Zurich Summer School 2014 July 18-22, 2014

Adaptive Boundary Element Methods Part 1: h-h/2 Error Estimators

Dirk Praetorius

Vienna University of Technology Institute for Analysis and Scientific Computing

FUIF Der Wissenschaftsfonds

Collaborators

- Samuel Ferraz-Leite (PhD 02/2011)
- Markus Aurada (PhD 10/2011)
- Michael Karkulik (PhD 10/2012)
- Thomas Führer (PhD 06/2014)
- Michael Feischl (PhD spring 2015)
- Carsten Carstensen (HU Berlin)
- Markus Melenk (TU Wien)

ABEM, Part 1: h-h/2 Error Estimators

Adaptive Boundary Element Methods: Error Estimation, Convergence, and Optimality

- part 1: introduction & h-h/2 error estimators
- part 2: estimator reduction & convergence of ABEM
- part 3: linear convergence of ABEM
- part 4: optimal convergence rate of ABEM
- part 5: local inverse estimates for nonlocal operators
- http://www.asc.tuwien.ac.at/~dirk/zss/

ABEM, Part 1: h-h/2 Error Estimators

TU

VIENNA

Dirk Praetorius

TU VIENNA

Dirk Praetorius

2D Model Problem

2D Model Problem

• weakly-singular integral equation

$$V\!u(x):=-\frac{1}{2\pi}\int_{\Gamma}\log|x-y|\,u(y)\,dy=f(x)\quad\text{for }x\in\Gamma$$

• $\Gamma \subseteq \partial \Omega$ with $\Omega \subset \mathbb{R}^2$ bounded and Lipschitz

Variational Formulation

Find solution $u \in \mathcal{H}$ of

- $\langle\!\!\langle u\,,v\rangle\!\!\rangle:=\langle\,V\!u\,,v\rangle_{L^2(\Gamma)}=\langle f\,,v\rangle_{L^2(\Gamma)}\quad\text{for all }v\in\mathcal{H}$
- $\langle\!\!\langle\cdot\,,\cdot\rangle\!\!\rangle$ is scalar product
- induced norm $|\!|\!| v |\!|\!| := \langle\!\!\langle v, v \rangle\!\!\rangle^{1/2} \simeq |\!| v |\!|_{\widetilde{H}^{-1/2}(\Gamma)}$
- $\bullet \ \ \, {\rm Theorem \ of \ Riesz} \quad \Longrightarrow \quad {\rm unique \ solution} \ u \in {\cal H}$
- *u* in general *not* computable numerically

ABEM, Part 1: h-h/2 Error Estimators

Galerkin BEM

- \mathcal{T}_{ℓ} partition of Γ into affine line segments
- $h_{\ell} \in L^{\infty}(\Gamma)$ local mesh-size $h_{\ell}|_T := \operatorname{diam}(T)$
- $\mathcal{P}^p(\mathcal{T}_\ell)$ space of $\mathcal{T}_\ell\text{-piecewise polynomials of degree }\leq p$
- $\mathcal{X}_{\ell} := \mathcal{P}^p(\mathcal{T}_{\ell})$ discrete subspace of $\mathcal{H} = \widetilde{H}^{-1/2}(\Gamma)$

Galerkin Formulation

Find solution $U_{\ell} \in \mathcal{X}_{\ell}$ of

$$\langle\!\langle U_{\ell} , V_{\ell} \rangle\!\rangle = \langle f , V_{\ell} \rangle_{L^2(\Gamma)}$$
 for all $V_{\ell} \in \mathcal{X}_{\ell}$

- Theorem of Riesz \implies unique solution $u \in \mathcal{H}$
- U_ℓ computable by solving a linear SPD system

• Céa lemma
$$|||u - U_{\ell}||| = \min_{V_{\ell} \in \mathcal{X}_{\ell}} |||u - V_{\ell}||$$

A Priori Error Estimate

- suppose regularity $u \in \mathcal{H} \cap H^t(\Gamma)$
- $U_{\ell} \in \mathcal{X}_{\ell} = \mathcal{P}^p(\mathcal{T}_{\ell})$ Galerkin solution

$$\implies \|u - U_{\ell}\|_{\widetilde{H}^{-1/2}(\Gamma)} \lesssim \|u\|_{H^{t}(\Gamma)} \max_{T \in \mathcal{T}_{\ell}} \operatorname{diam}(T)^{\min\{p+1,t\}+1/2}$$

Optimal Convergence Behavior • suppose smooth solution u• suppose $h \simeq \operatorname{diam}(T)$ for all $T \in \mathcal{T}_{\ell}$ • let $N := \#\mathcal{T}_{\ell} \simeq h^{-1}$ (because of 2D) $\implies |||u - U_{\ell}||| \simeq ||u - U_{\ell}||_{\widetilde{H}^{-1/2}(\Gamma)} \lesssim h^{p+3/2} \simeq N^{-(p+3/2)}$

ABEM, Part 1: h-h/2 Error Estimators

τu

VIENN

Dirk Praetorius

Dirk Praetorius

Dirk Praetorius

Empirical Convergence Rates

- suppose: $\Phi(N) = cN^{-\alpha}$ with $c, \alpha > 0$ unknown • e.g., $\Phi(N) = |||u - U_{\ell}|||$ with $N = \#\mathcal{T}_{\ell}$
- suppose: can compute $\Phi(N_j)$ for certain N_j
- ${\ }$ goal: determine empirical value of $\alpha>0$
- $\Phi(N_j) = cN_j^{-\alpha}$ $\implies \Phi(N_1)/\Phi(N_2) = (N_1/N_2)^{-\alpha}$ $\implies \alpha = -\log \frac{\Phi(N_1)}{\Phi(N_2)}/\log \frac{N_1}{N_2} = -\frac{\log \Phi(N_1) - \log \Phi(N_2)}{\log N_1 - \log N_2}$
- consequence: plot $\log \Phi(N_j)$ over $\log N_j$
 - $\implies \alpha$ is negative slope of corresponding curve

Observation

• although RHS is smooth, solution exhibits singularities

• uniform refinement can lead to poor convergence rates

• appropriate adaptive refinement recovers optimal rates

• answer: a posteriori error estimation + adaptive algorithm!

3D Model Problem

• question: how to grade the mesh automatically?

• higher p does not help on uniform meshes

3D Model Problem

• weakly-singular integral equation

$$\operatorname{Vu}(x) := rac{1}{4\pi} \int_{\Gamma} rac{1}{|x-y|} \, u(y) \, dy = f(x) \quad \text{for } x \in \Gamma$$

• $\Gamma \subseteq \partial \Omega$ with $\Omega \subset \mathbb{R}^3$ bounded and Lipschitz

Variational Formulation

Find solution $u \in \mathcal{H}$ of

$$\langle\!\langle u, v \rangle\!\rangle := \langle Vu, v \rangle_{L^2(\Gamma)} = \langle f, v \rangle_{L^2(\Gamma)} \text{ for all } v \in \mathcal{H}$$

ABEM, Part 1: h-h/2 Error Estimators

Galerkin Discretization

- as before $U_{\ell} \in \mathcal{X}_{\ell} := \mathcal{P}^p(\mathcal{T}_{\ell})$
- mesh \mathcal{T}_{ℓ} of Γ with local mesh-widths $h_{\ell}, \varrho_{\ell} \in L^{\infty}(\Gamma)$

TU

Dirk Praetorius

ABEM, Part 1: h-h/2 Error Estimators

VIENNA

Efficiency

• $\widehat{\mathcal{T}}_{\ell}$ uniform refinement of \mathcal{T}_{ℓ} • $\widehat{U}_{\ell} \in \widehat{\mathcal{X}}_{\ell} := \mathcal{P}^0(\widehat{\mathcal{T}}_{\ell})$ Galerkin solution • $\eta_{\ell} := \| \widehat{U}_{\ell} - U_{\ell} \|$ canonical h-h/2 estimator • heuristics: $||u - \widehat{U}_{\ell}|| \ll ||u - U_{\ell}||$

Efficiency

There always holds $\eta_{\ell} \leq || u - U_{\ell} ||$

• proof by Galerkin orthogonality $\langle\!\langle u - \hat{U}_{\ell}, \hat{U}_{\ell} - U_{\ell} \rangle\!\rangle = 0$

$$|||u - U_{\ell}|||^{2} = |||(u - \hat{U}_{\ell}) + (\hat{U}_{\ell} - U_{\ell})|||^{2}$$
$$= |||u - \hat{U}_{\ell}|||^{2} + \eta_{\ell}^{2}$$

ABEM, Part 1: h-h/2 Error Estimators

Reliability

• suppose: asymptotics $|||u - U_{\ell}||| = CN^{-\alpha}$ with $N = \#\mathcal{T}_{\ell}$ • uniform refinement satisfies $\#\widehat{\mathcal{T}}_{\ell} = k \cdot \#\mathcal{T}_{\ell}$ with $k \geq 2$ $\implies |||u - \widehat{U}_{\ell}||| = C(k \# \mathcal{T}_{\ell})^{-\alpha} = k^{-\alpha} |||u - U_{\ell}|||$ $\implies q_{\rm sat} = k^{-\alpha}$ TU VIENNA ABEM, Part 1: h-h/2 Error Estimators Dirk Praetorius

Asymptotic Behavior \implies Saturation Assumption

Saturation Assumption for 2D Model Problem 1/2

TU

ABEM, Part 1: h-h/2 Error Estimators

TU

VIENNA

ABEM, Part 1: h-h/2 Error Estimators

ABEM, Part 1: h-h/2 Error Estimators

Remarks

Numerical Experiment in 2D (p=0)

Numerical Experiment in 2D (p=0)

Conclusions 1/2

- use $\eta_\ell = \| \widehat{U}_\ell U_\ell \|$ to estimate $\| u U_\ell \|$
- $\oplus \ \eta_\ell \leq |{\mskip-2.5mu}|{\mskip-2.5mu}| u U_\ell |{\mskip-2.5mu}|{\mskip-2.5mu}|$ with known constant 1
- $\oplus \,$ most general & most simple strategy
- $\oplus\,$ almost no implementational overhead
- \oplus can be computed exactly (up to Galerkin system)
- $\ominus \| \| u U_\ell \| \lesssim \eta_\ell$ hinges on saturation assumption
- $\ominus\,$ saturation assumption is hard to guarantee in practice
- \ominus requires Galerkin solution \widehat{U}_ℓ for uniformly refined mesh $\widehat{\mathcal{T}}_\ell$
- $\ominus\,$ cannot steer adaptive mesh-refinement

Extensions

- $\bullet\,$ h-h/2 strategy applies to all problems in Lax-Milgram setting
 - BEM for mixed boundary value problems
 - FEM-BEM coupling
- hyper-singular integral equations with $\|\cdot\| \simeq \|\cdot\|_{\widetilde{H}^{1/2}(\Gamma)}$
 - localization of $\|\cdot\|_{\widetilde{H}^{1/2}(\Gamma)}$ via weighted H^1 -seminorm $\eta_{\ell} = \| \widehat{U}_{\ell} - U_{\ell} \| \simeq \| \varrho_{\ell}^{1/2} (1 - \Pi_{\ell}) \nabla \widehat{U}_{\ell} \|_{L^2(\Gamma)} = \widetilde{\mu}_{\ell}$
 - analysis only for isotropic meshes
- \bullet localization analysis works for fixed polynomial degree $p\geq 0$
 - weakly-singular as well as hyper-singular integral equation

TU

Dirk Praetorius

Dirk Praetorius

TU

Dirk Praetorius

Dirk Praetorius

Conclusions 2/2

- cheaper local variant $\widetilde{\mu}_{\ell} = \| \varrho_{\ell}^{1/2} (1 \Pi_{\ell}) \widehat{U}_{\ell} \|_{L^2(\Gamma)}$
- $\oplus \ \widetilde{\mu}_{\ell} \simeq \eta_{\ell}$ for 2D and isotropic mesh-refinement in 3D
- \oplus only requires \widehat{U}_ℓ , but avoids U_ℓ
- $\oplus\,$ capable to steer anisotropic mesh-refinement in 3D
- \oplus good performance in numerical experiments
- $\ominus \tilde{\mu}_{\ell} \simeq \eta_{\ell}$ only empirically for anisotropic mesh-refinement in 3D
- good reasons for (h-h/2)-type estimators
 - check stability of code before implementing other estimators
 - any other estimator should (try to) beat h-h/2
 - each adaptive strategy must satisfy $\widetilde{\mu}_\ell \lesssim \eta_\ell \to 0$

ABEM, Part 1: h-h/2 Error Estimators

References

- Ferraz-Leite, P. (Computing 83, 2008)
- Erath, Ferraz-Leite, Funken, P. (Appl. Numer. Math. 59, 2009)
 - ${\ensuremath{\, \circ }}$ weakly-singular integral equations in 2D / 3D
 - ${\ensuremath{\, \circ \,}}$ (global) equivalence to other estimators (averaging, two-level)

Aurada, Ferraz-Leite, et al. (Appl. Numer. Math. 62, 2012)
Iowest-order BEM for mixed BVPs in 2D

- Erath, Funken, Goldenits, P. (Appl. Anal. 92, 2013)
- Aurada, Feischl, Führer, et al. (Appl. Numer. Math, 2014)
 - ${\ensuremath{\bullet}}$ hyper-singular integral equation in 2D / 3D
 - (global) equivalence to other estimators (averaging, two-level)

Open Problems

- prove $\eta_{\ell} \leq C \,\widetilde{\mu}_{\ell}$ with $C = C(\|h_{\ell}/\varrho_{\ell}\|_{L^{\infty}(\Gamma)}, u) \leq M < \infty$ • as long as \mathcal{T}_{ℓ} is aligned with anisotropic behavior of u
- h-h/2 estimators for hyper-singular IE on anisotropic meshes • so far, localization of $\widetilde{H}^{1/2}\text{-norm}$ requires isotropic meshes

- prove saturation assumption for smooth RHS
 - $\bullet\,$ e.g., if \mathcal{T}_ℓ is sufficiently fine

ABEM, Part 2: Estimator Reduction & Convergence

ABEM, Part 3: Linear Convergence of ABEM

ABEM, Part 3: Linear Convergence of ABEM

ABEM, Part 3: Linear Convergence of ABEM

ABEM, Part 4: Optimal Convergence of ABEM

ABEM, Part 4: Optimal Convergence of ABEM

ABEM, Part 4: Optimal Convergence of ABEM

lr C	ntroduction	NVB 000000000000	Dörfler Marking	Optimality 0000000	3D BEM 00000000	Conclusions
		Than	k You fo	r Liste	ning	
	Dirk Pr	raetorius				
	Vienna Institute and Scie	University of Techno e for Analysis entific Computing	logy			
	http://	/www.asc.tuwien.ac	c.at/ \sim dirk			
	http://	/www.asc.tuwien.ac	c.at/~dirk/zss			TU
A	BEM, Part 4: C	Optimal Convergence of ABI	EM			Dirk Praetorius

ABEM, Part 5: Inverse Estimates

