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Abstract
The sustainable production of solvents from above ground carbon is highly desired. Several clostridia naturally produce 
solvents and use a variety of renewable and waste-derived substrates such as lignocellulosic biomass and gas mixtures 
containing  H2/CO2 or CO. To enable economically viable production of solvents and biofuels such as ethanol and butanol, 
the high productivity of continuous bioprocesses is needed. While the first industrial-scale gas fermentation facility oper-
ates continuously, the acetone–butanol–ethanol (ABE) fermentation is traditionally operated in batch mode. This review 
highlights the benefits of continuous bioprocessing for solvent production and underlines the progress made towards its 
establishment. Based on metabolic capabilities of solvent producing clostridia, we discuss recent advances in systems-level 
understanding and genome engineering. On the process side, we focus on innovative fermentation methods and integrated 
product recovery to overcome the limitations of the classical one-stage chemostat and give an overview of the current 
industrial bioproduction of solvents.

Keywords Cell retention and immobilization · Systems biology and genome-scale metabolic models · Complex and 
renewable feedstocks · Gas fermentation · Integrated product recovery

Introduction

The Paris Agreement adopted in 2016 displays an inter-
national effort to reduce carbon emissions and promotes 
the development of new sustainable processes for fuel and 
chemical production using “above ground” carbon as feed-
stocks [149]. To implement sustainable and economically 
viable processes towards the establishment of a circular 
bioeconomy, the use of cheap and abundant carbon sources 
such as municipal solid waste, lignocellulosic biomass and 

steel mill exhaust gas must be favored over expensive and 
edible carbon sources like starch [149, 292]. Solventogenic 
clostridia can grow on a variety of hexose and pentose sugars 
and produce relevant solvents such as ethanol, butanol and 
acetone. The Weizmann process was implemented more than 
a hundred years ago [255], making solventogenic clostridia 
long-known production hosts of the industrial biotechnology. 
Acetogens can grow on mixtures of CO,  CO2 and  H2 which 
can be obtained directly from furnaces of steel mills or 
through the gasification of various carbon-rich waste streams 
and lignocellulosic biomass [170]. The product spectrum 
strongly depends on the acetogenic strain and includes the 
commodity chemicals acetate, ethanol and butanol [19, 59]. 
To enable the commercialization of bioprocess for the pro-
duction of bulk chemicals like solvents, an estimated product 
titer of 50 g  L−1, the productivity of 3 g L−1 h−1 and yield 
not less than 80% of the theoretical yield have to be reached 
[302]. Continuous bioprocessing offers a mean to reach the 
demanded high productivity [21, 208, 315].

Biofuels such as butanol and ethanol are needed in high 
quantities and their market shows a steady growth [164, 261, 
270, 275]. While ethanol is already used worldwide for bio-
fuel applications, a 50% higher energy density, lower vapor 
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pressure, lower water absorption, lower corrosivity, better 
blending abilities and the possible use in unmodified com-
bustion engines and existing infrastructure make butanol a 
promising alternative [41, 58, 161, 211]. To penetrate the 
biofuel market, butanol production has to compete with the 
performance of ethanol-producing bioprocesses [95]. Con-
tinuous ethanol production reached productivities of ~ 10 g 
 L−1 h−1, yields of up to 0.46 g ethanol per g of pentose or 
hexose and concentrations of ~ 100 g  L−1 [229]. The first 
commercial scale gas fermenting facility for ethanol pro-
duction started operation in 2018 and runs in a fully con-
tinuous manner with a comparable productivity [149, 284]. 
The acetone–butanol–ethanol (ABE) fermentation, however, 
is classically operated in batch mode and the switch to a 
continuous bioprocess proves challenging [95, 164, 219]. 
Continuous high cell density cultivations of solventogenic 
clostridia have already reached butanol productivities of 
about 10 g  L−1  h−1 [125, 187]. Due to the high toxicity of 
butanol, titers are typically limited to values below 20 g  L−1 
[79, 133]. Integrated product recovery methods display a 
meaningful way to compensate for the low product titers and 
to alleviate product toxicity [82].

In this review, we show the progress made towards the 
continuous production of solvents with solventogenic and 
acetogenic clostridia. With the objective of a holistic process 
design, the first part of the review focuses on the production 
hosts where we highlight metabolic capabilities and relevant 
phenotypical properties of clostridia. The recent develop-
ments in systems biology and genetic engineering tools 
increase microbial understanding and enable better strain 
design. Regarding the implementation of a sustainable and 
economical process, we give a short overview of the most 
promising alternative feedstocks. By building the bridge 
to the current advances of fermentation methods and add-
ons used for solvent production, we discuss the challenges 
and opportunities of continuous fermentation and outline 
the current situation of industrial bioprocessing for solvent 
production. Finally, we tie up the threads for the successful 
industrial implementation of continuous solvent production 
by emphasizing the importance to combine strain engineer-
ing with innovative fermentation methods along with the 
need for further improvement of monitoring and control 
strategies for these processes.

Solventogenic and acetogenic clostridia

Solventogenic clostridia have been a part of industrial bio-
technology as production hosts of solvents for more than a 
century [255]. While the research focused on Clostridium 
acetobutylicum, the model organism of the ABE fermen-
tation, further clostridia including C. beijerinckii, C. sac-
charoperbutylacetonicum and C. saccharobutylicum were 

investigated for their high butanol production activity [58, 
143, 166]. With the isolation of C. ljungdahlii, acetogenic 
bacteria (acetogens) have also become interesting hosts for 
industrial solvent production. This organism was first studied 
for its ability to form ethanol from gasified coal and is today 
one of the model acetogens [258, 315]. Acetogens are more 
relevant than ever as they can utilize the greenhouse gases 
CO and  CO2 as inorganic carbon sources, making them 
applicable for carbon capture and valorization technologies 
[61, 149]. Acetogens form a metabolically, ecologically, and 
phylogenetically diverse group [256]. Several acetogenic 
clostridia such as C. ljungdahlii, C. autoethanogenum and 
C. carboxidivorans are investigated for solvent production 
[19, 59]. Non-clostridial acetogens such as Acetobacterium 
woodii and Eubacterium limosum are also investigated and 
modified for the production of bulk chemicals [108, 128, 
276]. The most common solventogenic and acetogenic 
clostridia investigated for industrial application are summa-
rized in Table 1.

Metabolic modules

The metabolism of solventogenic and acetogenic clostridia 
can be subdivided into metabolic modules (see Fig. 1). Oxi-
dative metabolic modules break down heterotrophic carbon 
sources to the intermediates acetyl-CoA and pyruvate and 
generate reduction equivalents. Additional reduction equiva-
lents can be obtained from CO and  H2 oxidation. Acetogens 
possess the Wood–Ljungdahl pathway, a reductive metabolic 
module that uses reduction equivalents to fixate  CO2 and to 
form additional acetyl-CoA [259]. Further reductive mod-
ules use reduction equivalents to convert intermediates to 
products such as butanol, ethanol, acetone and 2,3-butan-
ediol (2,3-BDO) [69, 148, 245]. Balancing modules match 
the generated and consumed reduction equivalents.

Carbohydrates display a valuable carbon source for 
clostridia. Complex feedstocks such as lignocellulose may 
be used directly when the organisms are able to degrade it to 
fermentable sugars. Cellulolytic clostridia like C. thermocel-
lum produce enzymatic complexes called cellulosomes for 
this task and are reviewed in detail elsewhere [194, 321]. 
Released or directly fed carbohydrates are degraded for 
energy and reduction equivalent generation. The interlinked 
Embden–Meyerhof–Parnas (EMP) and pentose phosphate 
pathways (PPP) are the oxidative metabolic modules respon-
sible for the degradation of hexoses and pentoses, respec-
tively [219]. Finally, pyruvate is formed and may be used 
for acetyl-CoA formation releasing  CO2 and generating 
additional reduction equivalents.

Acetogens can generate acetyl-CoA via the Wood–Ljun-
gdahl pathway (WLP). There are several reviews recom-
mended for further reading [20, 57, 258, 259]. The WLP 
is a reductive module that can use reduction equivalents 
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generated from oxidative modules (EMP and PPP) or from 
the oxidation of CO or  H2 [20, 259].  CO2 is stepwise reduced 
to a methyl-group in the Eastern branch of the WLP. The 
Western branch serves to provide a carbonyl group either 
directly from CO or from the reduction of  CO2. Finally, the 
methyl-group and a carbonyl-group are combined with coen-
zyme A (HS-CoA) to form acetyl-CoA [57].

The growth of acetogenic and solventogenic clostridia in 
batch cultivations can be divided into two phases (‘bipha-
sic’ fermentation): First, produced coenzyme A-bound acids 
(acetyl-CoA, butyryl-CoA, hexanoyl-CoA) can be released 
enabling ATP generation and fast growth, leading to the 
overall production of acids. This growth phase is referred to 
as acidogenesis [124]. In a second growth phase, the accu-
mulated acids are taken up and converted to alcohols by 
reductive modules. Due to the accumulation of solvents, this 
growth phase is called solventogenesis [247]. In solvento-
genic clostridia, coenzyme A bound acids are reduced to 
their respective aldehyde by alcohol/aldehyde dehydroge-
nases (AADs) or aldehyde dehydrogenases (ADH) [38, 317]. 
Several acetogenic clostridia harbor aldehyde oxidoreduc-
tases (AORs) for the direct conversion of carboxylic acids 
to aldehydes without prior activation [48, 80, 120, 247]. 
AORs were shown to guide the ethanol formation during 
autotrophic growth of Clostridium autoethanogenum [169]. 
However, the direct reduction of acetic acid to acetaldehyde 

is thermodynamically unfavorable under standard conditions 
(1 M concentration of acetic acid and acetaldehyde at pH 7) 
and is facilitated by a low intracellular pH value [198].

Stoichiometric imbalances of reduction equivalents are 
resolved by redox balance modules: acetogens possess a 
membrane-bound trans-hydrogenase (Ech or Rnf complex) 
that transfers electrons from electron carriers with low redox 
potential  (Fd2−) to electron carriers with a higher redox 
potential (NAD/NADH,  H2) and couples the transfer with 
the translocation of  Na+ or  H+ out of the cell [258]. The 
generated chemiosmotic gradient can be used for energy 
generation by a membrane-bound ATPase. Electron bifur-
cating hydrogenases like HydABCD are essential for the 
supply of reduced ferredoxin during growth on mixtures of 
 H2 and  CO2 and may also serve for redox balancing during 
heterotrophic growth [258, 316]. During acidogenic growth, 
solventogenic clostridia like C. acetobutylicum balance sur-
plus NADH by forming  H2 [218].

Parameters and conditions promoting the solvent 
formation

Overall, the pH value, the acid concentration, and the degree 
of reduction of the substrate influence the metabolism and 
the formed products of acetogens and clostridia. These 
parameters can be used to steer the cultivation towards 

Table 1  Overview of industrially relevant solventogenic and acetogenic clostridia

X: growth, (X): weak growth [143], –: no growth
a Only some strains like C. beijerinckii DSM 6423 synthesize isopropanol [279]

Strain Growth on sole carbon source: Native fermentation products References

H2/CO2 CO/CO2 C6 sugars C5 sugars Glycerol

C. acetobutylicum – – X X (X) Acetate, acetone, butanol, butyrate, 
ethanol,  H2,  CO2

[143, 157]

C. beijerinckii – – X X (X) Acetate, acetone, butanol, butyrate, 
ethanol  isopropanola,  H2,  CO2

[143, 197, 279]

C. saccharoperbutylacetonicum – – X X – Acetate, acetone, butanol, butyrate, 
ethanol,  H2,  CO2

[143]

C. saccharobutylicum – – X X – Acetate, acetone, butanol, butyrate, 
ethanol,  H2,  CO2

[143]

C. pasteurianum – – X – X Acetate, Butanol, butyrate, ethanol, 
lactate, 1,3-propanediol,  H2,  CO2

[223]

C. ljungdahlii X X X X – Acetate, 2,3-butanediol, ethanol, 
lactate,  CO2

[148, 286]

C. carboxidivorans X X X X X Acetate, ethanol, butanol, butyrate, 
hexanoate, hexanol,  CO2

[80, 172]

C. ragsdalei X X X X – Acetate, ethanol, 2,3-butanediol, 
lactate,  CO2

[115, 148]

C. drakei X X X X X Acetate, ethanol, butanol, butyrate, 
 CO2

[172]

C. autoethanogenum X X X X – Acetate, ethanol, 2,3-butanediol, 
lactate,  CO2

[3, 148, 192]

M. thermoacetica X X X X – Acetate,  CO2 [56]
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solventogenesis. During a continuous, phosphate-limited 
cultivation of C. acetobutylicum ATCC824, a change from 
acidogenic to solventogenic metabolism could be directed 
by solely changing the external pH from 5.7 to 4.5 [97, 
126]. A two-stage continuous cultivation of C. ljungdahlii 
also allowed to control acidogenesis and solventogenesis 

using the pH setpoint [247]. Similarly, solventogenesis was 
induced during batch cultivation of the acetogen C. aceticum 
by shifting the pH-value from 8.0 to 6.9 [10]. Interestingly, 
the pH value was also suggested to favor alcohol forma-
tion reactions and to hamper the formation of longer fatty 
acids like hexanoic acid during the cultivation of acetogenic 
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clostridia [41]. Supplementing a batch culture of C. beijer-
inckii NCIMB 8052 with acetate, butyrate or both led to an 
earlier onset of solventogenesis and to higher final butanol 
titers, highlighting the role of acid concentration in switch-
ing to solventogenesis [109, 313]. The supply of reduction 
equivalents during heterotrophic cultivation can be increased 
by changing the carbon source. Replacing glucose with glyc-
erol for the cultivation of C. pasteurianum shifted the prod-
uct spectrum from acids to solvents [46]. During continuous 
cultivation of the acetogen C. autoethanogenum, increasing 
the ratio of  H2 to inorganic carbon in the feed gas led to 
an increased ratio of ethanol to acetate, showing that the 
amount of reduction equivalents supplied from the substrate 
influences solvent formation [299].

An interesting feature of some acetogens is the ability 
to use gaseous substrates and organic carbon sources like 

carbohydrates simultaneously. This ability is referred to as 
anaerobic, non-photosynthetic (ANP) mixotrophy [134]. By 
providing additional reduction equivalents via CO or  H2 oxi-
dation, the theoretical butanol yield on glucose is increased 
from 0.97 mol mol−1 to 1.33 mol mol−1 [76]. Advantages 
and applications of ANP mixotrophy are further discussed 
elsewhere [61, 76, 78, 192].

Strain stability and changes in strain performance

Aside from parameters that support solventogenic growth 
behavior, influences on the cellular performance and via-
bility have to be considered: solventogenic clostridia may 
partially or completely lose their ability to produce solvents 
from acids during continuous cultivation or repeated batch 
cultivation [141]. This phenotypical phenomenon called 
strain degeneration has various causes. In C. acetobutylicum 
ATCC 824, degeneration is caused by the loss of the mega 
plasmid pSol carrying the genes for solvent formation [45]. 
In case of the degenerated strain C. beijerinckii DG 8052, 
the ability to form solvents was lost without a genetic change 
and could be restored by addition of  CaCO3 [131]. Even 
phage infection caused strain degeneration during the indus-
trial cultivation of C. madisonii [132]. Interestingly, a degen-
eration-resistant strain of C. beijerinckii NCIMB 8052 was 
isolated as early as 1993 [142]. Degeneration has, to the best 
of our knowledge, not been observed for an acetogen yet.

During the so-called acid crash, the fast accumulation of 
acids causes the cultivation to end before switching to the 
solventogenic phase [16, 80]. The acid crash in C. acetobu-
tylicum was shown to be caused by formic acid accumulation 
to concentrations of ~ 1 mM [311]. In case of the acetogen 
C. carboxidivorans P7, an acid crash was caused by the fast 
accumulation of acetic acid at high cultivation temperatures 
(37 °C) [245].

The solvents produced are toxic to the culture: the growth 
of the C. acetobutylicum ATCC 824 wild type was inhibited 
by 50% when butanol, ethanol and acetone were added in 
concentrations of 7–13 g L−1, 40 g L−1 and 40 g L−1, respec-
tively. 20 g L−1 butanol inhibited growth completely [133]. 
Growth of C. carboxidivorans cultures with CO as the sole 
carbon source was inhibited to 50% or even completely by 
14.5 and 20 g L−1 butanol, respectively. Tolerance against 
ethanol was significantly higher: 35 g L−1 ethanol inhibited 
growth to 50% [79].

The onset of solventogenesis is seen as a survival strategy 
for dealing with the rising acid concentration during batch 
cultivation. Sporulation is a second survival strategy of 
clostridia [326]. Both sporulation and the metabolic switch 
from acidogenesis to solventogenesis are coordinated by 
the master regulator Spo0A in C. beijerinckii NCIMB 8052 
[246]. However, the coordination of both events seems to 

Fig. 1  Schematic of the metabolism of acetogenic and solventogenic 
clostridia. Oxidative metabolic modules for the generation of reduc-
tion equivalents and intermediates are depicted in yellow. Reductive 
metabolic modules consuming reduction equivalents and synthesiz-
ing products are displayed in light blue. Redox balancing modules 
for the balancing of formed and consumed reduction equivalents 
are marked in green. Products of reductive metabolic modules are 
framed by black boxes. a Reduction of  CO2 to formate can use  H2, 
 Fd2−, NADPH or even 0.5 Fd + 0.5 NADPH; b NADH is used for the 
reduction of H2C-THF to H3C-THF in the non-clostridial acetogen 
Acetobacterium woodii. In C.  autoethanogenum, 2 NADH are most 
likely used to reduce Fd and H2C-THF in an electron bifurcating 
reaction [300]. c The translocation of  Na+ by Ech in some species 
is likely but experimental evidence is missing [258]. d Subsequent 
steps for the reduction of acetoacetyl-CoA to butyryl-CoA are cata-
lyzed by 3-hydroxyacyl-CoA dehydrogenase, crotonase and acyl-CoA 
dehydrogenase. e Subsequent steps for the reduction of butyryl-CoA 
to hexanoyl-CoA are catalyzed by thiolase, 3-hydroxyacyl-CoA 
dehydrogenase, crotonase and acyl-CoA dehydrogenase. 23BDH 
2,3-butanediol dehydrogenase; 3-HPA 3-hydroxypropionaldehyde; 
3PG glycerate 3-phosphate; AAD alcohol/aldehyde dehydrogenase; 
AADC acetoacetate decarboxylase; ACS acetyl-CoA synthase; ADH 
alcohol dehydrogenase; AK acetate kinase; ALDC acetolactate decar-
boxylase; ALDH aldehyde dehydrogenase; ALDO fructose biphos-
phate aldolase; ALS acetolactate synthase; BK butyrate kinase; BPG 
1,3-bisphosphoglycerate; CoAT CoA transferase; CFeSP corrinoid 
iron–sulfur protein; DHA dihydroxyacetone; DhaB glycerol dehy-
dratase; DhaD glycerol dehydratase; DhaK DHA kinase; DHAP dihy-
droxyacetone phosphate; DhaT 1,3-propanediol oxidoreductase; ECH 
energy-converting hydrogenase complex; ENO enolase; F6P fructose 
6-phosphate; FBP fructose 1,6-bisphosphate; Fd ferredoxin; FDH 
formate dehydrogenase; FL formate-H2 lyase; FTS formyl-THF syn-
thase; G3P glyceraldehyde 3-phosphate; G6P glucose 6-phosphate, 
GAPDH glyceraldehyde phosphate dehydrogenase; GK hexokinase; 
GPI phosphoglucose isomerase; HYD hydrogenase; HYDABC(D) 
electron-bifurcating hydrogenase; LDH lactate dehydrogenase; MTC 
methenyl-THF cyclohydrolase; MTD methylene-THF dehydroge-
nase; MTR methyl transferase; MTRS methylene-THF reductase; 
NAD(P)FOR NAD(P)H:Ferredoxin oxidoreductase; NFN electron-
bifurcating transhydrogenase; PFK-1 phosphofructokinase; PFOR 
pyruvate:ferredoxin oxidoreductase; PGK phosphoglycerate kinase; 
PGM phosphoglycerate mutase; PEP phosphoenolpyruvate; PK pyru-
vate kinase; PTA phosphotransacetylase; PTB phosphotransbutyry-
lase; RNF Rnf complex; TPI triosephosphate isomerase

◂
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differ between clostridial strains [219] and is not completely 
resolved to date [166].

While problems with sporulation have been reported for 
the acid-producing strain C. kluyveri [89], sporulation so far 
has not been identified as a problem regarding acetogenic 
clostridia because C. ljungdahlii and C. autoethanogenum 
were found to rarely sporulate [3, 286].

Systems biology and genetic engineering

The characterization of the metabolism of clostridial spe-
cies and its regulation are the basis of metabolic engineer-
ing approaches on the way to high-performance strains 
for highly efficient industrial solvent production [333]. By 
applying omics technologies and metabolic modelling, our 
understanding of production hosts on the systems level is 
improved and can guide the rational strain design [40, 326, 
333].

Genome-scale metabolic (GSM) models allow to describe 
the metabolic capabilities of different species [51]. GSM 
models have been developed for solventogenic clostridia 
such as C. acetobutylicum ATCC 824 and C. beijerinckii 

NCIMB 8052, cellulolytic clostridia such as C. cellulolyti-
cum and C. thermocellum and several acetogenic clostridia 
such as C. ljungdahlii, M. thermoacetica, C. autoethanoge-
num and C. drakei (see Table 2).

Grouping the metabolism as metabolic modules allows to 
compare the abilities of different organisms. Interestingly, 
fragments of modules might also be included in strains that 
cannot express an entire module functionally. As an exam-
ple, several GSM models of clostridia contain the carbon 
monoxide dehydrogenase (CODH) reaction but only ace-
togens such as C. ljungdahlii harbor the full WLP. A com-
mon clostridial ancestor potentially had a functional WLP 
[51]. The modularity of the metabolism is an impetus for 
researchers to transfer useful abilities from one strain to 
another:

Clostridium acetobutylicum ATCC  824 has been 
equipped with genes from C.  thermocellum for the for-
mation of active mini-cellulosomes [151, 318]. Strains 
equipped with both a functional cellulosome and enzymes 
for the formation of butanol would allow solvent formation 
directly from lignocellulosic biomass and enable the use of 
such a host in a consolidated bioprocess. The establishment 
of a functional WLP in C. acetobutylicum ATCC 824 was 

Table 2  Summary of genome-
scale metabolic models for 
Clostridium spp.

a iJL680 is the GSM model that serves as the basis for the ME-model iJL965-ME. iJL965-ME extends 
iJL680 by adding 196 protein-coding open reading frames (ORFs), 89 RNA genes, 576 transcription units, 
19 types of rRNA modifications, 17 types of tRNA modifications, 735 protein complexes with updated 
stoichiometry, 219 modified protein complexes and 134 translocated proteins

Organism Acetogen Metabolic model References

Genes Reaction Metabolites

C. acetobutylicum ATCC 824 N 432 502 479 iJL432 [157]
C. acetobutylicum ATCC 824 N 473 522 422 [262]
C. acetobutylicum ATCC 824 N 700 709 679 iFS700 [252]
C. acetobutylicum ATCC 824 N 490 794 707 iCac490 [196]
C. acetobutylicum DSM 792 N N/A 592 444 [309]
C. acetobutylicum ATCC 824 N 802 1462 1137 iCac802 [50]
C. acetobutylicum ATCC 824 N 967 1231 1058 iCac967 [332]
C. beijerinckii NCIMB 8052 N 925 938 881 iCM925 [197]
C. butyricum IBUN 13A N 641 891 701 iCbu641 [263]
C. cellulolyticum H10 N 431 621 603 iFS431 [253]
C. kluyveri N 708 994 804 iCKL708 [342]
C. thermocellum ATCC 27405 N 432 577 525 iSR432 [250]
C. thermocellum DSM 1313 N 601 872 904 iAT601 [290]
C. thermocellum ATCC 27405 N 446 637 598 iCth446 [49]
C. autoethanogenum Y 805 1002 1075 [189]
C. autoethanogenum Y 786 1109 1097 iCLAU786 [300]
C. autoethanogenum Y 699 755 772 MetaCLAU [216]
C. drakei Y 771 922 854 iSL771 [271]
C. ljungdahlii Y 637 785 698 iHN637 [206]
C. ljungdahlii Y 680 809 718 iJL680a [177]
M. thermoacetica Y 558 705 698 iAI558 [119]
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investigated as well [33, 77]. Activity could be demonstrated 
for both the Eastern and Western branch of the WLP. There 
was, however, a lack of carbon flux from the WLP to acetyl-
CoA that was hypothesized to be caused by a low level of the 
enzyme acetyl-CoA synthase [77]. Integrating the WLP into 
solventogenic clostridia would allow to recapture the  H2 and 
 CO2 released during metabolization of carbohydrates and to 
increase the overall carbon yield.

Extended genome scale metabolic models

A recent development was the integration of GSM models 
of the acetogens C. ljungdahlii and C. autoethanogenum into 
spatiotemporal models of large-scale (30–125 m3) bubble 
column reactors for gas fermentation [39, 40, 167]. These 
models enable prediction of cellular performance consid-
ering spatially resolved gradients of solved substrate gases 
 (H2, CO and  CO2) in the reactor environment. An integrated 
GSM model was used to investigate targets for gene knock-
outs that improve cellular performance in industrial scale 
[40]. There also exist other models of large-scale bubble 
column fermentation where the biology was modeled with 
a fundamental set of reactions [269] or with a biothermody-
namics approach [7]. Considering the industrial importance 
of bubble column reactors for gas fermentation [39, 275, 
284], the rise of these models supports further scale-up and 
industrialization of gas fermentation.

Another exciting advancement is the development of a 
metabolism and macromolecular synthesis model (ME-
model) including protein and RNA synthesis in a GSM 
model [177]. The obtained model is the first of its kind for 
gram-positive bacteria and shows an improved prediction 
of growth rate, acetate formation rate and production of 
reduced compounds such as ethanol and glycerol compared 
to the underlying GSM model. It also allows to model the 
influence of cofactor  (Ni+) availability suggesting new appli-
cations like media optimization.

Omics approaches

While GSM models can describe the general metabolic 
capabilities of an organism, gene expression varies depend-
ing on environmental conditions. The current metabolic 
phenotype can be accessed on proteome, transcriptome, and 
metabolome level with single- and multiomics approaches 
[285, 333]. Additionally, fluxomics approaches can use GSM 
models to calculate and estimate metabolite fluxes.

Single- and multiomics approaches have been applied to 
monitor the transition from solventogenesis to acidogenesis 
in solventogenic clostridia. The onset of solventogenesis 
and sporulation superimpose each other during batch cul-
tivation. Continuous cultivation of C. acetobutylicum in a 
phosphate-limited chemostat allowed the culture to switch 

from acidogenesis to solventogenesis without triggering 
sporulation [97]. The possibility to investigate different 
metabolic states separately and reproducibly makes continu-
ous cultivation a valuable tool for systems biology studies 
[97, 332, 333].

Naturally, studies aimed to understand phenomena that 
impair the industrial application and continuous cultivation 
of solventogenic and acetogenic clostridia. Regarding sol-
ventogenic clostridia, such phenomena include strain degen-
eration [131], solvent tolerance [110] and the response to 
inhibitors found in hydrolyzed lignocellulose [160, 176, 
337]. A review about systems biology studies of C. aceto-
butylicum has been published recently and is highly recom-
mended to the reader [333].

Several well-known acetogens such as C. ljungdahlii, 
C. autoethanogenum, C. ragsdalei and C. coskatii can pro-
duce acetate and ethanol simultaneously [19]. Ethanol is 
a desired product and formed acetate leaving the process 
is considered a “carbon loss” [301]. Several omics studies 
hence investigated the influence of the pH-value and sub-
strate limitation [249] or the composition of the feed gas 
[106, 299, 300, 340] on ethanol formation. One interesting 
finding of proteome studies is that an increase in ethanol 
production seems not to be linked to key enzyme abundance 
in both C. ljungdahlii [249] and C. autoethanogenum [299], 
suggesting that regulation might be thermodynamically or 
on a posttranslational level rather than on a transcriptional 
level.

Systems biology approaches are also applied to inves-
tigate the function of key enzymes in metabolic path-
ways. Biochemical studies of relevant oxidoreductases in 
C. autoethanogenum cell extract in combination with tran-
scriptome analysis allowed to determine the activity and the 
electron donor and acceptor specificity of key enzymes of the 
WLP and ethanol formation [198]. However, the activity of 
the methylenetetrahydrofolate reductase could only be dem-
onstrated with the artificial electron acceptor benzyl violo-
gen. Metabolic modelling employing a GSM model sug-
gested that this enzyme is ferredoxin reducing, potentially 
filling this gap [300]. Recently, a GSM model of C. drakei 
coupled with transcriptome analysis and 13C metabolic trac-
ing experiments was used to prove a functional cooperation 
of the glycine synthase-reductase pathway (GSRP) and the 
WLP [271]. The subsequent successful expression of the 
GSRP into E. limosum with a plasmid-based system under-
lines once again the modularity of metabolism.

Strain engineering and design

The ever-improving understanding of the metabolism of ace-
togens and clostridia driven by systems biology promotes 
rational strain design. In addition to studies directly benefit-
ing from mathematical and integrative system support [333], 
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there are plenty of strain engineering studies with straight-
forward approaches. Targeted properties include inhibitor 
tolerance for growth on complex feedstocks [160], increased 
productivity [124, 276, 335] product selectivity [158, 169, 
310] and the expansion of the product spectrum [47, 108, 
149]. Advances in metabolically engineered solventogenic 
clostridia and acetogens have been reviewed recently [41, 
116, 149, 166, 208].

Important phenotypical properties for a robust solven-
togenic producer strain are abolished sporulation and 
increased solvent tolerance [166, 292]. These traits are 
especially important for continuous cultivation: sporulation 
associated with a halt of cell growth would lead to the cells 
washing out. The culture broth constantly contains increased 
solvent levels which cause cell stress. Even though clostrid-
ial butanol tolerance and its mechanisms are not completely 
understood to date [331], rational approaches have already 
been described to increase solvent tolerance [188, 323]. 
While rationally engineered strains showed a more rapid 
adaptation to butanol or performed better than the wild type 
when challenged with butanol, performance above the criti-
cal level of 2% (v/v) butanol were not tested [188] or could 
not be overcome [323]. Rational design of asporogenous 
C. acetobutylicum strains focused on inactivating the sporu-
lation regulators σF, σE, σG and SpollE [292]. Both dele-
tion of SpollE and σG resulted in asporogenous strains that 
formed solvents in an inoculum independent manner [22, 
293]. However, inactivation of SpollE led to lower final sol-
vent titers as compared to the wild type [22].

Random strain engineering strategies have been a valu-
able alternative to rational approaches. The generation of 
a strain library via random mutagenesis and subsequent 
screening for better producers proved useful to isolate an 
improved strain: C. acetobutylicum ATCC 55025 is asporog-
enous and produces high concentrations of butanol and 
total solvents [122]. This strain was further evolved to the 
strain JB-200. C. acetobutylicum JB-200 is asporogenous, 
butanol tolerant and hyper-producing [324], showing that 
these properties are compatible in clostridia. Comparative 
genomic analysis of the C. acetobutylicum strains ATCC 
55,025, JB-200 and ATCC 824 identified the orphan his-
tidine kinase cac3319 as a knockout target for increased 
butanol production and tolerance [324]. Butanol stress has 
also been a major subject of multiomics studies [110, 333]. 
The improving knowledge on butanol tolerance and asporog-
enous strains paves the way for future rational strain design.

Genome engineering

Clostridia are challenging hosts for genome engineer-
ing. Common challenges are their low transformation and 
recombination efficiency [135, 149]. Clostridia lack non-
homologous end-joining (NHEJ) and show a low activity of 

homology-directed repair (HDR) [135], both cellular repair 
mechanism for DNA double-strand breaks. The low activity 
of repair mechanisms can be used to screen for homologous 
recombination events with donor DNA. The genomic inte-
gration site can be targeted with high sequence specificity 
using a CRISPR/Cas system. Integration of the donor DNA 
removes the sequence that is targeted by CRISPR/Cas and 
protects the cell with the modified genome from the intro-
duction of a lethal double-strand break [195]. To exploit 
HDR itself for the genomic integration of donor DNA, better 
understanding of homologous recombination mechanisms 
in clostridia and acetogens is needed [37]. Despite the chal-
lenges, genome engineering has been a focus of recent 
research and significant progress has been made. The latest 
published genome engineering tools for clostridia are sum-
marized in Table 3.

Large-scale genome engineering tools such as the dele-
tion of whole prophage islands or the integration of whole 
metabolic pathways have been developed for clostridial sys-
tems [35, 112, 220]. These tools may be used for new appli-
cations like the generation of a library of genome reduced 
strains and to improve the fast engineering of stable producer 
strains. CRISPR-targeted base editing tools allow genome 
engineering while avoiding the need for homologous recom-
bination events, the introduction of donor DNA and DNA 
double-strand breaks [163, 320]. A useful application for 
base editing tools is the introduction of premature stop 
codons into genes to disrupt the gene function.

The number of available tools for genome engineering 
and metabolic engineering of clostridia increased signifi-
cantly over the past decade. Further tools including plasmid 
systems for gene overexpression, dCas9 and RNA systems 
for gene down-regulation and gene deletion and inser-
tion tools are reviewed elsewhere [37, 135, 166, 195]. An 
impressive testimony for the importance and applicability 
of genetic engineering of anaerobic microorganisms is the 
custom-made ‘Clostridia Biofoundry’ for fully automated, 
high throughput strain engineering used by the commercial 
syngas fermenting company LanzaTech [106].

Alternative feedstocks

Solventogenic and acetogenic clostridia offer the possibility 
to use a broad substrate range for fermentation processes. 
The choice of feedstock has a big impact on the economic 
viability of the solvent production process and the price of 
the final product [68, 232]. Since the main solvents butanol 
and ethanol are bulk chemicals, the feedstock should be 
cheap and available in large quantities [21]. While basic 
research mainly relies on costly glucose [14, 81, 204, 222], 
glycerol and crude glycerol [9, 23, 86, 187], the histori-
cal ABE fermentation process mainly utilizes sugar- and 
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starch-rich first-generation feedstocks such as sugarcane, 
molasses and maize [92, 103, 212]. Alternative feedstocks 
offering a high potential are food and agricultural waste [2, 
75, 236, 237], lignocellulosic biomass [54, 117, 137, 203], 
and liquid waste streams, for instance of the pulp and paper 
industry [102] (see Table 4). Waste streams and lignocel-
lulosic feedstocks are abundant, cheap and not in compe-
tition with food production [201]. The use of alternative 
feedstocks is more sustainable and offers a lower carbon 

footprint by saving the waste streams from incineration and 
thereby decreasing the greenhouse gas emissions [32, 95]. 
The European Commission estimated around 88 million tons 
of food waste produced in Europe which equals 3.3 Gt of 
 CO2 per year [2, 25, 274]. Food waste is defined as a waste 
of restaurants, canteens, and the food processing industry 
[2, 85]. Food waste mainly contains sugar and starch but 
also a large portion of fibers [2, 85]. Agricultural residues 
and plant-based biomass are also called second-generation 

Table 4  Overview of industrially relevant alternative feedstocks for solventogenic and acetogenic clostridia

Carbon source Feedstock Pretreatment Organism References

Lignocellulosic biomass
 C6 and C5 sugars Apple pomace ultra-filtration 

sludge
Dilute sulfuric acid pretreat-

ment and detoxification 
method

C. beijerinckii NRRL B-466 [186]

Barley straw Acid hydrolysis and overlim-
ing

C. beijerinckii P260 [236]

Cassava bagasse Mechanically milling, enzy-
matic hydrolysis

C. acetobutylicum JB200 [182]

Corn stover Hot-water with wheat straw 
hydrolysate and overliming

C. beijerinckii P260 [237]

Enzymatic hydrolysis C. saccharobutylicum DSM 
13864

[213]

Dilute sulfuric acid pretreat-
ment

C. beijerinckii BA101 [67]

Domestic organic waste Steam explosion and enzy-
matic hydrolysis

C. beijerinckii B-592, C. ace-
tobutylicum DSM 1731

[42]

Extruded, enzymatic hydroly-
sis

C. acetobutylicum ATCC 824 [180]

Market refused vegetables Shredded C. acetobutylicum DSM 792 [280]
Municipal solid waste Dilute acid or hot water 

treatment and enzymatic 
hydrolysis

C. acetobutylicum NRRL 
B-591

[75]

Pine and elm woods Enzymatic hydrolysis and 
organosolv pretreatment

C. acetobutylicum NRRL 
B-591

[8]

Pineapple peel Grounded, dried, saccharifica-
tion, detoxification method

C. acetobutylicum B 527 [144]

Rice straw Enzymatic hydrolysis, alka-
line and concentrated phos-
phoric acid pretreatments

C. acetobutylicum NRRL 
B-591

[202]

Starch industry wastewater Dilute sulfuric acid pretreat-
ment and detoxification 
method

C. beijerinckii NRRL B-466 [186]

Suspended brewery liquid 
waste

Dilute sulfuric acid pretreat-
ment and detoxification 
method

C. beijerinckii NRRL B-466 [186]

Switchgrass Dilute sulfuric acid pretreat-
ment, enzymatic hydrolysis

C. beijerinckii P260 [237]

Alkali-pretreatment C. saccharobutylicum DSM 
13864

[87]

Wheat straw Grounded, hot dilute sulfuric 
acid hydrolysis

C. beijerinckii P260 [235, 238, 239]

Wood pulping hydrolysate Detoxification: ion exchange 
resins, overliming and acti-
vated charcoal adsorption

C. beijerinckii CC101 [181]
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feedstocks as they mainly contain lignocellulose [209]. Lig-
nocellulosic biomass is woody and fibrous material com-
posed of a complex structure of cellulose, hemicellulose and 
lignin [32, 92, 117].

While sugar substrates can be directly used in fermenta-
tion processes, feedstocks containing starch are primarily 
saccharified to glucose by glucoamylase [75, 289]. However, 
there are clostridia which can directly utilize starch, such as 
C. acetobutylicum NRRL B-591 and Clostridium beijerinckii 
BA101 [68, 71, 145, 184]. Therefore, food wastes are eas-
ily accessible and do not require expensive pretreatment [2, 
113]. Conversely, feedstocks with a high lignocellulosic frac-
tion such as wheat straw, corn stover, rice straw and cassava 
bagasse (see Table 4) require a pretreatment to release the 
sugars for conversion [32, 203]. Likewise, hydrolysis and/
or saccharification can be integrated into the fermentation 

[32, 137]. For detailed information about pretreatment and 
integrated methods, the reader is referred to recent reviews 
on this topic [21, 32, 92, 117]. According to Ibrahim et al. 
[117], pretreatment and integrated methods increase capital 
and operational costs as well as time and energy require-
ments. Cao and Sheng [32] additionally underlined the nega-
tive effect of degradation and loss of carbohydrates. Sugar 
degradation not only decreases the proportion of convertible 
sugars but also leads to the formation of toxic compounds 
(e.g. furfural and 5-hydroxymethylfurfural), which may 
inhibit cell growth and lower the productivity of the pro-
cess [32]. To decrease toxicity, hydrolysates can be treated 
to remove inhibitors prior to fermentation [32]. Liquid waste 
streams such as soy molasses [232], cheese whey [242] and 
Kraft paper mill sludge [102] are advantageous as they are 
already rich in free sugars and do not require hydrolysis. 

Table 4  (continued)

Carbon source Feedstock Pretreatment Organism References

Starch waste streams
 Starch Food waste Shredding Clostridium sp. BOH3 [334]

Blending and drying Clostridium sp. strain HN4 [224]
Pulverization C. beijerinckii P260 [113]

Sago Enzymatic hydrolysis C. saccharobutylicum DSM 
13864

[171]

Starch-based waste packing 
peanuts

– C. beijerinckii BA101 [129]

Potato waste starch – C. acetobutylicum NRRL 
B-591

[145]

Defibered-sweet-potato slurry – C. acetobutylicum P262 [12]
Inedible dough – C. beijerinckii NCIMB 8053 [297]

Sugar waste streams
 Sucrose, fructose, raffinose, 

stachyose, verbascose
Soy molasses – C. beijerinckii BA101 [232]

 Glucose, mannose Konjac waste Enzymatic hydrolysis, simul-
taneous saccharification and 
fermentation

C. acetobutylicum ATCC 824 [265]

 Cellobiose, glucose Waste cotton fibers Phosphoric acid-acetone 
process and enzymatic 
hydrolysis

C. acetobutylicum NRRL 
B-591

[261]

 Lactose Milk dust powder – C. acetobutylicum ATCC 824, 
C. beijerinckii NCIMB 8052

[296]

Cheese whey – C. acetobutylicum P262 [62, 63]
Gaseous feedstocks
 CO:CO2:H2:N2 

(16.5:15.5:5:56)
Gasified Switchgrass Ash removal by cyclone, 

scrubbers with 90% water, 
10% acetone

C. carboxidivorans [6]

 CO:CO2:H2:N2 (42:20:2:36) Steel mill waste gas – C. autoethanogenum [198]
 CO:CO2:H2:N2 (44:22:2:32) – C. autoethanogenum, C. ljun-

gdahlii, C. ragsdalei
[148]

 CO:H2:CO2 (40:30:30) Syngas – Clostridium ragsdalei PTA-
7826

[277]

 CO:CO2:H2 (10:60:30) Electrolysis of  CO2 and  H2O 
to form CO and  H2

C. autoethanogenum, C. 
kluyveri

[104]
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However, some liquid waste streams like paper mill sludge 
require detoxification to reduce growth-inhibiting compo-
nents [95].

Saccharified lignocellulose and waste streams of the 
pulp and paper industry, contain a sugar mixture of hexoses 
(e.g. glucose, galactose, fructose) and pentoses (e.g. xylose, 
arabinose) [289]. For high productivity and an economic-
efficient production process total sugar utilization is essen-
tial [168]. Unlike most natural yeast strains, solventogenic 
clostridia are particularly well suited to ferment pentose 
sugars like xylose [338, 343]. Despite the ability to con-
vert a broad spectrum of sugars, the well-known problem 
of carbon catabolite repression (CCR) in sugar mixtures is 
a remaining issue. Therefore, recent studies have focused 
on the efficient conversion of sugar mixtures [289, 292]. 
Current research wants to go further by focusing on strains 
naturally capable to degrade cellulose and the genetic modi-
fication of the metabolic pathways. The major goal is the 
direct conversion of the complex structured lignocellulosic 
biomass to avoid expensive pretreatment steps [123]. For 
more information about genetic modification of metabolism, 
the reader is referred to the section “Systems biology and 
genetic engineering” and Jang et al. [123].

Since acetogens came to the center of attention, there 
are far more possibilities using alternative feedstocks: ace-
togenic clostridia can not only grow heterotrophically on a 
range of carbon sources but also autotrophically on gaseous 
substrates [192]. Gas mixtures of CO,  H2 and  CO2 are suit-
able substrates for gas fermentation of acetogens. These gas 
mixtures referred to as synthesis gas or syngas can be sus-
tainably produced by the gasification of lignocellulosic bio-
mass and municipal solid waste (MSW) [170]. Gasification 
yields accessible carbon even from the complex lignin frac-
tion that accounts for up to 40% of the plant biomass [278]. 
Other sources of syngas include industrial waste streams 
such as exhaust gas of the steel and oil industry [270] and 
even gas mixtures obtained electrochemically from  CO2 and 
 H2O [104, 275].

While no fixed ratio of  H2/CO is needed for syngas fer-
mentation [11], the overall gas composition does influence 
the bioprocess. A higher ratio of  H2 to CO may reduce the 
loss of carbon as  CO2 and influence the product spectrum 
[170, 299]. The composition of the gas mixture depends 
on its origin. Syngas obtained from biomass gasification as 
well as furnace gas from steel mills may contain several 
detrimental impurities including ammonia  (NH3), nitrogen 
oxide (NOx) and other enzyme inhibitory compounds such 
as acetylene  (C2H2), ethylene  (C2H4), ethane  (C2H6) and 
oxygen  (O2) [107]. The presence of the inhibitor hydrogen 
cyanide (HCN) in the feed gas even forced a temporal shut-
down of a semi-commercial plant for ethanol production 
from gasified biomass and MSW [303]. Some impurities 
may also influence process parameters such as the pH-value, 

the osmolarity or the oxidation-reduction potential (ORP) 
[322]. Cleanup methods for removal of different impurities 
are available but costly and should be reduced to the mini-
mum [48].

CO and  H2 are poorly soluble in water (83 and 71% of 
the solubility of oxygen at 37 °C, respectively [221]) and 
must be continuously transferred from the gaseous to the 
liquid phase during gas fermentations. A high mass transfer 
of gases into the liquid is desired to enable high production 
rates and near-complete conversion of the feed gas. Uncon-
verted gas leaving the bioreactor means both loss of valuable 
substrate and emission of greenhouse gas (GHG) [303].

ANP mixotrophy is a common feature of acetogens allow-
ing them to utilize gaseous substrates and organic carbon 
sources simultaneously [134]. An increase in carbon yield 
from carbohydrates through ANP mixotrophy has been dem-
onstrated for several acetogens [134] [27, 192] and a patent 
for the mixotrophic production of butanol, butyrate, isopro-
panol, acetone and ethanol has been issued [294]. A next 
step towards industrial application would be to demonstrate 
the benefits of mixotrophy during growth on complex feed-
stocks like hydrolyzed lignocellulose.

In conclusion, the use of alternative feedstocks with sol-
ventogenic clostridia has been much better researched com-
pared to acetogenic clostridia. With the ability to co-utilize 
gaseous and organic substrates, however, acetogens seem 
an attractive option to develop carbon efficient bioprocesses 
with superior product yields from cheap carbon and energy 
sources. After focusing on the organism in combination with 
a cheap and sustainable feedstock for high efficiency of sol-
vent production, the next step is the technical side of process 
optimization.

Continuous fermentation methods

In this section, we pay special attention to the different oper-
ation strategies for continuous fermentations, their proper-
ties and potential as a powerful tool to develop solvent pro-
duction towards industrial implementation. For the design 
of a new economical process, the choice of the reactor type 
and the operation strategy are the two major criteria, mostly 
affecting the formation and activity of biocatalyst, conver-
sion rate, volumetric productivity and downstream process-
ing [179, 275, 314].

Batch and fed‑batch

The batch process is easy to operate and requires minimum 
control. For that reason, it was conventionally used for the 
first laboratory studies and industrial ABE processes in 
Europe [21, 133, 179, 343]. Compared to fed-batch and 
continuous mode, batch mode reached the highest solvent 
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yield for ABE fermentation [165]. However, changing con-
ditions in batch over time (e.g. product concentration) can 
lead to an uncontrolled switch between the acidogenic and 
solventogenic phase, inhibited growth or cell death [105, 
133, 179, 200]. Major drawbacks for industrial use of the 
batch mode are downtime periods for reactor preparation 
and prolonged lag phases leading to an overall low pro-
ductivity [43, 161, 179].

When referring to batch mode during gas fermenta-
tions, the liquid volume remains unchanged, while the 
gaseous substrate is typically supplied either at the begin-
ning (batch mode) or as continuous flow (fed-batch) [98, 
276, 340]. While bioreactors offer control and monitor-
ing possibilities [140], serum bottles represent the only 
“real” batch cultivations in gas fermentation, delimiting 
gas exchange and stripping of (intermediate) products.

Feeding strategies in fed-batch mode give the possibil-
ity to maintain a certain growth rate and low substrate con-
centration which offers the use of substrates toxic to the 
cells in large amounts and to obtain higher biomass and 
product concentrations than in batch cultivations [70, 92, 
179, 226, 227]. Accumulation of products (like butanol) to 
toxic levels in the fed-batch process can inhibit the growth 
and product formation. A significantly improved solvent 
productivity was achieved by the integration of product 
recovery [70].

Nevertheless, the downtime in a fed-batch is compara-
ble to a batch process and likewise there is no continuous 
substrate conversion and product formation. Multiple stud-
ies have investigated the use of fed-batch in comparison to 
continuous processes [124, 174, 182, 239, 288, 340]. Li 
et al. [165] tested batch, fed-batch and continuous process 
modes for ABE fermentation and recommended continu-
ous fermentations to obtain bioprocesses with superior 
productivities.

Continuous processes

In contrast to batch and fed-batch cultivations, continuous 
cultivations are more demanding in terms of process con-
trol but offer significantly higher productivity and advanced 
capabilities for process design. Increased efficiency in 
industrial scale is offered, due to minimal initial lag phase, 
possible continuous feeding of permanently accumulating 
waste streams, steady downstream processing and thereby 
reduced downtime [16, 72, 92, 95, 107, 164, 179, 343]. 
Compared to short batch cultivations, continuous processes 
require increased attention to maintain strictly anaerobic 
conditions and to avoid microbial contaminations [161, 247, 
343]. Table 5 gives a quick overview of the advantages and 
disadvantages of the continuous fermentation methods and 

operational strategies for solvent production described in the 
following sections.

One‑stage chemostats

Stable continuous fermentation in chemostat was success-
fully maintained in several publications [13, 23, 43, 127, 
307]. A commonly referred strain in stable chemostat runs 
is Clostridium acetobutylicum ATCC 824 [9, 90, 126, 127, 
272]. For instance, more than 70 days of stable chemostat 
cultivation of C. acetobutylicum ATCC 824 was achieved 
at pH 6 and a dilution rate of 0.05 h−1 with a substrate-
mixture of glucose and low-grade glycerol [9]. Butanol was 
the major solvent, produced with a yield of 0.34 mol mol−1 
and a productivity of 0.42 g  L−1 h−1, one of the highest 
reported productivity values for chemostat cultivations with 
C. acetobutylicum [9].

Basic lab-scale approaches for gas fermentation were 
mainly applied in continuous cultivation [84, 106, 146, 199, 
275, 299, 300]. The continuous gas fermentation leads to a 
steady value of dissolved gases in the liquid medium which 
allows a precise calculation of the substrate consumption 
rate by monitoring the off-gas composition. The continuous 
stirred-tank reactor (CSTR) offers extensive mixing capa-
bilities by the steady distribution of gaseous and liquid sub-
strates [28, 107, 275]. The resulting high mass transfer rate 
is the reason why CSTRs are the first choice for gas fermen-
tation investigations [4, 11, 106, 107, 170, 199, 217, 275, 
298, 299]. For industrial-scale gas fermentations, the energy 
demand for sufficient mixing is significantly increased in 
CSTRs. As an alternative bubble columns, gas lift and loop 
reactors showed to be simple and cost-efficient, with the 
possibility for an energy-efficient scale-up [96, 275, 284]. 
However, for solvent production from organic substrates 
with suspended cells, the CSTR is still the dominating reac-
tor type in industrial scale.

Continuous bioprocessing with solventogenic clostridia is 
challenging due to strain degeneration and because steady-
state conditions can be difficult to establish [16, 18, 131, 
141, 319, 343]. In the past, the degeneration of different 
Clostridium acetobutylicum strains (ATCC 824, DSM I73, 
NCIB 8052 and P262) in chemostat cultivations was inves-
tigated in multiple studies [9, 272, 319]. It has been shown 
that degenerated and solventogenic clostridia are transiently 
in co-culture but with increased cultivation time the fast-
growing degenerated cells outgrow the slow-growing sol-
vent-producing cells [45, 70, 95, 319]. One possible expla-
nation is the strong selection pressure acting on the cells in a 
long-term cultivation. The increased number of generations, 
compared to a batch process, is not only detrimental for the 
genetic stability of genetically engineered organisms but also 
increases the chance for natural and induced mutations [179, 
193].
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One-stage chemostats for ABE fermentation often 
failed to reach steady-state conditions and are marked 
by the oscillation of biomass, product, and substrate 
concentration [18, 86, 204]. So far, the influence of cul-
ture pH, extracellular addition of butyric acid or acetic 
acid as co-substrate and phosphate (P) or nitrogen (N) 
limitations on culture stability has been investigated [13, 
46, 105, 130, 200, 343]. Although nutrient limitations 
can efficiently stabilize cultures, this stability can only 
be achieved at the expense of incomplete carbon sub-
strate utilization. In contrast to solventogenic clostridia, 

acetogenic microorganisms easily reached the steady-state 
in one-stage chemostats and strain degeneration has never 
been reported. A conclusion on ABE fermentation may 
be drawn by comparing solventogenic clostridia and ace-
togens on the systems biological level.

During chemostat cultivation, the close link of the volu-
metric productivity to the liquid dilution rate and thus, the 
specific growth rate, offers higher process control. However, 
the maximum growth rate of the cells limits the dilution 
rate. While a chemostat process is advantageous for growth-
related products, growth inhibition by toxic products and low 

Table 5  Comparison of the most advantageous continuous fermentation methods and configurations for solvent production with solventogenic 
and acetogenic clostridia

Method/configuration Advantages Disadvantages References

One-stage chemostat Maintain growth rate at defined value
Supports growth-related products
Stable gas fermentation with acetogens

Maximum growth rate limited by dilu-
tion rate

Low biomass during solvent formation
Strain degeneration and difficulty to 

reach steady state conditions with 
solventogenic clostridia

[18, 193, 319]

Multi-stage systems Tool to stabilize biphasic fermentations
Variation of temperature, pH or nutri-

ent supply between the stages

Higher costs for multiple reactors
Complex control

[18, 205, 247, 275, 279]

Cell retention Uncouples dilution rate of specific 
growth rate

High volumetric productivity
Full control of biocatalyst concentra-

tion
Increased conversion rates
(Toxic) solvents can easily be recov-

ered of cell-free permeate
Circulation of effluent possible
Biomass reuse lowers propagation 

costs

Difficult long-term operation
Costly membrane
Membrane fouling
At high-level biomass concentration 

operational problems (high viscosity, 
heavy gas formation and foaming)

Higher contamination risk of external 
separation

Nonselective retention (dead, non-
viable cells, and substrate particles)

Requirement of cell viability monitor-
ing

[21, 62, 161, 164, 185, 204, 222, 
287, 308, 314]

Cell immobilization and 
biofilm reactors

Prevents washout of cells
Allows higher dilution rates
Increases reaction rates and productiv-

ity
Enhanced genetic stability
Improved inhibitor resistance of cells
Protects cells against shear forces

Uncontrolled cell growth can lead to 
blocking or Membrane fouling

Maintenance of cell viability and 
physiology

Diffusion limitation of mass-transfer
Varying microenvironment
Leaking of cells of support
Inactive or dead biomass
Reduced productivity during longer-

term operation
Challenging scale-up

[11, 138, 150, 168, 179, 205, 
225, 231, 275, 284, 314, 341]

Integrated product recovery Energy-efficient at low solvent concen-
trations

Integration of downstream step for 
solvent recovery into cultivation

Operable in continuous mode
Lowers the concentration of toxic 

products in the broth
Decreased product inhibition
Improved substrate conversion rates, 

solvent yields, and productivities
In situ product recovery: culture broth 

does not leave the reactor

In-line method in separate recovery 
loop affecting the cells

In situ product recovery: limited opti-
mization opportunities

Disadvantages dependent on product 
recovery method

[21, 58, 82, 161, 164, 306, 325]
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growth rates during solventogenesis result in a limitation 
of the dilution rate [26, 161, 165, 166, 179]. Low biomass 
concentrations were also reported for gas fermentations 
with acetogens [37]. Low cell concentrations in combina-
tion with low dilution rates eventually limit the volumetric 
solvent productivity in the chemostat. Optimization of pro-
cesses with solventogenic and acetogenic clostridia, there-
fore, requires additional modifications of the basic one-stage 
chemostat, described in the following sections.

Multi‑stage systems

A technical solution for stabilization of the continuous pro-
duction are multi-stage systems where multiple reactors 
connected serially form a “reactor cascade” (see Fig. 2a). 
For example, the process can be split into a nutrient-limited 

phase (e.g. phosphor or nitrogen) and a solvent forming 
phase by variation of temperature, pH or nutrient supply 
between the stages (see Table 6) [18, 88, 154, 205, 279]. 
Two-staged reactor systems were proven to enhance the 
stability of the cell physiology and product formation of 
solventogenic fermentations, either with heterogenic or 
gaseous substrates [18, 205, 247, 275]. The use of continu-
ous two-stage chemostats for solventogenic clostridia was 
first discussed by Bahl et al. [14] and has subsequently been 
investigated as a tool to stabilize biphasic fermentations [18, 
91, 154, 205]. 

In 1998, ButylFuel LLC (Columbus, USA) patented a 
two-stage fermentation process separating acidogenesis and 
solventogenesis in two distinct process steps. In the first 
stage, C. tyrobutyricum converts glucose to butyric acid 

Feed
Effluent

Solvents

Cell 
separation

Separation 
units

Feed

Water + 
residuals

Water + 
residuals

Solvents

Feed gas

Downstream 
units

Feed

Feed

Feed

Harvest

Harvest

Harvest

Feed gas

Bleed

Cell-free 
permeate

Feed gas

Feed

Harvest

Off gas

Feed

Harvest

Feed gas

Off gas

Feed gas Feed gas

Feed

Feed gas

(A) (B)

(C) (D) (E) (F)

(G) (H)

Off gas Off gas

Off gas Off gas

Off gas Off gas

Fig. 2  Overview on the most advantageous fermentation methods and 
configurations for continuous solvent production with solventogenic 
and acetogenic clostridia. a Multi-stage process with two chemostat 
stages; high cell density cultivation in a b continuous cell retention 
system and with c–f immobilized systems and biofilm reactors: c che-

mostat with free-flowing immobilized cell particles, d  packed-bed 
reactor (PBR), e trickle bed reactor (TBR), f hollow fiber membrane 
reactor (HFMBR). TBR (e) and HFMBR (f) are mainly used for gas 
fermentation. Integrated product recovery methods: g in-line recovery 
and h in situ recovery. (Modified from [82, 267, 275, 314, 341]
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which is transferred to the second stage and converted to 
butanol by C. acetobutylicum [243].

Multi-staged processes are the method of choice in semi-
continuous industrial ABE fermentation in Russia and China 
[95]. While ABE processes in Europe were merely focused 
on batch cultivation in the past, China and Russia continu-
ally focused on continuous bioprocessing to produce ace-
tone, butanol, and ethanol [211, 343].

Recently, Richter et al. [247], and Martin et al. [191] 
applied a two-stage cultivation system for syngas fermenta-
tion, separating the process in a growth stage and an etha-
nol producing stage (see Table 6). In 2016, a continuous 
multi-stage cultivation in circulated loop reactors for gas 
fermentation was patented by LanzaTech [295], emphasiz-
ing the feasibility and suitability of multi-stage processes 
for industrial use.

Recent investigations of solventogenic clostridia demon-
strate the continuous two-stage cultivations with integrated 
product recovery in the second stage [17, 304, 305]. As 
shown in Table 6, there are several possibilities to combine 
the reactor cascade with other technologies, such as cell 
recycling [5, 247] and cell immobilization [17, 88]. Cell 
recycling and immobilization can consolidate the idea of a 
growth and solvent forming process phase, as described for 
gas fermentation [247].

High cell density cultivation

To solve the problem of insufficient biomass in continuous 
cultivations, growth needs to be uncoupled from the liquid 
feed flow rate. Uncoupling can be done by regulating the cell 
concentration in a continuous culture equipped with a cell 
retention technique or by immobilization of the cells [86, 
114, 210, 222, 338]. The topics of cell retention and immo-
bilization are described in the following sections.

Cell retention

The introduction of a cell retention or cell recycling unit 
uncouples the dilution rate from the specific growth rate and 
therefore allows to accumulate higher biocatalyst concentra-
tions [161, 185, 314]. That way, a ‘retentostat’ offers the pos-
sibility of a fully controlled high cell density fermentation 
by increasing conversion rates for complete substrate uptake 
and efficient conversion into the target product. Cell reten-
tion has been reported to be advantageous for solventogenic 
clostridia and enables high volumetric productivity during 
gas fermentation with acetogens [37, 108, 134, 247, 248].

Cell retention with submerged cells can industrially be 
achieved by centrifugation and filtration, while membrane 
filtration is primarily used in lab-scale experiments [179, 
314]. Using membrane filtration, biomass is increased by 

holding back the cells by a hollow-fiber membrane module 
(see Fig. 2b) [62, 222, 308]. The growth rate in the retento-
stat can be controlled by the value of bleed flow [185]. Of 
the obtained cell-free permeate, toxic solvents can easily be 
recovered, while the leftover substrate can be returned to the 
reactor for an increased conversion [62].

Systematic reuse of biomass can lower the costs of cell 
propagation [314]. On the other hand, the process may be 
more complex and difficult to operate in the long-term [62]. 
The requirement of a membrane for the cross-flow filtration 
increases the process costs and implies the risk of membrane 
fouling over time [21, 62, 287]. Cell recycling can be com-
bined with different reactor types such as bubble columns 
and process modifications such as cell immobilization, latter 
reduces problems with membrane fouling [21, 173]. The use 
of an external separation method constitutes a higher risk for 
contamination compared to a conventional chemostat pro-
cess. Rapid pumping of the cell broth through the separation 
device can cause cellular shear stress [204]. The use of a 
separation unit in industrial gas fermentations can lead to a 
deficit in gas supply due to longer residence times.

Cell retention has already been demonstrated in the past 
to increase the productivity in ABE fermentation of glucose 
by Clostridium acetobutylicum [5, 81, 204, 222, 257]. When 
research in ABE got back into the focus between 2005–2010, 
the topic of cell retention was rediscovered. Tashiro et al. 
[287] maintained a high cell density culture of C. saccha-
roperbutylacetonicum N1-4 in a membrane cell-recycling 
reactor, feeding glucose and showed an ABE productivity 
of 7.55 g  L−1 h−1 and concentration of 8.58 g  L−1 for more 
than 200 h without cell degeneration. More than 710 h of 
stable cell recycling application and conversion of glycerol 
to a high butanol productivity was shown with the hyper 
producing Clostridium pasteurianum MBEL_GLY2 [187]. 
Jang et al. [125] and Nguyen et al. [210] showed some of 
the highest achieved butanol productivities with 21.1 and 
14 g  L−1 h−1, respectively (see Table 7). Successful imple-
mentation of cell retention for the utilization of C5 sugars 
like xylose was shown by Zheng et al. [338] and Survase 
et al. [283].

The next step in research with solventogenic clostridia 
will be the optimized bioprocessing of alternative feed-
stocks. Liquid waste streams and pretreated substrates like 
lignocellulose hydrolysates comprise of a mixture of sugars 
but furthermore can contain a high solid particle concen-
tration and inhibiting substances, leading to decreased cell 
growth. While cell retention is essential for efficient con-
version of this kind of substrates, there may be an upcom-
ing problem: the retention system is not selective for active 
biomass. Therefore, inactive cells and even substrate par-
ticles accumulate equally in the reactor. Consequently, an 
increase in biomass concentration does not necessarily lead 
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to a proportional increase in productivity [308]. A major 
approach is the viability monitoring of the cell population 
and differentiation between cells and background particles 
via rapid at-line tools such as flow cytometry [291, 308].

Multiple studies showed the implementation of cell reten-
tion in (syn)gas fermentation with acetogens [36, 108, 178, 
247, 248] (see Table 7). Additionally, Jones et al. [134] 
successfully showed mixotrophic growth of an engineered 
Clostridium ljungdahlii strain on syngas and fructose in a 
cell retention system. Regarding industrial production at 
scale, there are several patents for gas fermentation equipped 
with cell retention [84, 260].

Cell immobilization

Another option for continuous high cell density cultivation 
is the use of cell immobilization and biofilm reactors to pre-
vent cell washout [168, 275, 314]. To that end, immobi-
lization allows operation at higher dilution rates which in 
turn increases reaction rates and productivities [179, 225]. 
Advantages of immobilization include enhanced genetic sta-
bility, improved resistance of cells to inhibitory substrates 
or products and protection against shear forces [150, 341].

Immobilization is commonly achieved by entrapment of 
cells or by binding of cells to a carrier [341]. Cells can be 
entrapped inside a semipermeable membrane or encapsu-
lated inside a polymeric matrix, for example inside beads of 
alginate or polyacrylamide (see Fig. 2c) [12, 145, 168, 179, 
341]. Binding of the cells to the surface of a solid material 
is implemented by physical adsorption, ionic bonds, cova-
lent bonds, or a mixture [55, 225, 341]. Entrapment and 
covalent bond formation require expensive and cell propaga-
tion limiting chemicals [179, 225]. In contrast, adsorption 
on a carrier is more natural, forms stronger bonds and can 
easily be performed in place [225]. A trend in research of 
immobilized solvent production is the use of cheap, renew-
able materials as adsorption carrier such as wood pulp [15], 
sugarcane bagasse [17], coconut fiber [281], corn stover [86] 
or clay bricks [240]. During adsorption, cell growth occurs 
in biofilms [179, 225, 231, 234].

Typical bioreactors for the bioprocessing with floating 
immobilized cells are CSTR (see Fig. 2c), fluidized bed 
bioreactors and air-lift reactors [341]. Packed bed reactors 
(PBR) differ from bioreactors with fully suspended culture 
as they are tightly packed with a carrier material to sup-
port biofilm formation (see Fig. 2d) [16, 225]. For gas fer-
mentation, two special types of immobilized reactors have 
recently been described: the trickle bed reactor (TBR, see 
Fig. 2e) and the hollow fiber membrane reactor (HFMBR, 
see Fig. 2f) [11, 275, 295]. TBR are similar packed as 
PBR but the bed is sprinkled with liquid nutrient medium 

from above and flushed with the substrate gas from below 
to obtain high gas–liquid transport rates with low energy 
consumption [275]. A microporous membrane is used in a 
HFMBR for gas distribution and at the same time as carrier 
surface, providing cell growth at the gas–liquid interface 
with high mass transfer rate [267, 275]. Uncontrolled cell 
growth can lead to blocking of the PBR and TBR column, 
which was reported as a major problem in the first scale-
up of the PBR process with solventogenic clostridia [225, 
231, 275]. Moreover, membrane fouling of the cost-intensive 
membranes of HFMBR is a problem which causes the loss 
of membrane functionality [138, 275]. Immobilization leads 
to varying microenvironmental conditions and diffusion lim-
itation of substrates and products, either by the thickness of 
the biofilm, pore size or surface area of the material [138, 
179, 341]. The impeded mass transfer leads to inactive or 
dead biomass and a reduction of the volumetric productivity 
during Longer operation periods [204].

Several investigations with different cell immobilization 
techniques were performed over the years with solvento-
genic clostridia and in recent years with acetogenic gas 
fermentation (listed in Table 8). Gallazzi et al. [86] used 
a continuous immobilized packed-bed reactor filled with 
corn stover pieces for biofilm adsorption of C. pasteurianum 
DSM 525. During steady-state with 0.44 h−1 dilution rate, 
they reached a butanol titer of 10.4 g−1 L−1, productivity of 
4.2 g−1 L−1 h−1 and 33% butanol to liquid by-products ratio. 
For syngas fermentation (38% CO, 28.5%  CO2, 28.5%  H2 
and 5%  N2, flow: 4.6 mL min−1) with Clostridium ragsdalei, 
a semi-continuous trickle bed reactor, consisting of a boro-
silicate glass column filled with 6 mm soda lime glass beads, 
reached an ethanol titer of 5.7 g  L−1 [52].

Regarding industrial use, there are patents for cell immo-
bilization methods of solventogenic clostridia [44] and for 
gas fermentation with the acetogen C. ljungdahlii ERI2 
ATCC 55380 for a 144-L trickle bed reactor [83]. For an 
overview of patents for biofilm reactors in gas fermenta-
tion, the reader is referred to Stoll et al. [275]. Nevertheless, 
maintenance of cell viability and physiology in an immo-
bilized system is complicated [179]. Long-term biofilm 
stability is difficult to maintain and cell leakage from the 
support material requires an additional separation step [21, 
225, 284]. Therefore, the scale-up of an immobilized sys-
tem for industrial use is challenging and requires additional 
engineering studies [205, 231, 341]. In contrast, industrial 
gas fermentations using cell retention have already been 
demonstrated at scale. Due to the advantages of cell reten-
tion for process intensification, the number of applications 
for continuous high cell density fermentations is expected 
to increase significantly in the future.
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Integrated product recovery

Once the continuous cultivation for solvent production 
is established, the focus shifts to product toxicity of e.g. 
butanol or ethanol [133, 152]. One way to address product 
toxicity is to engineer solvent tolerant strains (see section 
“Strain engineering and design”).

A second approach is to reduce the concentration of toxic 
products in the fermentation broth by integrating solvent 
recovery into the upstream process by in situ or in-line 
methods [58, 82, 161]. The in-line method is maintained in 
a separate loop, circling the alcohol-depleted effluent back 
into the reactor, whereas the culture broth does not leave 
the reactor during in situ product recovery (see Fig. 2g, h) 
[82, 306]. The spatial separation of in-line recovery methods 
from the fermentation process allows independent optimi-
zation [82]. The constant recovery of toxic products lowers 
the actual concentration in the culture broth [21]. That way, 
product inhibition is decreased, leading to increased solvent 
yields and productivities and improved substrate conversion 
rates [164, 273, 325, 328].

The traditional method for product recovery is by dis-
tillation using multi-column procedures, particularly in the 
industrial production of fuel ethanol [21, 306, 327]. The 
growing interest of the biofuel industry to use lignocellu-
losic and waste stream feedstocks leads to lowered alcohol 
concentrations in the fermentation broth [306]. Distillation 
is a robust and popular method for ethanol recovery but is 
less suitable for low solvent concentrations due to the high 
energy requirement [21, 306, 327]. The required energy for 
the distillation procedure increases exponentially for butanol 
levels below 10 g L−1 [190] or ethanol concentrations below 
40 g L−1 [306]. The boiling point of butanol is higher than 
that of water. These azeotropic properties hinder the butanol 
recovery via distillation [117].

Requirements concerning the degree of recovery differ 
between integrated methods and methods for the final sepa-
ration at the end of the bioprocess. While the effluent during 
integrated recovery is circulated by feeding back to the reac-
tor, the product remaining in the effluent after the recovery 
with final separation technologies like distillation is lost. 
Consequently, final separation technologies require a higher 
degree of alcohol recovery [82, 161, 306].

Therefore, alternative methods are employed for inte-
grated product recovery, including gas stripping, liquid–liq-
uid extraction, adsorption, pervaporation and perstraction 
[65, 82, 166]. Below, we give a short introduction to recov-
ery techniques. For further information, the reader is pointed 
out to Friedl [82], Vane [306], Bharathiraja et al. [21] and 
Kujawska et al. [152].

Gas stripping is a simple, physical method for economic 
in situ solvent recovery [55, 82]. For separation, the cell 
broth in the reactor is flushed with  N2 or  CO2, stripping 

the volatile solvents from the solution [21]. Afterwards, the 
stripped solvents and entrained water is recovered by con-
densation from the escaping gas stream [21, 55, 74]. The 
gas stream can be recycled for several cycles [66]. To lower 
processing costs, there is also the possibility to directly use 
the fermentation gas (containing  CO2 or  H2) as stripping gas 
[82]. Gas stripping is a quite flexible separation method and 
can be used in combination with different process types (e.g. 
batch, fed-batch, continuous, multi-stage processes, fluidized 
bed reactors) and with other separation techniques [21, 73, 
82]. It is claimed as the most studied technique for solvent 
recovery and as one of the most energy efficient and eco-
nomic methods [101, 166, 228]. Ezeji et al. [69, 70] showed 
that gas-stripping efficiently lowers the solvent concentration 
in the reactor, leading to a 200% improved solvent produc-
tivity and 118% improved yield. Friedl [82] suggested the 
in-line recovery for gas stripping in an external loop as it 
offers easier optimization of the recovery rate compared to 
in situ recovery.

Liquid–liquid extraction recovery is realized using an 
extracting solvent showing a miscibility gap with water 
and high affinity to the product [82]. The advantages of 
this method are high capacity and selectivity. However, the 
design of the extraction process can be complex and expen-
sive to perform [100, 161]. Implementation of in situ liq-
uid–liquid extraction requires a non-toxic extraction solvent 
[58]. The most recommended non-toxic extraction solvent 
for in situ recovery in an ABE fermentation is oleyl alcohol 
[17, 60, 233, 283, 339]. The currently known extraction sol-
vents are applicable, but not ideal in performance, making 
the choice of the extraction solvent a challenging and ongo-
ing research topic [82].

Of the membrane techniques for solvent recovery, per-
straction and pervaporation are the two most promising 
ones. Perstraction is an expansion of liquid–liquid extrac-
tion. The separation of cell broth and extracting solvent via 
a suitable membrane eliminates the problem of extraction of 
solvent toxicity and emulsion development [58, 82].

Pervaporation or so called “membrane distillation”, is 
claimed to be commercially competitive and the best-devel-
oped method for in situ solvent removal [21, 82, 121, 226, 
305]. Hydrophobic polymeric membranes allow solvents to 
selectively permeate from the liquid fermentation broth on 
one membrane site into the gas phase on the other mem-
brane site [305]. The membranes possess a higher affinity to 
organic solvents, leading to high fluxes and a fast sorption of 
the organic compounds [305]. The driving force of pervapo-
ration is the difference of vapor pressure between the feed 
and permeate side [21, 82, 305]. The difference is typically 
introduced by the application of a vacuum or sweep gas on 
the permeate side of the membrane [305]. PDMS (polydi-
methylsiloxane [121, 305], and POMS (polyoctylmethylsi-
lixane [156], are typical used polymers for the pervaporation 
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membranes. For more information on the membrane mate-
rial, the reader is pointed to Huang et al. [111].

For the in situ implementation of membrane techniques, 
the membranes need to be mounted inside the reactor. While 
successfully implemented in lab-scale, the design and scale-
up are quite complicated [82]. Common problems of mem-
branes such as fouling and clogging can lead to operational 
problems since there is no possibility for cleaning when used 
in situ [58, 82]. The disadvantages of membrane techniques 
such as high price, limitation of diffusion and fouling prob-
lems constitute an obstacle for the implementation of per-
straction and pervaporation on an industrial scale [58, 166].

Adsorption is an effective, energy-efficient, and easy to 
operate separation technique [64, 82, 230]. It has been inves-
tigated in several process mode combinations and showed to 
reduce the inhibiting product concentration [99, 175, 214, 
215, 254, 329, 330]. The solvent recovery by adsorption of 
the fermentation broth can be operated continuously and is 
carried out in two steps: First, the alcohol is taken up by the 
adsorbent until maximum loading is obtained. Subsequently, 
the adsorbent is regenerated to obtain a concentrated butanol 
solution [306, 325]. Regeneration is accomplished by tem-
perature increase or by reduction of the pressure [82]. For 
continuous mode, more than one column with adsorption 
material is needed [82]. Depending on the material, adsorp-
tion offers the possibility for selective removal of solvents 
in a gaseous, vapor or liquid mixture and can also be used 
with other separation methods to reduce the water content of 
the concentrated product [82]. Typical adsorption materials 
are hydrophobic activated carbon, zeolites and polymeric 
(ion-exchange) resins [82, 111, 325]. According to Abde-
hagh et al. [1], activated carbon F-400 is the best butanol 
adsorbent with the highest adsorption capacity, while Friedl 
[82] pointed out that zeolites are already successfully used 
in industrial plants for ethanol dehydration. A disadvantage 
of adsorption for the integration into a fermentation process 
is the problem of nutrient fouling, which requires the pre-
separation with micro- or ultrafiltration before recovering 
the solvents by adsorption [82]. Depending on the material, 
adsorption suffers from low selectivity, high resin prices and 
physical instability [58, 166]. Therefore, the performance of 
adsorption needs to be evaluated on an industrial scale [82].

Each integrated product recovery method has its benefits 
and drawbacks [166]. The main target for implementation 
in the solvent producing industry is the energy-efficiency of 
the separation method. To minimize the costs and increase 
the productivity, the recovery step needs to be operable in 
continuous mode without interferences.

While especially required in fed-batch processes where 
product inhibition is limiting the productivity, these inte-
grated product recovery strategies have also been applied to 
continuous processes and systems using cell immobilization 
[30, 70, 73, 100, 182, 325, 330].

Most frequently used recovery methods in lab-scale are 
gas stripping and pervaporation, implemented in several 
investigations [31, 73, 74, 162, 182, 226, 248, 251, 268, 
305]. For example, Lienhardt et al. [168] used a continuous 
biofilm reactor with Clostridium beijerinckii BA101 cells 
adsorbed onto clay bricks fed with glucose as substrate. The 
reactor effluent was recycled after the removal of butanol 
by pervaporation, lowering butanol toxicity while retaining 
the intermediate acids in the effluent. At a dilution rate of 
2.0 h−1, Lienhardt et al. [168] obtained complete sugar uti-
lization with a productivity of 10.2 g−1 L−1 h−1. In industry, 
combinations of two recovery methods are also applicable, 
e.g. the combination of liquid–liquid extraction of butanol 
with oleyl alcohol coupled with gas stripping (patented by 
Butamax Advanced Biofuels LLC [93]).

One example for successful application of in situ product 
recovery to increase titer, rate and yield metrics in a con-
tinuous fermentation process relied on pervaporation and 
showed a significant increase of the substrate consumption 
rate, solvent productivity, and yield by 58% (2.02 g  L−1 h−1), 
81% (0.75 g  L−1 h−1) and 15% (0.38 g g−1), respectively 
[162]. Using cassava-derived glucose with Clostridium 
acetobutylicum DP217, final ABE and butanol titers of 
574.3 g L−1 and 501.1 g L−1, respectively, were obtained 
[162]. In a recent study, systems biology tools enabled 
the engineering of C. acetobutylicum and achieved a sta-
ble, highly selective, and high yield butanol production of 
0.35 g g−1, which corresponds to 84% of the theoretical 
maximum [210]. Using the strain in a continuous high cell 
density cultivation combined with in situ product recovery, 
a butanol titer of 550 g  L−1 was achieved in the recovered 
product stream, comparable to solvent levels in traditional 
ethanol plants [210]. The implementation of an integrated 
product recovery method into an optimized continuous pro-
cess has therefore been shown to increase the final titer and 
consequently the economic competitiveness for industrial 
production.

Industrial application

A look in the past shows the development of industrial appli-
cations of solvent production with clostridia. In the 1970s 
the oil crisis led to a revival of the historical Weizmann 
process, which was initially established in 1915 during the 
First World War but with rising substrate prices of molasses, 
maize, or wheat the ABE process was no longer economi-
cally viable [58, 312]. In 2006, DuPont and British Petro-
leum (BP) announced their cooperation for the reinstalla-
tion of new industrial ABE plants, once again leading to 
an increased research interest in the topic of ABE process-
ing [312]. At the same time, gas fermentation technology 
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using acetogens received increasing attention and has been 
developed towards industrial implementation. Since then, 
many plants and projects launched the production of butanol, 
acetone, and ethanol with solventogenic and acetogenic 
clostridia from various feedstocks but several needed mod-
ernizations or were closed due to economic pressure [211, 
326]. In the following, an overview of the recent companies 
in the field of ABE fermentation and gas fermentation is 
shown.

Traditional ABE fermentation

Some of the major companies for the industrial ABE process 
with solventogenic clostridia are Butamax Advanced Bio-
fuels, ButylFuel LLC, Celtic Renewables Ltd and Cathay 
Industrial Biotech. Companies working on the process devel-
opment for biobutanol production are Tetravitae Bioscience 
and METabolic EXplorer [2].

Butamax Advanced Biofuels (US), a joint venture of BP 
and DuPont, currently operates a biobutanol plant in Lam-
berton, Minnesota with a capacity to produce 30,000 tons 
butanol annually from lignocellulosic feedstocks. In addi-
tion, Butamax operates a demonstration facility in Hull (UK) 
and a small-scale unit in Delaware (US), which is using corn 
and sugar as feedstock. Since no details of the process have 
been released, it was assumed that Butamax relies on a tra-
ditional process using C. beijerinckii.[2, 29, 58, 211]

ButylFuel LLC (US) created a patented two-stage fermen-
tation process with C. tyrobutyricum and C. acetobutylicum 
(see section “Multi-stage systems”) and uses forest residues, 
temperate grasses and crop residuals as feedstock for butanol 
production [58, 244].

Celtic Renewables Ltd (UK) was formed in 2012. In 2017, 
the company announced the construction of a commercial 
demonstration plant in Grangemouth, UK for over 500,000 L 
of biofuel annually. Originally developed and established in 
2007 at the Edinburgh Napier University, the ABE process 
of Celtic Renewables uses a Clostridium sp. able to convert 
xylose, arabinose and glucose into butanol, ethanol, and 
acetone. As feedstocks, the whisky by-products pot ale and 
draff are used, pretreated by thermal hydrolysis. Addition-
ally, solid residues and cell biomass generated during the 
ABE process is sold as high-grade animal feed [34].

Two former biobutanol companies are Green Biologics 
Ltd. (UK) and Cobalt Technologies Biofuels (USA). Cobalt 
Technologies has been operating a pilot plant production 
for 20,000 L of butanol annually until bankruptcy in 2015 
[2, 155]. Green Biologics Ltd. developed a new fermenta-
tion process with genetically modified strains and started a 
commercial butanol production in 2017, aiming to produce 
from sugar and agricultural waste. Unfortunately, they ran 
out of money in October 2019 and now offer their knowledge 
under the name ‘Biocleave Limited’ [24, 94].

Gas fermentation

Three companies are known for their gas fermentation tech-
nology and pilot plants: INEOS Bio, Coskata Inc. and Lan-
zaTech. However, only LanzaTech prevailed and has now 
implemented its technology in a commercial plant at scale 
[275].

Coskata Inc. was originally founded in 2006 in coop-
eration with the University of Oklahoma. For the process, 
methane was reformed into syngas and fermented to ethanol, 
presumably using HFMBR technology [107, 275]. Coskata 
was operating a gas fermentation plant for ethanol produc-
tion from 2009 to 2011 (capacity of 118 t a–1) in Pennsyl-
vania, which was shut down due to financial insolvency in 
2015. The Coskata technology was acquired by Synata Bio 
in 2016 [107, 275].

INEOS Bio was established in 2008, because of the takeo-
ver by Bioengineering Resources Inc., which was founded 
by the gas fermentation pioneer James L. Gaddy [11, 170, 
275]. INEOS Bio was one of the first companies, implement-
ing gas fermentation at an industrial scale [149, 275]. In 
2012 they started operating a semi-commercial biorefinery 
plant in Florida, aiming a bioethanol production of 8 million 
gallons per year (Mgy), produced from syngas, generated 
from lignocellulosic biomass and municipal waste [241, 
275]. The presence of the inhibitor hydrogen cyanide in the 
feed gas led to severe problems with the syngas fermentation 
process in 2013. In consequence, the plant was shut down 
in December 2014 [107, 275]. In 2017 the plant was sold to 
Alliance Bio-Products Inc. During the same time, INEOS 
Bio was purchased by Jupeng Bio, Inc. (Texas, US). Jupeng 
Bio claims to be the first company worldwide introducing 
large scale cellulosic bioethanol in 2013. For their syngas 
fermentation they gasify mainly biomass material and waste 
material [136].

LanzaTech based in Illinois (US) was founded by the gas 
fermentation pioneers Sean D. Simpson and Richard Forster 
in 2005 [275]. As one of the first, LanzaTech managed to 
establish a profitable, stable, and continuous gas fermenta-
tion process using syngas for selective ethanol production 
[107, 108, 147, 149, 275]. Their process was initially exten-
sively tested in a pilot plant in Glenbrook, New Zealand, 
using steel mill exhaust gases for ethanol production with 
a proprietary C. autoethanogenum strain [48, 108]. Lan-
zaTech set up two gas fermentation demonstration plants 
in cooperation with the large Chinese steel manufacturers 
BaoSteel and Shougang (capacity 300 Mt  a–1 ethanol) and 
now aims to construct numerous commercial plants world-
wide [107, 275]. In cooperation with Aemetis, LanzaTech 
build a plant for biogenic syngas in California, targeting the 
gasification of non-recyclable MSW, agricultural and for-
estry waste [139, 149, 275]. With their strong international 
network, LanzaTech continues to advance gas fermentation 
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technology and to expand to additional products [275]. In 
addition, LanzaTech has a broad patent portfolio to secure its 
intellectual property in process technology and strain devel-
opment and is ready to implement production of chemicals 
such as 2,3-butanediol, butanol, butadiene and acetone in 
commercial plants [149, 275].

Prospects

In this review, we show that the intelligent connection of 
bioprocess technology and strain engineering tools comple-
mented by newly gained knowledge from systems biology 
studies is the ideal way towards highly efficient fermentation 
processes for industrial solvent production, competitive to 
non-sustainable fuel and solvent industry [210]. Neverthe-
less, the industrial implementation of the continuous fermen-
tation process is limited to one example, the LanzaTech pro-
cess using CO from steel mill off the gas to produce ethanol 
with C. autoethanogenum.

The development of solutions providing high productivi-
ties will be an impetus to establish continuous bioprocesses 
for economic solvents and bulk chemical production [183]. 
Moreover, the utilization of alternative low-cost feedstocks 
such as lignocellulosic and gaseous substrates will increase 
economic viability. The progress in the understanding and 
design of strains as well as fermentation strategies with high 
cell density cultivation using cell retention techniques and 
the integration of in situ product recovery methods shows an 
enormous potential for continuous fermentations.

To exploit this potential, a detailed understanding of 
strain physiology and metabolism under “production con-
ditions” is required. Using systems level analyses and 
metabolic modeling, targets for strain improvement can be 
identified, and emerging genome engineering tools allow to 
rapidly establish phenotype-genotype relationships.

Additionally, the transfer of promising bioprocessing 
concepts into larger scales requires the development and 
implementation of process analytical technology  (PAT) 
concepts to obtain suitable monitoring and control strate-
gies. Here, methods like flow cytometry emerge as promis-
ing tools to monitor active biomass in “dirty” substrates, 
e.g. lignocellulose-based hydrolysates containing particles, 
thus allowing to obtain more solid data in terms of process 
performance. Furthermore, flow cytometry can increase 
knowledge on sporulation and cell viability under different 
conditions. Other process analyzers include spectroscopy 
methods, but also omics tools to assess culture response to 
inhibitors and varying feedstock compositions. Finally, the 
demand for enhanced control promotes the development of 
models, ranging from simple software sensors and black box 
models to fully integrated spatiotemporal models.

Following this integrated approach shall ultimately allow 
to successfully scale-up and implement novel continuous 
bioprocessing solutions for solvent production or altogether 
new products using solventogenic and acetogenic clostridia.
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