm/day in order to restrict recharge to reasonable values. Colour bar scales from maximum recharge

(red, þ31 cm=year) to maximum capillary rise (blue, �32 cm=year). Observation points are labelled as

follows: R ¼ Recharge, D ¼ Discharge, I ¼ Intermediate, C ¼ Creek bed.



to influence both the surface water balance and the groundwater divergence field,

and then constraining these two fluxes to balance over the long-term mean,

defines an equilibrium condition for the catchment system. Past and current

research in surface and groundwater hydrology (e.g. Tóth, 1963; Freeze and

Witherspoon, 1966; Eagleson, 1978a–f; Stoertz and Bradbury, 1989; Salvucci

and Entekhabi, 1994a,b, 1995; Kim et al., 1999) has demonstrated and/or sup-

posed that this equilibrium state forms an estimate of long-term mean conditions.

Under this coupled and time-averaged condition, water balance partitioning in

any one part of a basin can influence the partitioning at distant points. This

behaviour imparts strong diagnostic value to spatially distributed field observa-

tions.

12.4.2 Comparison with Observations

The simulated recharge and discharge patterns match field observations of

both recharge and discharge best for case II, but not as well for the more and less

permeable conditions of cases I and III. Case I had more permeable bedrock and

allowed the groundwater to reside deeper in the ground. This minimised satu-

rated–unsaturated zone coupling and resulted in better prediction of recharge

areas but underprediction of discharge areas. Case III had less permeable bed-

rock and more retentive (clayey) soils. The reduced permeability forced the water

table closer to the surface (to increase hydraulic gradients and transmissivity),

and thus brought more of the catchment area under saturated–unsaturated cou-

pling. As a result, this case underpredicted recharge areas but captured most

observed discharge areas.

Together the results indicate that coupling is an important factor in determin-

ing the spatial structure of recharge/discharge zones. Model estimates of the

location of recharge and discharge with the water table shape determined by

topography alone (i.e. without two-way interaction) also matched the field obser-

vations reasonably well, but appeared, in a qualitative sense, unrealistically het-

erogeneous and could be achieved only with physically unrealistic recharge

intensities. In contrast, the fluxes predicted by the coupled model are within

the bounds imposed by the climate forcing (i.e. model predicted recharge is

less than rainfall, and model predicted discharge, except in cases of surface

water contact, is less than potential evaporation). This condition is not met by

the uncoupled model results where the water table was held fixed at the surface.

12.4.3 Impacts of Saturated–Unsaturated Zone Coupling on Catchment
Modelling

Conclusions specific to the modelling experiments, which may be transferable

to other catchments, can be summarised as follows:
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. The overall effect of the vadose zone feedback mechanism (at a point) is to

increase recharge if the depth to the water table is greater than equilibrium

depth Z� and to increase capillary rise if it is less than Z�.
. The spatial patterns of recharge/discharge are dependent on both the aqui-

fer permeability and the depth (of order Z�) over which strong surface

coupling exists. The patterns are more dependent on the local surface topo-

graphy when strong coupling exists (Figures 12.7 and 12.8), and on the

regional topography when weaker coupling exists (Figure 12.6).
. Low bedrock conductivity limits lateral redistribution of water and requires

the water table to rise under topographic highs in order to drain recharging

water. Higher water tables, however, restrict net recharge through both

enhanced capillary rise to the root zone and increased runoff generation.

Thus limited transmissivity increases the horizontal extent over which cou-

pling at the water table plays a role in keeping the flow system in balance.

This work has shown that an equilibrium, coupled groundwater–vadose zone

model is able to represent the long-term spatial patterns of recharge and dis-

charge in the prairie landscape of the Trochu catchment. This conclusion was

made possible by the extraordinarily detailed field data of Tóth (1966) that was

unusual not only in its spatial detail, but also in the nature of the measurements.

These were generally integrators of long-term response, such as vegetation and

soil or water chemistry, and so were ideal for the testing of the equilibrium-style

model used in this study. Indeed, without data of this type, testing the spatially

distributed predictions from equilibrium models would be impossible.
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PART THREE

IMPLICATIONS





13
Towards a Formal Approach to Calibration and Validation

of Models Using Spatial Data

Jens Christian Refsgaard

13.1 INTRODUCTION

Spatially distributed models of catchment response tend to be highly complex in

structure and contain numerous parameter values. Their calibration and valida-

tion is therefore extremely difficult but at the same time essential to obtain

confidence in the reliability of the model (Chapter 3). Traditionally, calibration

and validation has been mainly based on a comparison of observed versus simu-

lated runoff at the outlet of the catchment of interest, but it has been pointed out

numerous times that this is a very weak test of the adequacy of a model. Ideally,

the internal behaviour of the models, in terms of simulated patterns of state

variables and model output, should be tested, but examples of such internal

tests are only relatively recent. In 1994 Rosso (1994, pp. 18–19) pointed out

that ‘‘Conventional strategies for distributed model validation typically rely on

the comparison of simulated model variables to observed data for specific points

representing either external boundaries or intermediate locations on the model

grid . . . : Traditional validation based on comparing simulated with observed
outflows at the basin outlet still remains the only attainable option in many

practical cases. However, this method is poorly consistent with spatially distrib-

uted modeling . . . ’’. More recently, encouraging work has been done on demon-

strating how observed spatial patterns of hydrologically relevant variables can be

used for internal tests. Indeed, the case study chapters of this book (Chapters 6–

12) have clearly illustrated the enormous value of detailed spatial data in devel-

oping and testing distributed representations of catchment hydrological pro-

cesses. These chapters have used a plethora of different data types and models

and are representative of the progress in this area within the scientific commu-

nity. However, typically these studies have been performed in small, well instru-

mented research catchments. The models often have been developed or modified

by the group of people who did the data collection and also were the users of the

results; and the purpose of the model development was to obtain insight into

spatial catchment processes and process interactions.
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These conditions are quite different in practical applications. In a practical

case, that is, when a model is used and/or developed to assist in making manage-

ment or design decisions in a particular catchment, the catchments are usually

much larger and one can often only rely on data from the standard network that

are not nearly as detailed as those in research catchments. Often the standard

data are of unknown and/or undocumented quality. This tends to make model

calibration and validation in particular cases significantly more difficult and less

accurate. In many practical cases there is then an issue of whether, with the given

data, a spatially distributed model of catchment response can at all be considered

to reliably portray catchment behaviour.

In practical applications, model users often use model codes they have not

developed themselves and data that are provided by different agencies. It is

sometimes not clear how reliable the code is and sometimes it is unclear to the

user how the code exactly works. The lack of field experience also makes it more

difficult to appreciate which processes operate in the catchment and what is the

best model approach for representing them. The large scale of catchments often

considered in practical applications of distributed models tends to cause scale

problems similar to those discussed in Chapter 3 of this book. For example, it is

not uncommon to use Richards’ equation for elements that are as big as 500�

500m – this is an area that is larger than the size of the whole catchment in many

of the case studies in this book which have shown an enormous complexity that

goes far beyond the processes represented by Richards’ equation. The fact that

model users, model builders, data providers, and clients are different groups and

have differences in terminology, creates further problems. Currently there

appears to exist no unique and generally accepted terminology on model valida-

tion in the hydrological community and the many different and contradictory

definitions used tend to be confusing.

Finally, in practical applications, the purpose of the modelling is to make

predictions rather than to gain insight into spatial catchment behaviour. What

is considered a useful model for understanding catchment behaviour is not neces-

sarily useful for practical applications. Many case studies in the chapters of this

book used comparison of observed and simulated patterns not only to calibrate

models and ensure that they are working for the right reasons, but also to identify

from the pattern comparison, processes that the model cannot handle very well.

These may be the subject of future research work. On the other hand, the situa-

tion is quite different in the practical case. What is needed in this case is a reliable

model for the projected conditions of model application and the insights

obtained are only important to the extent they can be used to improve model

performance and/or interpretation of the results in terms of management or

design decisions. It is important to realise that the type of model application

i.e. investigative versus predictive, has profound implications on both model

structure (predictive models often having a simpler structure) and model calibra-

tion/validation (predictive models often having a better defined range of applic-

ability). The validation and calibration of distributed models in practical

applications is therefore quite different from that in research type applications.
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Unfortunately, in practical projects there is often not very thorough model

testing due to data and resource constraints. It is not uncommon for predictions

of spatial patterns to be made with models that have not been properly tested in

terms of their spatial behaviour. For example, Kutchment et al. (1996) applied a

distributed physically-based model to simulate the 3315 km2 Ouse basin in the

UK. They calibrated their model against runoff data only, but stated also that

the model can give ‘‘hydrologically meaningful estimates of internal values’’. Due

to lack of data and lack of tests on internal variables, this statement appears as

the authors’ own perception rather than a documented fact. This problem has

been recognised by some authors who are a little more circumspect about the

performance of distributed models. Jain et al. (1992) applied a distributed phy-

sically-based model to the 820 km2 Kolar catchment in India, where the runoff

data comprised the only available calibration and validation data. They con-

cluded that ‘‘The resulting final model calibration is believed to give a reasonably

good physical representation of the hydrological regime. However, a preliminary

model set-up and calibration . . . resulted in an equally good hydrograph match,

but on the basis of apparently less realistic soil and vegetation parameter values.

Thus, it may be concluded that a good match between observed and simulated

outlet hydrographs does not provide sufficient guarantee of a hydrologically

realistic description.’’ However, the practical problems for which distributed

models need to be applied remain, so the challenge is to better use the informa-

tion available to us and to seek additional information, to help strengthen the

confidence we can have in simulated responses from distributed models.

It is clear that proper validation and calibration of distributed models of

catchment behaviour is of the utmost importance. This is obviously an uncertain

endeavour. The primary role of model calibration and validation is to obtain a

realistic assessment of this uncertainty – of what confidence we can place on the

predictions of our model. In this chapter, these issues are addressed by proposing

a framework for model validation and calibration. Also, issues of terminology

will be clarified to develop a common language, and data issues relevant to

distributed catchment models in practical applications will be discussed. The

validation framework and data considerations will be illustrated in a case

study for the 440 km2 Karup catchment. The chapter concludes with a discussion

on possible interactions between model builders, model users, and clients that

could improve the understanding and treatment of uncertainty in practical appli-

cations of spatially distributed catchment models.

13.2 SOURCES OF SPATIAL DATA FOR PRACTICAL APPLICATIONS

Distributed hydrological models require spatial data. In this chapter, two differ-

ent terms are used for the data, depending on its type: parameter values are those

that do not vary with time while variables are time dependent. In a traditional

model application the parameter values and the driving variables (typically cli-

mate data) are input data, while the other variables are simulated by the model.
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An overview of typical data types and sources is given in Table 13.1 together

with a characterisation of the typical availability of data from traditional sources

and the potential for operational use of remote sensing data. Basically, tradi-

tional data sources provide point or vector data. Even for many of the exceptions

to this, such as digital elevation maps or soil maps, the spatial data are inferred

from originally measured point data. In general, it is possible to obtain such

spatial data on catchment characteristics for use as model parameter input and

by assuming relationships between these data and model parameters (e.g.

between soil type and soil hydraulic properties, between vegetation types and

water use etc.), model parameter values can be estimated (albeit with an accuracy

determined by the validity of the assumed relationships – see discussion in

Chapter 2, pp. 23–4, 41). It is also generally possible to get hydroclimatological

time series for driving the model and for checking the overall catchment runoff.

However, there is almost always a lack of data to check the detailed spatial

patterns of internally simulated variables such as soil moisture, actual evapotran-

spiration and water depths. The only source for such data that can be charac-

terised as realistic on scales above plots and small experimental catchments, is

remote sensing data.

Remote sensing data have for a couple of decades been described as having a

promising potential to supply spatial data to distributed hydrological models, e.g.

Schulz (1988), Engman (1995) and De Troch et al. (1996). However, so far the

success stories, at least in operational applications, are in practice limited to

mapping of land use and snow cover, whereas scientific/technological break-

throughs are still lacking for assessing soil moisture, vegetation status, actual

evapotranspiration and water depths. Chapters 5 and 6 in this book give exam-

ples of research applications where progress is clearly being made on representing

variables such as soil moisture and saturated source areas, but as yet these

methods are not available for practical application.

With progress made in recent years at the research level, we may foresee

operational applications of remote sensing for practical modelling within the

next decade in areas such as:

. Assessments of water depths and inundation areas at larger scales (> 1 km
length) to be used for flood forecasting and flood mapping. This can today

be done during cloud-free periods by use of thermal data, and appears

promising in the future by use of SAR data. Furthermore, new high-resolu-

tion (few metres) visible satellite data are also promising.
. Assessment of vegetation and soil moisture status at field scale and above

to be used for crop forecasting, irrigation management and meteorological

forecasting.
. Assessment of vegetation status at field scale and below for supporting

precision agriculture.
. Improved accuracy of RADAR derived precipitation.

A key point to remember about remote sensing data is that it is a surrogate

measure – i.e. it depends on a relationship between properties of emitted or
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reflected radiation and a particular feature of interest such as soil moisture con-

tent. It is not a direct measure so, as with parameters like soil hydraulic proper-

ties estimated from soil type, the accuracy of derived measures is a function of the

quality of the surrogate relationships (see Chapter 3, pp. 41–5).

13.3 ISSUES OF TERMINOLOGY

13.3.1 Background

Before presenting a practical methodology for model calibration and valida-

tion, it is worth reflecting on the more fundamental question of whether models at

all can be validated, and issues of terminology. Konikow and Bredehoeft (1992)

argued that the terms validation and verification are misleading and their use

should be abandoned: ‘‘ . . . the terms validation and verification have little or

no place in ground-water science; these terms lead to a false impression of

model capability’’. The main argument in this respect relates to the anti-positivis-

tic view that a theory (in this case a model) can never be proved to be generally

valid, but can on the contrary be falsified by just one example. De Marsily et al.

(1992) argued in a response to Konikow and Bredehoeft (1992) for a more prag-

matic view: ‘‘ . . .using the model in a predictive mode and comparing it with new

data is not a futile exercise; it makes a lot of sense to us. It does not prove that the

model will be correct for all circumstances, it only increases our confidence in its

value. We do not want certainty; we will be satisfied with engineering confidence.’’

Part of the difference of opinion relates to interpretations of the terminology used.

Konikow (1978) and Anderson and Woessner (1992) use the term verification

with respect to the governing equations, the code or the model. According to

Konikow (1978) a model is verified ‘‘if its accuracy and predictive capability

have been proven to lie within acceptable limits of errors by tests independent

of the calibration data’’. The termmodel verification is used by Tsang (1991) in the

meaning of checking the model’s capability to reproduce historical data.

Anderson and Woessner define model validation as tests showing whether the

model can predict the future. As opposed to the authors above, Flavelle (1992)

distinguishes between verification (of computer code) and validation (of site-spe-

cific model). Oreskes et al. (1994), using a philosophical framework, state that

verification and validation of numerical models of natural systems theoretically is

impossible, because natural systems are never closed and because model results

are always non-unique. Instead, in their view models can only be ‘‘confirmed’’.

Within the hydraulic engineering community attempts have been made to estab-

lish a common methodology (IAHR, 1994). The IAHR methodology comprises

guidelines for standard validation documents, where validation of a software

package is considered in four steps (Dee, 1995; Los and Gerritsen, 1995): con-

ceptual validation, algorithmic validation, software validation and functional

validation. This approach concentrates on what other authors call code verifica-

tion, while schemes for validation of site-specific models are not included.
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The terminology and methodology proposed below has evolved from a back-

ground of more than twenty years’ experience with research, development and

practical applications of hydrological models. The proposed terminology and

methodology is aimed at being pragmatic and does not claim to be in full accor-

dance with scientific philosophy. Thus, it operates with the terms verification and

validation, which are being used on a routine basis in the hydrological commu-

nity, although with many different meanings. On the other hand, the term model

validation is not used carelessly here but within a rigorous framework where

model validation refers to site specific applications and to pre-specified perfor-

mance (accuracy) criteria. Thus, in agreement with past practical experience and

in accordance with philosophical considerations, a model code is never consid-

ered generally valid.

13.3.2 Definition of Terminology

The following terminology is inspired by the generalised terminology for

model credibility proposed by Schlesinger et al. (1979), but modified and

extended to suit distributed hydrological modelling. The simulation environment

is divided into four basic elements as shown in Figure 13.1. The inner arrows

describe the processes which relate the elements to each other, and the outer

arrows refer to the procedures which evaluate the credibility of these processes.

The most important elements in the terminology and their interrelationships are

defined as follows:
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Reality. The natural system, understood here as the hydrological cycle or parts

of it.

Conceptual model. A conceptual description of reality, i.e. the user’s perception of

the key hydrological processes in the catchment and the corresponding simplifi-

cations and numerical accuracy limits which are assumed acceptable in the model

in order to achieve the purpose of the modelling.

Model code. Generic software program.

Model. A site-specific model established for a particular catchment, including

input data and parameter values.

Model construction. Establishment of a site-specific model using a model code.

This requires, among other things, the definition of boundary and initial condi-

tions and parameter assessment from field data.

Simulation. Use of a validated model to gain insight into reality and obtain

predictions that can be used by water managers.

Model qualification. An estimate of the adequacy of the conceptual model to

carry out the desired application within the acceptable level of accuracy.

Code verification. Substantiation that a model code is in some sense a true repre-

sentation of a conceptual model within certain specified limits or ranges of appli-

cation and corresponding ranges of accuracy.

Model calibration. The procedure of adjustment of parameter values of a model

to reproduce the response of a catchment under study within the range of accu-

racy specified in the performance criteria.

Model validation. Substantiation that a model within its domain of applicability

possesses a satisfactory range of accuracy consistent with the intended applica-

tion of the model.

Performance criteria. Level of acceptable agreement between model and reality.

The performance criteria apply both for model calibration and model validation.

In the above definitions the term conceptual model should not be confused with

the word conceptual used in the traditional classification of hydrological models

(lumped conceptual rainfall-runoff models).
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13.4 PROPOSED METHODOLOGY FOR MODEL CALIBRATION AND
VALIDATION

13.4.1 Modelling Protocol

The protocol described below is a translation of the general terminology and

methodology defined above into the field of distributed hydrological modelling.

It is furthermore inspired by the modelling protocol suggested by Anderson and

Woessner (1992), but modified concerning certain steps.

The protocol is illustrated in Figure 13.2 and described step by step in the

following.

1. The first step in a modelling protocol is to define the purpose of the model

application. An important element in this step is to give a first assessment

of the desired accuracy of the model output.

2. Based on the purpose of the specific problem and an analysis of the

available data, the user must establish a conceptual model.

3. After having defined the conceptual model, a suitable computer program

has to be selected. In principle, the computer program can be prepared

specifically for the particular purpose. In practice, a code is often selected

among existing generic modelling systems. In this case it is important to

ensure that the selected code has been successfully verified for the parti-

cular type of application in question.

4. In case no existing code is considered suitable for the given conceptual

model a code development has to take place. In order to substantiate that

the code solves the equations in the conceptual model within acceptable

limits of accuracy a code verification is required. In practice, code verifica-

tion involves comparison of the numerical solution generated by the code

with one or more analytical solutions or with other numerical solutions.

5. After having selected the code and compiled the necessary data, a model

construction has to be made. This involves designing the model with

regard to the spatial and temporal discretisation, setting boundary and

initial conditions and making a preliminary selection of parameter values

from the field data. In the case of distributed modelling, the model con-

struction generally involves reducing the number of parameters to cali-

brate (i.e. reducing the ‘‘degrees of freedom’’, Chapter 3, pp. 75–6) e.g. by

using representative parameter values for different soil types.

6. The next step is to define performance criteria that should be achieved

during the subsequent calibration and validation steps. When establishing

performance criteria, due consideration should be given to the accuracy

desired for the specific problem (as assessed under step 1) and to the

realistic limit of accuracy determined by the field situation and the avail-

able data (as assessed in connection with step 5). If unrealistically high

performance criteria are specified, it will either be necessary to modify the

criteria or to obtain more and possibly quite different field data.
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7. Model calibration involves adjustment of parameter values of a specific

model to reproduce the observed response of the catchment within the

range of accuracy specified in the performance criteria. It is important in

this connection to assess the uncertainty in the estimation of model para-

meters, for example from sensitivity analyses.

8. Model validation involves conduction of tests which document that the

given site-specific model is capable of making sufficiently accurate predic-

tions. This requires using the calibrated model, without changing the

parameter values, to simulate the response for a period other than the

calibration period. The model is said to be validated if its accuracy and

predictive capability in the validation period have been proven to lie

within acceptable limits or to provide acceptable errors (as specified in
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the performance criteria). Validation schemes for different purposes are

outlined below.

9. Model simulation for prediction purposes is often the explicit aim of the

model application. In view of the uncertainties in parameter values and,

possibly, in future catchment conditions, it is advisable to carry out a

predictive sensitivity analysis to test the effects of these uncertainties on

the predicted results (see Chapter 11 for one such procedure).

10. Results are usually presented in reports or electronically, e.g. in terms of

animations. Furthermore, in certain cases, the final model is transferred to

the end user for subsequent day-to-day operational use.

11. An extra possibility of validation of a site-specific model is a so-called

postaudit. A postaudit is carried out several years after the modelling

study is completed and the model predictions can be evaluated against

new field data.

13.4.2 Scheme for Construction of Systematic Model Validation Tests

Distributed hydrological models contain a large number of parameters, and it

is nearly always possible to produce a combination of parameter values that

provides a good agreement between measured and simulated output data for a

short calibration period. However, as discussed in Chapter 3, this does not

guarantee an adequate model structure nor the presence of optimal parameter

values. The calibration may have been achieved purely by numerical curve fitting

without considering whether the parameter values so obtained are physically

reasonable. Further, it might be possible to achieve multiple calibrations or

apparently equally satisfactory calibrations based on different combinations of

parameter values (see also Chapter 11). Ideally, the ultimate purpose of calibra-

tion is not to fit the calibration data but to fit reality. If the other error sources,

including the effects of non-perfect model structure and data uncertainties, are

not somehow considered, there is a danger of overfitting.

In order to assess whether a calibrated model can be considered valid for

subsequent use it must be tested (validated) against data different from those

used for the calibration. According to the methodology established above,

model validation implies substantiating that a site-specific model can produce

simulation results within the range of accuracy specified in the performance

criteria for the particular study. Hence, before carrying out the model calibra-

tion and the subsequent validation tests, quantitative performance criteria must

be established. In determining the acceptable level of accuracy a trade-off will,

either explicitly or implicitly, have to be made between costs, in terms of data

collection and modelling work, and associated benefits of achieving more accu-

rate model results. Consequently, the acceptable level of accuracy will vary

from case to case, and should usually not be defined by the modellers, but

by the water resources decision makers. In practice, however, the decision

maker often only influences this important issue very indirectly by allocating
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a project budget and requesting the modeller to do as good as possible within

this given frame.

The scheme proposed below is based on Klemeš (1986b) who states that a

model should be tested to show how well it can perform the kind of task for

which it is specifically intended. The four types of test correspond to different

situations with regard to whether data are available for calibration and whether

the catchment conditions are stationary or the impact of some kind of interven-

tion has to be simulated.

The split-sample test is the classical test, being applicable to cases where there

is sufficient data for calibration and where the catchment conditions are station-

ary. The available data record is divided into two parts. A calibration is carried

out on one part and then a validation on the other part. Both the calibration and

validation exercises should give acceptable results. This approach was taken in

Chapters 6, 7, 10 and 11.

The proxy-basin test should be applied when there is not sufficient data for a

calibration of the catchment in question. If, for example, streamflow has to be

predicted in an ungauged catchment Z, two gauged catchments X and Y within

the region should be selected. The model should be calibrated on catchment X

and validated on catchment Y and vice versa. Only if the two validation results

are acceptable and similar can the model command a basic level of credibility

with regard to its ability to simulate the streamflow in catchment Z adequately.

The differential split-sample test should be applied whenever a model is to

be used to simulate flows, soil moisture patterns and other variables in a given

gauged catchment under conditions different from those corresponding to the

available data. The test may have several variants depending on the specific

nature of the modelling study. If, for example, a simulation of the effects of a

change in climate is intended, the test should have the following form. Two

periods with different values of the climate variables of interest should be

identified in the historical record, such as one with a high average precipita-

tion, and the other with a low average precipitation. If the model is intended

to simulate streamflow for a wet climate scenario, then it should be calibrated

on a dry segment of the historical record and validated on a wet segment.

Similar test variants can be defined for the prediction of changes in land use,

effects of groundwater abstraction and other such changes. In general, the

model should demonstrate an ability to perform through the required transi-

tion regime.

The proxy-basin differential split-sample test is the most difficult test for a

hydrological model, because it deals with cases where there is no data available

for calibration and where the model is directed to predicting non-stationary

conditions. An example of a case that requires such a test is simulation of hydro-

logical conditions for a future period with a change in climate and for a catch-

ment where no calibration data presently exist. The test is a combination of the

two previous tests.

Examples of the four tests are given by Refsgaard and Knudsen (1996), and

Styczen (1995) provides an example of a test procedure based on the same prin-
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ciples for the validation of pesticide leaching models for registration purposes. A

general point related to all the tests, is that if the accuracy of the model for the

validation period is much worse than for the calibration period, it is an indication

of ‘‘overfitting’’; that is, there is likely to be a problem with the model structure

causing the parameters to be specific to the conditions used for calibration. The

ratio of accuracy during the calibration period to accuracy during the validation

period is sometimes used as a measure of the degree of overfitting.

It is noted that, according to this scheme, a distributed model cannot claim a

predictive capability in simulation of spatial patterns unless it has been specifi-

cally tested for this purpose. Thus, if a model has only been validated against

discharge data, which is very commonly the case, there is no documentation on

its predictive capability with regard to, for example, simulation of spatial pat-

terns of soil moisture and groundwater levels at grid scales. Claims on predictive

capabilities with regard to, for example, soil moisture variation in time and space,

require successful outputs from a validation test designed specifically with this

aim. When designing validation tests the following additional principles must be

taken into account:

. The scale of the measurements used must be appropriate for the scale of the

model elements (see Chapter 2, pp. 19–20). The scales need not be identical,

but the field data and the model results must be up/downscaled, so that

they are directly comparable.
. The performance criteria must be specified, keeping the spatial patterns in

mind.
. The validation test must be designed in accordance with a special emphasis

on the spatial patterns and the distributed nature of the model.

For illustrative purposes, a hypothetical example is given in the following.

Suppose that one purpose of a model application is to predict the patterns of

soil moisture in the topsoil, and that the validation data consist of a remote

sensing based SAR data set with a 30 m spatial resolution at four times during

a given period. Suppose that the SAR data set has been successfully calibrated/

validated against ground truth data and that the error can be described statisti-

cally (mean, standard deviation, spatial correlations). Suppose finally that the

hydrological model uses a horizontal grid of 60 m and can match the vertical

depth of the topsoil measured by the SAR. The above three principles could be

implemented as follows:

. Scaling. The comparisons between model and data should be carried out at

a minimum scale of 60 m. The data could also be aggregated to larger scales

if that were sufficient for the subsequent model application. In any case the

error description of the SAR data must be corrected to correspond to the

selected scale, implying that the standard deviation of the error is reduced

due to the aggregation process (see Chapter 2, p. 23).
. The performance criteria could, for example, be chosen to reflect various

aspects such as:
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– Capability to describe correct overall levels. This may include criteria on

comparison of mean values and standard deviations of SAR data and

model results.

– Capability to describe spatial patterns. This may include comparison of

correlation lengths or division of the entire area into subareas and com-

parison of statistics within each subarea.

– Capability to describe temporal dynamics. This may include criteria

on comparison of SAR and model time series for selected areas, such

as regression coefficient and model efficiency (Nash and Sutcliffe,

1970).

In general, the numerical values of the performance criteria should depend

on the uncertainty of the data, as described by the error statistics, and the

purpose of the modelling study.
. The type of validation test should be decided from the same principles as

outlined above. For instance, if SAR data were available for just part of

the model area, a proxy-basin split sample test can be applied where

model results, calibrated without SAR data, were compared in the over-

lapping area. The performance criteria would then be assumed to indi-

cate how well the model will perform for the area not covered by SAR

data.

13.4.3 Use of Spatial Data

Distributed hydrological models are structured to enable the spatial varia-

tions in catchment characteristics to be represented by having different para-

meter and variable values for each element. Often model applications require

several thousands of elements, meaning that the number of parameters and

variables could be two or three orders of magnitude higher than for a lumped

model of the same area. Obviously, this generates different requirements for

lumped and distributed models with regard to parameterisation, calibration and

validation procedures.

A critique expressed against distributed models by several authors concerns

the many parameter values which can be modified during the calibration pro-

cess. Beven (1989, 1996) considers models which are usually claimed to be

distributed physically-based as in fact being lumped conceptual models, just

with many more parameters. Hence, according to Beven (1996) a key charac-

teristic of the distributed model is that ‘‘the problem of overparameterisation is

consequently greater’’.

To address this problem in practical applications of distributed models, it is

necessary to reduce the ‘‘degrees of freedom’’ by inferring spatial patterns of para-

meter values so that a given parameter only reflects the significant and systematic

variation described in the available field data. This approach is exemplified by the

practice of using representative parameter values for individual soil types, vegeta-

tion types or geological layers along with patterns of these types (see also the
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discussion in Chapter 3, pp. 75–6 and examples of using this approach in Chapters

6, 9 and 10). This approach reduces the number of free parameter coefficients that

need to be adjusted in the subsequent calibration procedure. The following points

are important to consider when applying this approach (Refsgaard and Storm,

1996):

. The parameter classes (soil types, vegetation types, climatological zones,

geological layers, etc.) should be selected so that it becomes easy, in an

objective way, to associate parameter values. Thus the parameter values in

the different classes should, to the highest possible degree, be assessable

from available field data.
. It should explicitly be evaluated which parameters can be assessed from

field data alone and which need some kind of calibration. For the para-

meters subject to calibration, physically acceptable intervals for the para-

meter values should be estimated.
. The number of real calibration parameters should be kept low, both from a

practical and a methodological point of view. This can be done, for

instance, by fixing a spatial pattern of a parameter but allowing its absolute

value to be modified through calibration.

Reducing the number of free parameters in this way helps to avoid methodolo-

gical problems in the subsequent phases of model calibration and validation. An

important benefit of a small number of free parameters adjustable through cali-

bration is that the whole parameter assessment procedure becomes more trans-

parent and reproducible. The quality of the results, however, depends on the

adequacy and accuracy of the imposed patterns. It is also important to consider

to what extent the imposed pattern dominates the pattern of the simulated output

(see Chapter 3, p. 76, and Figures 6.13, 9.12 and 10.15). Another example is the

use of Thiessen polygons for representing spatial precipitation patterns where it is

possible that soil moisture may be dominated by precipitation quantities making

the simulated spatial patterns just reflect the Thiessen polygons. It may often be

required to aggregate both model results and field data to a scale where the

imposed pattern does not dominate.

Thus, the challenge for the hydrologist has been expanded beyond the task of

tuning parameter values through calibration to the art of defining hydrologically

sound methods for reducing the number of parameters to be calibrated.

13.5 CASE STUDY

The above methodology is illustrated step by step in the study described in

Refsgaard (1997). The first seven steps are summarised with rather brief descrip-

tions in Section 13.5.2, while the model validation step is addressed more thor-

oughly in Section 13.5.3.
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13.5.1 The Karup Catchment

The 440 km2 Karup catchment is located in a typical outwash plain in the

western part of Denmark. From a geological point of view the area is rela-

tively homogeneous, consisting of highly permeable sand and gravel with

occasional lenses of moraine clay. The depth of the unsaturated zone varies

from 25 m at the eastern groundwater divide to less than 1 m in the wetland

areas along the main river. The aquifer is mainly unconfined and of glacial

deposits. The thickness of the aquifer varies from 10 m in the western and

central parts to more than 90 m to the east. The catchment has a gentle

sloping topography and is drained by the Karup River and about 20

tributaries.

The Karup catchment has been subject to several hydrological studies (e.g.

Stendal, 1978; Miljøstyrelsen, 1983; Styczen and Storm, 1993) and a comprehen-

sive database exists both for surface water and ground water variables. The

catchment area and the measurement sites referred to in the following are

shown in Figure 13.3.
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Figure 13.3. The 440 km2 Karup catchment with the river network in a 500 m model grid together

with the location of the discharge gauging stations and groundwater observation wells referred to in

the text. (From Refsgaard, 1997; reproduced with permission.)



13.5.2 Establishment of a Calibrated Model – the First Steps of the
Modelling Protocol

Step 1. Definition of Purpose

The overall objectives of the case study are to illustrate the parameterisation,

calibration and validation of a distributed model and to study the validation

requirements with respect to simulation of internal variables and to changing

spatial discretisation. In this context the purpose of the model is to simulate the

overall hydrological regime in the Karup catchment, especially the spatial pattern

of discharges and groundwater table dynamics.

Step 2. Establishment of a Conceptual Model

The assumptions made regarding the hydrological system are described in

detail in Refsgaard (1997). The main components of the conceptual model can

be characterised as follows:

. The groundwater system is described by an unconfined aquifer comprising

one main aquifer material with the same hydraulic parameters throughout

the catchment and five minor lenses with distinctly different parameters.

The aquifer system is modelled as two-dimensional.
. The unsaturated zone is described by one-dimensional vertical flows. The

soil system is via maps and profile descriptions described by two soil types

characterised by different hydraulic parameters.
. Four vegetation/cropping classes are assumed: agriculture, forest, heath

and wetland.
. The main river system and the tributaries which could be accommodated

within the 500 m spatial model discretisation are included in the model. The

wetland areas are assumed to be drained by ditches and tile drainpipes. The

stream–aquifer interaction is assumed to be governed by the head differ-

ences in the river and the main aquifer and controlled by a thin, low

permeability layer below the riverbed.
. Daily values, averaged over the catchment, of precipitation, potential eva-

potranspiration and temperature are used.

Step 3. Selection of Model Code

The code selected for the study was MIKE SHE (Refsgaard and Storm, 1995).

In the present case the following modules were used: two-dimensional overland

flow (kinematic wave), one-dimensional river flow (diffusive wave), one-dimen-

sional unsaturated flow (Richards’ equation), interception (Rutter concept),

evapotranspiration (Kristensen and Jensen concept), snowmelt (degree-day con-

cept) and two-dimensional saturated flows (Boussinesq).

Step 4. Code Verification

As MIKE SHE is a well proven code with several verification tests as well as

many large scale engineering applications, including prior tests on the present
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area and on similar cases, no additional code verification was required in this

case.

Step 5. Model Construction

The details regarding spatial discretisation of the catchment, setting of bound-

ary and initial conditions and making a preliminary selection of parameter values

from the field data are described in Refsgaard (1997). The number of parameters

to be calibrated was reduced to 11 by, for example, subdividing the domains

based on soil classes with uniform soil parameters in each subdivided area. Three

of the parameters related to the aquifer properties and stream-aquifer interac-

tion, while the eight remaining ones were soil hydraulic parameters. Thus the

degrees of freedom in describing the spatial pattern of ground water levels in

practice reduces to three parameters that can be fitted through calibration. One

of the costs of such simplification is that one (spatially constant) value for aquifer

hydraulic conductivity may not be sufficient to adequately describe the spatial

patterns in groundwater flows and groundwater levels. A previous calibration of

groundwater transmissivities for the same aquifer (Miljøstyrelsen, 1983) suggests

that the transmissivities vary substantially more than can be explained by the

variation in aquifer thickness in the present model.

Step 6. Performance Criteria

The performance criteria were related to the following variables:

1. Discharge simulation at station 20.05 Hagebro (the outlet of the catch-

ment) with a graphical assessment of observed and simulated hydrographs

supported by the following two numerical measures:

. average discharges of observed and simulated records, OBSave and

SIMave, and
. model efficiency, R2, calculated on a daily basis (Nash and Sutcliffe,

1970).

2. Groundwater level simulations at observation wells 21, 41 and 55 located

in the downstream part of the catchment and also used by Styczen and

Storm (1993) plus observation wells 8, 9, 11, 12 representing a cross-

section at the upstream part of the catchment.

These criteria were used for the calibration and the first part of the validation

tests. For the second part of the validation tests, focussing on the capability to

describe internal variables and spatial patterns, additional criteria were defined

(see below).

Step 7. Model Calibration

Most of the parameter values were assessed directly from field data or trans-

ferred from experience in other similar catchments. The remaining eleven para-

meter values were assessed during calibration through a trial-and-error process.

The model calibration was carried out on the basis of data for the period 1971–
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74. Altogether, the calibration results are of the same accuracy as the results in

Styczen and Storm (1993), and are, as such, considered acceptable.

13.5.3 Model Validation

The validation tests have been carried out in two steps:

. Step 8a. Validation on the same station/wells as used for the calibration.

. Step 8b. Validation on additional data representing internal variables not

utilised during the calibration process.

The validation tests were designed in accordance with the three guiding princi-

ples, outlined in Section 13.4.2. The validation test type is a traditional split-

sample test for Step 8a and a proxy-basin split-sample test for Step 8b.

Scaling. The discharge data are aggregated values integrating the runoff over

the respective catchments. This applies both to the field data and the model

simulations, so no scaling inconsistency occurs here. The groundwater level

data from observation wells are point data as opposed to the model simulations

which represent average values over 500 m grids. The groundwater levels are

known to vary typically by 1–2 m over a 500 m distance (Stendal, 1978).

Hence, observed and simulated groundwater levels cannot be expected to

match more closely than 1–2 m with regard to levels but somewhat better with

regard to temporal dynamics.

The performance criteria take the various aspects into account as follows:

. The overall levels are expected to match within 10% with regard to average

discharge and within 2 m with regard to groundwater levels. The 2 m

criteria should be seen in view of a typical variation in observed ground-

water levels of 1 12 –2 m within 500 m (Stendal, 1978).
. The temporal dynamics is expected to match reasonably well. No specific,

numerical criteria have been identified for this purpose, but the visual

inspection will focus on amplitude and phasing of the annual fluctuations.
. The capability to describe internal spatial patterns has been tested by using

additional data for the following stations, for which data were not used at

all during the calibration process:

– discharge values at the three stations 20.06 Haderup (98 km2), 20.07

Stavlund (50 km2) and 20.08 Feldborg (17 km2) (Figure 13.3).

– groundwater tables at observation wells 63, 64, 65 and 66, located in the

area between the main river and the tributary with the three discharge

stations 20.06, 20.07 and 20.08 (Figure 13.3).

Key results from this validation test are shown in Figures 13.4 and 13.5. These

results from one discharge station and seven groundwater observation wells were

comparable to the results from the calibration period and have been assessed as

acceptable. Hence the model has now been successfully validated for simulation
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of catchment discharge and groundwater levels in these seven observation wells

with the expected accuracy similar to those shown in Figures 13.4 and 13.5.

The interesting question now is how reliable is the model for simulation of

internal variables and spatial patterns. This was addressed during step 8b.

Results from the first 28 months of the validation period, where data are

available for all the above stations, are seen in Figures 13.6 and 13.7 for

discharge and groundwater tables, respectively. As can be seen from the hydro-

graphs, the water balance, and the model efficiency, the simulation results are

significantly less accurate than for the calibrated stations. The simulated dis-

charges at the three tributary stations are significantly poorer than for the

calibrated station 20.05 in two respects. Firstly, there is a clear underestimation

of the baseflow level and the total runoff for the three tributary stations, where

the 10% accuracy on the water balance performance criteria is not fulfilled for

any of the three stations. Secondly, the simulation shows a significantly more

flashy response than the observed hydrographs. The simulated groundwater

tables (Figure 13.7) show correct dynamics, but have problems with the levels.

The groundwater level error at well no. 64 is just above the 2 m specified as the

accuracy level in the performance criteria on groundwater levels. Taking into

account that the gradient between wells 64 and 65, which are located in two

neighbouring grids, is wrong by about 3 m, the model simulation of ground-

water levels can not be claimed to have passed the performance criteria in

general. The primary reason for the differences in baseflow levels appear to

be that the internal groundwater divide between the main river and the main

tributary is not simulated correctly, with the result that the three tributary

stations according to the model are draining smaller areas than they do in

reality.

From the conducted validation tests, it may be concluded that the model

cannot be claimed to be valid for discharge simulation of subcatchments, nor
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Figure 13.4. Simulated and observed discharge for the entire catchment for the validation period

together with figures for average observed and simulated flows, OBSave and SIMave, and model

efficiency on a daily basis, R2. (From Refsgaard, 1997; reproduced with permission.)



for groundwater levels in general over the entire catchment area. Following

the methodology represented in Figure 13.2, we should now re-look at the

model conceptualisation and model construction, and perform additional cali-

bration and tests to improve confidence. To do this we would need additional

data. This could be more discharge data from other subcatchments, or addi-

tional data on groundwater levels to derive more detailed spatial patterns of

ground water response. It would be hoped that using new and more detailed

data will improve the model so that it meets the desired performance criteria.

In the context of a practical application, more resources would need to be

obtained to carry out these improvements. This is where the interaction with

managers regarding acceptable accuracy and available budgets becomes

critical.
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The locations of the wells are shown in Figure 13.3. (From Refsgaard, 1997; reproduced with

permission.)
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Figure 13.6. Simulated and observed discharges, average flows, SIMave and OBSave, and model

efficiencies, R2, from the validation period for three internal discharge sites 20.06 (98 km2), 20.07

(50 km2) and 20.08 (17 km2), which have not been subject to calibration. The locations of the

discharge stations are shown in Figure 13.3. (From Refsgaard, 1997; reproduced with permission.)



13.6 DISCUSSION AND CONCLUSIONS

The need for model validation in distributed hydrological modelling was dis-

cussed in Chapter 3. Loague and Kyriakidis (1997) also concluded that the

hydrologists need to establish rigorous model evaluation protocols. Gupta et

al. (1998) argued that the whole nature of the calibration problem is multi-objec-

tive with a need to include not only streamflow but also other variables.

While some attention has been paid to systematic validation of lumped hydro-

logical (rainfall-runoff) models (e.g. WMO, 1975, 1986, 1992), very limited

emphasis has so far been put on the far more complicated task of validation of

distributed hydrological models, where spatial variation of internal variables also

has to be considered. Based on a review of some of the few studies focussing on

validation of distributed models with respect to internal variables and multiple

scales, the following conclusions can be drawn:

. Distributed models are usually calibrated and validated only against runoff

data, while spatial data are seldom available.
. In the few cases, where model simulations have been compared with field

data on internal variables, these test results are generally of less accuracy

than the results of the validation tests against runoff data.
. Authors, who have not been able to test their models’ capabilities to predict

internal spatial variables, often state that their distributed models provide

physically realistic descriptions of spatial patterns of internal variables.

In summary, it is possible to simulate spatial patterns at a quite detailed level and

produce nice colourgraphics results; but due to lack of field data it is in general

not possible to check to which extent these results are correct. This fact is pre-

A Formal Approach to Calibration and Validation of Models Using Spatial Data 351

Figure 13.7. Simulated and observed piezo-

metric heads from the validation period for

four well sites for which no calibration has

been made. The locations of the wells are

shown in Figure 13.3. (From Refsgaard,

1997; reproduced with permission.)



sently one of the most severe constraints for the further development of distrib-

uted hydrological modelling. It is believed that although predictions of spatial

patterns both by distributed models and by remote sensing are subject to con-

siderable uncertainties, the possibilities of combining the two may prove to be of

significant mutual benefit. There is an urgent need for more research on this

interface. A recent example of such an exercise by Franks et al. (1998), who

combined SAR based estimates of saturated areas with TOPMODEL simula-

tions, shows encouraging results.

A particular area, where limited work has been carried out so far, is on the

establishment of validation test schemes for the situations where the split-sample

test is not sufficient. The only rigorous and comprehensive methodology reported

in the literature is that of Klemeš (1986b). It may correctly be argued that the

procedures outlined for the proxy-basin and the differential split-sample tests,

where tests have to be carried out using data from similar catchments, from a

purely theoretical point of view are weaker than the usual split-sample test, where

data from the specific catchment are available. However, no obviously better

testing schemes exist. Hence, this will have to be reflected in the performance

criteria in terms of larger expected uncertainties in the predictions.

One of the important practical fields of application for distributed models is

prediction of the effects of land use changes (Ewen and Parkin, 1996; Parkin et

al., 1996). Many such studies have been reported; however, most of them can be

characterised as hypothetical predictions, because the models have not been

subject to adequate validation tests (Lørup et al., 1998). In this case it would

be necessary to apply a differential split sample test but the data requirements are

considerable and will be difficult to meet in practical applications without

detailed information on patterns of hydrological response under different land

use and climatic conditions.

It must be realised that the validation tests proposed in this chapter are so

demanding that many applications today would fail to meet them. This does not

imply that these modelling studies are not useful, only that their output should be

realised to be somewhat more uncertain than is often stated and that they should

not make use of the term ‘validated model’.

Success criteria need to be clearly articulated for the model calibration and

validation that focus on each model output for which it is intended to make

predictions. Hence, multisite calibration/validation is needed if predictions of

spatial patterns are required, and multi-variable checks are required if predic-

tions of the behaviour of individual sub-systems within the catchments are

needed. Thus, as shown also in the case study, a model should only be assumed

valid with respect to outputs that have been explicitly validated. This means,

for instance, that a model which is validated against catchment runoff cannot

automatically be assumed valid also for simulation of erosion on a hillslope

within the catchment, because smaller scale processes may dominate here; it will

need validation against hillslope soil erosion data. Furthermore, it should be

emphasised that with the present generation of distributed model codes, which

do not contain adequate up- or down-scaling methodologies, separate calibra-
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tion and validation tests have to be carried out every time the element size is

changed.

As discussed above, the validation methodologies presently used, even in

research projects, are generally not rigorous and far from satisfactory. At the

same time models are being used in practice and daily claims are being made on

validity of models and on the basis of, at the best, not very strict and rigorous test

schemes. An important question then, is how can the situation be improved in the

future? As emphasised by Forkel (1996), improvements cannot be achieved by

the research community alone, but requires an interaction between the three main

‘‘players’’, namely water resources managers, code developers and model users.

The key responsibilities of the water resources manager are to specify the

objectives and define the acceptance limits of accuracy performance criteria for

the model application. Furthermore, it is the manager’s responsibility to define

requirements for code verification and model validation. In many consultancy

jobs, accuracy criteria and validation requirements are not specified at all, with

the result that the model user implicitly defines them in accordance with the

achieved model results. In this respect it is important in the terms of reference

for a given model application to ensure consistency between the objectives, the

specified accuracy criteria, the data availability and the financial resources. In

order for the manager to make such evaluations, some knowledge of the model-

ling process is required.

The model user has the responsibility for selection of a suitable code as well as

for construction, calibration and validation of the site-specific model. In parti-

cular, the model user is responsible for preparing validation documents in such a

way that the domain of applicability and the range of accuracy of the model are

explicitly specified. Furthermore, the documentation of the modelling process

should ideally be done in enough detail that it can be repeated several years

later, if required. The model user has to interact with the water resources man-

ager on assessments of realistic model accuracies. Furthermore, the model user

must be aware of the capabilities and limitations of the selected code and interact

with the code developer with regard to reporting of user experience such as

shortcomings in documentation, errors in code, market demands for extensions,

etc.

The key responsibilities of the developer of the model code are to develop and

verify the code. In this connection it is important that the capabilities and limita-

tions of the code appear from the documentation. As code development is a

continuous process, code maintenance and regular updating with new versions,

improved as a response to user reactions, become important. Although a model

code should be comprehensively documented, doubts will, in practice, always

occur once in a while on its functioning, even for experienced users. Hence, active

support to and dialogue with model users are crucial for ensuring operational

model applications at a high professional level.

Although the different players have different roles and functions, a special

responsibility lies with the research community. Unless we take a lead in improv-

ing the situation within our own community, the overall credibility of hydro-
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logical modelling is at risk. Thus a major challenge for the coming decade is to

further develop suitable rigorous validation schemes and impose them to all

hydrological modelling projects. Part of this challenge lies in the collection and

use of spatial patterns of key model inputs, parameters and outputs so that the

calibration and validation exercises can fully quantify the model capabilities.
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14
Summary of Pattern Comparison and Concluding Remarks

Rodger Grayson and Günter Blöschl

14.1 INTRODUCTION

It also seems obvious that search for new measurement methods that would

yield areal distributions, or at least reliable areal totals or averages, of hydro-

logic variables such as precipitation, evapotranspiration, and soil moisture

would be a much better investment for hydrology than the continuous pursuit

of a perfect massage that would squeeze the nonexistent information out of the

few poor anaemic point measurements . . .Klemeš (1986a, p. 187S)

. . . the collection of data without the benefit of a unifying conception (embo-

died in a model or theory) may submerge us in an ever deepening sea of

seemingly unrelated facts. Hillel (1986, p. 38)

These two wonderful quotes from 1986 encapsulate the motivation for the work

presented in this book. Just what was so special about 1986 is difficult to say,

perhaps it was to do with the combined developments in computer technology

and the desire for a sounder scientific base for hydrology. In any case, while these

calls were not new, they were restated in a powerful way. Progress was being

stymied by a lack of appropriate data and the often weak links between those

who undertook the modelling and measurement. Careful observation and mea-

surement is of course the foundation on which science is built and hydrology is

not short of striking examples. Pioneering observations of runoff processes in the

1960s and early 70s by Emmett (1970), Betson (1964), Dunne and Black

(1970a,b) and others, expanded the view of how runoff was produced (although

many ideas were established much earlier, e.g. Hursh and Brater, 1941). But as

noted by Betson and Ardis (1978) these new concepts took a long time to be

explicitly incorporated into hydrological models, although their bulk effects

could be represented implicitly via calibration of parameters that the modeller

probably did not associate with the process. Interest lay primarily in getting the

catchment runoff right and the simpler a model the better, when this is the aim
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(Dawdy, 1969). But when used for investigative purposes, the need for models to

mimic the real processes and be ‘‘right for the right reasons’’ (Klemeš, 1986a)

becomes paramount. However, mimicking real processes adds complexity, which

in turn expands the amount and type of data needed for testing.

In the early chapters of this book we argued that in catchment hydrology, the

measurement of spatial patterns is necessary to further our understanding of

hydrological processes and to properly test and develop spatially explicit hydro-

logical models. The case studies represent some of the few attempts to test this

assertion by combining detailed spatial observations and modelling in a catch-

ment hydrology context. The studies also serve to test whether the response of

funding agencies and organisations to those powerful calls, that continued

through to the 90s, can be vindicated. The case studies cover an extraordinary

range of dominant processes, catchment sizes, data types and modelling

approaches. Environments range from the semi-arid, convective storm domi-

nated region of Arizona, through the tropical forests of the Amazon, to catch-

ments in Australia, France, Belgium, Norway, Denmark and Canada; from the

steep mountains of Austria to the rolling country of Idaho. Catchment sizes

range from less than 1 hectare to more than 10,000. Data types include simple

nested stream gauging data, numerous point samples of soil moisture using a

number of methods, piezometric level, snow water equivalent, runoff detectors,

soil chemical and vegetative indicators of recharge and discharge, and a range of

remote sensing techniques (satellite SAR, airborne passive microwave, multispec-

tral data, RADAR precipitation, and aerial photography). Most measurements

have been quantitative but some have been descriptive or binary. The models

have also covered a wide range of dynamic modelling approaches with different

distributed structures, as well as stochastic and distribution function approaches.

The one thing all of these studies can claim in common is the rare honour of

comparing observed to simulated patterns.

14.2 WHAT HAVE WE LEARNED FROM THE COMPARISONS OF OBSERVED
AND SIMULATED PATTERNS?

All case studies of this book have been concerned with comparing simulated and

observed patterns of hydrologic variables to inform modelling. A summary of the

most important conclusions reached on the basis of these comparisons in each of

the chapters is given in Table 14.1.

In the following section, we attempt to compile a bigger picture from the

outcomes of these studies in terms of the more general contributions to hydro-

logical science. These fall into three main categories related to processes, data,

and modelling.

Processes
A number of the studies have shown that often, a single process dominates

hydrological response in a particular catchment. This dominant process depends

on the climate and other environmental factors. In the arid/semi-arid climate of
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it
d
y
n
a
m
ic

sc
a
li
n
g
b
eh
a
v
io
u
r.

o
rg
a
n
is
a
ti
o
n
in

p
re
ci
p
it
a
ti
o
n

(s
ta
ti
st
ic
a
ll
y
d
is
a
g
g
re
g
a
te
d
)
si
m
u
la
ti
o
n
s

b
a
se
d
o
n
la
rg
e
sc
a
le

p
a
tt
er
n
s
fr
o
m

b
o
th

W
it
h
a
p
p
ro
p
ri
a
te

n
o
rm

a
li
sa
ti
o
n
a
n
d
d
y
n
a
m
ic
sc
a
li
n
g
m
et
h
o
d
s,
b
o
th

sp
a
ce

a
n
d
sp
a
ce
-t
im

e

v
a
ri
a
b
il
it
y
ca
n
b
e
si
m
u
la
te
d
u
si
n
g
st
o
ch
a
st
ic

si
m
u
la
ti
o
n
.

R
A
D
A
R

d
a
ta

a
n
d
a
tm

o
sp
h
er
ic

m
o
d
el

o
u
tp
u
t.
(F
ig
s
4
.7
,
4
.9
)

S
to
rm

sc
a
le

a
tm

o
sp
h
er
ic

m
o
d
el
s
w
er
e
fo
u
n
d
to

si
m
u
la
te

p
a
tt
er
n
s
th
a
t
sh
o
w
ed

le
ss

v
a
ri
a
b
il
it
y
in

sp
a
ce

a
n
d
ti
m
e
th
a
n
o
b
se
rv
ed
,
in
d
ic
a
ti
n
g
th
a
t
th
e
m
o
d
el
s
m
a
y
n
ee
d
so
m
e

m
o
d
ifi
ca
ti
o
n
.

5
.
P
a
tt
er
n
s
a
n
d

o
rg
a
n
is
a
ti
o
n
in

ev
a
p
o
ra
ti
o
n

P
o
in
t
fl
u
x
m
ea
su
re
m
en
ts

o
f
ev
a
p
o
ra
ti
o
n

v
er
su
s
si
m
u
la
ti
o
n
s
fr
o
m

m
o
d
el
s
b
a
se
d

o
n
re
m
o
te
ly

se
n
se
d
su
rf
a
ce

te
m
p
er
a
tu
re

a
n
d
su
rf
a
ce

co
v
er
.
(F
ig
.
5
.2
)

R
ea
so
n
a
b
le

a
g
re
em

en
t
w
it
h
su
rf
a
ce

fl
u
x
st
a
ti
o
n
s
o
b
ta
in
ed
.

U
n
ce
rt
a
in
ty

in
ef
fe
ct

o
f
h
et
er
o
g
en
ei
ty

o
n
fl
u
x
m
ea
su
re
m
en
ts
a
n
d
la
ck

o
f
d
ir
ec
tl
y
m
ea
su
re
d

p
a
tt
er
n
s
o
f
ev
a
p
o
ra
ti
v
e
fl
u
x
p
re
v
en
te
d
d
et
a
il
ed

a
n
a
ly
si
s
o
f
p
re
d
ic
ti
v
e
ca
p
a
b
il
it
y
o
r
p
o
ss
ib
le

m
o
d
el

er
ro
rs
.

S
ta
te

o
f
d
a
ta

a
n
d
k
n
o
w
le
d
g
e
o
f
sp
a
ti
a
l
in
te
ra
ct
io
n
s
in
su
ffi
ci
en
t
a
t
p
re
se
n
t
fo
r
co
n
fi
d
en
t

sp
a
ti
a
l
ev
a
p
o
ra
ti
o
n
es
ti
m
a
ti
o
n
.

6
.
R
u
n
o
ff
,

p
re
ci
p
it
a
ti
o
n
a
n
d

R
a
in
fa
ll
in
te
rp
o
la
te
d
fr
o
m

d
en
se

ra
in
-

g
a
u
g
e
n
et
w
o
rk

v
er
su
s
es
ti
m
a
te
d
fr
o
m

R
em

o
te
ly

se
n
se
d
b
ri
g
h
tn
es
s
te
m
p
er
a
tu
re

lo
o
k
s
to

b
e
a
p
ro
m
is
in
g
es
ti
m
a
to
r
o
f

p
re
ci
p
it
a
ti
o
n
p
a
tt
er
n
s
in

se
m
i-
a
ri
d
en
v
ir
o
n
m
en
ts
.

so
il
m
o
is
tu
re

a
t

W
a
ln
u
t
G
u
lc
h

re
m
o
te
ly

se
n
se
d
su
rf
a
ce

b
ri
g
h
tn
es
s

te
m
p
er
a
tu
re

(E
S
T
A
R
).
(F
ig
.
6
.1
2
)

R
a
in
fa
ll
p
a
tt
er
n
s
a
re

th
e
d
o
m
in
a
n
t
co
n
tr
o
l
o
n
so
il
m
o
is
tu
re

p
a
tt
er
n
s
a
n
d
m
u
st

b
e

re
p
re
se
n
te
d
to

m
o
d
el

h
y
d
ro
lo
g
ic
a
l
re
sp
o
n
se

in
th
is
en
v
ir
o
n
m
en
t.
S
p
a
ti
a
l
v
a
ri
a
b
il
it
y
a
t

th
e
su
b
-h
ec
ta
re

sc
a
le

w
a
s
in
fl
u
en
ti
a
l
o
n
ru
n
o
ff

p
ro
ce
ss
es
.

S
o
il
m
o
is
tu
re

m
ea
su
re
d
b
y
p
a
ss
iv
e

m
ic
ro
w
a
v
e
v
er
su
s
si
m
u
la
te
d
u
si
n
g

v
a
ri
o
u
s
so
u
rc
es

o
f
v
a
ri
a
b
il
it
y
a
n
d

E
st
im

a
ti
n
g
so
il
p
ro
p
er
ti
es

fr
o
m

so
il
ty
p
e
d
et
er
io
ra
te
d
si
m
u
la
ti
o
n
s
o
f
so
il
m
o
is
tu
re

b
y
a

d
is
tr
ib
u
te
d
m
o
d
el

a
s
co
m
p
a
re
d
to

u
si
n
g
u
n
if
o
rm

so
il
p
ro
p
er
ti
es
.

d
if
fe
re
n
t
a
m
o
u
n
ts

o
f
d
a
ta

a
ss
im

il
a
ti
o
n

in
a
d
is
tr
ib
u
te
d
m
o
d
el
.
(F
ig
s
6
.1
3
,
6
.1
5
)

N
ew

to
n
ia
n
n
u
d
g
in
g
w
a
s
b
es
t
a
b
le
to

a
ss
im

il
a
te

P
B
M
R

so
il
m
o
is
tu
re

es
ti
m
a
te
s
w
it
h
m
o
d
el

es
ti
m
a
te
s
to

co
rr
ec
t
sp
a
ti
a
l
si
m
u
la
ti
o
n
s.

T
h
e
re
p
re
se
n
ta
ti
o
n
o
f
ch
a
n
n
el

lo
ss
es

is
cr
it
ic
a
l
to

p
re
d
ic
ti
n
g
ru
n
o
ff
a
cc
u
ra
te
ly

in
th
is

en
v
ir
o
n
m
en
t.

7
.
S
p
a
ti
a
l
sn
o
w

co
v
er

p
ro
ce
ss
es

a
t
K
ü
h
ta
i
a
n
d

R
ey
n
o
ld
s
C
re
ek

A
er
ia
l
p
h
o
to
g
ra
p
h
s
o
f
sn
o
w

co
v
er

v
er
su
s

si
m
u
la
ti
o
n
s
fr
o
m

a
d
is
tr
ib
u
te
d
m
o
d
el
.

(F
ig
s
7
.3
,
7
.4
,
7
.5
)

In
cl
u
si
o
n
o
f
to
p
o
g
ra
p
h
ic
a
ll
y
v
a
ri
ed

en
er
g
y
in
p
u
ts

a
n
d
w
in
d
d
ri
ft

in
a
d
is
tr
ib
u
te
d
m
o
d
el

en
a
b
le
d
th
e
sp
a
ti
a
l
v
a
ri
a
b
il
it
y
o
f
b
a
si
c
co
v
er

p
a
tt
er
n
s
to

b
e
re
p
ro
d
u
ce
d
.
R
efi
n
ed

re
p
re
se
n
ta
ti
o
n
s
o
f
a
v
a
la
n
ch
in
g
,
w
in
d
d
ri
ft

a
n
d
re
fl
ec
te
d
a
n
d
em

it
te
d
ra
d
ia
ti
o
n
fr
o
m

a
d
ja
ce
n
t
a
re
a
s
a
re

n
ee
d
ed

to
fu
rt
h
er

im
p
ro
v
e
si
m
u
la
te
d
p
a
tt
er
n
s.

(c
o
n
ti
n
u
ed
)
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Ta
bl

e
14

.1
(c
o
n
ti
n
u
ed
)

C
ha

pt
er

P
at

te
rn

C
om

pa
ri

so
n

W
ha

t
w

as
le

ar
nt

fr
om

th
e

co
m

pa
ri

so
n

O
b
se
rv
ed

sn
o
w

w
a
te
r
eq
u
iv
a
le
n
t
fr
o
m

in
te
n
si
v
e
p
o
in
t
m
ea
su
re
m
en
ts

v
er
su
s

si
m
u
la
ti
o
n
s
fr
o
m

a
d
is
tr
ib
u
te
d
m
o
d
el
.

(F
ig
.
7
.1
2
)

P
a
tt
er
n
s
o
f
S
W
E
co
u
ld

b
e
re
p
ro
d
u
ce
d
o
n
ly

w
h
en

th
e
p
ro
ce
ss

o
f
w
in
d
d
ri
ft
w
a
s
si
m
u
la
te
d
–

th
is
p
ro
ce
ss

d
o
m
in
a
te
s
sp
a
ti
a
l
p
a
tt
er
n
s
in

a
ra
n
g
el
a
n
d
en
v
ir
o
n
m
en
t.
O
th
er

fa
ct
o
rs

su
ch

a
s
to
p
o
g
ra
p
h
ic

v
a
ri
a
ti
o
n
s
in

en
er
g
y
in
p
u
ts

w
er
e
in
si
g
n
ifi
ca
n
t
co
m
p
a
re
d
to

d
ri
ft
.

8
.
V
a
ri
a
b
le

so
u
rc
e

A
fi
el
d
su
rv
ey

o
f
sa
tu
ra
te
d
a
re
a
v
er
su
s

S
o
il
m
o
is
tu
re

a
n
d
w
et

a
re
a
s
ca
n
n
o
t
b
e
re
tr
ie
v
ed

fr
o
m

si
n
g
le
im

a
g
es

o
n
v
eg
et
a
te
d
su
rf
a
ce
s.

a
re
a
s,
so
il

m
o
is
tu
re

a
n
d

es
ti
m
a
te
d
p
a
tt
er
n
fr
o
m

th
e
st
a
n
d
a
rd

d
ev
ia
ti
o
n
,
a
n
d
fr
o
m

P
C
A
,
o
f
m
u
lt
i-

T
h
e
h
y
p
o
th
es
is
th
a
t
w
et

a
re
a
s
sh
o
u
ld

b
e
id
en
ti
fi
a
b
le

a
s
a
re
a
s
o
f
lo
w

v
a
ri
a
n
ce

in
m
u
lt
i-

te
m
p
o
ra
l
S
A
R

im
a
g
es

w
a
s
co
n
fi
rm

ed
.

a
ct
iv
e
m
ic
ro
w
a
v
e

te
m
p
o
ra
l
S
A
R

im
a
g
es
.
(F
ig
s
8
.5
,
8
.1
1
)

In
a
re
a
s
w
h
er
e
te
rr
a
in

v
a
ri
a
b
il
it
y
is
h
ig
h
,
it
d
o
m
in
a
te
s
th
e
S
A
R

re
sp
o
n
se
.

P
C
A

a
p
p
li
ed

to
m
u
lt
it
em

p
o
ra
l
im

a
g
es

ca
n
b
e
u
se
d
to

is
o
la
te

th
e
co
m
p
o
n
en
t
o
f
th
e

o
b
se
rv
a
ti
o
n
s
a
t

Z
w
a
lm

b
ee
k
a
n
d

C
o
ët
-D

a
n

M
a
p
p
ed

so
il
s
th
a
t
a
re

ch
a
ra
ct
er
is
ti
c
o
f

w
et

a
re
a
s
v
er
su
s
es
ti
m
a
te
d
p
a
tt
er
n
s
fr
o
m

th
e
st
a
n
d
a
rd

d
ev
ia
ti
o
n
,
a
n
d
fr
o
m

P
C
A
,

o
f
m
u
lt
i-
te
m
p
o
ra
l
S
A
R

im
a
g
es
.

(F
ig
s
8
.6
,
8
.8
)

b
a
ck
sc
a
tt
er

co
ef
fi
ci
en
t
th
a
t
is
d
o
m
in
a
te
d
b
y
v
a
ri
a
ti
o
n
s
in

so
il
m
o
is
tu
re
,
p
ro
v
id
in
g

q
u
a
li
ta
ti
v
e
p
a
tt
er
n
s
o
f
a
re
a
s
li
k
el
y
to

b
e
w
et
.

9
.
S
o
il
m
o
is
tu
re

a
n
d
ru
n
o
ff

p
ro
ce
ss
es

a
t

S
o
il
m
o
is
tu
re

in
th
e
to
p
3
0
cm

fr
o
m

in
te
n
si
v
el
y
sa
m
p
le
d
p
o
in
t
m
ea
su
re
m
en
ts

v
er
su
s
si
m
u
la
te
d
so
il
m
o
is
tu
re

fr
o
m

a

A
d
is
tr
ib
u
te
d
m
o
d
el

th
a
t
re
p
re
se
n
te
d
th
e
ef
fe
ct

o
f
sp
a
ti
a
l
v
a
ri
a
b
il
it
y
in

to
p
o
g
ra
p
h
y
o
n

la
te
ra
l
su
rf
a
ce

a
n
d
su
b
su
rf
a
ce

fl
o
w
,
a
n
d
ra
d
ia
ti
o
n
ex
p
o
su
re

o
n
ev
a
p
o
ra
ti
o
n
,
w
a
s
a
b
le
to

re
p
re
se
n
t
th
e
sp
a
ti
a
l
a
n
d
te
m
p
o
ra
l
v
a
ri
a
ti
o
n
in

so
il
m
o
is
tu
re
.

T
a
rr
a
w
a
rr
a

d
is
tr
ib
u
te
d
m
o
d
el
.
(F
ig
s
9
.6
,
9
.9
,
9
.1
0
,

9
.1
1
,
9
.1
2
)

In
tr
o
d
u
ct
io
n
o
f
v
a
ri
a
b
il
it
y
in

so
il
p
ro
p
er
ti
es

v
ia

m
a
p
p
in
g
o
f
so
il
ty
p
e
d
id

n
o
t
im

p
ro
v
e

si
m
u
la
ti
o
n
s.

P
re
fe
re
n
ti
a
l
fl
o
w
th
ro
u
g
h
cr
a
ck
s
in

th
e
so
il
in

A
u
tu
m
n
n
ee
d
s
to

b
e
re
p
re
se
n
te
d
to

im
p
ro
v
e

o
b
se
rv
ed

sp
a
ti
a
l
p
a
tt
er
n
s
d
u
ri
n
g
th
is
p
er
io
d
.

A
n
a
d
d
it
io
n
a
l
so
il
la
y
er

n
ee
d
s
to

b
e
re
p
re
se
n
te
d
,
a
n
d
b
et
te
r
E
T

p
ro
ce
d
u
re
s
in
cl
u
d
ed

to

fu
rt
h
er

im
p
ro
v
e
so
il
m
o
is
tu
re

es
ti
m
a
te
s
in

th
e
S
p
ri
n
g
.

1
0
.
S
to
rm

ru
n
o
ff

g
en
er
a
ti
o
n
a
t

R
u
n
o
ff

o
cc
u
rr
en
ce

fr
o
m

in
te
n
si
v
e
n
et
w
o
rk

o
f
ru
n
o
ff

d
et
ec
to
rs

v
er
su
s
si
m
u
la
te
d

S
im

u
la
ti
o
n
s
u
si
n
g
d
et
er
m
in
is
ti
c
p
a
tt
er
n
s
o
f
so
il
h
y
d
ra
u
li
c
p
ro
p
er
ti
es

co
u
ld

n
o
t
re
p
ro
d
u
ce

o
b
se
rv
ed

p
a
tt
er
n
s
o
f
ru
n
o
ff

o
cc
u
rr
en
ce
.

L
a
C
u
en
ca

ru
n
o
ff

o
cc
u
rr
en
ce

fr
o
m

a
d
is
tr
ib
u
te
d

m
o
d
el

(F
ig
s
1
0
.1
5
,
1
0
.1
6
)

D
is
tr
ib
u
te
d
m
o
d
el
s
in

th
is
tr
o
p
ic
a
l
en
v
ir
o
n
m
en
t
co
u
ld

re
p
re
se
n
t
th
e
fu
n
ct
io
n
a
l
b
eh
a
v
io
u
r

o
f
sp
a
ti
a
l
ru
n
o
ff
re
sp
o
n
se

o
n
ly

b
y
co
m
b
in
in
g
d
et
er
m
in
is
ti
c
p
a
tt
er
n
s
a
n
d
ra
n
d
o
m

re
a
li
sa
ti
o
n
s
o
f
so
il
h
y
d
ra
u
li
c
p
ro
p
er
ti
es
.
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Ta
bl

e
14

.1
(c
o
n
ti
n
u
ed
)

C
ha

pt
er

P
at

te
rn

co
m

pa
ri

so
n

W
ha

t
w

as
le

ar
nt

fr
om

th
e

co
m

pa
ri

so
n

1
1
.
S
h
a
ll
o
w

g
ro
u
n
d
w
a
te
r

re
sp
o
n
se

a
t

M
in
if
el
t

W
a
te
r
le
v
el
s
fr
o
m

a
d
en
se

n
et
w
o
rk

o
f

p
ie
zo
m
et
er
s
v
er
su
s
si
m
u
la
ti
o
n
s
fr
o
m

a
q
u
a
si
d
is
tr
ib
u
te
d
m
o
d
el
.

(F
ig
s
1
1
.4
,
1
1
.1
2
)

T
o
p
o
g
ra
p
h
y
a
n
d
so
il
d
ep
th

a
lo
n
e
co
u
ld

n
o
t
re
p
ro
d
u
ce

o
b
se
rv
ed

p
a
tt
er
n
s.

M
ea
su
re
d
p
a
tt
er
n
s
o
f
p
ie
zo
m
et
ri
c
le
v
el

co
u
ld

b
e
si
m
u
la
te
d
o
n
ly

th
ro
u
g
h
th
e
u
se

o
f

sp
a
ti
a
ll
y
v
a
ri
a
b
le

so
il
p
o
ro
si
ty

a
n
d
h
y
d
ra
u
li
c
co
n
d
u
ct
iv
it
y
.
T
h
es
e
so
il
p
a
ra
m
et
er
s

n
ee
d
ed

to
b
e
‘‘
b
a
ck
-c
a
lc
u
la
te
d
’’
fr
o
m

sp
a
ti
a
l
w
a
te
r
ta
b
le

re
sp
o
n
se

a
n
d
th
ei
r
p
a
tt
er
n
s

co
u
ld

n
o
t
b
e
in
te
rp
re
te
d
p
h
y
si
ca
ll
y
.

M
o
d
el

st
ru
ct
u
re

u
n
ce
rt
a
in
ty

co
m
p
li
ca
te
d
th
e
a
ss
es
sm

en
t
o
f
th
e
v
a
lu
e
o
f
d
if
fe
re
n
t
d
a
ta

ty
p
es

fo
r
co
n
st
ra
in
in
g
th
e
u
n
ce
rt
a
in
ty

in
si
m
u
la
ti
o
n
s.

In
th
e
d
ry

p
a
rt
s
o
f
th
e
ca
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Walnut Gulch (Chapter 6) rainfall space-time variability was vastly more impor-

tant than other controls, based on an analysis of rainfall data at the sub-hectare

scale and a sensitivity analysis using the KINEROS model. For the very different

climate of Reynolds Creek (Chapter 7) it was demonstrated that wind drift is by

far the most important process affecting space-time patterns of snow water

equivalent, by comparing observed snow water equivalent patterns with two

simulated scenarios, with and without a representation of snow drift. In the

humid climate of the Tarrawarra catchment (Chapter 9) saturated source area

runoff was the dominant runoff mechanism as concluded from simple initial

analyses of the observed TDR soil moisture patterns and later confirmed by

Thales simulations. The simulations also confirmed that subsurface water move-

ment changes abruptly in spring and autumn. During summer (dry), vertical

water movement was dominant while in winter (wet), lateral water movement

was dominant. Finally, a comparison of simulated and observed recharge/dis-

charge patterns in the Prairie climate of Trochu (Chapter 12) indicated that

recharge and discharge patterns were controlled by the coupling of the regional

aquifer with the surface through the unsaturated zone, which dominated the local

water budget. This finding was corroborated by a sensitivity study comparing

scenarios with and without coupling to observed recharge/discharge patterns.

The scenario without coupling could be made to match observed patterns only

when unrealistically high values of recharge were assumed.

Comparisons of simulated and observed patterns have also shed light on the

nature of space-time variability of hydrologic variables that probably would not

have been possible by simple visualisation of the data alone. For example, ana-

lyses of RADAR rainfall data in Chapter 4 suggested that the space-time varia-

bility of rainfall is characterised by dynamic scaling, i.e. the rainfall fluctuations

in space and time can be represented by a power law when plotted against scale

after appropriate renormalisation. This property was used for generating rainfall

patterns by means of stochastic simulations (downscaling) that when compared

to RADAR rainfall patterns, looked realistic. Analyses of remotely sensed

(ESTAR) soil moisture patterns in Walnut Gulch (Chapter 6) indicated that,

following a rainstorm, these patterns were organised but this organisation

faded away after the storm, and the pattern became random. The authors sug-

gested that this change-over is a reflection of the changing control on soil moist-

ure of rainfall versus patterns of surface soil characteristics. A similar change-

over in the variability of soil moisture, however this time on a seasonal basis, was

identified at Tarrawarra (Chapter 9). Spatially organised patterns that were

related to terrain occurred in winter while spatially random patterns occurred

in summer. This change-over was identified by visual inspection of the TDR

measurements and further explained by comparison with model results. In La

Cuenca (Chapter 10) where infiltration excess and pipe flow were important

runoff mechanisms, the type of spatial variability in soil hydraulic conductivity

was inferred from a comparison of observed patterns of frequency of runoff

occurrence with a number of scenarios with different types of soil variability

represented. It was found that a combined deterministic (by soil type) and
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stochastic pattern of conductivity produced patterns of runoff occurrence that

were most similar to the observed patterns.

Clearly, the detail of these insights into catchment behaviour was made pos-

sible by the availability of measured patterns.

Data
While it is clear that the patterns were useful in their own right, several studies

showed that they are even more useful if used in combination with time series

data. Patterns and time series are therefore complementary and the case studies

have shown that these different types of data (space variability and time varia-

bility, respectively) can be used to identify different properties of the catchment

behaviour. In Chapter 7 conventional runoff hydrographs were used to identify

the snow melt runoff volume from the catchment. In a similar fashion, runoff was

used to close the water balance of the Tarrawarra catchment (Chapter 9) by

enabling an estimation of deep drainage into bedrock. In La Cuenca (Chapter

10) runoff hydrographs were used to complement the spatial patterns, but this

time at the event scale, to calibrate the Manning roughness parameter. In each of

these cases, the information available in the time series was used for things that

could not be well identified from the spatial data. Use of the two types of

information together was the key to realistic simulation of space-time patterns

of processes in each study. Similarly, in Minifelt (Chapter 11) soil porosity

(related to the dynamics) was calibrated from mainly time series data (borehole

data of the shallow groundwater table), while hydraulic conductivity was cali-

brated from mainly snapshots of spatial patterns of the groundwater table. It was

the complementary nature of spatial pattern and time series data that enabled

successful modelling.

Perhaps surprisingly, patterns of binary data were used in about half of the

case studies; i.e. in the trade off between spatial resolution and information from

a particular point (discussed in Chapter 2), the scales were tipped towards spatial

resolution. All of these studies showed that a wealth of information can be

revealed from a binary pattern. In Kühtai (Chapter 7) snow cover patterns

(snow/no snow) were used; in Zwalmbeek and Coët-Dan (Chapter 8) patterns

of saturated source areas (saturated/not saturated) were used; in La Cuenca

(Chapter 10) patterns of runoff occurrence (for a single event, runoff occurred/

did not occur) were used; and in Trochu (Chapter 12) patterns of recharge/dis-

charge (either recharge or discharge) were used. The data used at Trochu are

particularly interesting as they have been derived from qualitative observation

including chemical/vegetation indicators. These indicators integrate over time so

are representative of the long-term mean of recharge/discharge conditions (Tóth,

1966). Although water tables for a given point in time (snap shots) would have

been easier to measure, the binary recharge/discharge data were much more

appropriate to test the equilibrium vadose zone model used in Chapter 12.

The spatial variability of physical soil properties is particularly critical in

catchment hydrology, yet we have relatively poor ways of estimating them at

the catchment scale. It is therefore not surprising that a number of case studies in
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this book have scrutinised the reliability of soils data and their effect on the

representation of catchment response. For Walnut Gulch (Chapter 6), where

the infiltration excess runoff mechanism dominates, TOPLATS was used to

simulate scenarios of soil moisture patterns. One of the scenarios was based on

uniform soil hydraulic properties, while the other scenario used pedotransfer

functions from the literature to estimate the soil hydraulic properties from

mapped soil type. A comparison of the soil moisture patterns from the two

scenarios with observed soil moisture patterns from airborne PBMR, indicated

that the one based on soil type was too patchy and the scenario using uniform

soil properties was more consistent with the observations. At Tarrawarra

(Chapter 9) one scenario used soil type to spatially distribute hydraulic conduc-

tivity measurements, assuming uniform conductivity within each soil type zone.

This scenario produced artificially high soil moisture values at the interface of the

soil types that could be identified by comparisons with observed soil moisture

patterns. A similar comparison at La Cuenca (Chapter 10) indicated that the

assumption of uniform conductivity in each of their three land types was not

appropriate and a random component had to be added to the deterministic

pattern imposed by land type. Clearly, the variability of soil physical properties

within soil types can be as large or larger than the variability between soil types.

This suggests that the widespread practice in distributed modelling of allocating

soil hydraulic properties on the basis of soils type (using either pedo-transfer

functions or typical measurements from each soil) is likely to result in poor

simulations of patterns in soil moisture and runoff.

With respect to data issues, the case studies have highlighted the value of

complementary data (spatial patterns and time series), the utility of binary pat-

terns (which are often simple to collect compared to quantitative patterns) and

some particular problems in representing soil properties in models. We next

address the utility of these data for informing model development.

Modelling
An important reason for comparing simulated and observed patterns was to

assess the credibility of the distributed catchment models, i.e. how well can they

represent individual processes that operate in the catchment, and which processes

are perhaps not represented very well? This assessment resulted in suggestions for

changes in model structure or model parameters (or perhaps inputs) that are

needed to refine the model simulations.

Most of the chapters in this book concluded that the models worked quite

well, albeit after calibration, and that the main processes were very well repre-

sented. However, they also concluded that it is possible to use subtle differences

between simulated and observed patterns to inform us about how the models

could be improved. At Kühtai (Chapter 7), for example, the comparison of snow

cover patterns suggested that the model underestimated snow water equivalent in

cirques. This was traced back to not representing emitted radiation from sur-

rounding terrain. Similarly, a tendency to overestimate (and underestimate) snow

cover on south facing (and north facing) slopes, was interpreted as evidence that
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the model should account for the dependence of snow albedo on energy input. At

Reynolds Creek (Chapter 7) the comparison of simulated and observed patterns

of snow water equivalent suggested that the simulated drift is more sharply

defined than the observed drift. This was traced back to differences in the

wind conditions between the year used for calibrating the model and the year

where the model was tested. A suggested remedy was to use a more sophisticated

deterministic wind drift model that takes into account differences in wind con-

ditions from year to year, although more data would probably be needed to

properly test this idea. At Tarrawarra (Chapter 9) subtle differences between

simulated and observed rates of the temporal change in soil moisture patterns

in autumn suggested that the lateral soil hydraulic conductivity may in fact

change with time. This was indicated by faster subsurface redistribution in

early autumn than in late autumn. It was suggested that this was due to temporal

changes in conductivity caused by the closing of cracks that had formed over

summer, thereby reducing lateral conductivity. However, testing of this would

need additional data. At Minifelt (Chapter 11) where shallow water table pat-

terns were used to calibrate the spatial patterns of soil physical properties in

TOPMODEL, it was difficult to physically interpret the calibrated patterns.

This was suggested to be evidence that there may be structural problems with

the TOPMODEL approach for Minifelt, and relaxing the TOPMODEL assump-

tions may improve spatial predictions. Also, the uncertainty analysis based on

spatially uniform soils parameters (which is a more common TOPMODEL appli-

cation) gave different predictions and different uncertainty bounds depending on

whether time series of borehole data or patterns of piezometer data were used to

constrain the model parameters. This also suggested that there may be substan-

tial structural uncertainty with TOPMODEL as applied in the Minifelt example.

In about half of the case studies (Reynolds Creek, Tarrawarra, La Cuenca,

Minifelt) comparisons of simulated and observed patterns were used not only to

assess the reliability of the model, but also to calibrate some of the model para-

meters as mentioned above. Both assessment and calibration were done by a

visual pattern comparison. Some of the case studies, however, used more objec-

tive and sophisticated methods for model testing and parameter identification. At

Walnut Gulch (Chapter 6) four-dimensional data assimilation (4DDA) methods

were used to update the model state variables of the TOPLATS model by using

remotely sensed (PBMR) and in situ point measurements of soil moisture. It was

concluded that 4DDA (already being in operational use in atmospheric model-

ling) holds substantial promise for operational use in spatially distributed hydro-

logical modelling. There is an obvious parallel with operational runoff

forecasting, where updating model state variables (albeit in the time domain) is

common practice today. A formal parameter uncertainty analysis was performed

in Chapter 11 based on the GLUE procedure which gave a very useful assessment

of the reliability of model parameters and helped define the value of various data

types in constraining the model parameter uncertainty. Although the method is

computationally demanding it can handle nonlinear models and it can make use

of observed spatial patterns. In Chapter 11, parameter uncertainty was plotted
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against the topographic wetness index, which allowed differences in uncertainty

between the gully and ridge areas of the catchment to be examined. The valida-

tion tests were taken even further in Chapter 13 for the Karup catchment. This

was a significantly larger application than the case study chapters in the book and

focussed on use of models in a more practical context. The MIKE-SHE model

was calibrated and than validated based on a formal procedure presented by the

author, using data from a number of internal stream gauges and boreholes. In

this respect it was more typical of what may be possible in practical applications

of spatially distributed models outside small research catchments. The author

concluded from the comparisons of observed and simulated hydrologic variables

at a number of locations, that when a formal framework of validation tests is set

a priori, it may be difficult to meet the validation criteria in practice. He con-

cluded that formal protocols are needed for model validation and that imple-

mentation of these for practical applications will require more dialogue between

model developers, users and the managers who use simulations in their decision

making, so that capabilities and limitations are clearly articulated.

In this section, we have summarised in some detail, the conclusions of the case

studies, highlighting where the use of measured patterns, often in combination

with more traditional measurements, were useful in explaining processes and

developing models within relatively small research catchments. As discussed in

Chapter 13, the larger scale, more practically oriented problems to which dis-

tributed models are applied can also benefit from the use of pattern data, but that

such data are much less common in the ‘‘real world’’. We predict that in the

coming years, more effort will be placed on collecting and using patterns at the

larger scale so that the benefits discussed in the case studies can be realised in

more practical applications.

14.3 OUTLOOK

The use of spatial patterns in catchment hydrology is in its infancy, but initial

results are encouraging and provide sound reasons to believe that there are great

improvements to be made in our understanding of catchment hydrological pro-

cesses; and in quantifying the way they affect, and are affected by, spatial varia-

bility across a range of scales. More specifically, the work presented in this book

illustrates that to realise these improvements, we need appropriate data.

Appropriatemeaning that it tells us about system behaviour, tests critical assump-

tions in our understanding and in our models of that understanding, and pro-

vides enough information to resolve the problems of non-uniqueness and

parameter identifiability inherent in complex models. Spatial patterns of hydro-

logical response are an appropriate data source in this respect. So while collecting

and collating large spatial data sets will be important to the development of

spatial models and improved process understanding, just where are the specific

areas where significant progress can be made? In the following few paragraphs we

provide a brief assessment of key areas.
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14.3.1 Improvements to Model Inputs

Numerous hydrological studies spanning over many decades have shown the

importance of precipitation on hydrological response. Now with RADAR esti-

mates of spatial patterns in precipitation and newmethods such as those described

in Chapter 4 for characterising space-time variability, we are on the threshold of a

major advance in the use of spatial precipitation information in distributed mod-

els. To fully realise the potential of this information, we may well need changes to

model structure, and will certainly need changes in the attitudes of hydrological

modellers who have been firmly wedded to the use of raingauge data for calibra-

tion and testing. Several of the case studies showed that simple binary patterns can

be powerful tests of distributed models and provide useful information on thresh-

old phenomena such as saturated source areas. There would appear to be further

scope for use of this type of data, but again some changes in attitude towards

‘‘non-quantitative’’ data, and possibly changes to model structure, may be needed.

At least in the immediate future, remotely sensed (RS) data can be thought of in

this context and might be best used to assist in reducing the degrees of freedom in

distributed hydrological models by providing patterns, rather than absolute

values, of important inputs and parameters. Model structures are being improved

to better exploit pattern data via improved software engineering (such as integra-

tion with GIS platforms) and this should serve as encouragement for the devel-

opment of hydrological algorithms that are specifically intended for the scale and

nature of RS data. Chapter 5 clearly illustrated that we have a long way to go in

fully understanding and being able to represent spatial patterns of evaporation.

Given that evaporation can be over 90% of the water budget in some environ-

ments, it is obvious that studies into dealing with spatial measurement and the role

of land surface heterogeneity will continue to be critical to improvements in,

particularly, large-scale models.

Spatially distributed modelling requires the use of interpolation for a number

of purposes, including the matching of model and measurement scales of infor-

mation used for input and testing. There is a need for improved interpolation

methods that better enable us to incorporate our understanding of physical

phenomena. While there are a range of methods already available, these need

to be improved in their ability to represent organisation in spatial patterns of

hydrological importance.

14.3.2 Improvements to Model Testing

It is envisaged that comparisons between observed and simulated patterns will

eventually become part of standard procedures for model testing. As well as

needing the observed patterns, we also need improved quantitative techniques

for comparing the similarities and differences between patterns. Some simple

methods have been presented at the end of Chapter 3, but few of these have so

far been used in practice. With rich areas of research on topics such as pattern

recognition, we expect that the sophistication of pattern comparisons will greatly
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increase as hydrologists come to realise the value of patterns for model develop-

ment and testing. Comprehensive uncertainty analysis also needs to be further

developed for spatially distributed models. The potential of these methods for

assessing the separate sources of uncertainty (input information, parameter

values, model structure and data used in testing) is large, but at present they

are not computationally tractable for most distributed models. Methodological

developments as well as improvements in computer power are likely to lead to

wider use of such techniques.

14.3.3 Challenges for Model Conceptualisation

The primary challenge of hydrologists has been, and remains, the prediction

of hydrological response in ‘‘ungauged’’ areas – i.e. areas for which we have no

hydrological response information. There is still a need to improve methods for

generalising results from small catchments such as those described in this book,

to other catchments; from small catchments to large catchments; and for being

able to predict hydrological response under changed land use and climatic con-

ditions in catchments of all sizes. All of these needs can be met only with better

understanding and representation of fundamental processes, and their spatial

variability across a range of scales. Distributed modelling generally has moved

beyond just trying to scale up small catchment models to large scales because of

problems with identifiability and scale dependence. As has been suggested for

some time by many authors, we need models for a range of scales that are

parsimonious, but that reflect the manifestation of important processes at

those different scales. In moving beyond the notion of ‘‘trying to model every-

thing’’ we should be developing methods to identify dominant processes that

control hydrological response in different environments (landscapes and cli-

mates) and at different scales, and then develop models to focus on these domi-

nant processes (a notion we might call the ‘‘Dominant Processes Concept’’

(DPC)). This would provide a framework for the development and application

of techniques specially designed to deal with those controls and help to avoid

some of the overparameterisation problems that occur when processes that are

not important are represented in models. Developments along the lines of the

DPC may help with the generalisation problems that have haunted hydrologists

since the science began.

14.4 FINAL REMARKS

As mentioned in the introduction, there have been many calls for data collection

and analysis to go hand in hand, for improved understanding of processes,

and for the scientific endeavour of measurement to be recognised. There is

a range of evidence that these calls have elicited a response. For example,

Water Resources Research has had ‘‘data notes’’ for some time (Hornberger,

1994) and the number being published is increasing. There is an increasing

awareness that the development of a spatial model is not of itself useful, unless
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it can be properly tested so that it can provide more credible predictions, or more

insight into process understanding. Large field campaigns are continuing and

the valuable role of smaller catchment, process-focussed, studies is being recog-

nised as the researchers have integrated their work with theoretical and modelling

developments to ensure the results contribute to a wider understanding

of patterns of hydrological variability. We hope that the case studies presented

in this book, and the broader conclusions from this extraordinary range of

studies, have unequivocally illustrated the value of this investment, and act as

encouragement for more, and more innovative, studies into spatial patterns in

catchment hydrology.

Summary of Pattern Comparison and Concluding Remarks 367



References

Abbott, M. B., Bathurst, J. C., Cunge, J. A., O’Connell, P. E. and Rasmussen, J. (1986). An

introduction to the European Hydrologic System – Système Hydrologique Européen,
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Wen, X.-H. and Gómez-Hernández, J. J. (1996). Upscaling hydraulic conductivities in hetero-

geneous media: An overview. J. Hydrology, 183: ix–xxxii.
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seasonality 7, 47, 49, 219, 230

storage 217, 226, 258–259, 282, 310–311

temporal evolution 49, 148, 189, 199–200,

217, 238, 239

topographic effects 7, 49, 218, 230–238

Spacing (scale) 18–22, 27, 31, 34–35, 35

Specific humidity 107

Speckle filter (remote sensing) 197–198

SPI (Saturation Potential Index) 195,

199–200, 201

Splines 29, 30–31, 33, 36, 130–131, 230

Split sample testing 76, 152, 181–182, 340

Stability function (atmosphere) 110
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Stanford watershed model 54
Statistical correction (data assimilation) 145
Statistical interpolation (SI) (data

assimilation) 146–147
see also Kriging

Stochastic models 54–55, 310–312, 324

Stochastic simulation (geostatistics) 37
Stomatal conductance 106–107, 114
Storage deficit 151, 213, 238, 239, 281

Storm – see Precipitation
Streamtube approach – see Contour-based

terrain representation
Structural analysis (geostatistics) 32–33

Sub-grid variability 67–70, 83, 92–93, 152, 166
Subsurface stormflow 53, 65, 222, 255–256
Super observations (data assimilation) 147

Support (scale) 18–22, 27, 31, 228
Surface runoff 12–14, 238–240
see also Overland flow

Surface temperature 106, 114, 118, 137, 162,
178–181

Surrogate data 18, 23–25, 40, 42, 44, 46,
307, 310, 332, 343, 365

pedo-transfer functions 40–41, 144, 244,
316, 332, 343

SVAT (Soil vegetation atmosphere transfer)

models 118, 121

TAPES-C 224

TDAS (Terrain data acquisition system)
215, 216

TDR (Time Domain Reflectometry) 21, 21,

23–24, 48, 134, 215–217
Temperate catchments 9, 47, 187, 190, 213,

344

Terrain analysis
indices 25, 40, 43, 171, 223
see also Digital elevation models
see also Wetness index

Testing of models – see Model testing
Thales 221–223, 222
Thiessen method (interpolation) 29, 29, 43,

44, 343
TIN (Triangulated Irregular Network) 39,

56–59, 57, 58, 322

TOPLATS 141–144
TOPMODEL 59, 66, 280–283
TOPOG 249, 257–259

Topography
effects on backscattering (remote sensing)
188, 200–203

hydrological effects of 7–12, 25, 36, 40,

160–162, 173, 218, 274, 318

relationship to soil properties 41, 203,
218, 253

representation of – see Digital elevation

models
shading by 10–11, 143, 160, 171, 181

Transmissivity

atmospheric 160, 181
hydraulic 273, 280–281, 284, 291

Trend 19, 20, 30, 133

Tropical catchments 249–254
Turbulent transport 106, 109–111, 163
Turning Bands Method (geostatistics) 37

UEB 178–181
Uncertainty 296–301

bounds 256–257, 298–301, 299, 300
GLUE 297–298
representation of 77–78

Unsaturated zone 305–306, 311
Upscaling 93, 167, 341

see also Aggregation

Upward approach to modelling 71–72

Vadose zone 305–306, 311
Validation – see Model testing
Vapour pressure 107
Variable source area 187, 188–189, 272

Variogram (geostatistics) 31–32, 32, 34, 136
Vegetation

effect on snow 162–163, 164, 167

heterogeneity 112–117, 122, 129
remote sensing of 115, 200, 203–204, 204

Verification – see Model testing

Vertical redistribution 64–65, 217, 305–306
VUTS 170–171

Water content – see Soil moisture
Water table 215, 272, 274; see also Depth to

water table

patterns – see Observer patterns;
Simulated patterns

Wavelet transform 85

Weighting function (data assimilation)
146–147

Wetness index 12–13, 187, 200

computation of 39–40, 57–59, 224,
275–277

quasi-dynamic 66

steady state 40, 43, 59, 70, 144, 144,
272–273, 280

Wind
drift factors 167, 171, 173, 181, 182

effect on evaporation 106, 115
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Wind (cont.)
effect on precipitation 133
effect on snow patterns 11, 162–163, 164,

167, 173, 178, 179

Zero plane displacement (atmospheric
boundary layer) 115
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