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General information
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Homepages + Accounts

▶ TISS homepage (login required)

• � https://tiss.tuwien.ac.at + search for lecture

• Registration (mandatory)

▶ TUWEL homepage (login required)

• � https://tuwel.tuwien.ac.at/course/view.php?id=54001

• Schedule & Course material

• Weekly assignments (download & handing-in)

• Forum to ask questions on lecture + exercises

▶ Server lva.student.tuwien.ac.at

• Remote login via

◦ ssh -X name@lva.student.tuwien.ac.at

◦ name = e + student ID, e.g., e12173378

• Requires valid VPN connection outside TU Wien

◦ see � TU.it (vpn)

• Working on a remote server will be important

later when you work on the VSC supercomputer

▶ If you have problems with your TU passwords, you
must contact � TU.it (TU accounts)
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Course contents

▶ Quick introduction to Unix

• needed to work on the VSC

▶ Quick introduction to MATLAB

• needed for exercises on Numerics of ODEs

and Numerics of PDEs

• basics must be available until March 10

▶ Introduction to C

• needed for Parallel Computing on the

supercomputer VSC (Vienna Scientific Cluster)

• full proficiency must be reached until May 10
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Course organization

▶ The course will deal with hands-on programming
of mathematical problems in MATLAB and C

▶ It accompanies the lectures Numerics of ODEs,
Numerics of PDEs, and Parallel Computing

▶ The regular course takes place 6h per week

• Friday 08:30–10:00: Presentation of homework

• Friday 10:30–12:00: Joint work on theory

• Friday 13:00–14:30: Hands-on programming

▶ Course start: March 03, 2023 (but only 2h)

• only 08:30–10:00: Introduction to Unix

• homework: make yourself familiar with MATLAB

▶ Course dates:

• MATLAB: 10.03 + 17.03 + 24.03 + 31.03

• C: 21.04 + 28.04 + 05.05 + 12.05

▶ Course end: May 12, 2023

▶ No exam, but grades according to homework

• A positive grade requires the solution of ≥ 50%

of all exercises

• Active contribution to class will have positive

impact on the final grade

◦ and non-contribution has negative impact!

4



General information

▶ start and quit MATLAB

▶ MATLAB online help

▶ m-files

▶ help
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What is MATLAB?

▶ MATLAB (MATrix LABoratory) is a numeric
computing environment that provides a full
programming language together with an IDE
(integrated development environment)

▶ 1970: developed for academic teaching

• on Linear Algebra

• on Numerical Mathematics

▶ Powerful tool for mathematicians and engineers

• Numerical solution of mathematical problems

Why MATLAB?

▶ Easy development of mathematical algorithms

• Most mathematical core functionality is already

provided by MATLAB functions

◦ e.g., x = A\b to solve Ax = b via

Gaussian elimination

▶ Matrices & vectors are built-in ingredients

▶ MATLAB allows the programmer to concentrate
on mathematical key problems

▶ Therefore, MATLAB is the first choice for
developing mathematical algorithms
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Selling points of MATLAB

▶ Easy to learn

▶ Quick implementation of “strong” algorithms

▶ Built-in & powerful MATLAB editor

• code folding

• break points

• real-time debugger

• profiler

▶ MATLAB can be combined with C, C++, Fortran

• first: development of algorithms in MATLAB

• then: successive re-implementation for speed-up

◦ e.g., in C

▶ Many (free) online tutorials

• e.g., � MATLAB Onramp

▶ Large and active community

• � MATLAB file exchange
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Availability

▶ MATLAB is a commercial product

▶ Available on server lva.student.tuwien.ac.at

▶ Free student version for all students of TU Wien

• � http://www.sss.tuwien.ac.at/sss/mla/

• � https://de.mathworks.com/academia/

tah-portal/technische-universitat-wien-30338656.html

▶ Free MATLAB clone: Octave

• � http://www.octave.org

Toolboxes

▶ Toolbox = library for MATLAB

▶ To solve special math problems, e.g.,

• Symbolic Math Toolbox

• Partial Differential Equations Toolbox

• Statistics Toolbox

• Parallel Computing Toolbox . . .

▶ Usually, one must buy MATLAB and toolboxes
separately

▶ TU Wien has a quite strong bundle of toolboxes
included in its campus license
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Program

▶ A computer program (or, briefly, a program) is a
collection of statements, written in a programming
language, that performs a specific task when
executed by a computer

• Statement = declaration or instruction

◦ Declaration = e.g., definition of variables

◦ Instruction = ‘do something’

• Example: Search for a phonebook entry

• Example: Compute the value of an integral

Algorithm

▶ An algorithm is a finite sequence of unambiguous
operations which specifies how to solve a problem
(or a class of problems)

• Example: Compute the solution of a linear

system of equations via Gaussian elimination

• Example: Compute the zero of a quadratic

polynomial using the quadratic formula

• Note: A program is only an algorithm

if it stops eventually

▶ There exist many algorithms to solve a problem

• Not all algorithms are “good”

◦ What does “good” mean? (see later)
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Source code

▶ Text of a computer program written in a
programming language

▶ It is processed step-by-step while executing
or compiling

▶ In the easiest situation: sequentially

• Line-by-line

• From the top to the bottom

Programming language

▶ Programming languages can be classified into
interpreted and compiled languages

▶ The interpreter executes source code line-by-line
during the “translation”

• i.e., translate and execute at the same time

• e.g., Matlab, Java, PHP, Python

▶ The compiler “translates” the source code
and produces a stand-alone program written
in assembly language (executable)

• i.e., first translate, then execute

• e.g., C, C++, Fortran

▶ Alternative classification:

• Imperative languages, e.g., Matlab, C, Fortran

• Object-oriented languages, e.g., C++, Java

• Functional languages, e.g., Lisp, Haskell
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Start MATLAB

▶ Windows/Mac OS

• graphical interface

▶ UNIX/Linux

• Enter matlab in UNIX-Shell to start

◦ note: UNIX is case sensitive

• If possible: graphical interface

• Or: text-only matlab -nodisplay

• Or: text-based with figures matlab -nodesktop

MATLAB Command Window

▶ Main window of MATLAB is Command Window

▶ MATLAB shell is a command line

• The MATLAB shells knows the most important

UNIX commands, e.g., ls, mkdir, . . .

• Further UNIX commands are available in

MATLAB shell via !command

▶ MATLAB can be used like a pocket calculator

Quit MATLAB

▶ Enter exit into MATLAB shell
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Screenshot MATLAB

▶ middle = MATLAB shell

▶ left = current directory

▶ upper/right = variables in workspace

▶ lower/right = last commands entered
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Variable

▶ Variable = symbolic name (identifier) of a
storage location (memory address) containing
some quantity of information (value)

Variable names (identifiers)

▶ Made of letters, digits and underscore _

• in MATLAB: maximum length = 63

• in MATLAB: The first character must be a letter

▶ in MATLAB (and usually): Variable names are
case-sensitive

• i.e. Var, var, VAR are three different variables

▶ Usual convention: lowercase_with_underscores

Data types

▶ Usually, the data type of a variable must be
declared before using it

▶ Elementary data types:

• Floating-point numbers for values in Q, R,
e.g., double

• Integer for values in N, Z
• Characters (letters), e.g., char
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Working in Workspace

▶ Dynamic declaration of variables

• i.e., variables are generated by first assignment

• No formal declaration (and data type) is needed

▶ By default, all variables are double

▶ All arithmetic operations can be used

▶ End of statement by line feed

▶ Some statements provide an echo / output

• that can be suppressed by use of a semicolon

Example

▶ Start MATLAB by entering matlab in Unix shell

▶ Create variables a = 3 and b = 2.5

>> a=3

• leads to echo: a = 3

>> b=2.5;

• No echo because of semicolon

▶ Compute
√
ab

>> sqrt(a*b)

• Leads to echo: ans = 2.7386

▶ Result of last computation is always stored in
system variable ans (“answer”)

▶ sqrt is square root function in MATLAB
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MATLAB files

▶ MATLAB is an interpreted language

▶ MATLAB files are called name.m, and there are two
types of MATLAB files name.m

• Script files

◦ They are executed by entering name at

the MATLAB command line

◦ They contain a sequence of statements

that are sequentially executed

◦ They modify the workspace memory

(i.e., variables are changed)

◦ They must not start with functions, but may

contain local functions (which can only be

called from inside the script)

• Function files

◦ First line of file declares the main function

function output = name(input)

◦ Function name name ⇔ file name name.m

◦ End of function is given by end

◦ Then, the function can be called from outside

by out = name(in)

◦ A file can contain further functions, but only

the main function can be called from outside

◦ All variables in functions are local variables,

i.e., they can only be accessed during runtime

of the function

▶ Executing is interrupted by Crtl+C during runtime
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Screenshot MATLAB-Editor

▶ MATLAB command edit opens editor window

▶ left = line numbers (and possible break points)

▶ left = code folding for loops

• line 143 (non-folded), line 157 (folded loop)

▶ right = real-time code check

• green = code OK

• orange = recommendations / improvements

• red = errors
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Help!

▶ MATLAB has built-in help / documentation of all
functions

• help command

◦ text based in MATLAB shell

• doc command

◦ opens full documentation in help window

▶ full online documentation

• � http://www.mathworks.com/products/matlab/

Good to know

▶ MATLAB is case sensitive for names of variables
and functions

▶ many MATLAB commands are actually m-files

• Exception: all linear algebra functions are taken

from the LAPACK library

◦ so-called MATLAB built-in functions

• which command returns directory + filename

◦ One can copy and adapt command if needed

• type command shows MATLAB code if m-file

• edit command opens MATLAB code in editor

◦ if you are working with MATLAB in a

graphical environment

▶ Example: lu, fft (built-in), pcg (m-file)

17

http://www.mathworks.com/products/matlab/


Variables

▶ dynamic declaration

▶ dynamic memory allocation

▶ all variables are matrices

▶ complex numbers

▶ assignment operator

▶ semicolon

▶ double, char, logical

▶ real, imag

▶ ’...’

▶ imaginary unit i
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Dynamic declaration

▶ = is the assignment operator

▶ Variables are declared through first assigment

• var = 7; assigns var the value 7

◦ Data type is chosen according to assignment

◦ Standard data type for all numbers is double

• var = ’hello’; assigns var the string hello

◦ String = row vector of type char

▶ Each assignment updates the data type

• e.g., var = 7; var = ’hallo’; is admissible

Semicolon

▶ Lines ending with semicolon ; suppress the result
output (so-called echo)

• var = 7 assignment with echo

>> var = 7

• var = 7; assignment without echo
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Data types

▶ All numeric variables are a-priori double

• according to IEEE 754 standard

• i.e., floating point numbers with approximately

16 significant digits

▶ MATLAB provides also other numeric data types

• e.g., single, int8, etc.

▶ Data type char for characters (letters)

▶ Data type logical for logical results

• Takes only two values: 0 false, 1 true

• Numeric values ̸= 0 are interpreted as true

Complex numbers

▶ All MATLAB arithmetics is provided for complex
numbers

• imaginary unit is i or 1i (and also j or 1j)

• var = 7 + 5i; assigns var the value 7 + 5i

◦ Note: Only here, * can be omitted

◦ e.g., 5.5i and 5.5*i is both OK

• real and imaginary part are stored as double

◦ also other data types are possible
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Further numeric data types

▶ MATLAB knows further numeric data types

• single

◦ according to IEEE 754 standard

◦ i.e., floating point numbers with

approximately 8 significant digits

◦ corresponds to float in C/C++

• int8, int16, int32, int64

◦ for integers (with fixed bit length)

◦ int32 (4 Byte) corresponds to int in C/C++

• uint8 uint16, uint32, uint64

◦ unsigned integer

▶ Will not be used in this lecture!

▶ MATLAB behaves differently than other
programming languages. Therefore, I do not
use other numeric data types than double.

• >> a = int8(3.7)

Echo: a = 4

◦ C would return the value 3 (truncation

instead of rounding)

• >> b = single(4)*double(3)

Echo: b = 12

• But b has data type single!

◦ C would compute the double value 12 and

would cast it according to the prescribed

data type of b!
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Names of variables

▶ Variables have a unique name

• MATLAB is case-sensitive

• The maximal length is 63, further characters

are ignored

▶ Admissible characters for names of variables and
functions are

• letters (no special letters like German ö)

• digits

• underscore

▶ A name must begin with a letter!

▶ Admissible names are, e.g.,

• A, a, A p e, a2Dsju s

▶ Non-admissible names are, e.g.,

3a, äöüß, some-Variable

▶ Some names are pre-defined like pi or sin or i

• They can be overwritten, but this is probably

not a good idea in practice

◦ e.g., pi = 3; would be admissible

• One can delete a variable var via clear var

◦ If the name was pre-defined, then you return

to the original meaning (e.g., pi).
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All variables are matrices!

▶ In MATLAB, all variables are matrices:

• var = 7; declares a 1× 1 matrix

• row vector = 1×N matrix

• column vector = N × 1 matrix

Strings

▶ There are two ways to handle strings in MATLAB

• either "hello" or ’hello’

▶ a = ’hello’ creates a 1× 4 matrix of type char

▶ a = "hello" creates a 1× 1 matrix which contains
a string

• This variant is better if you need a vector

of strings that are not of the same length
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Dynamic memory allocation

▶ First assigment to a non-existing entry extends
a matrix accordingly

• new double entries are initialized with 0

• new char entries are initialized with blanks

◦ Example: A = 1; A(3) = 7; extends A to a

1× 3 matrix A = (1,0,7)

▶ Numerical matrices have always a real and
an imaginary part

• The imaginary part is dynamically allocated if

the first entry becomes complex (instead of real)

◦ A complex matrix A ∈ Cn×n is internally stored

by two real n× n matrices

• real(var) returns the matrix of the real parts

• imag(var) returns the matrix of imaginary parts

▶ Try to avoid dynamic re-allocation of matrices,
since this leads to unnecessarily high runtime

• Each allocation calls the memory management

of the operating system!

• MATLAB stores matrices column-wise

◦ since the MATLAB kernel is based on

LAPACK, which is a Fortran library

◦ Whenever a matrix gets new rows, essentially

all old entries have to be copied and moved.

This leads to a hidden runtime inefficiency!

• Therefore, allocate matrices at the needed size,

before you work with them!
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Vectors

▶ Vectors

▶ Indexing of vectors and sub-vectors

▶ double, char

▶ length

▶ sort, unique, find

▶ min, max

▶ abs

▶ sum, prod

▶ zeros, ones, rand

▶ Operator ’ and .’

▶ help strfun, doc strfun
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Vectors

▶ Create a row vector

• x = [1 2 3 4 5 6 7 8];

• x = [1,2,3,4,5,6,7,8];

◦ Entries are separated by blanks or commas

▶ Create a column vector

• x = [1;2;3;4;5;6;7;8];

◦ Entries are separated by semicolons

• x = [1 2 3 4 5 6 7 8]’;

◦ Operator ’ means A 7→ AH := A
T

◦ Operator .’ means A 7→ AT

▶ If x is a vector, then x(j) is the j-th entry xj

• Indices run from j = 1, . . . , N for x ∈ CN

• The length of a vector is returned by length(x)

• Access to a column vector can be done by x(j,1)

• Access to a row vector can be done by x(1,j)

▶ Dynamic allocation

• x = 0; creates 1× 1 matrix = scalar

• x(10,1) = 1; extends x to column vector

◦ x is 10× 1 matrix = column vector

◦ all entries but x(10) are 0

• analogously for row vector
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Allocating a vector

▶ x = zeros(N,1); creates a zero column vector

• x = zeros(1,N); for row vector

▶ x = ones(N,1); creates col. vector with entries 1

• x = ones(1,N); for row vector

▶ x = rand(N,1); for col. vector with random entries

• x = rand(1,N); for row vector

▶ Function rand creates random numbers ∈ [0,1]

▶ Function irand creates random integer numbers

• see help irand

Creating a row vector

▶ x = start:stepsize:stop; creates row vector

• from start to ≤stop for stepsize> 0

• from start to ≥stop for stepsize< 0

• stepsize is optional, default stepsize is 1

◦ e.g., x = 1:8; yields x = (1,2,3,4,5,6,7,8)

◦ e.g., x = 1:3:8; yields x = (1,4,7);

◦ e.g., x = 8:-3:1; yields x = (8,5,2);

◦ nonsense creates empty matrix, e.g., x = 6:2;

▶ Further useful functions are linspace and logspace
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Concatenating vectors

▶ x and y row vectors

• [x y] concatenated row vector

• Example: x = [1 2 3]; y = [4 5];

◦ [x y] yields [1 2 3 4 5]

▶ x and y column vectors

• [x;y] concatenated column vector

• Example: x = [1;2;3]; y = [4;5];

◦ [x;y] yields [1;2;3;4;5]
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Indexing

▶ x ∈ CN row or column vector

▶ j ∈ 1, . . . , N ⇒ x(j) returns xj

▶ J index vector with entries ∈ {1, . . . , N}

▶ x(J) is admissible and returns a vector

• Length depends on length of J

• Row or column shape depends on x

◦ x column vector ⇒ x(J) column vector

◦ x row vector ⇒ x(J) row vector

▶ Example x = [1 8 2 7 3 6 4 5 1];

▶ J = [1 2 1 3]

• x(J) yields [1 8 1 2]

▶ J = 1:2:9

• x(J) yields [1 2 3 4 1]

▶ x(10) returns an error, since x has length 9

• Index exceeds the number of array elements.
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Assignment

▶ x ∈ CN row or column vector

▶ J ∈ Rn index vector with entries ∈ {1, . . . , N}

▶ x(J) = y is admissible,

• if y is a scalar

◦ Then, assignment x(j) = y for all j ∈ J

• if y is a vector of length n with the same shape

as x, i.e., both are row vectors or both are

column vectors

◦ Then, x(J(j)) = y(j) for all j = 1, . . . , n

▶ Example: x = [1 2 3 4 5]

• x([1 1 1 2]) = [4 3 2 1]

• yields x = [2 1 3 4 5]
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Examples on MATLAB elegance

▶ Create row vector x = (0,1,0,1, ...) ∈ RN

x = zeros(1,N);
x(2:2:N) = 1;

or

x = zeros(1,N);
x(2:2:end) = 1;

▶ keyword end is short-hand notation for length(x)

▶ Create row vector x = (0,1,0,2,0,3,0,4, ...) ∈ RN

x = zeros(1,N);
x(2:2:end) = 1:N/2;

▶ Create x = (N,0, N − 1,0, N − 2,0, ...,1) ∈ R2N−1

x = zeros(1,2*N-1);
x(1:2:end) = N:-1:1;

▶ Take x = (x1, . . . , xN) and return y = (xN , . . . , x1)

y = x(end:-1:1);

or

y = flip(x);
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Useful functions on vectors

▶ sort : sorts a vector in ascending order

• e.g., x = [1 8 2 7 3 6 4 5 1];

• sort(x) yields (1,1,2,3,4,5,6,7,8)

▶ unique : sorts a vector in ascending order and
eliminates multiple values

• unique(x) yields (1,2,3,4,5,6,7,8)

▶ find : returns those indices j, where the coefficients
xj satisfy a given condition

• find(x>3) yields (2,4,6,7,8)

• x(find(x>3)) yields (8,7,6,4,5)

◦ see also later → logical indexing

▶ max, min : returns maximum / minimum of a vector

• plus indices, where these are attained

▶ abs : returns the vector of the absolute values

▶ sum : computes the sum of entries
∑N

j=1 xj

▶ prod : computes the product of entries
∏N

j=1 xj

32



Examples

▶ Compute the factorial n!

• factorial = prod(1:n);

▶ Sort a vector in descending order

• x = sort(x); x = x(end:-1:1);

• or: x(end:-1:1) = sort(x);

• or: x = sort(x,’descend’);

▶ Eliminate the minimal entries of a vector

• e.g., x = (1,2,1,2,3,1,4,5) 7→ x = (2,2,3,4,5)

• x = x( find(x > min(x)) );

▶ Count the number of the minimal entries

• e.g., x = (1,2,1,2,3,1,4,5) → 3× minimum

• count = length( find(x == min(x)) );

An example function

1 function [mean,n] = meanDeviation(x,C)
2 mean = sum(x)/length(x);
3 idx = find( (x > mean + C) | (x < mean - C) );
4 n = length(idx);
5 end

▶ What is the mean of a vector and how many entries
are “far” from the mean?
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Strings

▶ If we use row vectors of char to create strings,

• then manipulation as for double vectors

◦ hello = ’Hello’;

◦ world = ’World!’;

◦ helloworld = [hello,’ ’,world];

◦ helloworld(2:5) yields ello

▶ If we use “real” MATLAB strings (e.g., "hello"),

• then we need string functions

◦ see help strfun or doc strfun

• concatenation via "Hello" + " " + "World"

▶ Use disp(text) to print a string to the shell

• for both types of strings
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Matrices

▶ Matrices

▶ Indexing of matrices and sub-matrices

▶ length, size

▶ zeros, ones, rand, eye

▶ Operator :

▶ help matfun, doc matfun
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Matrices

▶ We can define matrices row-wise (as for vectors)

• A = [1 2 3;4 5 6]; creates A =

(
1 2 3
4 5 6

)
.

▶ And we can replace the semicolon by a line break

• A = [1 2 3

4 5 6];

▶ Or we can define the same matrix column-wise

• A = [[1;4] [2;5] [3;6]];

▶ Or we can define the same matrix block-wise

• A = [[1;4] [2 3;5 6]];

• The dimensions of the blocks must be consistent

▶ C = [A B] or C = [A,B] concatenates row-wise

• creates C ∈ RM×(N+n) from A ∈ RM×N , B ∈ RM×n

• with error if the dimensions mismatch:

Error using horzcat

Dimensions of matrices being concatenated

are not consistent.

▶ C = [A;B] concatenates column-wise

• creates C ∈ R(M+n)×N from A ∈ RM×N , B ∈ Rm×N

• with error if the dimensions mismatch:

Error using vertcat

Dimensions of matrices being concatenated

are not consistent.
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Allocating a matrix

▶ A = zeros(M,N); creates zero matrix A ∈ RM×N

▶ A = ones(M,N); creates A ∈ RM×N with Ajk = 1

▶ A = rand(M,N); creates A with random Ajk ∈ [0,1]

▶ A = eye(N); creates the identity matrix A ∈ RN×N

▶ Dynamic memory allocation

• x = 1:3:12 yields row vector x = (1,4,7,10)

• x(100,3) = 5 extends it to x ∈ R100×4

◦ only 5 non-zero entries

▶ Recall that changing the size of a matrix is a costly
operator due to the internal storage and the
memory management

• Hence, it is recommended to allocate matrices

in advance!
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Indexing 1/3

▶ A(j,k) yields access to entry Ajk

• with j = 1, . . . ,M , k = 1, . . . , N for A ∈ CM×N

▶ Since matrices are stored columnwise as a vector,
MATLAB allows access via A(ℓ) for 1 ≤ ℓ ≤ MN

• e.g., A(4) = 5 for A =

(
1 2 3
4 5 6

)

▶ The dimensions of A ∈ CM×N are returned by

• [M,N] = size(A);

• M = size(A,1); and N = size(A,2);

• length(A) yields max{M,N}
• numel(A) yields MN
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Indexing 2/3

▶ MATLAB allows block-wise indexing of matrices

• A ∈ CM×N

• J vector with entries ∈ {1, . . . ,M}
• K vector with entries ∈ {1, . . . , N}
• Then, A(J, K) returns a matrix, whose dimension

depends on the lengths of J and K

▶ A = [1 2 3;4 5 6]; declares A =

(
1 2 3
4 5 6

)
.

▶ A([1 2 1],[1 3]) yields

1 3
4 6
1 3

.

▶ Operator : stands for the full index set

• A(1,:) yields the first row of A

• A(:,[1 2]) yields

(
1 2
4 5

)
.

▶ A(:) returns A as its storage vector

• and yields (1,4,2,5,3,6)

• Note the columnwise storage of A

▶ The keyword end stands for the maximum index
per dimension

• A(:,1:2:end) yields A(:,[1 3])

• since end is size(A,2) for this use
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Indexing 3/3

▶ Indexing allows to cancel rows from a matrix

• e.g., A =

(
1 2 3
4 5 6

)
• A(1,:) = [ ]; yields A =

(
4 5 6

)
◦ where [ ] is the empty matrix

▶ Indexing allows to cancel columns from a matrix

• A(:,2) = [ ]; yields A =

(
1 3
4 6

)
• A(:,[2 3]) = [ ]; yields A =

(
1
4

)

▶ Alternatively, use A = A(I,J) with index vectors I,J

• e.g., A =

1 2 3
4 5 6
7 8 9


• A = A([1 2],:) yields A =

(
1 2 3
4 5 6

)
• A = A([1 2],[2 3]) yields A =

(
2 3
5 6

)
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Useful functions on matrices

▶ Essentially all MATLAB functions are natively
provided for matrices

• e.g., help sort or doc sort

◦ [...] For vectors, sort(X) sorts the

elements of X in ascending order. For

matrices, sort(X) sorts each column of X in

ascending order. [...]

▶ The same applies for math functions, which usually
return the matrix with entries f(Aij)

• e.g., exp, log, sin, cos, tan

▶ Available functions from numerical linear algebra:

• help matfun, doc matfun
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Operators

▶ matrix arithmetics

▶ scalar-matrix arithmetics

▶ entry-wise arithmetics

▶ logical operators

▶ + - * / \

▶ .* ./ .\ .^

▶ ^

42



Matrix arithmetics 1/3

▶ All variables are matrices

▶ Therefore, the standard arithmetics is a matrix
arithmetics

▶ +, - depends on the dimensions:

• either matrix ± matrix (entry-wise)

• or scalar ± matrix in each entry

• or matrix ± scalar in each entry

• Recall: Same dimension or one is a scalar!

◦ Otherwise, you get an error:

Error using +

Matrix dimensions must agree.

▶ e.g., A =

(
1 2
3 4

)
, B =

(
10 20
30 40

)
• C = A + 10 yields C =

(
11 12
13 14

)
• C = 10 + A yields C =

(
11 12
13 14

)
• C = 1 - A yields C =

(
0 −1
−2 −3

)
• C = A + B yields C =

(
11 22
33 44

)
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Matrix arithmetics 2/3

▶ * depends on the dimensions:

• either matrix ∗ matrix (usual matrix product)

• or scalar ∗ matrix in each entry

• or matrix ∗ scalar in each entry

• Recall: Fitting dimension or one is a scalar!

▶ e.g., A =

(
1 2
3 4

)
, B =

(
10 20
30 40

)
• C = A * 10 yields C =

(
10 20
30 40

)
• C = 10 * A yields C =

(
10 20
30 40

)
• C = A * B yields C =

(
70 100
150 220

)
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Matrix arithmetics 3/3

▶ Division \ and / depends on the dimensions:

• either matrix-scalar Division (entry-wise)

• or solution of a linear system

◦ for x scalar and A matrix, x\A = A/x

◦ for X and A matrices the order matters:

◦ X\A 7→ X−1A

◦ A\X 7→ A−1X

◦ X/A 7→ XA−1

◦ A/X 7→ AX−1

• NOTE: \ and / are also defined for

non-invertible matrices via regression

▶ e.g., A =

(
2 4
6 8

)
• A / 2 yields A =

(
1 2
3 4

)
• 2 \ A yields A =

(
1 2
3 4

)
• X =

(
1 2 3
1 2 3

)
, B = AX =

(
6 12 18
14 28 42

)
• A \ B yields X

• B / A yields error

Error using /

Matrix dimensions must agree.
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Entry-wise arithmetics 1/2

▶ +, - are entry-wise addition/subtraction

• matrix ± matrix for matrices of the same dim.

• or scalar ± matrix

• or matrix ± scalar

▶ .* is entry-wise multiplication

• for matrices of the same dimension

◦ i.e., X.*A yields matrix with entries XjkAjk

• or scalar-matrix multiplication

• or matrix-scalar multiplication

◦ identical to * in the latter cases

▶ e.g., A =

(
1 2
3 4

)
, B =

(
10 20
30 40

)
• C = A*10 and C = A.*10 yield C =

(
10 20
30 40

)
• C = A*B yields matrix product C =

(
70 100
150 220

)
• C = A.*B yields C =

(
10 40
90 160

)
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Entry-wise arithmetics 2/2

▶ ./ and .\ entry-wise division

• for matrices of the same dimension

• or scalar-matrix division

• or matrix-scalar division

▶ .^ entry-wise power

• for matrices of the same dimension

◦ i.e., X.^A yields matrix with entries X
Ajk

jk

• or scalar-matrix x.^A yields matrix with xAjk

• or matrix-scalar X.^a yields matrix with Xa
jk

▶ ^ normal matrix power

• matrix ^ scalar is only defined for quadratic ma-
trices!

◦ A^3 means A*A*A

▶ e..g., A =

(
1 2
3 4

)
• C = A^2 yields C =

(
7 10
15 22

)
• C = A.^2 yields C =

(
1 4
9 16

)
• C = 2.^A yields C =

(
2 4
8 16

)
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Arithmetics instead of loops

▶ Often, loops from other programming languages
can be avoided in MATLAB by means of vector
arithmetics (and appropriate vector functions)

▶ Usually, this is more efficient, since built-in functi-
ons are optimized

• i.e., same computational cost as for loops

• but much faster due to precompiled kernel-code

Example: Supremum norm

▶ ∥x∥ = maxj=1,...,N |xj| on RN , e.g., in C

int j = 0;
double tmp = 0;
double norm = fabs(x[0]);
for (j=1; j<N; ++j) {

tmp = fabs(x[j]);
if (tmp > norm) {

norm = tmp;
}

}

▶ MATLAB is closer to mathematical thinking:

• Create vector of absolute values abs(x)

• Take the maximum of this vector

• result = max(abs(x));

▶ Computational cost is still O(N)!
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Example: Scalar product

▶ x · y =
∑N

j=1 xjyj is the scalar product on RN

• We interpret this as a matrix-matrix product

◦ with (1×N) matrix x and (N × 1) matrix y

• If x, y are row vectors, we get result = x*y’;

• or: result = sum(x.*y);

◦ which also works if x, y are column vectors

Example: Frobenius norm

▶ The Frobenius norm reads ∥A∥ =
(∑N

j,k=1A
2
jk

)1/2

▶ in C:

int j,k;
double norm = 0;
for (j=0; j<N; ++j) {

for (k=0; k<N; ++k) {
norm = norm + A[j][k]*A[j][k];

}
}
result = sqrt(norm);

▶ in MATLAB: Square all entries and sum it up

• result = sqrt( sum( sum(A.^2, 2) ) );

• result = sqrt( sum(A(:).^2) );

• result = norm(A,’fro’);
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Example: Evaluate polynomial

▶ Consider the polynomial p(x) =
∑N

j=0 ajx
j

• suppose that a is a row vector, x is a scalar

• Recall that MATLAB indices are j = 1,2, . . .

◦ i.e., N = length(a)− 1

• result = sum( a.*(x.^[0:length(a)-1]) );

• or: result = a*(x.^[0:length(a)-1])’;

Example: Vandermonde matrix

▶ Given x ∈ Rn, create X =


x1 x2

1 x3
1 · · · xn

1
x2 x2

2 x3
2 · · · xn

2... ... ... . . . ...
xn x2

n x3
n · · · xn

n



▶ Idea: X =


x1 x1 · · · x1

x2 x2 · · · x2
... ... . . . ...
xn xn · · · xn

.^

1 2 · · · n
1 2 · · · n
... ... . . . ...
1 2 · · · n


▶ With column vector x, this is done as follows

n = length(x);

X = x * ones(1,n);

X = X .^ ( ones(n,1) * (1:n) );
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Logical operators

▶ logical NOT ∼

▶ logical OR | (general) , || (short circuit, only scalars)

▶ logical AND & (general), && (short circuit, only scalars)

▶ less <

▶ less or equial <=

▶ greater >

▶ greater or equal >=

▶ equal ==

▶ unequal ∼=

▶ These operators apply entry-wise

• for matrices of the same dimension

• or for matrix-scalar or scalar-matrix

▶ They return the matrix with the corresponding
logical results

▶ any(a > b) is an iterated OR for vectors

▶ all(a > b) is an iterated AND for vectors

• For matrices, see help any and help all
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Logical indexing

▶ x vector of length N

▶ J logical vector of length N with J(k) ∈ {0,1}

▶ Then, x(J) is sub-vector of all x(k) with J(k)==1

▶ e.g., x = [1 8 2 7 3 6 4 5 1];

• x > 3 yields [0 1 0 1 0 1 1 1 0]

◦ resulting data type is logical, not double

• x(x > 3) yields [8 7 6 4 5]

▶ NOTE: Indexing with logical vs. double

• J = [1 1 1 1 1 1 1 1 1]; (hence double)

◦ x(J) yields [4 4 4 4 4 4 4 4 4]

◦ x(logical(J)) yields [1 8 2 7 3 6 4 5 1]

• Note the error for x([0 1 0 1 0 1 1 1 0])

◦ Subscript indices must either be real

positive integers or logicals.

▶ find returns indices of non-zero entries of a vector

• x > 3 yields [0 1 0 1 0 1 1 1 0]

• find(x > 3) yields [2 4 6 7 8]

▶ Example: How many entries of x are > 3?

• count = length( find(x > 3) );

• or: count = sum(x > 3);

• or: count = nnz(x > 3);
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Examples

▶ Has x ∈ RN at least one positive entry?

• answer = any( x > 0 );

▶ Has x ∈ RN only positive entries?

• answer = all( x > 0 );

▶ Replace all entries of x ∈ RN with |xj| > C by
sign(xj)C

• x( x > C ) = C;

• x( x < -C ) = -C;

▶ Delete minimal entries from x ∈ RN

• x = x( x > min(x) );

• or: x( x == min(x) ) = [];
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Functions

▶ Structure of a MATLAB function

▶ Comment lines

▶ Call by Value

▶ local and global variables

▶ function

▶ %

▶ global

▶ return
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Structure of a function

1 function output = name(input)
2
3 % This text will be shown if "help name" is input
4 % at the MATLAB prompt. Therefore, this text
5 % should comment on
6 % - How can the function be called?
7 % - What will be done?
8 % - What is the necessary (and optional) input?
9 % - What is the output?

10 % This is the final line of the help text.
11
12 % After the empty line, one should comment on
13 % author / source / copyright / last modified etc.
14
15 % Here comes the function body (ended by "end").
16
17 end
18
19 function y = subfunction(x)
20
21 % This is a subfunction that can only be called
22 % from functions inside this file. There should
23 % be comments on what is done / what is input.
24
25 end

▶ % indicates a comment, i.e., the text after % until
the end of line is only for the programmer and will
not be executed by the MATLAB interpreter

▶ The first contiguous block of comment lines right
after function will be shown when help name is
input at the MATLAB prompt

▶ Line numbers are not part of the source code
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Possible function declarations

▶ now: fixed number of input and output parameters

▶ function name or function name()

• no input parameters

• no output parameters

• called by: name; or name();

▶ function name(in1,in2,...)

• finitely many input parameters indicated by ...

• no output

• called by: name(in1,in2,...);

▶ function out = name

• no input [optional () for declaration and call]

• one single output parameter

• called by: out = name;

▶ function out = name(in1,in2,...)

• finitely many input parameters indicated by ...

• one single output parameter

• called by: out = name(in1,in2,...);

▶ function [out1,out2,...] = name

• no input [optional () for declaration and call]

• finitely many output parameters indicated by ...

• called by: [out1,out2,...] = name;

▶ function [out1,out2,...] = name(in1,in2,...)

• finitely many input parameters indicated by ...

• finitely many output parameters indicated by ...

• called by: [out1,out2,...] = name(in1,in2,...);
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Call by value

▶ MATLAB employs call by value, i.e., functions get
all input as values and store these in local variables
(with dynamic declaration)

▶ All variables that are declared in the signature as
well as the body of a function are local variables

• If a function changes a variable, this has no

effect for the calling code (or the workspace)

◦ i.e., fct(var); does not change the value

of var for the calling code

• All variables that are declared in a function lose

their lifetime when the function terminates

▶ There is no call by reference for standard
MATLAB functions

• If a function should change the value of a

variable, then it must return this value

◦ i.e., one must employ var = fct(var);
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Output and return value

▶ The names of the output variables are fixed by
the function declaration

• The data type of the output is dynamic

▶ The return value of an output variable is the value
that is assigned, when the function terminates

▶ A function terminates if the interpreter meets the
function’s end or when it meets the keyword return

• Unlike other programming languages,

return does not have any argument

Keyword global

▶ MATLAB knows global variables, but these should
only be used for debugging

• Global variables must be declared by global var

in calling code and called function fct

• And var must not be an input parameter of fct

• Then, changes of var in fct also change the

value of var in the calling code.
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Example: supremum norm

1 function result = supremumNorm(x)
2
3 % This function computes the supremum norm
4 %
5 % || x || = max_{j=1...N} |x_j|
6 %
7 % of a vector x in C^N.
8 %
9 % RESULT = supremumNorm(X) returns the supremum

10 % norm of X, where X is a numeric row or
11 % column vector.
12
13 % author: Dirk Praetorius
14 % last modified: 06.03.2022
15
16 result = max(abs(x));

▶ This is also provided by MATLAB as norm(x,Inf)
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Example: evaluate polynomial

1 function px = evaluatePolynomial(a,x)
2
3 % This function evaluates a polynomial p(x) that
4 % is given in terms of its coefficient vector.
5 %
6 % PX = evaluatePolynomial(A,X), where A is a row
7 % vector and X is a scalar. The return value is
8 %
9 % PX = sum(j=1...length(A)) A(j)*X^(j-1)

10 %
11 % i.e., A(1) is the coefficient in front of
12 % the smallest power X^0 and p(x) is of
13 % degree n = length(A)-1.
14
15 % author: Dirk Praetorius
16 % last modified: 06.03.2022
17
18 px = a * (x.^[0:length(a)-1])’ ;

▶ MATLAB employs indexing j = 1, ..., N +1

▶ p(x) =
∑N+1

j=1 ajxj−1 is a polynomial of degree N

• Given: x ∈ R and a ∈ RN+1

• Goal: compute p(x)
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Ex: polynomial interpolation 1/4

▶ Given: Values of a continuous function f : [a, b] → R

▶ Sought: Polynomial p of degree N with p ≈ f

▶ Fix p by p(xj) = f(xj) for j = 0, . . . , N

• with x0, . . . , xN ∈ [a, b] being pairwise different

▶ Mathematical questions:

• Existence and uniqueness of p?

• How to compute p?

▶ Consider the space PN = {p poly. of degree ≤ N}
• i.e., p ∈ PN can be written as p(x) =

∑N
j=0 ajx

j

• clearly: PN is a vector space with dimPN ≤ N+1

• next step: dimPN ≥ N +1 by construction

▶ Define Lj(x) :=
N∏
k=0

k ̸=j

x− xk

xj − xk

for all j = 0, . . . , N

• clearly: Lj ∈ PN , Lj(xj) = 1, Lj(xk) = 0 for k ̸= j

• next: {L0, . . . , LN} ⊆ PN are linearly independent

◦ Let a ∈ RN+1 with 0 =
N∑

j=0

ajLj

◦ Then, 0 =
N∑

j=0

ajLj(xk) = ak for all k

◦ thus: a = 0, which proves linear independence
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Ex: polynomial interpolation 2/4

▶ PN = {p polynomial of degree ≤ N}
• dimPN ≤ N +1

• {L0, . . . , LN} ⊆ PN linearly independent

• hence: dimPN = N +1

▶ Consider the evaluation Tp :=
(
p(x0), . . . , p(xN)

)
• T : PN → RN+1

• clearly: T linear

• goal: T is surjective

◦ show that: ∀a ∈ RN+1∃p ∈ PN : Tp = a

◦ Given a ∈ RN+1, define p :=
∑N

j=0 ajLj

◦ Then, p(xk) =
∑N

j=0 ajLj(xk) = ak

▶ One main theorem of Linear Algebra:

◦ dim(domain) = dim(range) + dim(nullspace)

▶ here: dimPN = dimT (PN) + dimker(T )

▶ hence: dimker(T ) = 0

▶ hence: T is injective and hence even bijective

◦ overall: ∀a ∈ RN+1∃!p ∈ PN : Tp = a
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Ex: polynomial interpolation 3/4

▶ T : PN → RN+1, Tp :=
(
p(x0), . . . , p(xN)

)
• linear and bijective

▶ Given: Values of a continuous function f : [a, b] → R
• Then, there exists a unique p ∈ PN

◦ with p(xj) = f(xj) for all j = 0, . . . , N

▶ Question: How to compute p?

▶ Consider the monome basis p(x) =
∑N

j=0 ajx
j

• then: a ∈ RN+1 7→
(
p(x0), . . . , p(xN)

)
= Ta

• clearly: The matrix takes the following form

T =


x0
0 x1

0 x2
0 · · · xN

0
x0
1 x1

1 x2
1 · · · xN

1... ... ... ...
x0
N x1

N x2
N · · · xN

N

 =


1 x0 x2

0 · · · xN
0

1 x1 x2
1 · · · xN

1... ... ... ...
1 xN x2

N · · · xN
N


▶ from Linear Algebra: T ist invertible

▶ Define b :=
(
f(x0), . . . , f(xN)

)
∈ RN+1

• Define a := T−1b

• Then, p(x) :=
∑N

j=0 ajx
j is the unique p ∈ PN

with p(xj) = f(xj) for all j = 0, . . . , N
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Ex: polynomial interpolation 4/4

1 function a = fitpol(b,x)
2
3 % For given vectors X and B in R^n with pairwise
4 % different entries X(j), this function computes
5 % the coefficient vector A of the unique Lagrange
6 % interpolation polynomial of degree n-1.
7 %
8 % A = fitpol(B,X), where A, B, and X are column
9 % vectors of the same length n. Then, the

10 % polynomial
11 %
12 % p(x) = sum(j=1...length(B)) A(j)*x^(j-1)
13 %
14 % satisfies
15 %
16 % p(X(j)) = B(j) for all j = 1,...,n
17
18 % author: Dirk Praetorius
19 % last modified: 07.03.2022
20
21 n = length(x);
22 T = (x * ones(1,n)) .^ (ones(n,1) * (0:n-1));
23 a = T\b;

▶ T =


x0
1 x1

1 x2
1 · · · xN−1

1
x0
2 x1

2 x2
2 · · · xN−1

1... ... ... ...
x0
N x1

N x2
N · · · xN−1

N

 ∈ RN×N

▶ a = T−1b
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Function handles

▶ Recall that in MATLAB the use of a function name
fct calls the function.

▶ If a function should be the input argument of
another function, then one must use so-called
function handles

▶ If fct is a function, then @fct provides the function
handle.

• Let fct be of the type output = fct(input)

• Then, ptr = @fct assigns the function handle

of fct to ptr

• One can call fct also by output = ptr(input)

◦ cf. function pointers in C

▶ In particular, @fct can be the input argument of
another function (e.g., an implementation of New-
ton’s method)

Passing functions to functions

▶ Functions can take other functions as input by ta-
king either their name or their function handle

▶ In either case, one can evaluate this argument via
output = feval(fct,input)

• e.g., y = feval(’sin’,x);

• e.g., y = feval(@sin,x);
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Anonymous functions

▶ Sometimes it is useful to create simple functions
just in one line of code

▶ Using the function handle operator @, this is done
as follows:

f = @(input) output

• Then, f takes a list of input parameters input

• and returns the result output

◦ e.g., f = @(x) x.^2+exp(x)-2;

◦ defines f(x) = x2 + exp(x)− 2

◦ e.g.,f = @(x,y) x.*exp(-x.^2-y.^2);

◦ defines f(x, y) = x · e−(x2+y2)

▶ These so-called anonymous functions are used
as normal functions

• i.e., output = f(input)

• Formally, they define a function handle
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Conditionals

▶ Conditional statement

▶ if - elseif - else - end

▶ switch - case - otherwise - end
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Simple conditionals

1 if a > b
2
3 % The following code is executed if and only
4 % if the condition (a > b) is evaluated true
5 disp(’a > b’);
6
7 elseif a == b
8
9 % MATLAB allows arbitrarily many "else if"

10 disp(’a == b’);
11
12 else
13
14 % if none of the preceding conditions was
15 % evaluated true, then this case is executed
16 disp(’a < b’);
17
18 end

▶ Unlike other programming languages, MATLAB
does not enforce brackets around conditions

• But if (a > b) is more readable than if a > b

▶ The conditional code is indicated by keywords

• if – elseif – else – end

• All cases are exclusive

▶ The branches with elseif and else are optional
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Example: adding polynomials

1 function c = addPolynomials(a,b)
2
3 % Compute the coefficient vector of the polynomial
4 %
5 % (p+q)(x) = sum(ell=1...) C(ell) * x^(ell-1)
6 %
7 % where the polynomials
8 %
9 % p(x) = sum(j=1...M) A(j) * x^(j-1)

10 % q(x) = sum(k=1...N) B(k) * x^(k-1)
11 %
12 % are given in terms of their coefficient vectors.
13 %
14 % C = addPolynomials(A,B) returns C, where A and
15 % B are either both column vectors or row vectors.
16
17 % author: Dirk Praetorius
18 % last modified: 07.03.2022
19
20 m = length(a);
21 n = length(b);
22 if (m < n)
23 c = b;
24 c(1:m) = c(1:m) + a;
25 else
26 c = a;
27 c(1:n) = c(1:n) + b;
28 end

▶ given: p(x) =
M∑
j=1

ajx
j−1, q(x) =

N∑
k=1

bkx
k−1

▶ sought: (p+ q)(x) =

max{M,N}∑
ℓ=1

cℓx
ℓ−1
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Multi-case conditionals

1 switch x
2 case 1
3 disp("x==1")
4 case {2,3}
5 disp("x==2 or x==3")
6 otherwise
7 disp("x~=1,2,3")
8 end

▶ Variable x must be a scalar or a string

• Optionally, one may also write switch(x)

▶ case provides conditions on the value of x

• The code after case is executed if x has the

stated value

• Multiple equivalent values are possible via {...}

• All cases are exclusive

▶ The code after otherwise is excuted if none of the
preceding cases was met.

• otherwise is optional

▶ The above code can also be stated with if ... end

1 if (x==1)
2 disp("x==1");
3 elseif (x==2 || x==3)
4 disp("x==2 or x==3");
5 else
6 disp("x~=1,2,3");
7 end
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Example: days per month

1 function days = daysPerMonth(month,year)
2
3 switch(month)
4 case {1,3,5,7,8,10,12}
5 days = 31;
6 case {4,6,9,11}
7 days = 30;
8 case 2
9 if (mod(year,400) == 0)

10 days = 29;
11 elseif (mod(year,100) == 0)
12 days = 28;
13 elseif (mod(year,4) == 0)
14 days = 29;
15 else
16 days = 28;
17 end
18 otherwise
19 days = -1;
20 end

▶ Determine the number of days per month

▶ A year is a leap year (and the February has 29 days)
if the year is divisible by 4

• Exeption: The year is not a leap year if it is

divisible by 100 (& 4)

• Another Exeption: The year is nevertheless a

leap year if it is divisible by 400 (& 100 and 4)

▶ mod(x,y) returns the remainder after division of two
integers x and y

• see help mod for arbitrary double input
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Loops

▶ Counting loop for

▶ Conditional loop while

▶ for - end

▶ while - end

▶ break
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for loop 1/3

1 out = 0;
2 for j = rowvector
3 out = out + j;
4 end

▶ The for loop iterates some code for
length(rowvector) times

• For the 1st iteration, it holds j = rowvector(1)

• For the 2nd iteration, it holds j = rowvector(2)

• etc.

▶ By definition, there is no iteration if rowvector
is empty

▶ The iteration terminates after length(rowvector)
iterations

▶ break can be used to prematurely terminate the
loop at any time

▶ break applies only to the current (innermost) loop

• and cannot be used to terminate nested loops

1 out = 0;
2 for j = rowvector
3 out = out + j;
4 j = 42;
5 rowvector = 42;
6 end

▶ The code leads to the same result as above

▶ j takes the entries of rowvector as values, where
rowvector is fixed before the iteration starts

73



for loop 2/3

1 result = 0;
2 for j = 1:2:100
3 result = result + j^2;
4 end
5 disp(result)

▶ Often: rowvector takes the form start:step:end

▶ Example: Compute
100∑
j=1
j odd

j2 = 166650

▶ But: Such a computation can often be replaced by
vector arithmetics, which is more efficient in
MATLAB

• e.g., result = sum( (1:2:100).^2 );
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for loop 3/3

1 A = [1 2 ; 3 4 ; 5 6 ; 7 8];
2 for j = A
3 j
4 end

▶ If for is applied to a matrix A (instead of a row
vector), then for iterates over the columns of A

▶ It is an often made mistake to apply a for loop to
a column vector (instead of a row vector)

▶ Output:

j =

1
3
5
7

j =

2
4
6
8
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Example: product of polynomials

1 function c = multiplyPolynomials(a,b)
2
3 % Return the coefficient vector of the polynomial
4 %
5 % r = \sum_{\ell=1}^{m+n-1} c_\ell x^{\ell-1}
6 %
7 % obtained by multiplication r = p*q of
8 %
9 % p = \sum_{j=1}^m a_j x^{j-1}

10 % q = \sum_{k=1}^n b_k x^{k-1}
11 %
12 % C = multiplyPolynomials(A,B) takes the
13 % coefficient vectors A and B and returns the row
14 % vector C of the coefficients of the product
15 % polynomial r = p*q
16
17 m = length(a);
18 n = length(b);
19 c = zeros(1,m+n-1);
20
21 for j = 1:m
22 for k = 1:n
23 c(j+k-1) = c(j+k-1) + a(j)*b(k);
24 end
25 end

▶ Compute the product r = pq of two polynomials

• a ∈ Cm, p(x) =
∑m

j=1 ajx
j−1, degree(p) = m− 1

• b ∈ Cn, q(x) =
∑n

k=1 bkx
k−1, degree(q) = n− 1

• note: c ∈ Cm+n−1, r(x) =
∑m+n−1

ℓ=1 cℓx
ℓ−1

◦ with cℓ =
∑

j+k=ℓ+1
ajbk

▶ This is already provided by MATLAB as conv
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while loop

▶ Syntax:

while condition
body

end

▶ The while loop iterates some code as long as
condition (of type logical) remains true,

• There is no iteration if condition is false

▶ Unlike other programming languages, MATLAB
does not enforce brackets around conditions

• But while (condition) is more readable
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Example: Euclidean algorithm

1 function a = euclid(a,b)
2
3 % Compute the greatest common divisor (gcd) of
4 % two positive integers by means of Euclidean
5 % algorithm which is based on
6 % gcd(A,B) = gcd(B,A)
7 % and, for A>B,
8 % gcd(A,B) = gcd(A-B,B)
9 %

10 % RESULT = EUCLID(A,B) returns the gcd of two
11 % positive integer scalars A and B
12
13 while (a~=b)
14 if (a<b) % guarantee a>=b
15 tmp = a;
16 a = b;
17 b = tmp;
18 end
19 a = a-b;
20 end
21 end

▶ The Euclidean algorithm computes the greatest
common divisor (gcd) of two positive integers a
and b

• It exploits the observations that

◦ gcd(a, b) = gcd(b, a)

◦ gcd(a, b) = gcd(a− b, b) if a > b

◦ gcd(a, a) = a

▶ This is already provided by MATLAB as gcd
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Example: binary search

1 function index = binsearch(vector,query)
2
3 % Seek an index J such that the J-th entry X(J)
4 % of a vector X coincides with a sought query Q.
5 % Return -1 if no such index exists. The vector X
6 % is required to be sorted in ascending order
7 %
8 % J = binsearch(X,Q) with X being a numeric
9 % vector and Q being a scalar.

10
11 lower = 1;
12 upper = length(vector);
13 while (lower <= upper)
14 index = floor(0.5*(lower + upper));
15 if (vector(index) == query)
16 return
17 elseif (vector(index) > query)
18 upper = index - 1;
19 else
20 lower = index + 1;
21 end
22 end
23 index = -1;

▶ Suppose that vector is sorted in ascending order
and that searching for equality makes sense (e.g.,
integers)

▶ Find an index j with vector(j) == query

• Return -1 if no such index exists

▶ Use bisection as for searching a dictionary

• Consider the middle entry of vector and

reduce the search to a vector of half length
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“while” vs. “repeat ... until”

▶ Recall the syntax

while (condition)
% body

end

▶ where while iterates as long as condition is true

▶ However, most mathematical algorithms have
a termination criterion done

• i.e., the algorithm is terminated as soon

as done is true

• Logically, done is the negation of condition

▶ This is easily implemented by use of a formally
infinite loop to avoid errors if done is complicated

▶ Suggested syntax:

while true
if (done)
break

end
% body

end
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Example: Heron’s method

▶ Realization via negation of termination condition

1 function xn = heron(x,tol)
2
3 % XN = heron(X,TOL) realizes the Heron algorithm
4 % for the computation of sqrt(X). For a given
5 % tolerance TOL > 0, it returns the first iterate
6 % XN such that | XN^2 - X | <= TOL.
7
8 xn = x;
9 while ( abs(xn^2 - x) > tol )

10 xn = 0.5*(xn + x/xn);
11 end

▶ Realization via infinite loop and break

1 function xn = heron(x,tol)
2
3 % XN = heron(X,TOL) realizes the Heron algorithm
4 % for the computation of sqrt(X). For a given
5 % tolerance TOL > 0, it returns the first iterate
6 % XN such that | XN^2 - X | <= TOL.
7
8 xn = x;
9 while true

10 xn = 0.5*(xn + x/xn);
11 if ( abs(xn^2 - x) <= tol )
12 break
13 end
14 end

▶ Define x0 := x and xn+1 := (xn + x/xn)/2

▶ Then: There holds convergence xn →
√
x

▶ Given ε > 0, return the first xn with |x2
n − x| ≤ ε
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Example: bisection method

1 function [c,fc] = bisection(f,a,b,tol)
2
3 % Given a continuous real-valued function F on a
4 % compact interval [A,B] with F(A)*F(B) <= 0, the
5 % intermediate value theorem guarantees a root
6 % F(X) = 0 in [A,B]. Given a tolerance tol > 0,
7 % the bisection algorithm returns X0 such that
8 %|X - X0| <= tol and |F(X0)| <= tol
9 %

10 % [X0,FX0] = BISECTION(F,A,B tol) takes the
11 % function handle of F, the scalar endpoint A, B
12 % of the interval [A,B], and the scalar tolerance.
13 % It returns the approximate root X0 as well as
14 % the corresponding function value F(X0).
15
16 fa = feval(f,a);
17 fb = feval(f,b);
18
19 while true
20 c = (a+b)/2;
21 fc = feval(f,c);
22 if ( abs(b-a)<=2*tol && abs(fc)<=tol )
23 return
24 elseif ( fa*fc <= 0 )
25 b = c;
26 fb = fc;
27 else
28 a = c;
29 fa = fc;
30 end
31 end

▶ Adapts the idea of binary search for continuous f

▶ The input f is either a function handle or the name
of a function (as a string)
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Basic graphics

▶ Export of figures as EPS-files

▶ plot

▶ figure, clf, close

▶ hold on, hold off

▶ axis, axis on, axis off

▶ axis equal, axis tight, axis square

▶ grid on, grid off

▶ box on, box off

▶ title, xlabel, ylabel, legend

▶ text

▶ print
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The plotplotplot command

1 figure(1)
2 x = -6:.5:6;
3 y = exp(-x.^2);
4 plot(x,y)
5
6 figure(2)
7 x = -6:.01:6;
8 y = exp(-x.^2);
9 plot(x,y)

▶ plot(x,y) plots yj over xj

• x ∈ Rn, y ∈ Rn are vectors of same length

• Points (xj, yj) are connected with lines

▶ figure(nr) selects active figure

• All graphics commands are applied to

active figures

• If figure nr does not exist, a new window

is spawned

▶ close(nr) closes figure nr

• close closes active figure

• close all closes all figures

▶ clf(nr) deletes figure nr

• clf deletes active figure

◦ Windows are preserved
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▶ figure(1)
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▶ figure(2)
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Optional parameters of plotplotplot

1 figure(1)
2 x = -6:.4:6;
3 y = exp(-x.^2);
4 plot(x,y,’r.--’,’LineWidth’,2)
5
6 figure(2)
7 x = -6:.5:6;
8 y = exp(-x.^2);
9 plot(x,y,’ro’,’MarkerSize’,12, ...

10 ’MarkerFaceColor’,’g’)

▶ plot(x,y,string)

• Optional string defines plot style

◦ blue b, red r, green g, black k

◦ dot ., circle o, cross x, plus +, star *

◦ solid -, dotted :, dash-dotted -., dashed --

• 1 option for color/marker/line-style each

◦ All options: help plot or doc linespec

◦ Default ’b-’ = blue/no marker/solid line

▶ plot(x,y,string, opt1,val1,... )

• Further options for all plot commands

◦ opt1 = predefined string

◦ val1 = new value

• e.g., ’LineWidth’ (default = 0.5)

• e.g., ’MarkerSize’ (default = 6)

• e.g., ’MarkerEdgeColor’ (default = ’auto’)

• e.g., ’MarkerFaceColor’ (default = ’none’)
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▶ figure(1)
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▶ figure(2)
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Multiple plots in one figure

1 x = -6:.01:6;
2 y = exp(-x.^2);
3 z = x.^2/30;
4
5 figure(1)
6 plot(x,y,’b’,’LineWidth’,2)
7 plot(x,z,’r’,’LineWidth’,2)
8
9 figure(2)

10 plot(x,y,’b’,’LineWidth’,2)
11 hold on
12 plot(x,z,’r’,’LineWidth’,2)
13 hold off

▶ Often, one wants multiple plots in one figure

• Each new plot executes clf per default

▶ hold off = automatic clf in active figure

• This is the default

▶ hold on = no automatic clf in active figure
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▶ figure(1)
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Axes in plots 1/2

1 x = -6:.01:6;
2 y = exp(-x.^2);
3 z = x.^2/30;
4
5 figure(1)
6 plot(x,y,’b’,’LineWidth’,2)
7 hold on
8 plot(x,z,’r’,’LineWidth’,2)
9 hold off

10 axis off
11
12 figure(2)
13 plot(x,y,’b’,’LineWidth’,2)
14 hold on
15 plot(x,z,’r’,’LineWidth’,2)
16 hold off
17 grid on

▶ axis on (axis off) = coordinate axes

▶ grid off (grid on) = grid lines

▶ box on (box off) = coordinate axes as box

▶ axis([xmin,xmax,ymin,ymax]) sets axis limits

• axis returns current vector of axis limits
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▶ figure(1)

▶ figure(2)

−6 −4 −2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

91



Axes in plots 2/2

1 x = -6:.01:6;
2 y = exp(-x.^2);
3 z = x.^2/30;
4
5 figure(1)
6 plot(x,y,’b’,’LineWidth’,2)
7 hold on
8 plot(x,z,’r’,’LineWidth’,2)
9 axis tight

10 grid on
11
12 figure(2)
13 plot(x,y,’b’,’LineWidth’,2)
14 hold on
15 plot(x,z,’r’,’LineWidth’,2)
16 axis square
17 grid on

▶ axis equal = equal unit lenghts on both axes

▶ axis tight = image section as small as possible

▶ axis square = square image section
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▶ figure(1)
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Labeling of plots

1 x = -6:.01:6;
2 y = exp(-x.^2);
3 z = x.^2/30;
4
5 plot(x,y,’b’,’LineWidth’,2)
6 hold on
7 plot(x,z,’r’,’LineWidth’,2)
8 text(0,1.05,’exp(0)=1’)
9 hold off

10
11 legend(’exp(-x^2)’,’x^2/30’)
12 xlabel(’interval [-6,6]’)
13 ylabel(’function values’)
14 title(’A short example’)

▶ legend(text1,text2,...) creates legend

• in order of the used plot commands

▶ legend(...,’Location’,lcn) positions legend

• e.g., ’northeast’ or ’southoutside’

▶ legend boxoff = no box outline around legend

• better for LATEX-replacements (below!)

▶ xlabel(text) labels x-axis

▶ ylabel(text) labels y-axis

▶ title(text) creates title

▶ text(x,y,text) writes text text at coordinate (x, y)

▶ MATLAB can deal with basic LATEX,

• e.g., x^2/30 in above code

94



-6 -4 -2 0 2 4 6

interval [-6,6]

0

0.2

0.4

0.6

0.8

1

1.2

fu
n
c
ti
o
n
 v

a
lu

e
s

A short example

exp(0)=1

exp(-x2 )

x2 /30
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Export of images

1 % demoprint.m
2 x = -6:.01:6;
3 y = exp(-x.^2);
4 z = x.^2/30;
5
6 plot(x,y,’b--’)
7 hold on
8 plot(x,z,’r’)
9 text(0,1.05,’exp(0)=1’)

10 hold off
11
12 legend(’exp(-x^2)’,’x^2/30’)
13 xlabel(’interval [-6,6]’)
14 ylabel(’function values’)
15 title(’A short example’)
16
17 print(’-r600’,’-depsc2’,’demoprint.eps’)
18 print(’-r600’,’-djpeg’,’demoprint.jpg’)
19
20 close

▶ print(opt1,opt2,...,name) creates file name

• Optional strings opt specify

e.g., resolution: ’-r200’ = 200dpi (def. 150dpi)

e.g., data type:

◦ ’-deps’, ’-deps2’ = EPS grayscale

◦ ’-depsc’, ’-depsc2’ = EPS colored

◦ ’-djpeg90’ = JPG, quality 90% (def. 75%)

▶ Colored plots should be recognizable in grayscale

▶ If you use MATLAB figures for LATEX documents,
then the EPS format allows to replace any text in
the graphics in LATEX by use of the psfrag package
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loglog

▶ Experimental convergence rate

▶ loglog, semilogx, semilogy
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Convergence rate of a method

▶ In numerical mathematics, h > 0 is often the
discretization parameter

• e.g., Φ(h) =
f(x+ h)− f(x)

h
as approximation

of the derivative Φ(0) = f ′(x)

▶ Clearly: Φ(h) → f ′(x) as h → 0

▶ Question: Can something be said about the size
of the approximation error?

• Taylor theorem

◦ For f ∈ C2(R), it holds that

f(x+ h) = f(x) + f ′(x)h+R1(f, x, h)

◦ with remainder term

Rn =

∫ x+h

x

(x+ h− t)n

n!
f (n+1)(t) dt = O(hn+1)

• Hence,

Φ(h) =
f ′(x)h+R1(f, x, h)

h
= f ′(x) +O(h)
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Experimental convergence rate

▶ Approximation errors eh = |Φ(h)−Φ(0)| usually
satisfy that

• eh = O(hα) for h → 0 and α > 0

◦ i.e., eh ≤ C hα with a constant C > 0

• α is called convergence rate

◦ In general, C and α are unknown and only

known for special cases, e.g., f ∈ C2(R)

▶ One can experimentally determine C and α

• Ansatz: Let eh = Chα

• For h1 > h2 > 0 compute e1 = eh1
, e2 = eh2• Division yields e1/e2 = (h1/h2)α

• Taking the logarithm yields α =
log(e1/e2)

log(h1/h2)

◦ so-called experimental convergence rate
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Visualization

▶ Let h1 > h2 > 0 and corresponding e1, e2 be given

▶ Plot points in a graph:

• x-axis is x = log(1/h)

• y-axis is y = log(e)

▶ Straight line through
(
log(1/hj) , log(ej)

)
has slope

◦ m =
log(e1)− log(e2)

log(1/h1)− log(1/h2)
=

log(e1/e2)

log(h2/h1)

◦ hence, −m=
log(e1/e2)

log(h1/h2)
=α is exp. conv. rate

The loglogloglogloglog command

▶ loglog(x,y) corresponds to plot(log(x),log(y))

• Optional parameters as for plot

▶ loglog(x,y) is used to visualize
algebraic dependence y = O(xα)

• α can be observed as slope of a line!

• e.g., for experimental conv. rate eh = O(hα)

• e.g., for complexity time(N) = O(Nα)

▶ Further variants of plot:

• semilogx, semilogy
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A smooth example

1 %*** problem
2 h = 2.^-[0:16];
3 x = 1;
4 f = @(x) exp(x); % def. f(x) = exp(x)
5 fprime = @(x) exp(x); % def. fprime(x) = exp(x)
6
7 %*** one-sided difference quotient
8 phi = (f(x+h)-f(x))./h;
9 e = abs(fprime(x)-phi);

10 loglog(1./h,e,’bx-’,’LineWidth’,2,’MarkerSize’,9)
11 hold on
12
13 %*** central difference quotient
14 phi = 0.5*(f(x+h)-f(x-h))./h;
15 e = abs(fprime(x)-phi);
16 loglog(1./h,e,’ro-’,’LineWidth’,2,’MarkerSize’,9)
17
18 %*** reference lines
19 loglog(1./h,3*h,’b:’,’LineWidth’,2) % alpha = 1
20 loglog(1./h,h.^2,’r:’,’LineWidth’,2) % alpha = 2
21 hold off
22
23 title([’difference quotient ’,...
24 ’\approx e = exp\prime(1)’])
25 legend(’one-sided’,’central’, ...
26 ’\alpha=1’,’\alpha=2’)

▶ One-sided Φ(h) =
f(x+ h)− f(x)

h

• maximal convergence rate α = 1 for f ∈ C2

▶ Central Φ(h) =
f(x+ h)− f(x− h)

2h
• maximal convergence rate α = 2 for f ∈ C3
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▶ f ∈ C2 ⇒ one-sided diff.quot Φ(h) = f ′(x)+O(h)

▶ f ∈ C3 ⇒ central diff.quot Φ(h) = f ′(x) +O(h2)

▶ Example: f(x) = exp(x) satisfies f ∈ C∞

• Experiment confirms theory
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A less smooth example

1 %*** problem
2 h = 2.^-[0:16];
3 x = 0;
4 f = @(x) x.^2.5 + x.^2;
5 fprime = @(x) 2.5*x.^1.5 + 2*x;
6
7 %*** one-sided difference quotient
8 phi = (f(x+h)-f(x))./h;
9 e = abs(fprime(x)-phi);

10 loglog(1./h,e,’bx-’,’LineWidth’,2,’MarkerSize’,9)
11 hold on
12
13 %*** central difference quotient
14 phi = (f(x+h)-f(x-h))./h/2;
15 e = abs(fprime(x)-phi);
16 loglog(1./h,e,’ro-’,’LineWidth’,2,’MarkerSize’,9)
17
18 %*** reference lines
19 loglog(1./h,3*h,’b:’,’LineWidth’,2)
20 loglog(1./h,2*h.^1.5,’k:’,’LineWidth’,2)
21 loglog(1./h,h.^2,’r:’,’LineWidth’,2)
22 hold off
23
24 title([’difference quotient ’,...
25 ’\approx f\prime(0) ’,...
26 ’for f(x)=x^{2.5}+x^2’])
27 legend(’one-sided’,’central’, ...
28 ’\alpha=1’,’\alpha=1.5’,’\alpha=2’)

103



10
0

10
1

10
2

10
3

10
4

10
5

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

difference quotient  f (0) for f(x)=x2.5+x2

one-sided

central

=1

=1.5

=2

▶ f ∈ C2 ⇒ one-sided diff.quot Φ(h) = f ′(x)+O(h)

▶ f ∈ C3 ⇒ central diff.quot Φ(h) = f ′(x) +O(h2)

▶ Example: f(x) = x2.5 + x2 satisfies only f ∈ C2\C3

• Experiment does not contradict theory!
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Input / Output

▶ Input from keyboard

▶ Output in MATLAB shell

▶ Load and save variables

▶ Load matrices from text files

▶ Save matrices to text files

▶ input

▶ disp

▶ fprintf

▶ load

▶ save

▶ fopen, fclose
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Input from keyboard

▶ var = input(string);

• displays the text string in the MATLAB shell

• waits for input from the keyboard

• interprets the input and assigns the value to var

◦ e.g., from the input 2 + [1 2 3], the variable

var takes the value [3 4 5]

• If input cannot be interpreted, MATLAB returns

an error

◦ e.g., the input Hello World leads to

Error: Unexpected MATLAB expression.

▶ var = input(string,’s’);

• displays the text string in the MATLAB shell

• waits for input from the keyboard

• assigns the input to var (as array of characters)
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Output to MATLAB shell

▶ disp(var) displays the value of the variable var in
the MATLAB shell

▶ fprintf(string,var1,var2,...)

• displays the text string in the MATLAB shell

• works like printf in C

• string can contain conversion specifiers

indicated by %, e.g.,

◦ %d for an integer

◦ %f or %e for a floating point number

◦ %s for string

◦ See help fprintf for details on the specifiers

• The conversion specifiers are replaced by the

given values var1 etc. (from left to right)

• The number of conversion specifiers and

additional values must coincide

• Line breaks are indicated by the so-called escape

sequence \n in string

• Note that fprintf works only for real numbers,

not for complex numbers!

◦ Use real() and imag() to output real and

imaginary part separately

▶ e.g., fprintf(’%1.4f\n’,pi) gives 3.1416

• where %1.4f also specifies the number of digits

▶ e.g., fprintf(’%1.8e\n’,2/3) gives 6.66666667e-01

▶ e.g., fprintf(’%f\n’,2+3i) gives 2.000000
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Functions loadloadload / savesavesave

▶ Goal: Save (partial) results from computations

• This avoids the need to compute everything

from scratch, if the computation is aborted

(e.g., when the PC crashes)

• Moreover, it is good programming style to

separate the codes for computation and

postprocessing (e.g., visualization)

▶ save(’name’) saves all variables in the current scope
to the data file name.mat

▶ save(’name’,’var1’,’var2’,...) saves only the
variables var1, var2, ... to the data file name.mat

▶ load(’name’) loads the variables from the data file
name.mat to the current scope

▶ A = load(’name.dat’); creates a matrix A

• name.dat must be a text file with clear matrix

structure, i.e.,

◦ rows are ended by line breaks

◦ all lines have the same number of entries

◦ comments indicated by % are neglected

• This is a very good way for data import from

other programs / programming languages
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Formatted writing

▶ Goal: Create text files that can be read by other
programs / programming languages

▶ Open a text file filename for writing data by

• fid = fopen(filename,’w’)

• fid is the so-called file identifier

◦ see help fopen for further details

▶ Write data in ASCII format to the file via fprintf

• fprintf(fid,string,var1,var2,...) like in C

◦ \n creates new line in the output file

◦ \\ creates the backslash symbol \

◦ %% creates the percentage symbol %

◦ Use conversion specifiers to write numerical

values, e.g., %d for integers and %f or %e

for floating point numbers

▶ Note: Use the conversion specifier %1.16e to write
double values to a file

• Note that double values have about 16 digits

• Recall that fprintf works only for real values

▶ Use fclose(fid) to close the file when writing
is completed

▶ MATLAB also allows for formatted reading via
fscanf, but it is recommended to use load instead

• see help fscanf
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Error control

▶ Warnings and error

▶ Controlled termination

▶ warning

▶ lastwarn

▶ error, assert

▶ lasterr

▶ try-catch
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Output of warnings

▶ Your programs can give warnings to users, e.g., if
the condition number is high and the computed
solution of a linear system is possibly inaccurate

• Warnings give information to the user without

terminating the program

▶ warning(string); creates a warning

▶ warning off ensures that no warnings will be
displayed to the user (not even those from other
functions)

▶ Default: warning on ensures that all warnings will
be displayed in the MATLAB shell

▶ var = lastwarn; returns the last warning message

• lastwarn(’’) resets the last warning

Controlled termination

▶ error(string) displays an error message string and
terminates the execution

▶ assert(condition) leads to termination, if
condition fails

• assert(condition,string) additionally displays

the error message string

• assert(condition,string,var1,var2,...)

displays the formatted error message string,

which is interpreted as for fprintf

▶ var = lasterr; returns the last error message

• i.e., string from error or assert

111



Example: Euclidean algorithm

1 function a = euclid(a,b)
2
3 % Compute the greatest common divisor (gcd) of
4 % two positive integers by means of Euclidean
5 % algorithm which is based on
6 % gcd(A,B) = gcd(B,A)
7 % and, for A>B,
8 % gcd(A,B) = gcd(A-B,B)
9 %

10 % RESULT = EUCLID(A,B) returns the gcd of two
11 % positive integer scalars A and B
12
13 % ensure that input is admissible
14 if ~(isscalar(a) && isscalar(b))
15 error(’Input arguments have to be scalars’);
16 elseif ( a~=round(a) || b~=round(b) )
17 error(’Input arguments have to be integers’);
18 elseif (a<=0 || b<=0)
19 error(’Input arguments have to be positive’);
20 end
21
22 % loop of the Euclidean algorithm
23 while (a~=b)
24 if (a<b) % guarantee a>=b
25 tmp = a;
26 a = b;
27 b = tmp;
28 end
29 a = a-b;
30 end
31 end

▶ The function checks that all input is admissible,
i.e., the arguments are positive integer scalars

▶ This is already provided by MATLAB as gcd
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Catching errors

1 input_is_valid = false;
2 while (~input_is_valid)
3 try
4 disp(’Input two positive integers:’)
5 a = input(’a = ’);
6 b = input(’b = ’);
7 ggT = euclid(a,b);
8 input_is_valid = true;
9 catch

10 disp(lasterr)
11 disp(’Please repeat your input!’)
12 end
13 end
14 fprintf(’ggT(%d,%d) = %d\n’,a,b,ggT)

▶ MATLAB tries to execute the try block

▶ If an error occurs (or an error is thrown by means
of error or assert), then the code continues with
the execution of the catch block

▶ Recall that the function lasterr returns the last
error message

▶ Usually, the catch-block of try-catch-end is used to
store the current data/variables for later debugging
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Functions II

▶ Cell Arrays

▶ Optional input

▶ Optional output

▶ nargin, varargin

▶ nargout

▶ pwd

▶ path, addpath, rmpath
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Cell Arrays

1 A = cell(1,3);
2
3 A{1} = 2;
4 A{2} = 1:2:10;
5 A{3} = ’red’;
6
7 n = length(A);
8 vector = A{2};
9 disp(A{end});

▶ Cell arrays are arrays, where the entries may have
different data types

▶ Cell arrays are allocated via container = cell(M,N);

• Dynamic allocation is possible, but should be

avoided

▶ The entries of a cell array are container{j,k}

• as for normal arrays, but with curly brackets

instead of round brackets

• e.g., linear indexing container{j} as for matrices,

• e.g., size and length are applicable
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Optional output of a function

▶ If a function would return N output values, but the
calling code takes only n ≤ N , then the remaining
N − n are automatically discarded

• e.g., [x,fx] = bisection(f,a,b) returns the

approximation x of a root together with the

function value fx= f(x)

• Then, the call x = bisection(f,a,b) assigns only

the approximate root x, while fx is discarded

• Alternatively, one can use

◦ [x,∼] = bisection(f,a,b) to discard fx,

but only take x

◦ [∼,fx] = bisection(f,a,b) to discard x,

but only take fx

▶ Any function can use the system variable nargout
(“number of arguments out”) to get the number
of output arguments that are taken by the calling
code (i.e., n above)

• This information can be used to avoid

unnecessary computations
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Optional input to a function

▶ Any function in MATLAB can have obligatory and
optional input

• The system variable nargin (“number of

arguments in”) provides the information how

many arguments are passed to a function

• If the function expects n obligatory input

parameters, but is called with N ≥ n input

parameters, then the last N − n are optional

▶ To allow for optional input, a function must have
the signature

function [out1,out2,...] = fct(in1,in2,...,varargin)

• with out1, out2, etc. being the output

• with in1, in2, etc. being the obligatory input

• with varargin (“variable arguments in”) being

a cell array containing the optional input

▶ Suppose that the function fct takes n obligatory
input parameters

• Then, varargin{j} contains the additional

optional input for j = 1, . . . , nargin− n that has

been passed to fct by the calling code
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Ex: binary search with tolerance

1 function index = binsearch(vector,query,varargin)
2
3 % Given a query Q and a tolerance TOL, seek an
4 % index J such that the J-th entry X(J) of a
5 % vector X satisfies |X(J)-Q| <= TOL. Return -1
6 % if no such index exists. The vector X is
7 % required to be sorted in ascending order
8 %
9 % J = binsearch(X,Q [,TOL]) with X being a

10 % numeric vector, Q being a scalar, and TOL being
11 % the optional tolerance which is 0 by default.
12
13 if nargin >= 3
14 tolerance = varargin{1};
15 else
16 tolerance = 0;
17 end
18
19 lower = 1;
20 upper = length(vector);
21 while (lower <= upper)
22 index = floor(0.5*(lower + upper));
23 if ( abs(vector(index)-query) <= tolerance )
24 return
25 elseif (vector(index) >= query)
26 upper = index - 1;
27 else
28 lower = index + 1;
29 end
30 end
31 index = -1;
32 end

▶ The function requires that vector is sorted
in ascending order.
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Example: secant method

1 function x0 = secantMethod(f,x,varargin)
2
3 if nargin >= 3
4 tolerance = varargin{1};
5 else
6 tolerance = 1e-12;
7 end
8 fx = f(x);
9 while true

10 dx = x(2)-x(1);
11 assert(dx~=0,’Iteration led to x_{n} = x_{n-1}’)
12 df = (fx(2)-fx(1))/dx;
13 assert(df~=0,’Difference quotient is zero!’)
14 if (abs(df) <= tol)
15 warning(’Diff. quotient is close to zero!’)
16 end
17 x = [x(2), x(2)-df\fx(2)];
18 fx = [fx(2), f(x(2))];
19 abs_dx = abs(dx);
20 max_x = max(abs(x));
21 if ( abs(fx(2))<=tol && ...
22 ( (abs_dx<=tol && max_x<=tol) || ...
23 (abs_dx<=tol*max_x && max_x>tol) ) )
24 break
25 end
26 end
27 x0 = x(2);
28 end

▶ Goal: Approximate a root x0 of f : [a, b] → R

▶ Given xn−1, xn ∈ [a, b] with xn−1 ̸= xn, compute the

root of the secant, i.e., xn+1 = xn− xn−xn−1

f(xn)−f(xn−1)
f(xn)

▶ If f(xn+1) ≈ 0 and xn+1 ≈ xn, then terminate
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File paths

▶ If a function is called, then MATLAB searches
certain directories to find appropriate files name.m

• First, current directory, which is returned by pwd

(“print working directory”)

• Second, all directories that are contained in

MATLAB search path, which is returned by path

▶ path can be modified and adapted

• addpath(’name’) adds the directory name

• rmpath(’name’) removes the directory name

▶ One can overload a MATLAB command name by
providing name.m in the current directory

• MATLAB will always execute the first file that

is found in the MATLAB path

▶ which name shows, which file will be used when
name is called in MATLAB
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Complexity

▶ Complexity of algorithms

▶ Landau symbol O
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Computational complexity

▶ The complexity of an algorithm is the amount of
time, storage, and/or other resources that is
necessary to execute it

• It allows to compare different algorithms

▶ Recall: An algorithm is a finite sequence of
unambiguous operations which specify how to
solve a problem

▶ The computational complexity of an algorithm is
the number of required elementary operations, i.e.,

• assignments

• comparisons

• arithmetic operations

▶ Language-specific operations usually do not count,
e.g.,

• declarations & initializations

• loops, conditional statements, etc.

• counters

▶ For ease of presentation, we consider the
worst-case computational complexity, i.e., the
maximum number of operations required for inputs
of a given size
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Example: Maximum of a vector

1 function out = max(x)
2 out = x(1);
3 for j = 2:length(x)
4 if (out < x(j))
5 out = x(j);
6 end
7 end
8 end

▶ Complexity computation:

• 1 assignment ⇝ Line 2

• In each step of the for loop ⇝ Lines 3–7

◦ 1 comparison ⇝ Line 4

◦ 1 assignment (worst case!) ⇝ Line 5

▶ Loops always translate to a sum of operations

• i.e., for in line 6 implies
∑n

j=2

▶ Altogether:

1 +
n∑

j=2

2 = 1+ 2(n− 1) = 2n− 1

▶ Note: We neglect the evaluation x(1) in Line 2 as
well as the call of length(x) in Line 3. We will see
in the following that this is fine asymptotically, if
the effort for these operations is constant
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Landau symbol OOO (= big O)

▶ Very often, only the order of magnitude of the
computational complexity is of interest

▶ Definition: One writes f = O(g) as x → x0

• if lim sup
x→x0

∣∣∣∣∣f(x)g(x)

∣∣∣∣∣ < ∞

• i.e., |f(x)| ≤ C |g(x)| as x → x0

• i.e., f grows at most like g for x → x0

▶ Example: The determination of the maximum of a
vector of length n has complexity 2n− 1 = O(n)
as n → ∞

▶ Often, “as n → ∞” is omitted, as it is clear from
the context

• Standard choice (asymptotic complexity)

▶ In words:

• An algorithm has linear complexity, if its

complexity is O(n) for problems of size n

◦ e.g., determine the maximum of a vector

• An algorithm has quasilinear complexity, if its

complexity is O(n logn) for problems of size n

• An algorithm has quadratic complexity, if its

complexity is O(n2) for problems of size n

• An algorithm has cubic complexity, if its

complexity is O(n3) for problems of size n
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Matrix-vector multiplication

1 function b = matrixVectorProduct(A,x)
2 [m,n] = size(A);
3 b = zeros(m,1);
4 for j = 1:m
5 for k = 1:n
6 b(j) = b(j) + A(j,k)*x(k);
7 end
8 end
9 end

▶ 2 assignments for m and n

▶ 1 assignments for each entry of b

▶ In each step of the for loop over j ⇝ Lines 4–8

• In each step of the for loop over k ⇝ Lines 5–7

◦ 1 multiplication ⇝ Line 6

◦ 1 addition ⇝ Line 6

◦ 1 assignment ⇝ Line 6

▶ Altogether:

2 +m+
m∑

j=1

n∑
k=1

3 = 2+m+3mn = O(mn)

▶ Complexity O(mn)

• i.e., complexity O(n2) for m = n

• i.e., quadratic complexity for m = n
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Linear search in a vector

1 function index = search(vector, query, tolerance)
2 for index = 1:length(vector)
3 if ( abs(vector(index)-query) <= tolerance )
4 return
5 end
6 end
7 index = -1;
8 end

▶ Task: Given a vector x ∈ Kn and a query q ∈ K,
seek an index j with |xj − q| ≤ tolerance

• Return −1 if no such index exists

▶ In each step of the for loop over j

• 1 subtraction

• 1 absolute value

• 1 comparison

▶ Altogether:
n∑

j=1

3 = 3n

▶ Complexity O(n)
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Binary search in sorted vector

1 function index = binarySearch(vector,query,tol)
2 lower = 1;
3 upper = length(vector);
4 while (lower <= upper)
5 index = floor(0.5*(lower + upper));
6 if ( abs(vector(index)-query) <= tol )
7 return
8 elseif (vector(index) > query)
9 upper = index - 1;

10 else
11 lower = index + 1;
12 end
13 end
14 index = -1;
15 end

▶ Task: Given a vector x ∈ Kn and a query q ∈ K,
seek an index j with |xj − q| ≤ tol

• Return −1 if no such index exists

▶ Assumption: Vector is sorted in ascending order

▶ Adapt the idea of dictionary search and consider
halved vector, if |xj − q| > tol

▶ Question: How many iterations does the alg. have?

• Each step halves the vector

• If n is even, choose k with n/2k = 1

• Hence, at most k = log2 n steps with each

◦ 2 comparisons, 2 assignments, 1 call of floor

and abs, 1 multiplication, 3 additions

▶ Complexity O(log2 n), i.e., logarithmic complexity

• Sublinear complexity O(log2 n) ≪ O(n)
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Selection sort

1 function vector = selectionSort(vector)
2 for j = 1:length(vector)-1
3 argmin = j;
4 for k = j+1:length(vector)
5 if ( vector(argmin) > vector(k) )
6 argmin = k;
7 end
8 end
9 if ( argmin > j)

10 vector([j argmin]) = vector([argmin j]);
11 end
12 end
13 end

▶ Selection sort is probably the most naive algorithm
that sorts a vector x ∈ Rn in ascending order

▶ Call by value requires n assignments to copy x ∈ Rn

▶ In each step of the for loop over j

• 1 assignment

• In each step of the for loop over k

◦ 1 comparison

◦ 1 assignment (worst case!)

• 1 comparison

• 2 assignments (worst case!)

▶ quadratic complexity O(n2), because:

n+
n−1∑
j=1

(
4+

n∑
k=j+1

2
)
= n+4(n− 1) +

n−1∑
j=1

(n− j)2

= 5n− 4+ 2
n−1∑
k=1

k = 5n− 4+ 2
n(n− 1)

2
= O(n2)
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Cost and computational time

▶ Why time measurement?

• Comparison of algorithms/implementations

• Validation of theoretical considerations

▶ We suppose that all operations that have been
counted for the computational complexity require
the same amount of time

▶ Then, we can make theoretical predictions on the
runtime of an algorithm

• Linear complexity

◦ Problem size n ⇒ Cn operations

◦ Problem size kn ⇒ Ckn operations

◦ i.e., 3× problem size ⇒ 3× runtime

• Quadratic complexity

◦ Problem size n ⇒ Cn2 operations

◦ Problem size kn ⇒ Ck2n2 operations

◦ i.e., 3× problem size ⇒ 9× runtime

• Cubic complexity

◦ Problem size n ⇒ Cn3 operations

◦ Problem size kn ⇒ Ck3n2 operations

◦ i.e., 3× problem size ⇒ 27× runtime

• etc.

▶ E.g., if a program takes 1 s for n = 1.000, then:

• Complexity O(n) ⇒ 10 s for n = 10.000

• Complexity O(n2) ⇒ 100 s for n = 10.000

• Complexity O(n3) ⇒ 1.000 s for n = 10.000
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Measuring the computational time

▶ Stopping the real time:

• Use tic to start the stopwatch

• Use toc to get the elapsed time in seconds

▶ Example:

>> tic

>> A = rand(10000,10000);

>> elapsed time = toc

Then, elapsed time contains the time needed to
create the matrix containing random entries

▶ Stopping the computational time:

• cputime returns the CPU time of MATLAB

elapsed since its start (measured in seconds)

▶ Example:

>> t = cputime;

>> A = rand(10000,10000);

>> elapsed time = cputime-t

Then, elapsed time contains the CPU time needed
to create the matrix containing random entries
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Runtime comparison 1/2
1 clear all
2
3 Nmin = 500;
4 Jmax = 22;
5 for j = 1:Jmax
6 x = 1:Nmin*2^j;
7 t1(j) = cputime;
8 binarySearch(x,0,0); %*** sublinear cost
9 t1(j) = cputime - t1(j);

10 fprintf(’binarySearch, %d: %d, %1.2f\n’,
11 j, length(x), t1(j));
12 end
13 n1 = Nmin*2.^(1:Jmax);
14
15 for j = 1:Jmax
16 x = 1:Nmin*2^j;
17 t2(j) = cputime;
18 search(x,0,0); %*** linear cost
19 t2(j) = cputime - t2(j);
20 fprintf(’search, %d: %d, %1.2f\n’,
21 j, length(x), t2(j));
22 end
23 n2 = Nmin*2.^(1:Jmax);
24
25 Jmax = 10;
26 for j = 1:Jmax
27 x = flip(1:Nmin*2^j);
28 t3(j) = cputime;
29 selectionSort(x); %*** quadratic cost
30 t3(j) = cputime - t3(j);
31 fprintf(’selectionSort, %d: %d, %1.2f\n’,
32 j, length(x), t3(j));
33 end
34 n3 = Nmin*2.^(1:Jmax);
35
36 save(’runtime_comparison’);
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Runtime comparison 2/2

O(n) O(n2) O(log2 n)
n search selectionSort binarySearch

1.000 0.00 0.01 0.00
2.000 0.00 0.04 0.00
4.000 0.00 0.10 0.00
8.000 0.00 0.10 0.00

16.000 0.00 0.33 0.00
32.000 0.00 1.26 0.00
64.000 0.00 4.87 0.00

128.000 0.00 20.83 0.00
256.000 0.00 80.29 0.00
512.000 0.00 328.20 0.00

1.024.000 0.01 ≥ 21min 0.00
2.048.000 0.01 ≥84min 0.00
4.096.000 0.01 ≥ 5,5h 0.00
8.192.000 0.02 ≥ 22h 0.00

16.384.000 0.04 ≥ 3,5d 0.00
32.768.000 0.07 ≥ 14d 0.00
65.536.000 0.14 ≥ 1,5m 0.00

131.072.000 0.38 ≥ 6m 0.00
262.144.000 0.62 ≥ 2y 0.00
524.288.000 1.42 ≥ 8y 0.00

1.048.576.000 2.41 ≥ 32y 0.00
2.097.152.000 11.09 ≥ 128y 0.00

▶ Logarithmic complexity is nice, as 231 > 2.14 · 109

▶ Also linear complexity yields good runtime

▶ Quadratic complexity for large n is noticeable

• Naive sorting of a vector of length 2.097.152.000

would require more than 128 years on my PC!

• Probably, this could not even be solved by

buying new hardware!

▶ Algorithms should have minimal complexity

• This is one of the tasks of numerical analysis

• Clearly, this is not always possible
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Visualization 1/4

1 load runtime_comparison;
2
3 loglog(n2,t2,’r-o’,’LineWidth’,2);
4 hold on;
5 loglog(n2,n2/n2(1)*t2(1),’r:’,’LineWidth’,2);
6
7 loglog(n3,t3,’k-p’,’LineWidth’,2);
8 loglog(n3,n3.^2/n3(1)^2*t3(1),’k:’,’LineWidth’,2);
9 hold off;

10
11 ylabel(’runtime’)
12 xlabel(’vector length’)
13 legend(’linear search’,’O(n)’,
14 ’selection sort’,’O(n^2)’);
15 print -depsc2 complexity_loglog.eps

▶ Recall that T (n) = O(nα) is visualized via loglog

• T (n) is the runtime for a vector x ∈ Rn

• α > 0 is the dependence

◦ α = 1 is linear complexity

◦ α = 2 is quadratic complexity
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Visualization 2/4
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▶ Recall that T (n) = O(nα) is visualized via loglog

• T (n) is the runtime for a vector x ∈ Rn

• α > 0 is the dependence

◦ α = 1 is linear complexity

◦ α = 2 is quadratic complexity
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Visualization 3/4

1 load runtime_comparison;
2
3 figure(2);
4 alpha2 = log(t2(2:end)./t2(1:end-1)) / log(2);
5 semilogx(n2(2:end),alpha2,’r-o’);
6 hold on;
7 semilogx([n2(2),1e7],[1,1],’r:’);
8
9 alpha3 = log(t3(2:end)./t3(1:end-1)) / log(2);

10 semilogx(n3(2:end),alpha3,’k-o’);
11 semilogx([n3(2),1e7],[2,2],’k:’);
12 hold off;
13
14 ylabel(’complexity order’);
15 xlabel(’vector length’);
16 legend(’linear search’,’\alpha = 1’,
17 ’selection sort’,’\alpha = 2’);
18 print -depsc2 complexity_semilogx.eps

▶ With T (n) = O(nα), we suppose that T (n) = Cnα

• with unknown C,α > 0

▶ Then, T (2n)/T (n) = 2α

• and hence α = log2

(
T (2n)/T (n)

)
/ log2(2)

▶ We can thus also plot the experimental α over 2n,
where the x-axis is scaled logarithmically

▶ The computed nodes should be “almost constant”
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Visualization 4/4

10
3

10
4

10
5

10
6

10
7

vector length

-0.5

0

0.5

1

1.5

2

2.5

c
o

m
p

le
x
it
y
 o

rd
e

r

linear search

 = 1

selection sort

 = 2

▶ With T (n) = O(nα), we suppose that T (n) = Cnα

• with unknown C,α > 0

▶ Then, T (2n)/T (n) = 2α

• and hence α = log2

(
T (2n)/T (n)

)
/ log2(2)

▶ We can thus also plot the experimental α over 2n,
where the x-axis is scaled logarithmically

▶ The computed nodes should be “almost constant”
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Necessity of memory allocation 1/3

1 clear all;
2 N = 1e8;
3
4 %*** for loop without allocation
5 t = cputime;
6 for i = 1:N
7 x(i) = i;
8 end
9 fprintf("dynamic: %f sec\n",cputime - t);

10
11 clear x t i
12
13 %*** for loop with allocation
14 t = cputime;
15 x = zeros(1,N);
16 for i = 1:N
17 x(i) = i;
18 end
19 fprintf("allocated: %f sec\n",cputime - t);
20
21 clear x t i
22
23 %*** MATLAB built-in arithmetics
24 t = cputime;
25 x = 1:N;
26 fprintf("built-in: %f sec\n",cputime - t);

▶ Output:

dynamic: 8.600000 sec

allocated: 0.430000 sec

built-in: 0.350000 sec
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Necessity of memory allocation 2/3

1 clear all;
2 N = 2*1e3;
3
4 %*** for loop without allocation
5 t = cputime;
6 for i = 1:N
7 for j = 1:N
8 x(i,j) = i*j;
9 end

10 end
11 fprintf("dynamic: %f sec\n",cputime - t);
12
13 clear x t i j
14
15 %*** for loop with allocation
16 t = cputime;
17 x = zeros(N,N);
18 for i = 1:N
19 for j = 1:N
20 x(i,j) = i*j;
21 end
22 end
23 fprintf("allocated: %f sec\n",cputime - t);

▶ Output:

dynamic: 3.310000 sec

allocated: 0.090000 sec
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Hidden computational time

▶ Since the previous runtimes do not look
intimidating on a first glance, one should
consider the computational complexity!

▶ Recall that matrices A ∈ Km×n are stored
columnwise in MATLAB

▶ If the matrix is getting new rows and is extended
to A ∈ KM×N , then all entries of A (except Aj1 for
j = 1, . . . ,m) must either be moved or initialized

• This needs O(MN) operators

▶ In the last example, the matrix grows from a scalar
A ∈ R over row vectors A ∈ R1×k and A ∈ R1×N

to matrices A ∈ Rj×N and finally A ∈ RN×N

• This amounts to
∑N

j=2O(jN) = O
(
N

∑N
j=2 j

)
operations

▶ Note that N
∑N

j=2 j = N
(
N(N+1)

2
− 1

)
= O(N3)

▶ Overall, dynamic growth of the matrix leads to a
hidden cubic complexity O(N3), while the visible
(algorithmic) complexity for filling the matrix is
only O(N2).
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Sparse matrices
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Sparse matrices

▶ A matrix A ∈ Km×n is called sparse if most of
its entries are 0

• i.e., number #{(i, j) |Aij ̸= 0} = O(m+ n)

for m,n → ∞

▶ Important examples are diagonal matrices,
tridiagonal matrices, or more general matrices with
so-called band structure

• Such matrices appear often in applications

▶ Sparse matrices can be stored more efficiently with
O(m+ n) instead of O(mn), if only the non-zero
entries are stored

▶ Many algorithms like matrix-vector multiplication
(and also solvers) can be implemented more
efficiently for sparse matrices
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Coordinate format

▶ N := #{(i, j) |Aij ̸= 0} number of non-zero entries

▶ The so-called coordinate format relies on naively
storing three vectors I ∈ RN , J ∈ RN , a ∈ KN

▶ Then, 1 ≤ k ≤ N , i = I(k), j = J(k) ⇒ Aij = a(k)

▶ Advantage: Matrix-vector multiplication and
storage are clearly O(N) instead of O(mn)

▶ Disadvantage: Each access to Aij may also need
O(N) operations via linear search

▶ Note: For any matrix A ∈ Km×n that is dense or
sparse, MATLAB provides the coordinate format
by [I,J,a] = find(A);

Example

▶ A =


10 0 0 −2 0
3 9 0 0 3
0 7 8 0 0
3 0 8 5 0
0 8 0 9 13
0 4 0 2 −1


▶ a = (10,3,3 |9,7,8,4 |8,8 | − 2,5,9,2 |3,13,−1)

▶ I = (1,2,4 |2,3,5,6 |3,4 |1,4,5,6 |2,5,6)

▶ J = (1,1,1 |2,2,2,2 |3,3 |4,4,4,4 |5,5,5)
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CCS-format

▶ MATLAB uses the coordinate format for
communicating to the user / programmer

▶ However, it uses the CCS-format for storage

• Compressed Column Storage

(also: Harwell-Boeing-Format)

▶ N := #{(i, j) |Aij ̸= 0} number of non-zero entries

▶ Vectors I ∈ RN , a ∈ KN as before

▶ Vector J ∈ Rn+1 as follows:

• J(k) indicates where the k-th column starts in

vector I for 1 ≤ k ≤ n

• J(n+1) := N +1

▶ Improvement: If only O(1) elements per column,
then the access to Aij needs only O(1) operations

• However, the CCS format requires sorted data

Example

▶ A =


10 0 0 −2 0
3 9 0 0 3
0 7 8 0 0
3 0 8 5 0
0 8 0 9 13
0 4 0 2 −1


▶ a = (10,3,3 |9,7,8,4 |8,8 | − 2,5,9,2 |3,13,−1)

▶ I = (1,2,4 |2,3,5,6 |3,4 |1,4,5,6 |2,5,6)

▶ J = (1 |4 |8 |10|14 ||17), i.e., N = 16
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Sparse matrices in MATLAB

▶ Sparse matrices are allocated by sparse

• e.g., A = sparse(m,n);

• or conversion A = sparse(matrix);

◦ convert back by Afull = full(A);

▶ MATLAB uses optimized algorithms for sparse
matrices that are substantially faster than those
for full matrices

▶ Modification of sparse matrices is costly

• since CCS-storage vectors are partially sorted

• and hence memory must be copied

▶ Building sparse matrices can be costly

• if one executes A = sparse(m,n);

• and then assigns A(i,j)

• Better:

◦ first, build the naive coordinate format

I, J ∈ RN and a ∈ KN

◦ then, use A = sparse(I,J,a,m,n); to build the

matrix in the sparse format

▶ Recall: For any A ∈ Km×n, MATLAB provides the
coordinate format by [I,J,a] = find(A);
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Sparse matrix 1/4

1 % sparse_naive.m
2 n = 1e4;
3
4 A = sparse( 2*eye(n) ...
5 - diag(ones(n-1,1),-1) ...
6 + diag(ones(n-1,1),1) );

▶ Example: Build tridiagonal matrix with

A =


2 +1 0 · · · 0
−1 2 +1 .. . ...
0 −1 2 .. . 0
... . . . . . . . . . +1
0 · · · 0 −1 2


• 2 on main diagonal

• ±1 on first diagonals above and below

▶ Build diagonal matrices with diag

• A = diag(v,n)

• Parameter v vector for diagonal

• Parameter n indicates offset from main diagonal

▶ This is a bad solution with runtime O(n2)

• We assemble a full matrix in O(n2)

• and convert it to sparse

◦ For n = 1e4 = 10.000, this needs

n2 × 8 Bytes ≈ 763 MB auxiliary memory!

◦ compare with (3n− 2)× 8 Bytes ≈ 0.23 MB!
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Sparse matrix 2/4

1 % sparse_naivefor.m
2 n = 1e4;
3
4 A = sparse(n,n);
5 A(1,1) = 2;
6 A(1,2) = 1;
7 A(n-1,1) = -1;
8 A(n,n) = 2;
9

10 for i = 2:n-1
11 A(i,i-1:i+1) = [-1 2 1];
12 end

▶ Example: Build tridiagonal matrix with

A =


2 +1 0 · · · 0
−1 2 +1 .. . ...
0 −1 2 .. . 0
... . . . . . . . . . +1
0 · · · 0 −1 2


▶ This is an even worse solution, since the runtime

even exceeds O(n2)

• in i-th step

◦ 2+ 3(i− 2) = O(i) entries in matrix

◦ must be sorted for CCS-format

◦ Cost is O(i log i) per step

• Hence, the total cost is ≥ O(
∑n−1

i=2 i) = O(n2)
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Sparse matrix 3/4

1 % sparse_tridiag.m
2 n = 1e4;
3
4 I = zeros(3*(n-2)+4,1);
5 J = zeros(3*(n-2)+4,1);
6 a = zeros(3*(n-2)+4,1);
7
8 I(1:2) = [1 2];
9 J(1:2) = [1 1];

10 a(1:2) = [2 -1];
11
12 for i = 2:n-1
13 I(3+(i-2)*3:2+(i-1)*3) = [i-1 i i+1];
14 J(3+(i-2)*3:2+(i-1)*3) = [i i i];
15 a(3+(i-2)*3:2+(i-1)*3) = [1 2 -1];
16 end
17
18 I(end-1:end) = [n-1 n];
19 J(end-1:end) = [n n];
20 a(end-1:end) = [1 2];
21
22 A = sparse(I,J,a,n,n);

▶ Example: Use the coordinate format to build
the tridiagonal matrix with

A =


2 +1 0 · · · 0

−1 2 +1 .. . ...

0 −1 2 .. . 0
... . . . . . . . . . +1
0 · · · 0 −1 2



▶ Advantage: No temporary full matrix needed and
the runtime is indeed logarithmic-linear in n, since
only 1× sort is required to build the CCS-format
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Sparse matrix 4/4
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▶ Visualization by loglog

• time = (size of matrix N)α with α > 0

• O(N2) = straight line with slope 2

• O(N) = straight line with slope 1
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Matrix structure
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▶ The structure of the non-zero entries of a matrix
is visualized with spy

• Entries ̸= 0 are shown in a grid

• matrix indices on both axes

◦ here: A ∈ R100×100

◦ 298 entries ̸= 0 (non-zero entries)
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Visualization

▶ Visualization of functions f : R2 → R

▶ meshgrid

▶ mesh, surf

▶ fill

▶ contour

▶ colorbar, colormap
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An example function
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▶ f(x, y) = x · e−(x2+y2)
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Tensor grid

1 f = @(x,y) x.*exp(-x.^2-y.^2);
2 x = linspace(-2,2,20);
3 y = linspace(-2,2,20);
4 [X,Y] = meshgrid(x,y);
5 Z = f(X,Y);
6
7 figure(1)
8 mesh(X,Y,Z)
9

10 figure(2)
11 surf(X,Y,Z)
12 colorbar

▶ Subdivision x ∈ Rn of interval I, n nodes

▶ Subdivision y ∈ Rm of interval J, m nodes

▶ [X,Y] = meshgrid(x,y) a tensor grid for I × J

• i.e., mn nodes in I × J

• X,Y ∈ Rm×n

▶ mesh(X,Y,Z) plots function values over tensor grid

• color according to function value

▶ surf(X,Y,Z) plots function values over tensor grid

• interpolates between nodes

▶ colorbar returns color code for z = f(x, y)

▶ colormap(rgb) chooses RGB-map rgb ∈ [0,1]N×3

• e.g., jet, gray, copper, hot, cool, summer, winter
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▶ figure(1) −→ mesh
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▶ figure(2) −→ surf
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Contour plot

1 f = @(x,y) x.*exp(-x.^2-y.^2);
2 x = linspace(-2,2,100);
3 y = linspace(-2,2,100);
4 [X,Y] = meshgrid(x,y);
5 Z = f(X,Y);
6
7 %*** plot colored contour lines
8 figure(1)
9 contour(X,Y,Z,’LineWidth’,2)

10 colorbar(’SouthOutside’)
11
12 %*** contour lines red, labeled
13 figure(2)
14 C = contour(X,Y,Z,...
15 7,’LineColor’,’r’,’LineWidth’,2);
16 clabel(C)

▶ contour(X,Y,Z) shows colored contour lines

▶ Optional parameters

• number of contour lines (default is 9)

• further options like for plot

▶ Labeling of contour lines with Z-value

• by clabel
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▶ figure(1)
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Projection to plane

1 f = @(x,y) x.*exp(-x.^2-y.^2);
2 x = linspace(-2,2,50);
3 y = linspace(-2,2,50);
4 [X,Y] = meshgrid(x,y);
5 Z = f(X,Y);
6
7 figure(1)
8 surf(X,Y,Z);
9 view(2)

10 colorbar
11
12 figure(2)
13 surf(X,Y,Z,’LineStyle’,’none’);
14 colorbar
15 view(2)

▶ view(azimuth,elevation) : Location of observer

• elevation = altitude angle over x-y-plane

• azimuth = angle in x-y-plane

▶ view(2) = 2D from above onto x-y-plane

• i.e., azimuth=0, elevation=90

▶ view(3) = standard 3D-settings

▶ [azimuth,elevation] = view returns current values

• possible to rotate 3D-picture by mouse

• read and store “good” settings by this method
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▶ figure(1)
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▶ figure(2)
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Non-tensor grid

1 f = @(x,y) x.*exp(-x.^2-y.^2);
2
3 %*** compute known values of function
4 x = 4*rand(1,200)-2; % random numbers in [-2,2]
5 y = 4*rand(1,200)-2; % random numbers in [-2,2]
6 z = f(x,y);
7
8 %*** build tensor grid
9 xx = linspace(-2,2,50);

10 yy = linspace(-2,2,50);
11 [X,Y] = meshgrid(xx,yy);
12
13 %*** approximate function values
14 Z = griddata(x,y,z,X,Y);
15
16 %*** plot approximated function
17 surf(X,Y,Z)
18 hold on
19
20 %*** plot random points
21 plot3(x,y,-.5*ones(size(x)),’k.’)
22 hold off

▶ If data points (x, y) are not on a tensor grid

• build tensor grid by meshgrid

• approximate function values on tensor grid

from known values
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Triangular grids

1 f = @(x,y) x.*exp(-x.^2-y.^2);
2
3 %*** compute known values of function
4 x = 4*rand(1,1000)-2; % random numbers in [-2,2]
5 y = 4*rand(1,1000)-2; % random numbers in [-2,2]
6 z = f(x,y);
7
8 %*** build triangulation
9 tri = delaunay(x,y);

10
11 %*** plot approximated function
12 figure(1)
13 trimesh(tri,x,y,z);
14
15 figure(2)
16 trisurf(tri,x,y,z);
17
18 %*** show triangulation
19 figure(3)
20 trimesh(tri,x,y,zeros(size(x)),’EdgeColor’,’k’)
21 view(2)

▶ Creates a so-called Delaunay triangulation of
points into triangles

• nodes of triangles = given points

• nodes of each triangle determine a unique circle

◦ and this circle does not contain further points

▶ This ensures that the angles of the triangles are as
large as possible, which is numerically favorable
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▶ figure(1) −→ trimesh
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▶ figure(2) −→ trisurf
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Some further commands

▶ Plots in polar coordinates : polar

▶ Bar charts : hist, bar, barh

▶ Pie charts : pie, pie3

▶ Fill area/volume with color : fill, fill3

▶ Vector fields : compass, quiver, quiver3

▶ Animations: VideoWriter
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