
Non-local Operators
(winter term 2019/20)

0

1

0.2

0.5

0.4

0

0.6

-0.5

0.8

-1

10.50-0.5-1

Lecture Notes

Markus Faustmann, Dirk Praetorius
Institute for analysis und scientific computing

TU Wien



Contents

Introduction 3
0.1 Non-local Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
0.2 Recasting a PDE as Integral Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 5

0.2.1 Direct Integral Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
0.2.2 Indirect Integral Method for the Model Problem . . . . . . . . . . . . . . . . 7

0.3 Fractional Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
0.4 Outlook and Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

0.4.1 Part I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
0.4.2 Part II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

I Part I: (Boundary-)Integral Equations 12

1 Function Spaces, Weak Formulations 14
1.1 Model Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2 Integration by Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3 Fundamental Solutions, Representation Formula . . . . . . . . . . . . . . . . . . . . 16
1.4 Sobolev Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4.1 Sobolev spaces on domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.4.2 Sobolev Spaces on the boundary . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.4.3 Main Theorems on Sobolev Spaces . . . . . . . . . . . . . . . . . . . . . . . . 25
1.4.4 The Trace Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.4.5 Sobolev Spaces with Zero Boundary Conditions . . . . . . . . . . . . . . . . . 28

1.5 The Dirichlet Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.6 The Neumann Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2 Integral Operators 35
2.1 Newton, Single-Layer, and Double-Layer Potential . . . . . . . . . . . . . . . . . . . 36
2.2 Representation Formula and Calderón Projector . . . . . . . . . . . . . . . . . . . . 42
2.3 Integral Formulation of Dirichlet Problem . . . . . . . . . . . . . . . . . . . . . . . . 46
2.4 Integral Formulation of Neumann Problem . . . . . . . . . . . . . . . . . . . . . . . . 46
2.5 Boundary Integral Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.6 Exterior Trace and Conormal Derivative . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.7 Ellipticity of Single-Layer Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.8 Ellipticity of Hypersingular Integral Operator . . . . . . . . . . . . . . . . . . . . . . 67

1



3 Galerkin Boundary Element Method 69
3.1 Abstract Galerkin Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.2 A-Priori Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

II Part II: Fractional Differential Operators 78

4 Definitions of the Fractional Laplacian 79
4.1 The Integral Fractional Laplacian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.1.1 Probabilistic Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.1.2 The Integral Fractional Laplacian . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2 The Fourier Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.3 Definition via Heat Semigroup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.4 The Caffarelli-Silvestre Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.5 The Fractional Laplacian on Bounded Domains . . . . . . . . . . . . . . . . . . . . . 88

4.5.1 The Integral Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.5.2 The Spectral Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.5.3 The Caffarelli-Silvestre extension . . . . . . . . . . . . . . . . . . . . . . . . . 89

5 Numerical Approximation 94
5.1 The Integral Fractional Laplacian - Weak Formulation . . . . . . . . . . . . . . . . . 94
5.2 The Integral Fractional Laplacian - Regularity . . . . . . . . . . . . . . . . . . . . . 97
5.3 FEM for the Integral Fractional Laplacian . . . . . . . . . . . . . . . . . . . . . . . . 101
5.4 FEM for the Extension Problem - Spectral Fractional Laplacian . . . . . . . . . . . . 104

5.4.1 Weak Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.4.2 Regularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.4.3 Truncation in y-Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.4.4 FEM – a-priori Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6 Dunford-Taylor Approach 113
6.1 The Dunford-Taylor Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.1.1 The Spectral Fractional Laplacian . . . . . . . . . . . . . . . . . . . . . . . . 113
6.1.2 The Integral Fractional Laplacian . . . . . . . . . . . . . . . . . . . . . . . . . 116

III Appendix 119

A Some Facts from other Lectures 120
A.1 Abstract Existence & Uniqueness Theorems . . . . . . . . . . . . . . . . . . . . . . . 120
A.2 Lebesgue Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
A.3 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

2



Part

Introduction

3



0.1 Non-local Operators

In this lecture, we study the analytical behavior of certain non-local operators and present some
numerical methods for these.

We call an operator A : X → Y acting between two function spaces X,Y of functions u : Rd → R

local, if for all x ∈ Rd the value (Au)(x) (if point-evaluation is possible) only depends on the values
of u|Bε(x) for all ε > 0, where Bε(x) := {y ∈ Rd : |x − y| < ε} denotes the open ball of radius ε

around x ∈ Rd.

Classical examples of local operators are, e.g., differential operators such as the Laplacian

∆u(x) :=
d∑

i=1

∂2

∂x2i
u(x)

on the function space C2(Rd), since computing derivatives at a point x only needs the function
values in a neighborhood of x.

Conversely, if an operator is not local, we call it a non-local operator.

Non-local operators appear oftentimes in physics by modeling of non-local effects such as gravity
or quantum entanglement. As a simple mathematical example, we consider the integral operator

Au(x) :=
∫ 1

0
(x− y)u(y) dy u ∈ L2(0, 1).

From the definition, one directly sees, that the computation of Au(x) needs all values u(y) for
y ∈ (0, 1). This also leads to the effect, that, even if u is locally supported, e.g., u is the characteristic
function of a sub-interval u = χ(1/4,1/2), we compute that suppAu := {x : Au(x) 6= 0} = [0, 1],
i.e., Au does have global support.
This observation is particularly important for numerics, since the discretization of local operators
(e.g. by finite element methods for the Laplacian) usually leads to sparse linear systems of equations,
which can be solved efficiently. In contrast, non-local operators lead to fully-populated matrices,
and computations with these can be too expensive. Therefore, an additional challenge for non-local
operators is to derive efficient numerical methods that circumvent the problem of fully populated
systems. This, however, is out of the scope of this lecture, but the topic of some other special
lectures given at TU Wien, such as “matrix-compression and H-matrices”, [FP17].

In this lecture, we are primarily concerned with two classes of non-local operators:

1. Part I: Integral operators of convolution type with singular kernel

Au(x) :=
∫
k(x, y)u(y) dy,

where the kernel function k is the fundamental solution for the Laplacian, see Section 1.3;

2. Part II: Fractional differential operators

(−∆)s for s ∈ (0, 1),

where the different formal definitions are given in Chapter 4.
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Mainly, we will present the precise mathematical definitions of these operators, prove some mapping
properties and boundedness in appropriate function spaces, discuss the solvability of the equations

Au = f

for given data f , and briefly introduce numerical approximations to the solutions of these equations.

In the following, we briefly motivate why both classes of operators are of interest.

0.2 Recasting a PDE as Integral Equation

Our model problem is the elliptic PDE

−∆u = f in Ω,

where Ω ⊂ Rd is a (bounded) domain, and f is a given right-hand side.
We refer to the PDE lecture, for the fact that, if k(·, ·) is a fundamental solution to the PDE, then,
the so called Newton potential

u(x) = Ñf(x) := k ∗ f(x) =
∫

Ω
k(x, y)f(y)dy x ∈ Ω

is a classical solution to the PDE provided f ∈ C∞
0 (Ω) and ∂Ω is sufficiently smooth. The Newton

potential is an example of a non-local operator of convolution type, described in the previous
subsection.
One (if not in fact, THE) advantage of the integral equation approach presented in the following
is that it works for unbounded domains of the form Rd\Ω, where Ω is bounded, as well.

0.2.1 Direct Integral Method

If we additionally impose boundary conditions (to have a well-posed problem), such as Dirichlet
boundary conditions

−∆u = f in Ω, (0.1)

u|∂Ω = g on ∂Ω

with given boundary data g, additional terms need to be taken into account.
In fact, the representation formula (presented in (1.14)) gives

u(x) = Ñf(x) + Ṽ φ(x)− K̃g(x) for x ∈ Ω, (0.2)

where φ := ∂u/∂n is the normal derivative on ∂Ω (which is unknown), and Ṽ , K̃ are the so-called
single-layer potential and double-layer potential given by

Ṽ φ(x) :=

∫

∂Ω
k(x, y)φ(y)dsy x ∈ Ω,

K̃g(x) :=

∫

∂Ω

∂

∂ny
k(x, y)g(y)dsy x ∈ Ω.
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The potentials Ṽ , K̃ again are non-local operators of convolution type. So far, the integral equation
(0.2) contains two unknowns: The solution u in Ω and the normal derivative φ on ∂Ω. Now, the
idea is to consider the limit process Ω ∋ x̃ → x ∈ ∂Ω. The left-hand side then converges to
u(x̃)→ u(x) = g(x), and we are left with just a single unknown function φ.
We now simply state some of the results of the following chapters:

• Because of f ∈ C(Ω), the Newton potential is continuous on Rd and thus Ñf(x̃)→ Ñf(x) :=
N0f(x). The limit is the integral

N0f(x) =

∫

Ω
G(x− y)f(y) dy.

• Because of φ ∈ C(∂Ω), the single-layer potential is continuous on Rd and thus Ṽ φ(x̃) →
Ṽ φ(x) := V φ(x). The limit is the boundary integral

V φ(x) =

∫

∂Ω
G(x− y)φ(y) dsy.

• The double-layer potential is more involved: For the limit x̃ → x, we have convergence
K̃g(x̃)→ (K − 1/2)g(x), where Kg is a Cauchy principal value

Kg(x) = C

∫

∂Ω

∂y
∂n(y)

G(x− y)g(y) dsy.

Altogether, the representation formula (1.14) in Ω becomes

g(x) = N0f(x) + V φ(x)− (K − 1/2)g(x) for x ∈ ∂Ω.

Finally, we thus end up with the following boundary integral equation

V φ = −N0f + (K + 1/2)g on ∂Ω, (0.3)

which is known as Symm’s integral equation. We have now seen that φ = ∂u/∂n is a solution
to (0.3). Moreover, it can be shown that V has certain ellipticity properties so that the solution
of (0.3) is unique.

The direct boundary integral method for the solution of the model problem (0.1) consists of
two steps:

• Solve Symm’s integral equation to obtain the normal derivative φ = ∂u/∂n.

• Compute the solution u of the model problem by use of the representation formula.

In praxis it is often not possible to compute the solution φ of Symm’s integral equation (0.3)
analytically. The boundary element method is a numerical scheme to compute an approximate
(discrete) solution φh instead of φ.
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0.2.2 Indirect Integral Method for the Model Problem

The indirect method avoids the use of the explicit representation formula. Instead one uses the
superposition principle for linear equations: According to the representation formula, there holds
−∆(Ñf) = f . With the ansatz u = u0 + Ñf , the solution of the model problem (0.1) is equivalent
to

−∆u0 = 0 in Ω,

u0 = g −N0f on ∂Ω.

We will show later that the single-layer potential Ṽ φ0 is a potential in the sense that it solves

−∆(Ṽ φ0) = 0 in Ω.

Therefore, for a function φ0 on ∂Ω, we can make the ansatz u0 = Ṽ φ0, which leads to the boundary
integral equation

V φ0 = g −N0f,

since V φ0 is the trace of Ṽ φ0 on ∂Ω.

The indirect boundary integral method consists of the following steps

• Solve the single-layer potential equation V φ0 = g −N0f .

• Compute the solution u = Ṽ φ0 + Ñf of the model problem.

This procedure is called indirect since the computed function φ0 has no physical meaning.

0.3 Fractional Operators

Recently (since ∼2000), more complex physical and biological models started to take non-local
diffusive effects into account. A simple model for such operators is the fractional Laplacian

(−∆)s s ∈ (0, 1),

where the choice of s gives an additional model-parameter for more precise modeling.
As such, further applications in peridynamics, finance, image processing and materials science
followed.
Mathematically, these operators are also of interest as some crucial differences to the Laplacian
appear. As already mentioned, fractional differential operators are non-local, which makes their
analysis and numerical approximation challenging. In fact, even the precise mathematical definition
of these operators is not straight forward. On the whole space Rd there are multiple definitions,
which turn out to be equivalent. A formally easy way is to use the Fourier transformation to write

(−∆)su = F−1(|ζ|2sFu),
which, however, is unpractical for numerical methods. A definition, which is more in line with the
singular integral operators of the previous subsection is given by the so called integral fractional
Laplacian defined pointwise as the Cauchy principal value

(−∆)su(x) := C(d, s) P.V.

∫

Rd

u(x)− u(y)
|x− y|d+2s

dy.
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Restricting oneself from the full-space to a subdomain Ω makes matters more complicated, as dif-
ferent definitions turn out to be not equivalent any more. In this lecture, we discuss two different
definitions, the integral fractional Laplacian, which is the formula above applied to functions van-
ishing outside of the domain, and the so called spectral fractional Laplacian, which uses the
eigenvalues λk and eigenfunctions ϕk of (−∆) to define

(−∆)sσu :=
∞∑

k=1

λskukϕk, uk :=

∫

Ω
uϕkdx.

There are some other definitions, like the regional fractional Laplacian, which we do not discuss
in detail in the following, and given your application in mind you need to choose the appropriate
definition accordingly.

0.4 Outlook and Literature

In the following, we briefly sketch the content of the lecture notes and mention the used literature.

0.4.1 Part I

The first part of these lecture notes are an iteration of the course “The Boundary Element Method”
given by Dirk Praetorius in 2007. Classical literature for the boundary element method (BEM) and
(boundary integral equations) are the books by McLean, [McL00] and Sauter, Schwab, [SS11],
on which most of the lecture notes are based. We also mention the book of Steinbach, [Ste08],
where both finite and boundary element methods are derived in a compact and readable way.

As you probably know, the Laplace problem (0.1) may lack the existence of classical solutions u ∈
C2(Ω). Instead one seeks for so-called weak solutions that belong to the Sobolev space u ∈ H1(Ω).
A big part of the lecture is thus concerned with the mathematical understanding of the operators
Ñ , Ṽ , and K̃, which act between certain Sobolev spaces.

Chapter 1: Function Spaces and Weak Formulations

• We start with the main ingredient of the reformulation of PDEs as (boundary) integral equa-
tions, the existence of a fundamental solution. Consequently, we prove the mentioned repre-
sentation formula for classical solutions.

• We introduce (resp. recall) the Sobolev spaces on domains and boundaries which are needed
for the functional analytic framework of the representation formula.

• We recall the main theorems on Sobolev spaces and introduce (different) Sobolev spaces that
take homogeneous boundary conditions into account.

• We recall the weak form of the model problem and prove unique existence of solutions for the
pure Dirichlet and Neumann problem.
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Chapter 2: Integral Operators

• The chapter is concerned with the mathematical framework of the representation formula.
We consider the trace as well as the normal derivative of the equation

u = Ñ(−∆u) + Ṽ (∂u/∂n)− K̃(u) in Ω,

which leads to the integral equations

u = N0(−∆u) + V (∂u/∂n) + (1/2−K)(u) on ∂Ω (0.4)

and

∂u

∂n
= N1(−∆u) + (1/2 +K ′)(∂u/∂n) +W (u) on ∂Ω, (0.5)

where N0, N1, V,W,K are certain integral operators. Writing the last equations as linear
system, we see that the Cauchy data (u, ∂u/∂n) solve the Calderón system

(
u
∂u
∂n

)
=

(
1
2 −K V
W 1

2 +K ′

)(
u
∂u
∂n

)
+

(
N0(−∆u)
N1(−∆u)

)
(0.6)

• With the help of the Calderón system, we come up with equivalent integral formulations of
our model problem. For instance, if the Dirichlet data u|∂Ω are known, the Calderón system
resp. (0.4) provides Symm’s integral equation

V (∂u/∂n) = (K + 1/2)(u)−N0(−∆u). (0.7)

Having computed the normal derivative ∂u/∂n, we obtain u from the representation formula.

• An important property of the traces of the potentials Ṽ , K̃ is that they can be written as
integral operators as well, which is essential for implementation of a numerical method.

• Finally, we prove that the operators V and W have certain ellipticity properties, i.e. we are
in the context of the Lax-Milgram lemma: In particular, ∂u/∂n is the unique solution of
Symm’s integral equation.

Chapter 3: Galerkin Boundary Element Method

• Within the last chapters, we obtained the mathematical framework needed for a Galerkin
method. We recall the idea of a Galerkin scheme and directly obtain unique solvability of the
Galerkin formulation due to the ellipticity of the operators.

• We present some a-priori estimates to quantify the speed of convergence of the Galerkin
discretization in a space of piecewise constant functions on a quasi-uniform mesh (for Symm’s
integral equations).
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0.4.2 Part II

Compared to the BEM, numerical methods for fractional operators are studied quite recently.
Therefore, few textbooks suitable for lectures are available, and the course is mainly designed using
research articles. As such, this lecture notes can also be seen as a collection of readable literature
for an introduction to the topic. Different definitions – and their equivalences – can be found in
the rather technical paper of Kwasnicki [Kwa17]. Among them, we mention the ground breaking
work of Caffarelli and Silvestre, [CS07], where the fractional Laplacian was identified as a
Dirichlet-to-Neumann operator for a degenerated elliptic PDE.
The sections on numerical approximation are based on the overview article by Nochetto et al.,
[BBN+18], which collects results of Acosta and Borthagaray, [AB17] for the integral fractional
Laplacian, as well as Nochetto, Otarola, Salgado, [NOS15] for the spectral fractional Lapla-
cian. For a different approach using the Dunford-Taylor calculus, we refer to the article of Bonito

and Pasciak, [BP15].

Chapter 4: Definitions of the Fractional Laplacian

• We start with a probabilistic motivation by looking at a random walk approach with arbitrary
long jumps. It turns out that taking the limit of the discrete random walk gives a fractional
heat equation ut = (−∆)su, with the integral fractional Laplacian, whereas a fixed length
random-walk gives the classical heat equation.

• We formally introduce different definitions of the fractional Laplacian, the integral definition,
the Fourier definition, the definition via a heat-semigroup as well as the famous Caffarelli-
Silvestre extension problem, which gives a PDE-approach to fractional diffusion. On the
full-space Rd, we prove that all definitions are equivalent.

• Having understood the definitions in Rd, we turn to the case of a bounded subdomain Ω ⊂ Rd.
Here, we state the integral and spectral definition and show that they are indeed different
operators. Moreover, we formulate the Caffarelli-Silvester extension for both operators, which
is very useful for analysis and numerical methods.

Chapter 5: Numerical Approximation

• We start by deriving a weak formulation for the equation (−∆)su = f using the integral
fractional Laplacian, which leads to the bilinear form

a(u, v) ≃
∫

Rd

∫

Rd

(u(x)− u(y))(v(x)− v(y))
|x− y|d+2s

dy dx.

Hereby, analyzing a Galerkin approximation has two main difficulties, the non-locality of the
bilinear form, i.e., plugging in two functions with disjoint support gives in general a non-zero
contribution, as well as the non-locality of the energy-norm in a fractional Sobolev-space.
The non-locality of the norm does not allow for elementwise a-priori estimates. However, we
mention a remedy for this problem by proving a localizable upper bound for the energy norm.

• With a Ceá-type best-approximation estimate, the a-priori analysis of a finite element ap-
proximation then comes down to a question of providing a quasi-interpolation operator with
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the right approximation properties – here the Scott-Zhang projection – as well as regularity
of the solution. Regularity for the integral fractional Laplacian is rather delicate, and it turns
out that solutions tend to be not more regular than H1/2+s−ε(Ω) even if the geometry and
right-hand side are smooth.

• Using the best-approximation property, localization, approximation properties of the Scott-
Zhang projection as well as the regularity results, we prove convergence of the FEM approx-
imation with rate h1/2−ε on quasi-uniform meshes, which can be improved to h1−ε by using
graded meshes.

• Finally, we study a numerical approximation for the spectral fractional Laplacian as well.
Hereby, the PDE interpretation using the Caffarelli-Silvestre extension problem is used, and
the PDE (in d+ 1-dimensions) is approximated using FEM. Again, questions of approxima-
tion properties and regularity are discussed, where especially the regularity in the extended
dimension is the limiting factor.

• Using quasi-uniform tensor grids, we prove convergence of order hs−ε, which can be improved
using an anisotropic grid (only in the extended variable).

Chapter 6: Dunford-Taylor Approach

• Using Cauchy’s integral formula gives yet another definition of the fractional Laplacian with
the so-called Dunford-Taylor calculus. In fact, one can deform Cauchy’s formula to the real-
axis to obtain an operator-valued integral over R+, the so called Balakrishnan formula.

• With the Balakrishnan formula at hand, one can derive a numerical method using FEM
to approximate the shifted Laplacian in the integrand and so-called sinc-Quadrature to ap-
proximate the integral, which converges exponentially. Balancing the FEM error and the
quadrature error gives convergence rates up to h2−s for highly regular solutions.

• The Balakrishnan formula only holds for the spectral integral Laplacian. However, one can
derive a similar formula for the bilinear form corresponding to the integral fractional Laplacian
using the Fourier transform.
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Chapter 1

Function Spaces, Weak Formulations

1.1 Model Problem

Throughout the first part of the lecture notes, we consider the Laplace operator

∆u(x) :=

d∑

j=1

∂2u

∂x2j
(x) (1.1)

for a function u ∈ C2(Ω) on a domain Ω ⊆ Rd with d = 2, 3. The model problem for a second-order
elliptic partial differential equation (PDE) reads: Find u such that

−∆u = f in Ω, (1.2)

which satisfies certain boundary conditions, e.g.,

u|Γ = g on Γ := ∂Ω. (1.3)

Here, f ∈ C(Ω) is a given volume force and g ∈ C(Γ) are given Dirichlet boundary conditions.

We stress that other second-order elliptic operators lead to the same results. However, it seems to
be the right idea to understand the analytical techniques for some precise model example.
One goal of this lecture is to reformulate the PDE (1.2) in the domain Ω into an integral equation
only posed on the surface Γ. As the concept of classical solutions, i.e., u ∈ C2(Ω) is usually
too strong, we shall look at weaker formulations both of the PDEs and the integral equations in
appropriate function spaces (Sobolev spaces defined below).

We start with some additional assumptions on our domain Ω. For simplicity, we assume that Ω is
bounded and simply connected. However, most of the results also work for unbounded domains
provided Rd\Ω is bounded.

More important, we impose additional regularity on Γ, we consider so called bounded Lipschitz
domains. Hereby, Ω is locally only on one side of the boundary Γ, and the boundary Γ can
locally be parametrized by Lipschitz continuous functions. This is stated formally in the following
definition.
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Definition 1.1. (Lipschitz domain) We start with the definition of the sets BR(0) :=
{
x ∈

Rd
∣∣ |x| < R

}
and

B+
R :=

{
x ∈ BR(0)

∣∣xd > 0
}
, B−

R :=
{
x ∈ BR(0)

∣∣xd < 0
}
, and B0

R :=
{
x ∈ BR(0)

∣∣xd = 0
}
.

Now, a set Ω ⊂ Rd is called Lipschitz domain, if Ω is an open, bounded, and connected set such
that for each x ∈ Γ := ∂Ω, there is an open neighborhood Ux ⊂ Rd of x and a bijective function
χx : B1(0)→ Ux such that

• χx as well as χ−1
x are Lipschitz continuous,

• χx(B
0
1) = Γ ∩ Ux, i.e. χx provides a local parametrization of Γ,

• χx(B
−
1 ) = Ω ∩ Ux,

• χx(B
+
1 ) = (Rd\Ω) ∩ Ux,

where the latter assumptions state that Ω is (locally) only on one side of the boundary.

We note that the choice of radius R = 1 in the definition of the Lipschitz domain is arbitrary.

In the following, we usually consider the case when Ω is a Lipschitz domain. According to the
Rademacher theorem, a Lipschitz continuous function is differentiable almost everywhere. There-
fore, we may define an outer normal vector n = n(x) for almost every x ∈ Γ. The smoothness of
the boundary is measured by the smoothness of the local parametrizations χx in the definition of
a Lipschitz domain.

Definition 1.2. A function f : Ω → R is Hölder continuous of order (k, λ), if f ∈ Ck(Ω)
and all k-th derivatives satisfy

sup
α∈Nd0
|α|=k

sup
x,y∈Ω
x 6=y

|∂αf(x)− ∂αf(y)|
|x− y|λ <∞.

The space of all Hölder continuous functions on Ω is denoted by Ck,λ(Ω). The domain Ω is called
a Ck,λCk,λCk,λ domain if it is a Lipschitz domain and if all local parametrizations χx as well as χ−1

x are
Hölder continuous of order (k, λ). ✷

Remark. Obviously, C0,1(Ω) is the space of all Lipschitz continuous functions, and Lipschitz
domains are just C0,1 domains. Moreover, Ck,0 domains are usually abbreviated as Ck domains. ✷

Remark. One can show that Ck,λ(Ω), associated with the norm

‖f‖Ck,λ(Ω) := sup
α∈Nd0
|α|≤k

‖∂αf‖∞,Ω + sup
α∈Nd0
|α|=k

sup
x,y∈Ω
x 6=y

|∂αf(x)− ∂αf(y)|
|x− y|λ

is a Banach space. ✷
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1.2 Integration by Parts

From now on, we shall assume that Ω is a bounded domain in Rd with smooth boundary Γ := ∂Ω.
Here, smooth just means that we may use the integration by parts formula

∫

Ω

∂u

∂xj
v dx+

∫

Ω
u
∂v

∂xj
dx =

∫

Γ
uvnj ds for u, v ∈ C1(Ω), (1.4)

where nj denotes the j-th component of the outer normal vector of Ω. We note some immediate
consequences:

• For f ∈ C1(Ω)d, let div f :=
∑d

j=1
∂fj
∂xj

denote the divergence operator. Then, there holds the

Gauss divergence theorem
∫

Ω
div f dx =

∫

Γ
f · nds for f ∈ C1(Ω)d. (1.5)

• From the identity −∆u = − div(∇u), we obtain the first Green’s formula

∫

Ω
(−∆u)v dx =

∫

Ω
∇u · ∇v dx−

∫

Γ

∂u

∂n
v ds for u ∈ C2(Ω) and v ∈ C1(Ω). (1.6)

• Using the first Green’s formula twice, we prove the second Green’s formula
∫

Ω
(−∆u)v dx+

∫

Γ

∂u

∂n
v ds =

∫

Ω
u(−∆v) dx+

∫

Γ
u
∂v

∂n
ds for u, v ∈ C2(Ω). (1.7)

In the following sections, we shall see that the requirements u, v ∈ C2(Ω) can be substantially
weakened.

1.3 Fundamental Solutions, Representation Formula

The starting point for the reformulation of the PDE to an integral equation is the so-called repre-
sentation formula (or third Green’s formula) proven in the next subsection. In order to obtain this
formula, we need to have a fundamental solution for our PDE.

Definition 1.3. Let

C∞
0 (Ω) := {ϕ ∈ C∞(Ω) : suppϕ ⊂ Ω compact}

be the space of compactly supported, infinitely differentiable functions. Employing the topology
defined by the sequential convergence

(ϕn)n∈N → 0 ⇐⇒ ∃K ⊂ Ω compact : suppϕn ⊂ K, ∂αϕn → 0 uniformly in K, ∀α ∈ Nd
0

gives the space of test functions D(Ω).
Its dual space D(Ω)′ := {ℓ : D(Ω)→ R, cont., linear} is called the space of distributions.
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Example.

• Every function u ∈ L1
loc(Ω) := {u ∈ L1(K) ∀K ⊂ Ω compact} defines a distribution

ũ ∈ D(Ω)′ by

〈ũ ; ϕ〉 = ũ(ϕ) :=

∫

Ω
uϕdx ϕ ∈ D(Ω).

We write u = ũ for such distributions and call them regular distributions.

• The Dirac delta distribution δy defined for fixed y ∈ Ω by

〈δy ; ϕ〉 := ϕ(y) ϕ ∈ D(Ω)

is an example of a non-regular distribution.

Remark. We stress that distributions are always differentiable, where the derivative of u ∈ D(Ω)′
is defined by

〈Dαu ; ϕ〉 := (−1)|α|〈u ; Dαϕ〉 ϕ ∈ D(Ω), α ∈ Nd
0.

For regular distributions u ∈ L1
loc(Ω), we call Dαu the weak derivative. If all weak derivatives

with |α| = 1 satisfy Dαu ∈ L1
loc(Ω), we call u weakly differentiable. We stress that if a function

is weakly differentiable, its weak gradient is uniquely defined and it coincides with the classical
derivative if u ∈ C1(Ω).

Definition 1.4. Let L be a scalar differential operator. Then, a function G : Ω × Ω → R is
called a fundamental solution (or Green’s function), if

LG(x, y) = δy

in the sense of distributions.

Example.

• For our model problem L = −∆, the fundamental solution is given by the Newton kernel

G(x, y) :=





1
2(1− |x− y|), for d = 1,

− 1
2π log |x− y|, for d = 2,

1
4π

1
|x−y| , for d = 3.

(1.8)

Since the fundamental solution does only depend on |x−y|, we will write G(x−y) := G(x, y)
using only one input argument.

• For the Helmholtz operator L = −∆− k2I and d = 3 the fundamental solution is given by

Gk(x, y) :=
eik|x−y|

4π|x− y| .
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We refer to the PDE-lecture for the classical result that the convolution of Green’s function and
right-hand side

u(x) = G ∗ f(x) =
∫

Rd

G(x− y)f(y)dy

solves Lu = f in the sense of distributions.

In the following, we only consider the operator L = −∆ for d = 2, 3. We note that there holds
|S2

2 | = 2π and |S3
2 | = 4π, where |Sd

2 | denotes the measure of the unit sphere in Rd. Our first lemma
easily follows from direct calculations and is left to the reader (The last two statements are easily
obtained by use of polar coordinates).

Lemma 1.5. (i) There holds G ∈ C∞(Rd\{0}) with first and second derivatives

∂jG(z) = −
1

|Sd
2 |

zj
|z|d and ∂jkG(z) = −

1

|Sd
2 |
δjk|z|2 − dzjzk
|z|d+2

. (1.9)

(ii) There holds −∆G(z) = 0 for z 6= 0.
(iii) G ∈ Lp

ℓoc(R
d) for d < 2p/(p− 1), in particular G ∈ L2

ℓoc(R
d).

(iv) ∂jG ∈ Lp
ℓoc(R

d) for d < p/(p− 1), in particular ∂jG ∈ L1
ℓoc(R

d). �

The main result of this section is the representation formula. It states that the (smooth) solution
of a Laplace problem −∆u = f is uniquely determined by its Cauchy data (u, ∂u/∂n) on the
boundary Γ, i.e. we know u if we know the Dirichlet and Neumann data on the entire boundary
Γ.

Proposition 1.6 (Representation Formula). Let Ω be a bounded domain in Rd with smooth
boundary Γ := ∂Ω and u ∈ C2(Ω). With f := −∆u ∈ C(Ω), there holds

u(x) =

∫

Ω
G(x− y)f(y) dy +

∫

Γ
G(x− y) ∂u

∂n(y)
(y) dsy −

∫

Γ

∂y
∂n(y)

G(x− y)u(y) dsy

for all x ∈ Ω, where n(y) denotes the outer normal vector at y ∈ Γ.

Proof. Fix x ∈ Ω. We want to apply, for u and v(y) = G(x−y), the second Green’s formula which
reads in classical terms

(−∆u ; v)Ω + (∂u/∂n ; v)Γ = (u ; −∆v)Ω + (u ; ∂v/∂n)Γ for u, v ∈ C2(Ω). (1.10)

As v 6∈ C2(Ω), we cut-off the singularity for y = x and consider (1.10) on Ωε := Ω\Bε(x). Here,
ε > 0 is chosen small enough so that Bε(x) ⊂ Ω. Then, with Γε := ∂Ωε, there holds Γε = Γ∪∂Bε(x)
and Γ ∩ ∂Bε(x) = ∅. The second Green’s formula proves

(−∆u ; v)Ωε
+ (∂u/∂n ; v)Γ − (u ; ∂v/∂n)Γ = − (∂u/∂n ; v)∂Bε(x)

+ (u ; ∂v/∂n)∂Bε(x)
.

It now remains to consider the convergence of the terms for ε→ 0, where the left-hand side tends
to the right-hand side of the representation formula, cf. step 1, and where the right-hand side tends
to u(x), cf. step 2 and 3.
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1. step. There holds (−∆u ; v)Ωε

ε→0−−−→ (−∆u ; v)Ω which follows obviously from the Lebesgue
dominated convergence theorem as −∆u = f ∈ L2(Ω) and v ∈ L2(Ω).

2. step. There holds (∂u/∂n ; v)∂Bε(x)
ε→0−−−→ 0: Note that, for y ∈ ∂Bε(x), there holds

v(y) = G(x− y) = 1

|Sd
2 |

{
− log ε for d = 2,

1/ε for d = 3.

Therefore, v is constant on ∂Bε(x), and we can estimate

| (∂u/∂n ; v)∂Bε(x)
| ≤ ‖u‖C1(Ω)|v||∂Bε(x)| ≤ C‖u‖C1(Ω)ε

d−1

{
− log ε for d = 2,

1/ε for d = 3

vanishes with ε→ 0.

3. step. There holds (u ; ∂v/∂n)∂Bε(x)
ε→0−−−→ u(x): The normal vector for y ∈ ∂Bε(x) is given by

n(y) = 1
ε (x− y). We plug-in the formula for ∇G to obtain

∫

∂Bε(x)
u(y)

∂y
∂n(y)

G(x− y) dsy = − 1

|Sd
2 |εd

∫

∂Bε(x)
u(y)(y − x) · n(y) dsy

=
1

|Sd
2 |εd−1

∫

∂Bε(x)
u(y) dsy.

We write using the Taylor expansion u(y) = u(x) + (y − x) · ∇u(ζ) for ζ = x+ t(y − x), t ∈ (0, 1).
Then,

1

|Sd
2 |εd−1

∫

∂Bε(x)
u(y) dsy =

1

|Sd
2 |εd−1

|∂Bε(x)|u(x) +
1

|Sd
2 |εd−1

∫

∂Bε(x)
(y − x) · ∇u(ζ)dsy.

We note that 1
|Sd

2 |εd−1 |∂Bε(x)| = 1, and the second term on the right-hand side can be estimated by

∣∣∣∣∣
1

|Sd
2 |εd−1

∫

∂Bε(x)
(y − x) · ∇u(ζ)dsy

∣∣∣∣∣ ≤
1

|Sd
2 |εd−1

|∂Bε(x)| ε‖u‖C1(Ω) = Cε→ 0.

Therefore, we have proven (u ; ∂v/∂n)∂Bε(x)
ε→0−−−→ u(x) and consequently the representation for-

mula. �

The representation formula from Proposition 1.6 allows to represent u ∈ C2(Ω) in terms of the
following three integral operators Ñ , Ṽ , and K̃, namely

• the Newton potential of f : Ω→ R

Ñf(x) :=

∫

Ω
G(x− y)f(y) dy for x ∈ Ω, (1.11)

• the single layer potential of φ : Γ→ R

Ṽ φ(x) :=

∫

Γ
G(x− y)φ(y) dsy for x ∈ Ω, (1.12)
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• the double layer potential of v : Γ→ R

K̃v(x) :=

∫

Γ

∂y
∂n(y)

G(x− y) v(y) dsy for x ∈ Ω. (1.13)

Obviously, the operators Ñ , Ṽ , and K̃ are linear operators. Moreover, with this notation, the
representation formula can simply be written as follows:

Corollary 1.7 (Representation Formula). For u ∈ C2(Ω), there holds

u = Ñ(−∆u) + Ṽ (∂u/∂n)− K̃(u) in Ω, (1.14)

which is just the operator statement of Proposition 1.6. �

In particular, we see that the Newton kernel G is the fundamental solution of the Laplace operator.

Corollary 1.8. For u ∈ D(Ω) = C∞
0 (Ω), there holds u = Ñ(−∆u).

Proof. The proof follows from the representation formula (1.14) as u = 0 = ∂u/∂n on Γ. �

As already mentioned, the Laplace problem (1.2)–(1.3) may lack the existence of classical solutions
u ∈ C2(Ω). Instead one seeks for so-called weak solutions that belong to the Sobolev space u ∈
H1(Ω). About the first half of the lecture is thus concerned with the mathematical understanding
of the operators Ñ , Ṽ , and K̃, which act between certain Sobolev spaces.

1.4 Sobolev Spaces

1.4.1 Sobolev spaces on domains

This section briefly recalls the definition of Sobolev spaces Hs(Ω), for s ≥ 0, on domains Ω ⊆ Rd

and of the corresponding dual spaces H̃−s(Ω). Throughout, Ω is a domain in Rd, i.e. Ω is a
connected open subset of Rd.

We start with integer order Sobolev spaces.
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Definition 1.9. The Sobolev space H1(Ω) is defined by

H1(Ω) :=
{
u ∈ L2(Ω)

∣∣u weakly differentiable, ∇u ∈ L2(Ω)
}

(1.15)

and associated with the graph norm

‖u‖H1(Ω) :=
(
‖u‖2L2(Ω) + ‖∇u‖2L2(Ω)

)1/2
. (1.16)

Higher-order Sobolev spaces of integer order m ∈ N may be defined inductively by

Hm(Ω) :=
{
u ∈ L2(Ω)

∣∣u weakly differentiable, ∇u ∈ Hm−1(Ω)
}
, (1.17)

with associated norm

‖u‖Hm(Ω) :=
(
‖u‖2L2(Ω) + ‖∇u‖2Hm−1(Ω)

)1/2
. (1.18)

In this sense, there holds H0(Ω) := L2(Ω).

We also need Sobolev spaces of non-integer order, which can either be defined by interpolation or
by a non-local seminorm as below.

Definition 1.10. For a fractional order 0 < σ < 1, one first defines the Sobolev-Slobodeckij
seminorm

|u|σ,Ω :=
(∫

Ω

∫

Ω

|u(x)− u(y)|2
|x− y|d+2σ

dy dx
)1/2

. (1.19)

As | · |σ,Ω stems from an inner product, it is clear that it satisfies homogeneity and triangle
inequality. In particular, it is a seminorm. Then, for m ∈ N0 and 0 < σ < 1, one defines the
fractional order Sobolev spaces

Hm+σ(Ω) :=
{
u ∈ Hm(Ω)

∣∣ |Dmu|σ,Ω <∞
}
, ‖u‖Hm+σ(Ω) :=

(
‖u‖2Hm(Ω) + |Dmu|2σ,Ω

)1/2
,

where Dmu denotes the m-th (weak) derivative of u.

By definition, the Sobolev spaces Hm+σ(Ω) are subspaces of (product spaces of) L2(Ω). Moreover,
the norm ‖ · ‖Hm+σ(Ω) is obviously induced by an inner product. In fact, Hm+σ(Ω) is complete,
that is, Hm+σ(Ω) is a Hilbert space. For integer order, i.e. σ = 0, it is rather simple to prove
that Hm(Ω) is a Hilbert space: For m = 1, we have to show that H1(Ω) is a closed subspace of
L2(Ω)× L2(Ω)d. One may therefore assume that (un,∇un) converges to (u, g) in L2(Ω)× L2(Ω)d.
One then has to show, that u is weakly differentiable with ∂ju = gj . For the fractional order
Sobolev spaces Hm+σ(Ω) the completeness proof is more involved.

In the following, we shall write Hs(Ω) for s ≥ 0 instead of splitting s = m+ σ into an integer part
m ∈ N0 and a fractional part σ ∈ (0, 1).
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Theorem 1.11. For s ≥ 0, Hs(Ω) is a Hilbert space. Moreover, for t > s there holds the
continuous inclusion Ht(Ω) ⊂ Hs(Ω), i.e. the identity id : Ht(Ω) → Hs(Ω) is well-defined and
continuous. �

Remark. Note that Hs(Ω) cannot be a closed subspace of L2(Ω) with respect to the L2 norm
since there holds D(Ω) ⊂ Hs(Ω) ⊂ L2(Ω), and D(Ω) is dense in L2(Ω). ✷

Remark. We stress that for Lipschitz domains, an equivalent characterization of Sobolev spaces
using the Fourier transformation can be made. Since the Fourier transformation F turns derivatives
into multiplications, we can characterize Hs(Rd)-functions by satisfying

|||u|||Hs(Rd) :=

∫

Rd

(1 + |ζ|2)s|Fu(ζ)|2dζ <∞

and define Hs(Ω) := {u ∈ D(Ω)′ : u = U |Ω, |||U |||Hs(Rd) < ∞}. We refer to [McL00] for the
equivalence of the definitions and make use of it in a proof once.

Sobolev spaces are made to provide an existence theory for the solution of elliptic differential equa-
tions. For instance, let us consider the Laplace equation with homogeneous boundary conditions,

−∆u = f in Ω,

u = 0 on Γ.
(1.20)

The so-called weak solution u ∈ H1(Ω) solves a weak formulation, which is obtained by multiplying
the differential equation by a test function v and integrating over Ω, i.e., the weak form of the
model problem reads

∫

Ω
∇u · ∇v =

∫

Ω
(−∆u)v dx =

∫

Ω
fv dx for all v ∈ D(Ω), (1.21)

where we have used integration by parts to obtain the left-hand side. For f ∈ L2(Ω), the right-hand
side defines a continuous linear functional on Hs(Ω) with operator norm ≤ ‖f‖L2(Ω). This follows
from the Cauchy inequality and the definition of ‖ · ‖Hs(Ω),

∣∣∣
∫

Ω
fv dx

∣∣∣ ≤ ‖f‖L2(Ω)‖v‖L2(Ω) ≤ ‖f‖L2(Ω)‖v‖Hs(Ω) for all v ∈ Hs(Ω).

Therefore, it makes sense to consider the dual space Hs(Ω)∗ of Hs(Ω) with respect to the extended
L2(Ω) scalar product, i.e. the duality brackets are defined by

〈f ; v〉 :=
∫

Ω
fv dx for v ∈ Hs(Ω) and f ∈ Hs(Ω)∗, (1.22)

where the integral is only a symbol if f ∈ Hs(Ω)∗\L2(Ω) is not L2 integrable. This can be well-
stated mathematically as follows, where X = Hs(Ω) and Y = L2(Ω).

Lemma 1.12. Let X and Y be real Hilbert spaces with continuous inclusion X ⊆ Y . Then,
the Riesz mapping JY : Y → Y ∗, JY y := (y ; ·)Y is well-defined as operator JY ∈ L(Y ;X∗), and
JY (Y ) is a dense subspace of X∗.
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Proof. According to the assumptions, there holds ‖x‖Y ≤ C ‖x‖X for all x ∈ X. Thus, the Cauchy
inequality proves

(y ; x)Y ≤ ‖y‖Y ‖x‖Y ≤ C‖y‖Y ‖x‖X .

Thus, JY ∈ L(Y ;X∗) is well-defined. Let JX : X → X∗ denote the Riesz mapping for X. Then,

JY (Y ) is dense in X∗ if and only if V := J−1
X (JY (Y )) is dense in X = V ⊕ V ⊥

. Therefore, it

remains to prove that V
⊥
= {0}. Let x ∈ V ⊥

. Then, for y ∈ Y , there holds

0 =
(
x ; J−1

X (JY y)
)
X

= (JY y)(x) = (y ; x)Y .

Choose y = x ∈ V ⊥ ⊆ Y to see x = 0 in Y ⊇ X, which concludes the proof. �

According to the preceding lemma, equation (1.22) defines the duality brackets on a dense subspace
of Hs(Ω)∗. In particular, given φ ∈ Hs(Ω)∗ there is a sequence (fn) in L

2(Ω) such that

〈φ ; v〉 = lim
n→∞

(fn ; v)L2(Ω) for all v ∈ Hs(Ω).

Definition 1.13. We denote with H̃−s(Ω), for s ≥ 0, the dual space of Hs(Ω) with respect
to the extended L2(Ω) scalar product (1.22). Note that these dual spaces are also called Sobolev
spaces, and there holds H̃0(Ω) = L2(Ω). ✷

Remark. Note that the definition of H̃s(Ω) is only a special choice of the representation of
the dual space Hs(Ω)∗. As Hs(Ω) is a Hilbert space, the Riesz theorem states the existence of

an element f̂ ∈ Hs(Ω) with
(
f̂ ; v

)
Hs(Ω)

=
∫
Ω fv dx, and this is just another representation of

Hs(Ω)∗. However, the representation with the extended L2(Ω) scalar product is more convenient
for our purposes. ✷

Remark. A triple (X,Y,X∗) with continuous inclusion X ⊆ Y and continuous and dense inclusion
Y ⊆ X∗ is usually called Gelfand triple in the literature. Here, the inclusions X ⊆ Y and Y ⊆ X∗

are usually understood with respect to some injective linear inclusion operator, cf. Lemma 1.12
above. ✷

1.4.2 Sobolev Spaces on the boundary

In this section we define the Sobolev spaces Hs(Γ) and the corresponding dual spaces H−s(Γ) for
s ≥ 0 and Γ := ∂Ω. However, throughout the first part of the lecture we will never work with the
basic definition. Instead, the important space H1/2(Γ) will be characterized as the trace space of
H1(Ω), i.e. u belongs to H1(Ω) if and only if the restriction u|Γ belongs to H1/2(Γ). The precise
mathematical statement follows in Theorem 1.22, Theorem 1.24, and Corollary 1.25.

In the following, we always consider bounded Lipschitz domains, and define Sobolev spaces on
Lipschitz boundaries Γ. We present two different equivalent definitions, one by using local charts
and one by employing the Sobolev-Slobodeckij seminorm.

We start with the first definition, which employs a few steps:
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• For x ∈ Γ, let Ux ⊂ Rd be the open neighborhood and χx be the bi-Lipschitz function
according to the definition of a Lipschitz domain.

• Choose εx > 0 with B2εx(x) ⊆ Ux.

• Since Γ is compact, we may choose finitely many x1, . . . xn such that Γ ⊆ ⋃n
j=1Bεj (xj), where

εj := εxj etc.

• There are smooth functions φj ∈ D(B2εj (xj)) such that φj ≥ 0 and
∑n

j=1 φj(x) = 1 for x ∈ Γ.

• For a function v : Γ→ R, we define vj := φjv : Γ→ R, and we remark that v =
∑n

j=1 vj .

• Finally, we may define v̂j := vj ◦ χj : B
0
1 → R.

With the introduced notation, the definition reads as follows:

Definition 1.14. For s ≥ 0, the Sobolev space Hs(Γ) is defined as

Hs(Γ) :=
{
v : Γ→ R

∣∣ ∀j = 1, . . . , n v̂j ∈ Hs(B0
1)
}

(1.23)

and associated with the norm

‖v‖Hs(Γ) :=
( n∑

j=1

‖v̂j‖2Hs(B0
1)

)1/2
. (1.24)

Note that this definition formally depends on the choice of (χj , εj)
n
j=1 as well as on the corre-

sponding partition of unity (φj)
n
j=1, and both is non-unique. For the moment, we should therefore

write Hs(Γ) = Hs(Γ;π) and ‖ · ‖Hs(Γ) = ‖ · ‖Hs(Γ;π), where π abbreviates the particular choice of
the parametrization (χj , εj , φj)

n
j=1 of Γ. ✷

The following important theorem states that the Sobolev space Hs(Γ) does not depend on the
choice of the parametrization π = (χj , εj , φj)

n
j=1. Clearly, there is an upper bound of s involved

since the derivatives of χj implicitly enter the game according to the chain rule.

Theorem 1.15. Assume that Ω is a Ck−1,1 domain and 0 ≤ s ≤ k.
(i) For π, π′ two arbitrary parametrizations of Γ, there holds the set equality Hs(Γ) := Hs(Γ;π) =
Hs(Γ;π′), and the corresponding norms are equivalent, ‖ · ‖Hs(Γ;π) ∼ ‖ · ‖Hs(Γ;π′)

(ii) There holds L2(Γ) = H0(Γ) with equivalent norms.
(iii) Hs(Γ) is a Hilbert space, and the inclusion Ht(Γ) ⊂ Hs(Γ) for k ≥ t > s is continuous. �

With the continuous inclusion Hs(Γ) ⊆ L2(Γ), Lemma 1.12 allows to define the dual space Hs(Γ)∗

with respect to the extended L2(Γ) scalar product, i.e.

〈f ; v〉 :=
∫

Γ
fv ds for v ∈ Hs(Γ) and f ∈ Hs(Γ)∗, (1.25)

where the integral is only a symbol and defined by continuous extension if f ∈ Hs(Γ)∗\L2(Γ) is
not L2 integrable.
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Definition 1.16. For Ω a bounded Ck−1,1 domain and 0 < s ≤ k, we define the Sobolev space
H−s(Γ) as dual space Hs(Γ)∗ with respect to the extended L2(Γ) scalar product. ✷

We finish this section with a more practical, equivalent definition of Sobolev spaces on the boundary.
For the actual proof of the equivalence, we again refer to [McL00].

Definition 1.17. Let Ω be a bounded Lipschitz domain and 0 < s < 1. Then, the Sobolev
space Hs(Γ) can also be defined as

Hs(Γ) := {u ∈ L2(Γ) : ‖u‖Hs(Γ) <∞},

where

‖u‖2Hs(Γ) := ‖u‖2L2(Γ) +

∫

Γ

∫

Γ

|u(x)− u(y)|2
|x− y|d−1+2s

dy dx

denotes the Sobolev-Slobodeckij norm.

1.4.3 Main Theorems on Sobolev Spaces

Unless otherwise stated, we assume throughout that Ω is (at least) a bounded Lipschitz domain in
Rd. The first theorem states that we may always restrict to smooth functions within the proofs.

Theorem 1.18 (Meyers-Serrin). For each non-negative order s ≥ 0, C∞(Ω) ∩ Hs(Ω) is
a dense subspace of Hs(Ω). Moreover, for each non-negative order s ≥ 0, C∞(Ω) :=

{
u|Ω

∣∣u ∈
C∞(Rd)

}
is a dense subspace of Hs(Ω). �

If the order s ≥ 0 is large enough, we are dealing with classical continuous functions. Here, large
enough means s > 1/2 for d = 1 (or on the boundary Γ of Ω ⊂ R2), s > 1 for d = 2 (or on the
boundary Γ of Ω ⊂ R3), and s > 3/2 for d = 3, respectively.

Theorem 1.19 (Sobolev Inequality). For d/2 < s, there holds Hs(Ω) ⊆ C(Ω) with
continuous embedding, i.e. ‖u‖∞ . ‖u‖Hs(Ω) for all u ∈ Hs(Ω). �

Here and in the following, the symbol . states that there is a multiplicative constant C > 0 involved
which does neither depend on terms of the right-hand side nor on terms of the left-hand side. For
example, the Sobolev inequality reads ‖u‖∞ ≤ C‖u‖Hs(Ω) for all u ∈ Hs(Ω), where C > 0 depends
not on u but (possibly) on Ω and s.

From the classical Arzéla-Ascoli theorem one derives the so-called Rellich theorem which states
that the identity operator id : Hs(Ω) →֒ Ht(Ω) for s > t is not only well-defined and continuous,
but even is a compact operator, which is a pretty strong result.

Theorem 1.20 (Rellich Compactness Theorem). For any orders s > t, the embedding
Hs(Ω) ⊆ Ht(Ω) is compact. �
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A classical tool in the Sobolev space H1(Ω) is the Poincaré inequality, which essentially provides
estimates for the L2(Ω)-norm by the H1(Ω)-seminorm.

Lemma 1.21 (Poincaré Inequality). For all u ∈ H1(Ω), there holds

‖u‖L2(Ω) . ‖∇u‖L2(Ω) +
∣∣∣
∫

Ω
u dx

∣∣∣. (1.26)

In particular, we have ‖u‖L2(Ω) . ‖∇u‖L2(Ω) for all u ∈ H1(Ω) with
∫
Ω u dx = 0.

1.4.4 The Trace Operator

For certain Sobolev functions u ∈ Hs(Ω), one can define the trace γint0 u on the boundary. The
induced trace operator is linear and continuous. This is stated in the following theorem.

Theorem 1.22 (Trace Operator). Let Ω ⊂ Rd be a bounded Ck−1,1 domain and 1/2 < s ≤ k.
For u ∈ Hs(Ω) and x ∈ Γ, we define formally the trace

γint0 u(x) := lim
ε→0

1

|Ωε|

∫

Ωε

u(y) dy

with Ωε := Ω ∩Bε(x). Then, γint0 u is defined almost everywhere on Γ and

γint0 : Hs(Ω)→ Hs−1/2(Γ) (1.27)

is a well-defined bounded linear operator, i.e.

‖γint0 u‖Hs−1/2(Γ) . ‖u‖Hs(Ω) (1.28)

for all u ∈ Hs(Ω). �

Remark. If u ∈ Hs(Ω) is continuous at x ∈ Γ, we have γint0 u(x) = u(x). That is, γint0 extends the
classical trace defined as restriction u|Γ on the boundary for smooth functions u ∈ C(Ω). ✷

As a first corollary to Theorem 1.22, we can prove that the integration by parts formula also holds
for Sobolev functions u, v ∈ H1(Ω).

Corollary 1.23 (Integration by Parts). For all u, v ∈ H1(Ω), there holds

∫

Ω
u
∂v

∂xj
dx+

∫

Ω

∂u

∂xj
v dx =

∫

Γ
γint0 u γint0 v nj ds. (1.29)

Proof. The formula (1.29) holds for u, v ∈ C1(Ω). All three terms define continuous bilinear
forms on H1(Ω) × H1(Ω). Therefore (1.29) follows for arbitrary u, v ∈ H1(Ω) from the density
of C1(Ω) in H1(Ω): Given u, v ∈ H1(Ω), there are sequences (un) and (vn) in C1(Ω) which con-
verge to u resp. v in H1(Ω). Therefore, if a(·, ·) : H1(Ω) ×H1(Ω) → R is continuous, there holds
lim
n→∞

a(un, vn) = a(u, v). This concludes the proof. �
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Under the same assumptions as in the Trace Theorem 1.22, one can define a right-inverse of the
trace operator. This operator is usually called lifting operator since it maps some boundary values
onto some corresponding Sobolev functions in the domain.

Theorem 1.24 (Lifting Operator). Let Ω ⊂ Rd be a bounded Ck−1,1 domain and 1/2 < s ≤ k.
Then, there is a continuous linear operator

L : Hs−1/2(Γ)→ Hs(Ω) (1.30)

such that γint0 Lu = u for all u ∈ Hs−1/2(Γ). �

As a remarkable corollary of Theorem 1.22 and Theorem 1.24, we obtain that an equivalent defi-
nition of Sobolev spaces on the boundary can be given by use of the trace operator. In particular,
the important space H1/2(Γ) is just the space of all traces of functions in H1(Ω).

Corollary 1.25. Let Ω ⊂ Rd be a bounded Ck−1,1 domain and 1/2 < s ≤ k. Then,

Hs−1/2(Γ) =
{
γint0 û

∣∣ û ∈ Hs(Ω)
}
, (1.31)

and

‖u‖ := inf
{
‖û‖Hs(Ω)

∣∣ û ∈ Hs(Ω) with γint0 û = u
}

(1.32)

defines an equivalent norm on Hs−1/2(Γ).

Proof. The set inclusion ⊇ follows from the existence of the trace operator. The converse inclusion
⊆ follows from the existence of the lifting operator L and γint0 L = id. For u ∈ Hs−1/2(Γ), there
holds

‖u‖ ≤ ‖Lu‖Hs(Ω) . ‖u‖Hs−1/2(Γ)

with L the (continuous) lifting operator. To prove the converse estimate, let ε > 0 be arbi-
trary. According to the definition of an infimum, there is an extension û ∈ Hs(Ω) with γint0 û = u
and ‖û‖Hs(Ω) ≤ ‖u‖ + ε. With the (continuous) trace operator, we are led to ‖u‖Hs−1/2(Γ) =

‖γint0 û‖Hs−1/2(Γ) . ‖û‖Hs(Ω). Therefore

‖u‖Hs−1/2(Γ) . ‖û‖Hs(Ω) ≤ ‖u‖ + ε,

for all ε > 0. With ε→ 0, we prove the equivalence of ‖ · ‖ and ‖ · ‖Hs−1/2(Γ). In particular, ‖u‖ = 0
implies u = 0, i.e. ‖ · ‖ is definite. The homogeneity ‖λu‖ = |λ|‖u‖ is clear by definition and the
linearity of the trace operator. Finally, for u, v ∈ Hs−1/2(Γ), there holds

‖u+ v‖ ≤ ‖L(u+ v)‖Hs(Ω) ≤ ‖Lu‖Hs(Ω) + ‖Lv‖Hs(Ω).

Taking the infimum over all extensions û and v̂ of u and v, respectively, we prove the triangle
inequality. �
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Remark. In fact, if we define Hs
0(Ω) :=

{
u ∈ Hs(Ω)

∣∣ γint0 u = 0
}
for 1/2 < s ≤ k, then Hs−1/2(Γ)

is (isomorphic to) the quotient space Hs(Ω)/Hs
0(Ω). Note that the norm ‖·‖ from (1.32) is nothing

but the quotient norm. ✷

With the trace operator, we can provide a similar result to Poincaré inequality, which will be used
for the analytical treatment of the Dirichlet problem, the so-called Friedrichs inequality.

Lemma 1.26 (Friedrichs Inequality). Assume that the Dirichlet boundary ΓD ⊆ Γ has
positive surface measure |ΓD| > 0. Then, there holds

‖u‖L2(Ω) . ‖∇u‖L2(Ω) + ‖γint0 u‖L2(ΓD) (1.33)

for all u ∈ H1(Ω). In particular, ‖∇u‖L2(Ω) defines a Hilbert norm on the closed subspace

H1
0 (Ω) :=

{
u ∈ H1(Ω)

∣∣ γint0 u = 0
}

(1.34)

of H1(Ω), and this norm is equivalent to ‖ · ‖H1(Ω) on H
1
0 (Ω).

1.4.5 Sobolev Spaces with Zero Boundary Conditions

In this subsection, we incorporate zero boundary conditions into the function spaces Hs(Ω). The
main observation is that there are multiple ways to do this, and Lemma 1.28 shows that these
definitions can be equivalent or different depending on the parameter s.

Definition 1.27. For s ∈ R+ we define Sobolev spaces with homogeneous boundary
conditions as follows:

• Hs
0(Ω) := C∞

0 (Ω), where the closure is understood with respect to the ‖ · ‖Hs(Ω)-norm.

• H̃s(Ω) := {u ∈ Hs(Rd) : suppu ⊂ Ω} with the norm

‖u‖
H̃s(Ω)

:= ‖ũ‖Hs(Rd) with ũ denoting the 0-extension of u

• H−s(Ω) := H̃s(Ω)∗

Remark. For s > 1/2 an equivalent definition of the space Hs
0(Ω) is given as the kernel of the

trace operator, i.e.,
Hs

0(Ω) := {u ∈ Hs(Ω) : γint0 u = 0}.

Remark. The norm on H̃s(Ω) defined by the 0-extension is oftentimes hard to work with due to
the non-local nature of the norms on Hs for s /∈ N. However, for s ∈ N, we indeed have

‖u‖
H̃s(Ω)

= ‖u‖Hs(Ω).

For non-integer s ∈ (0, 1) and bounded Lipschitz domains Ω, an equivalent norm on H̃s(Ω) is given
by

‖u‖2
H̃s(Ω)

∼ ‖u‖2Hs(Ω) + ‖u/ρs‖2L2(Ω),
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where ρ(x) := dist(x,Γ) for x ∈ Ω. Replacing u by higher derivatives in the L2-term gives an
equivalent norm for s > 1.
The following lemma shows in which cases the space H̃s(Ω) and Hs

0(Ω) are equal or not.

Lemma 1.28. Let Ω ⊂ Rd be a bounded Lipschitz domain.
(i) Let s /∈ 1

2 + n for n ∈ N0. Then,

H̃s(Ω) = Hs
0(Ω)

with equivalent norms.
(ii) Let s = 1

2 . Then,

H̃1/2(Ω) ( H
1/2
0 (Ω) = H1/2(Ω).

(iii) Let s < 1
2 . Then,

H̃s(Ω) = Hs(Ω).

Proof. We only provide the main idea for the first statement, for the other two statements, we
refer to [Gri11].
For an C0-domain, we refer to [Neč67] for the density of C∞

0 (Ω) in H̃s(Ω). Therefore, it remains
to show the equivalence of the norms onto both spaces.
By definition of the H̃s-norm, we obviously have

‖u‖Hs(Ω) ≤ ‖u‖H̃s(Ω)
.

For the converse inequality, we take v ∈ C∞
0 (Ω). Since v ≡ 0 on Ωc, we compute using Fubini’s

theorem

|v|2Hs(Rd) =

∫

Ω

∫

Ω

|v(x)− v(y)|2
|x− y|d+2s

dxdy + 2

∫

Ω

∫

Ωc

|v(x)|2
|x− y|d+2s

dydx

. |v|2Hs(Ω) +

∫

Ω
|v(x)|2

∫

Bρ(x)(x)
c

1

|x− y|d+2s
dydx

. |v|2Hs(Ω) +

∫

Ω

|v(x)|2
ρ(x)2s

dx,

where the last inequality follows from using polar coordinates. For a Lipschitz domain Ω and
s− 1/2 /∈ N the Hardy-inequality, c.f., [Gri11, Thm. 1.4.4.4],

∫

Ω

|∂αv(x)|2
ρ(x)2(s−|α|) dx ≤ C‖v‖

2
Hs(Ω) ∀v ∈ Hs

0(Ω), α ∈ Nd, |α| ≤ s

holds, and finally gives

‖v‖
H̃s(Ω)

= ‖v‖Hs(Rd) . ‖v‖Hs(Ω),

which finishes the proof. �
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1.5 The Dirichlet Problem

Strong Form of Dirichlet Problem. We consider the model problem

−∆u = f in Ω,

u = g on Γ,
(1.35)

where Ω ⊂ Rd is a bounded Lipschitz domain with boundary Γ and where the Dirichlet data
g ∈ H1/2(Γ) and the volume forces f are given. We recall the first Green’s formula

∫

Ω
fv dx =

∫

Ω
(−∆u)v dx =

∫

Ω
∇u · ∇v dx−

∫

Γ

∂u

∂n
v ds, (1.36)

which holds in a classical sense, provided u and v are smooth enough. The main step in this section
is to understand (1.36) in a mathematical sense for Sobolev functions u and v, respectively. For
v ∈ H1

0 (Ω) =
{
u ∈ H1(Ω)

∣∣ γint0 u = 0
}
, the boundary integral vanishes and we are led to

∫

Ω
fv dx =

∫

Ω
∇u · ∇v dx. (1.37)

Weak Form of Dirichlet Problem. If H−1(Ω) is the dual space of H1
0 (Ω) = ker(γint0 : H1(Ω)→

H1/2(Γ)) with respect to the extended L2 scalar product, we may write (1.37) in the form

〈f ; v〉 = (∇u ; ∇v)Ω for all v ∈ H1
0 (Ω), (1.38)

where 〈· ; ·〉 denote the duality brackets and (· ; ·)Ω denotes the L2 scalar product. Therefore, we
may state the weak form of our model problem (1.35): Given f ∈ H−1(Ω) and g ∈ H1/2(Γ), find
u ∈ H1(Ω) such that

(∇u ; ∇v)Ω = 〈f ; v〉 for all v ∈ H1
0 (Ω),

γint0 u = g.
(1.39)

Note that a classical solution u of our model problem (1.35) is also a solution of the weak form
since we derived our weak form by nothing but integration by parts. Therefore it is necessary to
study the (unique) solvability of the weak form (1.39).

Usually the weak form (1.39) is written in a sloppy way as

−∆u = f ∈ H−1(Ω),

γint0 u = g ∈ H1/2(Γ).
(1.40)

Here, the notation −∆u ∈ H−1(Ω) is a symbol which is defined by

〈−∆u ; v〉 := (∇u ; ∇v)Ω for v ∈ H1
0 (Ω). (1.41)

To get familiar with the introduced notation, we show that −∆ : H1(Ω)→ H−1(Ω) is a continuous
linear operator:

‖ −∆u‖H−1(Ω) = sup
v∈H1

0(Ω)

v 6=0

(∇u ; ∇v)Ω
‖v‖H1(Ω)

≤ ‖∇u‖L2(Ω) ≤ ‖u‖H1(Ω), (1.42)
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where the first equality is just the definition and where the first estimate follows from the Cauchy
inequality in L2. Thus, the operator norm satisfies ‖ −∆ : H1(Ω)→ H−1(Ω)‖ ≤ 1.

Theorem 1.29. Given f ∈ H−1(Ω) and g ∈ H1/2(Γ), there is a unique weak solution u ∈ H1(Ω)
of (1.39) resp. (1.40), and there holds the stability estimate

‖u‖H1(Ω) . ‖f‖H−1(Ω) + ‖g‖H1/2(Γ). (1.43)

Proof. With the lifting operator L, we define u0 := u−Lg ∈ H1
0 (Ω). Then, (1.39) is equivalent to

(∇u0 ; ∇v) = 〈f +∆(Lg) ; v〉 for all v ∈ H1
0 (Ω). (1.44)

Note that f +∆(Lg) ∈ H−1(Ω). According to the Friedrichs inequality, the left-hand side defines
an equivalent scalar product on H1

0 (Ω). Therefore, the Riesz theorem proves the unique existence
of a solution u0 ∈ H1

0 (Ω). In particular, u = u0 +Lg is the unique solution of (1.39). To prove the
stability estimate, we first estimate ‖u0‖H1(Ω). The Friedrich’s inequality proves

‖u0‖2H1(Ω) . ‖∇u0‖2L2(Ω) = (∇u ; ∇u0)Ω − (∇Lg ; ∇u0)Ω
= 〈f ; u0〉 − (∇Lg ; ∇u0)Ω
≤
(
‖f‖H−1(Ω) + ‖Lg‖H1(Ω)

)
‖u0‖H1(Ω).

Finally, we thus obtain

‖u‖H1(Ω) ≤ ‖u0‖H1(Ω) + ‖Lg‖H1(Ω) . ‖f‖H−1(Ω) + ‖Lg‖H1(Ω) . ‖f‖H−1(Ω) + ‖g‖H1/2(Γ),

where we have used the continuity of L. �

The Conormal Derivative. In the following we assume that −∆u = f ∈ H̃−1(Ω). Note that, by
definition, H1

0 (Ω) ⊂ H1(Ω) and therefore H̃−1(Ω) ⊂ H−1(Ω), i.e. the assumption on the volume

forces f ∈ H̃−1(Ω) is now stronger than before. In this setting, we want to explain the first
Green’s formula mathematically – now for v ∈ H1(Ω) instead of only v ∈ H1

0 (Ω). The first Green’s
formula (1.36) becomes formally, with γint1 u = ∂u/∂n,

〈f ; v〉 = (∇u ; ∇v)Ω − 〈γint1 u ; γint0 v〉 (1.45)

for u ∈ H1(Ω) the weak solution of (1.39) and a test function v ∈ H1(Ω). The first term is well-
defined by our assumption on f ∈ H̃−1(Ω). The second term is well-defined since both gradients
are in L2. However, so far the last term is mathematically undefined since we have not defined the
conormal derivative γint1 u, yet. Because of γint0 v ∈ H1/2(Γ), we must look for γint1 u ∈ H−1/2(Γ) as
an element of the dual space.

Since we would like the first Green’s formula (1.45) to hold for any v ∈ H1(Ω), we must define
γint1 u ∈ H−1/2(Γ) by

〈γint1 u ; v〉 := (∇u ; ∇v̂)Ω − 〈f ; v̂〉 (1.46)

for all v ∈ H1/2(Γ) and an arbitrary extension v̂ ∈ H1(Ω) with γint0 v̂ = v. However, one has to
prove that the right-hand side in (1.46) is independent of the extension v̂ ∈ H1(Ω) of v ∈ H1/2(Γ).
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Theorem 1.30. Let u ∈ H1(Ω) be the unique weak solution of (1.39) for given data f ∈ H̃−1(Ω)
and g ∈ H1/2(Γ). Then, the conormal derivative γint1 u ∈ H−1/2(Γ) from (1.46) is well-defined and
there holds the first Green’s formula (1.45) for all v ∈ H1(Ω). Moreover, we have the stability
estimate

‖γint1 u‖H−1/2(Γ) . ‖f‖H̃−1(Ω)
+ ‖∇u‖L2(Ω) . ‖f‖H̃−1(Ω)

+ ‖g‖H1/2(Γ). (1.47)

Proof. To prove that γint1 u ∈ H−1/2(Γ) is well-defined, let v̂, ṽ ∈ H1(Ω) satisfy γint0 v̂ = v = γint0 ṽ.
Then, v̂ − ṽ ∈ H1

0 (Ω) and therefore (1.38) states

0 = (∇u ; ∇(v̂ − ṽ))Ω − 〈f ; v̂ − ṽ〉 =
[
(∇u ; ∇v̂)Ω − 〈f ; v̂〉

]
−
[
(∇u ; ∇ṽ)Ω − 〈f ; ṽ〉

]
.

Thus, the definition (1.46) of γint1 u ∈ H−1/2(Γ) is mathematically correct, and (1.45) holds for all
v ∈ H1(Ω). It only remains to verify the stability estimate. By definition, there holds

‖γint1 u‖H−1/2(Γ) = sup
v∈H1/2(Γ)

v 6=0

〈γint1 u ; v〉
‖v‖H1/2(Γ)

.

For the nominator, we plug-in the first Green’s formula to see

〈γint1 u ; v〉 = 〈f ; Lv〉 − (∇u ; ∇(Lv))Ω ≤ ‖f‖H̃−1(Ω)
‖Lv‖H1(Ω) + ‖∇u‖L2(Ω)‖∇(Lv)‖L2(Ω).

The continuity of the lifting operator L proves

‖∇(Lv)‖L2(Ω) ≤ ‖Lv‖H1(Ω) . ‖v‖H1/2(Γ).

Altogether, we hence obtain ‖γint1 u‖H−1/2(Γ) . ‖f‖
H̃−1(Ω)

+ ‖∇u‖L2(Ω). Finally, the inequality

‖∇u‖L2(Ω) . ‖f‖H̃−1(Ω)
+ ‖g‖H1/2(Γ) follows as in the proof of Theorem 1.29. �

For the following exercise, recall that H̃−1(Ω) ⊂ H−1(Ω). Thus, it is an important question under
which circumstances −∆u, for given u ∈ H1(Ω), does not only belong to H−1(Ω) but even to
H̃−1(Ω). However, this question can very easily been answered.

Exercise 1. Let u ∈ H1(Ω) and f := −∆u ∈ H−1(Ω). Then, there holds f ∈ H̃−1(Ω) if and
only if there is a functional φ ∈ H−1/2(Γ) such that

〈f ; v〉 = (∇u ; ∇v)Ω − 〈φ ; γint0 v〉 for all v ∈ H1(Ω).

In this case, there holds φ = γint1 u. ✷

Remark. The first Green’s formula is also well-defined, if we have u ∈ H1(Ω), ∆u ∈ L2(Ω), often
written as H1

∆(Ω) := {u ∈ H1(Ω) : ∆u ∈ L2(Ω)}, which allows us to define a conormal derivative
by

〈γint1 u ; γint0 v〉 := (∇u ; ∇v)Ω + (∆u ; v)Ω for all v ∈ H1(Ω).
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With the same arguments as above, the conormal derivative is well-defined, unique and bounded
with

‖γint1 u‖H−1/2(Γ) . ‖∆u‖L2(Ω) + ‖∇u‖L2(Ω), (1.48)

and by definition the first Green’s formula holds.

1.6 The Neumann Problem

Strong Form of Neumann Problem. We consider the model problem

−∆u = f in Ω,

∂u/∂n = φ on Γ,
(1.49)

where Ω ⊂ Rd is a bounded Lipschitz domain with boundary Γ and where the Neumann data
φ ∈ H−1/2(Γ) and the volume forces f ∈ H̃−1(Ω) are given. The first Green’s formula reads

(∇u ; ∇v)Ω = 〈f ; v〉+ 〈φ ; γint0 v〉 for v ∈ H1(Ω). (1.50)

If we plug-in the constant function v ≡ 1, we see that the data must satisfy

0 = 〈f ; 1〉+ 〈φ ; 1〉 (1.51)

to allow solutions of (1.49). Moreover, additive constants are not fixed in the formulation of the
problem, i.e. if u is a solution of (1.49) and α ∈ R, then u+α is a solution of (1.49). To fix additive
constants, we define the Sobolev space

H1
∗ (Ω) :=

{
v ∈ H1(Ω)

∣∣ ∫
Ωv dx = 0

}
. (1.52)

Weak Form of Neumann Problem. The weak form of (1.49) then reads: Find u ∈ H1
∗ (Ω) such

that (1.50) holds.

Theorem 1.31. Let f ∈ H̃−1(Ω) and φ ∈ H−1/2(Γ) satisfy (1.51). Then, there is a unique
solution u ∈ H1

∗ (Ω) of (1.50). There holds the stability estimate

‖u‖H1(Ω) . ‖f‖H̃−1(Ω)
+ ‖φ‖H−1/2(Γ). (1.53)

Proof. For a function v ∈ H1(Ω), we define

ṽ := v − v ∈ H1
∗ (Ω), where v =

1

|Ω|

∫

Ω
v dx.

As the right-hand side of (1.50) reads

〈f ; v〉+ 〈φ ; γint0 v〉 = 〈f ; ṽ〉+ 〈φ ; γint0 ṽ〉,

(1.50) can be stated equivalently withH1
∗ (Ω) replacingH

1(Ω). According to the Poincaré inequality,
the left-hand side of (1.50) defines an equivalent scalar product on H1

∗ (Ω). Therefore, the Riesz
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theorem applies and proves the unique existence of a weak solution u ∈ H1
∗ (Ω). Another application

of the Poincaré inequality and v = u in (1.50) proves

‖u‖2H1(Ω) . ‖∇u‖2L2(Ω) = 〈f ; u〉+ 〈φ ; γint0 u〉
≤ ‖f‖

H̃−1(Ω)
‖u‖H1(Ω) + ‖φ‖H−1/2(Γ)‖γint0 u‖H1/2(Γ)

. ‖u‖H1(Ω) {‖f‖H̃−1(Ω)
+ ‖φ‖H−1/2(Γ)}.

This concludes the proof. �

Saddle Point Formulation of Neumann Problem. As in the previous section, we may state
the weak form (1.50) equivalently as a saddle point problem with solution (u, λ) ∈ H1(Ω) × R in
order to eliminate the side constraint

∫
Ω u dx = 0 contained in the definition of H1

∗ (Ω).

(∇u ; ∇v)Ω + λ
∫
Ω v dx = 〈f ; v〉+ 〈φ ; γint0 v〉

µ
∫
Ω u dx = 0

}
for all (v, µ) ∈ H1(Ω)× R. (1.54)

Proposition 1.32. The Brezzi theorem (Theorem A.4) applies to the saddle point prob-
lem (1.54): Provided f ∈ H̃−1(Ω) and φ ∈ H−1/2(Γ) satisfy (1.51), (1.54) has a unique solution
(u, λ) ∈ H1(Ω)× R. There holds λ = 0 and u ∈ H1

∗ (Ω), and u is the unique solution of the weak
form (1.50) of the Neumann problem.

Proof. With respect to the abstract setting of the Brezzi theorem, we have X = H1(Ω), Y = R,
a(u, v) = (∇u ; ∇v)Ω, and b(u, λ) := λ

∫
Ω u dx. There holds X0 =

{
u ∈ H1(Ω)

∣∣ b(u, ·) = 0
}

=
H1

∗ (Ω), and a(·, ·) is an equivalent scalar product on H1
∗ (Ω). Therefore, the Brezzi theorem pro-

vides a unique solution (u, λ) ∈ H1(Ω) × R. Note that b(u, ·) = 0 implies u ∈ H1
∗ (Ω). Plugging-in

v ≡ 1 into the first equation of (1.54), we obtain λ = 0. Therefore, the first equation simplifies to
the first Green’s formula, and u is the unique solution of (1.50). �

Remark. It is also possible to consider mixed boundary value problems of the form

−∆u = f in Ω,

u = gD on ΓD,

∂u/∂n = gN on ΓN ,

(1.55)

where Ω ⊂ Rd is a bounded Lipschitz domain with boundary Γ. ΓD and ΓN are open subsets of Γ
with ΓD ∩ ΓN = ∅ and ΓD ∪ ΓN = Γ, where we assume |ΓD| > 0. To come up with a functional
analytic setting, we would have to specify the Sobolev spaces to which gD and gN belong, which
leads to Sobolev spaces Hs(γ) on screens γ ⊂ Γ. The essential ideas are hereby the same as in the
previous sections, but the discussion is a bit more technical. For details, we refer, e.g., to [Ste08].
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Chapter 2

Integral Operators

In Chapter 1, we have proven the representation formula

u = Ñ(−∆u) + Ṽ (∂u/∂n)− K̃(u) in Ω (2.1)

only for u ∈ C2(Ω), cf. Proposition 1.6. Here, we abbreviate notation by use of three linear integral
operators Ñ , Ṽ , and K̃, namely

• the Newton potential of f : Ω→ R

Ñf(x̃) :=

∫

Ω
G(x̃− y)f(y) dy for x̃ ∈ Ω, (2.2)

• the single layer potential of φ : Γ→ R

Ṽ φ(x̃) :=

∫

Γ
G(x̃− y)φ(y) dsy for x̃ ∈ Ω, (2.3)

• the double layer potential of v : Γ→ R

K̃v(x̃) :=

∫

Γ

∂y
∂n(y)

G(x̃− y) v(y) dsy for x̃ ∈ Ω. (2.4)

The goal of this chapter is threefold: First, we want to study the mapping properties of the three
operators with respect to our functional analytic setting. This leads to a general statement of the
representation formula (2.1) as well as to the introduction of the Calderón projector. Second, we
derive integral equations which provide — at a fist glance — necessary conditions for a function
u ∈ H1(Ω) to solve the model problem −∆u = f for Dirichlet and Neumann boundary conditions,
respectively. In the next chapter, we shall show that these integral equations are in fact equivalent
formulations of our model problems. Finally, we want to derive integral representations of the
operators for the case x̃ → x ∈ Γ := ∂Ω. Throughout, we assume that Ω is a Lipschitz domain in
Rd.

Besides the function spaces of the last chapter, the following easy result from functional analysis
states the most important mathematical tool for the entire section.

Lemma 2.1. Let X and Y be Banach spaces, D be a dense subspace of X, and T ∈ L(D;Y ).
Then, there is a unique extension T̂ ∈ L(X;Y ), i.e., T̂ x = Tx for all x ∈ D. Moreover, there
holds ‖T̂ : X → Y ‖ = ‖T : D → Y ‖ for the corresponding operator norms.
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2.1 Newton, Single-Layer, and Double-Layer Potential

In the following, we study the mapping properties of the three potential operators Ñ , Ṽ , and K̃.
We start with the Newton potential Ñf of a function f : Ω → R as well as with its trace and its
conormal derivative

N0 := γint0 Ñ and N1 := γint1 Ñ , (2.5)

respectively. We start with an elementary observation, which allows to verify the mapping proper-
ties for smooth functions only.

Lemma 2.2. For each domain Ω and s ≥ 0, D(Ω) is a dense subspace of both, H−s(Ω) as well
as H̃−s(Ω).

Proof. We consider the case of H̃−s(Ω) = Hs(Ω)∗. Recall that ‖ · ‖L2(Ω) ≤ ‖ · ‖Hs(Ω), whence
‖ · ‖

H̃−s(Ω)
≤ ‖ · ‖L2(Ω). To conclude the proof, we recall that D(Ω) is a dense subspace of L2(Ω)

with respect to the L2-norm and that L2(Ω) is a dense subspace of H̃−s(Ω) with respect to the
H̃−s-norm. Altogether, we thus have density of D(Ω) in H̃−s(Ω). The same arguments work for
H−s(Ω) = H1

0 (Ω)
∗. �

The following theorem gathers the most important mapping properties of Ñ together.

Theorem 2.3. (i) There holds Ñf ∈ C∞(Rd) for f ∈ D(Ω).
(ii) Ñ allows for a unique extension Ñ ∈ L

(
H̃−1(Ω);H1(Ω)

)
from D(Ω) to H̃−1(Ω).

(iii) −∆(Ñf) = f for all f ∈ H̃−1(Ω).
(iv) N0 := γint0 Ñ ∈ L

(
H̃−1(Ω);H1/2(Γ)

)
.

(v) N1 := γint1 Ñ ∈ L
(
H̃−1(Ω);H−1/2(Γ)

)
.

Lemma 2.4. For f ∈ D(Ω), there holds Ñf ∈ C∞(Rd) as well as f = Ñ(−∆f) = −∆(Ñf).
Moreover, the partial derivatives satisfy ∂α(G ∗ f) = G ∗ ∂αf .
Proof. 1. step. To prove Ñf ∈ C∞(Rd), recall that Ñf = G ∗ f and G ∈ L1

ℓoc(R
d). We now

prove that

∀R > 0∃GR ∈ L1(Rd) (G ∗ f)|BR(0) = (GR ∗ f)|BR(0),

so that usual results on convolution apply and yield Ñf ∈ C∞(Rd): Given R > 0, we assume
without loss of generality that Ω ⊆ BR(0). Choose χR ∈ D(Rd) with χR|B2R(0) ≡ 1 and define
GR := GχR. Provided |y| ≥ 2R and |x| ≤ R, there holds x − y 6∈ Ω since |x − y| ≥ |y| − |x| ≥ R.
In particular, we have f(x− y) = 0 and consequently

G ∗ f(x) =
∫
f(x− y)G(y) dy =

∫

|y|≤2R
f(x− y)G(y) dy = GR ∗ f(x) for all x ∈ BR(0)

since G(y) = GR(y) for |y| ≤ 2R.

2. step. The equality f = Ñ(−∆f) follows from the representation formula (1.14) as f = 0 =
∂f/∂n on Γ.
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3. step. To prove the equality f = −∆(Ñf), we apply the fundamental theorem of calculus: For
g ∈ D(Ω), integration by parts and the application of the Fubini theorem prove

(
−∆(Ñf) ; g

)
Ω
=
(
Ñf ; −∆g

)
Ω
=

∫

Ω
(−∆g)(x)

∫

Ω
G(x− y)f(y) dy dx

=

∫

Ω
f(y)

∫

Ω
G(x− y)(−∆g)(x) dx dy

= (f ; g)Ω .

Here, we used that G(x − y) = G(y − x) so that the inner integral is just Ñ(−∆g)(y) = g(y) as
g ∈ D(Ω). This implies −∆(Ñf) = f almost everywhere in Ω and thus everywhere in Ω according
to continuity. �

Proof of Theorem 2.3. The statement (i) follows directly from the previous lemma.
Proof of (ii): The proof is rather technical and makes use of the equivalent definition of the Sobolev
spaces Hs(Ω) in terms of the Fourier transform and the so called Bessel potential. Here, we sketch
the arguments and refer to [Ste08] for the complete details. We have to show that

‖Ñf‖H1(Ω) . ‖f‖H̃−1(Ω)
.

It suffices - by using a density argument - to show this result for f ∈ D(Ω).
1. step. The property supp f ⊂ Ω gives

‖f‖H−1(Rd) = sup
v∈H1(Rd)

(f, v)H1(Rd)

‖v‖H1(Rd)

≤ sup
v∈H1(Ω)

(f, v)H1(Ω)

‖v‖H1(Ω)
= ‖f‖

H̃−1(Ω)
,

which allows us to work in the full-space Rd. Applying the definition of Sobolev spaces via Fourier
transformation gives for s ∈ R

‖f‖2Hs(Rd) =

∫

Rd

(Ff(ζ))2(1 + |ζ|2)sdζ. (2.6)

2. step. Let u = Ñf and uχ(x) :=
∫
Ω χ(|x− y|)G(x− y)f(y)dy for x ∈ Rd, where χ ∈ C∞

0 ([0,∞))
is a cut-off function satisfying 0 ≤ χ ≤ 1, χ(r) ≡ 1 for r ∈ [0, 2R], and R > 0 is sufficiently large
such that Ω ⊂ BR(0).
Then, we have uχ = u on Ω as well as uχ ∈ H1(Rd). This gives together with (2.6) that

‖u‖2H1(Ω) = ‖uχ‖2H1(Ω) ≤ ‖uχ‖2H1(Rd) =

∫

Rd

(Fuχ(ζ))2(1 + |ζ|2)dζ. (2.7)

Therefore, it remains to estimate the Fourier transform of uχ. We write using that the Fourier
transform turns convolutions into multiplications

Fuχ(ζ) = Ff(ζ)I(|ζ|) with I(|ζ|) :=
∫

Rd

e−iz·ζχ(|z|)G(z) dz.
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We note, that indeed I(ζ) = I(|ζ|) is rotational symmetric, since the Fourier transform preserves
this property and the integrand is rotational symmetric. Using some properties of Bessel potentials,
some tedious calculations (see [Ste08]) provide estimates for I

|I(|ζ|)| .
{
|ζ|−2 |ζ| ≥ 1,

1 |ζ| < 1.

Inserting everything into (2.7), we may estimate

∫

Rd

(Fuχ(ζ))2(1 + |ζ|2)dζ =

∫

|ζ|≥1
(1 + |ζ|2)|I(|ζ|)|2|Ff(ζ)|2dζ +

∫

|ζ|<1
(1 + |ζ|2)|I(|ζ|)|2|Ff(ζ)|2dζ

. 4

∫

Rd

1

1 + |ζ|2 |Ff(ζ)|
2dζ = ‖f‖2H−1(Rd),

where we used the bound on I(|ζ|) and elementary estimates to show I(|ζ|)2(1+ |ζ|2) ≤ 4 1
1+|ζ|2 for

both cases for |ζ| as well as (2.6) for s = −1. With step 1, this finishes the proof of (ii).

Proof of (iv): (iv) follows immediately from (ii) and the mapping properties of the trace operator.

Proof of (iii) and (v): Both statements are proven simultaneously by use of density arguments:

1. step. There holds −∆(Ñf) = f for all test functions f ∈ D(Ω) as proven in Lemma 2.4.

2. step. There is a unique operator N1 ∈ L(H̃−1(Ω);H−1/2(Γ)) with N1 = γint1 Ñ on D(Ω): For

f ∈ D(Ω), there holds Ñf ∈ C∞(Ω) with −∆(Ñf) = f ∈ D(Ω) ⊂ H̃−1(Ω). We may therefore
apply Theorem 1.30 and derive that N1f := γint1 Ñf ∈ H−1/2(Γ) is well-defined with

‖N1f‖H−1/2(Γ) . ‖f‖H̃−1(Ω)
+ ‖Ñf‖H1(Ω) . ‖f‖H̃−1(Ω)

,

where we have used the continuity of Ñ in the final estimate. As D(Ω) is a dense subspace of
H̃−1(Ω), there is a unique extension of N1 from D(Ω) to an operator N1 ∈ L

(
H̃−1(Ω);H−1/2(Γ)

)
.

3. step. There holds −∆(Ñf) = f for all f ∈ H̃−1(Ω): By definition, we have to show that there
is an element φ ∈ H−1/2(Γ) such that

〈f ; v〉 =
(
∇(Ñf) ; ∇v

)
Ω
− 〈φ ; γint0 v〉 for all v ∈ H1(Ω). (2.8)

We choose φ := N1f with N1 the extended operator from step 2. Now, let (fn) be a sequence in
D(Ω) with lim

n→∞
fn = f ∈ H̃−1(Ω). For each n ∈ N, there holds

〈fn ; v〉 =
(
∇(Ñfn) ; ∇v

)
Ω
− 〈N1fn ; γint0 v〉 for all v ∈ H1(Ω) (2.9)

as −∆(Ñfn) = fn and N1fn = γint1 Ñfn. Note that limn→∞ Ñfn = Ñf ∈ H1(Ω) according to (ii).
Moreover, limn→∞N1fn = N1f ∈ H−1/2(Γ). Thus, the equality (2.9) implies the equality (2.8) in
the continuous limit n→∞.

4. step. The operator N1 from step 2 satisfies N1f = γint1 Ñf for all f ∈ H̃−1(Ω): From step 3,

we derive that γint1 Ñf ∈ H−1/2(Γ) is well-defined. Moreover, from the definition of γint1 Ñf in

Theorem 1.30, we obtain that φ = γint1 Ñf in (2.8). As we have just proven φ = N1f , we conclude

N1f = γint1 Ñf . �
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We next consider the single-layer potential Ṽ φ of a function φ : Γ→ R defined as

Ṽ φ =

∫

Γ
G(x− y)φ(y)dsy,

which is well-defined for x ∈ Rd\Γ and φ ∈ L1(Γ).
The following lemma generalizes some known facts from basic analysis for the convolution, which
will be applied for the Newton kernel G and its derivatives ∂αG.

Lemma 2.5. For any φ ∈ L1(Γ) and g ∈ Ck(Rd\{0}), the function u(x) :=
∫
Γ g(x− y)φ(y) dsy

belongs to Ck(Rd\Γ). Moreover, there holds

∂αu(x) =

∫

Γ
∂αx g(x− y)φ(y) dsy for all x ∈ Rd\Γ and all α ∈ Nd

0 with |α| ≤ k.

Proof. Clearly, the lemma follows from the special case k = 1 by induction. We thus only have to
consider the cases k = 0 and k = 1 to derive that u ∈ C1(Rd\Γ).
1. step. We first show that u is continuous in Rd\Γ: To that end, fix x0 ∈ Rd\Γ and η > 0 such
that Bη(x0) ⊂ Rd\Γ. Note that

|u(x)− u(x0)| =
∣∣∣
∫

Γ

(
g(x− y)− g(x0 − y)

)
φ(y) dsy

∣∣∣ ≤ ‖φ‖L1(Γ) sup
y∈Γ

∣∣g(x− y)− g(x0 − y)
∣∣

for all x ∈ Rd. It thus remains to show that for all ε > 0 exists a δ > 0 such that

sup
y∈Γ

∣∣g(x− y)− g(x0 − y)
∣∣ ≤ ε ∀x ∈ Bδ(x0).

We define K :=
{
x− y

∣∣x ∈ Bη(x0), y ∈ Γ
}
and note that K is compact. Letting ε > 0, we choose

δ > 0 with respect to the uniform continuity of g on K. For x ∈ Bδ(x0) and any y ∈ Γ holds
|(x− y)− (x0 − y)| < δ. This yields

∣∣g(x− y)− g(x0 − y)
∣∣ ≤ ε for any y ∈ Γ.

2. step. Next, we sketch the proof of the differentiability of u: Fix x ∈ Rd\Γ. For h > 0, we define
the j-th difference quotient ∆h

j by

∆h
j u(x) :=

u(x+ hej)− u(x)
h

,

which is well-defined for h < ε with Bε(x) ⊂ Rd\Γ. With vj :=
∫
Γ ∂j,xg(x− y)φ(y) dsy, there holds

|∆h
j u(x)− vj(x)| =

∣∣∣
∫

Γ

(
∆h

j,xg(x− y)− ∂j,xg(x− y)
)
φ(y) dsy

∣∣∣

≤ ‖φ‖L1(Γ)‖∆h
j,xg(x− ·)− ∂j,xg(x− ·)‖L∞(Γ).

Note that Γ is compact. Thus, the right-hand side converges to 0 with h → 0 since ∆h
j,xg(x − ·)

and ∂jg(x − ·) are uniformly continuous for fixed x 6∈ Γ and variable y ∈ Γ. The details follow as
in the proof of Theorem A.8 and are left to the reader. This proves u ∈ C1(Rd\Γ) with ∂ju = vj . �
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With this result in hand, we directly obtain that on Rd\Γ the single-layer potential is infinitely
differentiable. In fact, the main theorem for Ṽ reads as follows:

Theorem 2.6. (i) There holds Ṽ φ ∈ C∞(Rd\Γ) at least for φ ∈ L2(Γ).
(ii) Ṽ allows for a unique extension Ṽ ∈ L

(
H−1/2(Γ);H1(Ω)

)
from L2(Γ) to H−1/2(Γ).

(iii) −∆Ṽ φ = 0 ∈ H̃−1(Ω) for all φ ∈ H−1/2(Γ).
(iv) V := γint0 Ṽ ∈ L

(
H−1/2(Γ);H1/2(Γ)

)
.

(v) γint1 Ṽ ∈ L
(
H−1/2(Γ);H−1/2(Γ)

)
.

Remark. We shall see later that for φ ∈ L∞(Γ), there does not only hold Ṽ φ ∈ C∞(Rd\Γ) but
also Ṽ φ ∈ C(Rd). ✷

Proof of Theorem 2.6. The proof is split into several steps, from which only the first step may
be innovative. The remaining steps just follow the proof of Theorem 2.3. However, we first stress
that, for φ ∈ L2(Γ), the preceding lemma implies Ṽ φ ∈ C∞(Rd\Γ). Moreover −∆G = 0 in Rd\{0}
proves −∆(Ṽ φ) = 0 in Rd\Γ in this case.

1. step. For φ ∈ L2(Γ), there holds Ṽ φ ∈ H1(Ω) with ‖Ṽ φ‖H1(Ω) . ‖φ‖H−1/2(Γ): As Ṽ φ ∈ C∞(Ω),

it only remains to estimate the H1-norm. With the density of D(Ω) in H̃−1(Ω), the Hahn-Banach
theorem yields

‖Ṽ φ‖H1(Ω) = sup
f∈H̃−1(Ω)\{0}

〈Ṽ φ ; f〉
‖f‖

H̃−1(Ω)

= sup
f∈D(Ω)\{0}

〈Ṽ φ ; f〉
‖f‖

H̃−1(Ω)

.

Let f ∈ D(Ω) and recall that Ñf ∈ C∞(Rd). The Fubini theorem and the symmetry G(x − y) =
G(y − x) prove

〈Ṽ φ ; f〉 =
∫

Ω
f(x)

∫

Γ
G(x− y)φ(y) dsy dx =

∫

Γ
φ(y)

∫

Ω
G(x− y)f(x) dx dsy

= 〈φ ; N0f〉
≤ ‖φ‖H−1/2(Γ)‖N0f‖H1/2(Γ)

. ‖φ‖H−1/2(Γ)‖f‖H̃−1(Ω)
,

i.e. ‖Ṽ φ‖H1(Ω) . ‖φ‖H−1/2(Γ).

2. step. As L2(Γ) is a dense subspace of H−1/2(Γ), Ṽ may be uniquely extended from L2(Γ) to
an operator Ṽ ∈ L

(
H−1/2(Γ);H1(Ω)

)
.

3. step. The operator V := γint0 Ṽ ∈ L
(
H−1/2(Γ);H1/2(Γ)

)
is well-defined.

4. step. There holds −∆(Ṽ φ) = 0 ∈ H̃−1(Ω): For φ ∈ L2(Γ), there holds −∆(Ṽ φ) = 0 almost
everywhere, whence in L2(Ω) ⊂ H̃−1(Ω). Thus, V1φ := γint1 Ṽ φ ∈ H−1/2(Γ) is well-defined with

‖V1φ‖H−1/2(Γ) . ‖Ṽ φ‖H1(Ω) . ‖φ‖H−1/2(Γ) according to Theorem 1.30. Therefore, we may extend

V1 from L2(Γ) to an operator V1 ∈ L
(
H−1/2(Γ);H−1/2(Γ)

)
. With continuity arguments, we prove

that

0 =
(
∇(Ṽ φ) ; ∇v

)
Ω
− 〈V1φ ; γint0 v〉 for all φ ∈ H̃−1/2(Γ) and v ∈ H1(Ω),
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since the equality holds for all φ ∈ L2(Γ) and v ∈ H1(Ω). By definition, this proves −∆(Ṽ φ) = 0
in H̃−1(Ω).

5. step. The operator γint1 Ṽ ∈ L
(
H−1/2(Γ);H−1/2(Γ)

)
is well-defined. Moreover, there holds

γint1 Ṽ = V1 with the operator V1 from step 4. �

Finally, we consider the double layer potential K̃v of a function v : Γ→ R given by

K̃v =

∫

Γ
γint1,yG(x− y)v(y)dsy,

which again is well-defined for x ∈ Rd\Γ and v ∈ L1(Γ).
The main result for K̃ reads as follows:

Theorem 2.7. (i) There holds K̃v ∈ C∞(Rd\Γ) for all v ∈ H1/2(Γ).
(ii) There holds K̃ ∈ L

(
H1/2(Γ);H1(Ω)

)
.

(iii) −∆K̃v = 0 ∈ H̃−1(Ω) for all v ∈ H1/2(Γ).
(iv) γint0 K̃ ∈ L

(
H1/2(Γ);H1/2(Γ)

)
.

(v) W := −γint1 K̃ ∈ L
(
H1/2(Γ);H−1/2(Γ)

)
.

Proof of Theorem 2.7. 1. step. For w ∈ L1(Γ), we show

∂α(K̃w)(x) =

∫

Γ
γint1,y∂

α
xG(x− y)w(y) dsy for x ∈ Rd\Γ and α ∈ Nd

0,

which implies K̃w ∈ C∞(Rd\Γ) as well as −∆(K̃w) = 0.

To prove that, we note that, because of x ∈ Ω, γint1,yG(x − y) =
∂y
∂ny

G(x − y) = n(y) · ∇yG(x − y).
In particular, the Schwartz theorem applies and proves that one may interchange the order of
derivatives to obtain ∂αx γ

int
1,yG(x− y) = γint1,y∂

α
xG(x− y). Moreover, the trivial observation

|∆h
j,xK̃v(x)− ∂jK̃v(x)| ≤ ‖v‖L1(Γ) sup

y∈Γ
|γint1,y∆

h
j,xG(x− y)− γint1,y∂j,xG(x− y)|

≤ ‖v‖L1(Γ) sup
y∈Γ
|∆h

j,x∇yG(x− y)− ∂j,x∇yG(x− y)|

allows to apply the arguments of Lemma 2.5 for the kernel g(z) = ∇G(z).
2. step. For f ∈ D(Ω), there holds Ñf ∈ C∞(Ω) with ∂j(Ñf)(x) =

∫
Ω ∂j,xG(x−y)f(y) dy: Recall

that Lemma 2.4 implies Ñf ∈ C∞(Ω) and

∂j(Ñf)(x) =

∫

Rd

G(y)∂j,xf(x− y) dy.

With the Lebesgue theorem and integration by parts, we obtain
∫

Rd

G(y)∂j,xf(x− y) dy = −
∫

Rd

G(y)∂j,yf(x− y) dy

= − lim
ε→0

∫

Rd\Bε(0)
G(y)∂j,yf(x− y) dy

= − lim
ε→0

(
−
∫

Rd\Bε(0)
∂j,yG(y) f(x− y) dy +

∫

|y|=ε
G(y)f(x− y)nj(y) dsy

)
.
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Note that the boundary integral vanishes for ε → 0, whereas the volume integral exists due to
∂jG ∈ L1

ℓoc(R
d). This proves

∂j(Ñf)(x) =

∫

Rd

∂j,yG(y) f(x− y) dy = (∂jG) ∗ f =

∫

Ω
∂j,xG(x− y) f(y) dy.

3. step. There holds ‖K̃v‖H1(Ω) . ‖v‖H1/2(Γ): We proceed along the lines of the proof for the
single-layer potential: Let f ∈ D(Ω). Then, the Fubini theorem proves

(
K̃v ; f

)
L2

=

∫

Ω
f(x)

∫

Γ
γint1,yG(x− y)v(y) dsy dx =

∫

Γ
v(y)n(y) ·

∫

Ω
∇yG(x− y) f(x) dx dsy

=

∫

Γ
v(y)n(y) · ∇

∫

Ω
G(x− y) f(x) dx dsy

= 〈v ; N1f〉
. ‖v‖H1/2(Γ)‖f‖H̃−1(Ω)

.

From the Hahn-Banach theorem, we now derive ‖K̃v‖H1(Ω) . ‖v‖H1/2(Γ), which proves (ii), from
which (iv) immediately follows.

4. step. Note that −∆(K̃v) = 0 in Rd\Γ and hence in H̃−1(Ω). In particular γint1 K̃v ∈ H−1/2(Γ)
is well-defined.

5. step. There holds γint1 K̃ ∈ L
(
H1/2(Γ);H−1/2(Γ)

)
: For v ∈ H1/2(Γ) holds

‖γint1 K̃v‖H−1/2(Γ) . ‖K̃v‖H1(Ω) . ‖v‖H1/2(Γ),

since −∆(K̃v) = 0 ∈ H̃−1(Ω). This concludes the proof. �

2.2 Representation Formula and Calderón Projector

So far, we have introduced the boundary integral operators arising from the Newton potential

N0 := γint0 Ñ ∈ L
(
H̃−1(Ω);H1/2(Γ)

)
and N1 := γint1 Ñ ∈ L

(
H̃−1(Ω);H−1/2(Γ)

)
. (2.10)

Furthermore, we now define the single-layer operator

V := γint0 Ṽ ∈ L
(
H−1/2(Γ);H1/2(Γ)

)
(2.11)

and the hypersingular operator

W := −γint1 K̃ ∈ L
(
H1/2(Γ);H−1/2(Γ)

)
(2.12)

as well as the double-layer operator

K :=
1

2
+ γint0 K̃ ∈ L

(
H1/2(Γ);H1/2(Γ)

)
(2.13)
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and the adjoint double-layer operator

K ′ := −1

2
+ γint1 Ṽ ∈ L

(
H−1/2(Γ);H−1/2(Γ)

)
. (2.14)

The notation for the operators K and K ′ stems from the fact that there holds

〈Kv ; φ〉 = 〈v ; K ′φ〉 for all v ∈ H1/2(Γ) and φ ∈ H−1/2(Γ), (2.15)

i.e. K ′ is the adjoint operator for K in the functional analytic sense. However, we postpone the
proof of (2.15) to a later section and take a second glance on the representation formula:

Theorem 2.8 (Representation Formula). For u ∈ H1(Ω) with −∆u = f ∈ H̃−1(Ω), there
holds

u = Ñf + Ṽ (γint1 u)− K̃(γint0 u). (2.16)

Proof. 1. step. We first prove (2.16) for −∆u = f ∈ L2(Ω): So far, we have proven (2.16) only
pointwise in Ω for u ∈ C2(Ω),

u(x) = −
∫

Ω
G(x− y)∆u(y) dy +

∫

Γ
G(x− y) ∂u

∂ny
(y) dsy −

∫

Γ

∂y
∂ny

G(x− y)u(y) dsy,

which is the pointwise statement of (2.16), cf. Proposition 1.6.
The main ideas of the proof are similar to the proof of Proposition 1.6, but the estimates using the
C1-norm and Taylor expansion are replaced by application of the Lebesgue differentiation theorem,
Theorem A.6.
For a fix x ∈ Ω, we cut-off the singularity for y = x and consider the second Green’s formula on
Ωε := Ω\Bε(x) to obtain

(−∆u ; v)Ωε
+ (∂u/∂n ; v)Γ − (u ; ∂v/∂n)Γ = − (∂u/∂n ; v)∂Bε(x)

+ (u ; ∂v/∂n)∂Bε(x)

as in the proof of Proposition 1.6. It remains to analyze the convergence of the terms for ε→ 0.

• There holds (−∆u ; v)Ωε

ε→0−−−→ (−∆u ; v)Ω which follows obviously from the Lebesgue domi-
nated convergence theorem as −∆u = f ∈ L2(Ω) and v ∈ L2(Ω).

• There holds (∂u/∂n ; v)∂Bε(x)
ε→0−−−→ 0: The Gauss divergence theorem gives

∫

∂Bε(x)

∂u

∂n
ds = −

∫

Bε(x)
∆u dy = −|Bε(x)| −

∫

Bε(x)
∆u dy,

where here and in the following −
∫
B · dy := |B|−1

∫
B · dy denotes the integral mean. There

holds |Bε(x)| = |Bd
2 |εd, and the integral mean −

∫
Bε(x)

∆u dy converges to ∆u(x) as ε → 0

almost everywhere due to the Lebesgue differentiation theorem. Moreover, for y ∈ ∂Bε(x),

we have v(y) = G(x− y) = 1
|Sd

2 |

{
− log ε for d = 2,

1/ε for d = 3,
which leads to

(∂u/∂n ; v)∂Bε(x)
= −|B

d
2 |
|Sd

2 |
−
∫

Bε(x)
∆u dy ·

{
ε2| log ε| for d = 2,

ε2 for d = 3,

vanishing for ε→ 0.
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• There holds (u ; ∂v/∂n)∂Bε(x)
ε→0−−−→ u(x): We plug-in the formula for ∇G and use the Gauss

divergence theorem to obtain

∫

∂Bε(x)
u(y)

∂y
∂n(y)

G(x− y) dsy = − 1

|Sd
2 |εd

∫

∂Bε(x)
u(y)(y − x) · n(y) dsy

=
1

|Sd
2 |εd

∫

Bε(x)
∇u(y) · (y − x) + du(y) dy.

With |Bε(x)| = |Bd
2 |εd, there holds

1

|Sd
2 |εd

∣∣∣
∫

Bε(x)
∇u(y) · (y − x) dy

∣∣∣ ≤ |B
d
2 |ε
|Sd

2 |
−
∫

Bε(x)
|∇u| dy ε→0−−−→ 0,

since the integral mean converges to |∇u(x)| by the Lebesgue differentiation theorem. For
the remaining term, we obtain

d

|Sd
2 |εd

∫

Bε(x)
u dy =

d|Bd
2 |

|Sd
2 |︸ ︷︷ ︸

=1

−
∫

Bε(x)
u dy

ε→0−−−→ u(x),

which finishes the proof for f ∈ L2(Ω).

2. step. We prove (2.16) for −∆u = f ∈ H̃−1(Ω): As L2(Ω) is a dense subspace of H̃−1(Ω), we
choose a sequence (fn) in L2(Ω) which converges to f in H̃−1(Ω). Then, let un ∈ H1(Ω) be the
unique weak solution of the Dirichlet problem

−∆un = fn in Ω and γint0 un = γint0 u on Γ.

According to Theorem 1.29, there holds ‖u−un‖H1(Ω) . ‖f−fn‖H̃−1(Ω)
, whence (un) converges to u

in H1(Ω). Moreover, Theorem 1.30 states ‖γint1 u−γint1 un‖H−1/2(Γ) . ‖f−fn‖H̃−1(Ω)
+‖u−un‖H1(Ω),

whence (γint1 un) converges to γ
int
1 u in H−1/2(Γ). As (2.16) is already proven for un, the continuity

of the involved operators concludes the proof for the limit case n→∞. �

Corollary 2.9. We define the Calderón projector as operator matrix

C :=

(
1
2 −K V
W 1

2 +K ′

)
: H1/2(Γ)×H−1/2(Γ)→ H1/2(Γ)×H−1/2(Γ). (2.17)

If u ∈ H1(Ω) satisfies −∆u = f ∈ H̃−1(Ω), then the Cauchy data (γint0 u, γint1 u) satisfy

(
γint0 u
γint1 u

)
= C

(
γint0 u
γint1 u

)
+

(
N0f
N1f

)
, (2.18)

i.e. the Cauchy data solve the so-called Calderón system. Moreover, the Calderón projector
has the projector property C2 = C.
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Proof. We start from the representation formula (2.16) and consider the trace and the conormal
derivative. From V = γint0 Ṽ and −1

2 +K = γint0 K̃, we obtain

γint0 u = γint0 Ñf + γint0 Ṽ γint1 u− γint0 K̃γint0 u = N0f + V γint1 u+
(1
2
−K

)
γint0 u.

From 1
2 +K ′ = γint1 Ṽ and W = −γint1 K̃, we obtain

γint1 u = γint1 Ñf + γint1 Ṽ γint1 u− γint1 K̃γint0 u = N1f +
(1
2
+K ′

)
γint1 u+Wγint0 u.

Writing the latter equations in a 2 × 2-system, we prove (2.18). To prove C2 = C, let (v, φ) ∈
H1/2(Γ)×H−1/2(Γ) and define u := Ṽ φ− K̃v ∈ H1(Ω). Note that −∆u = 0 so that the Calderón
system simplifies to

(
γint0 u
γint1 u

)
= C

(
γint0 u
γint1 u

)
.

From γint0 u = V φ+ (12 −K)v and γint1 u = (12 +K ′)φ+Wv we derive

(
γint0 u
γint1 u

)
=

(
1
2 −K V
W 1

2 +K ′

)(
v
φ

)
= C

(
v
φ

)
.

Plugging this into the Calderón system, we obtain

C

(
v
φ

)
=

(
γint0 u
γint1 u

)
= C

(
γint0 u
γint1 u

)
= C2

(
v
φ

)
.

As (v, φ) is arbitrary, this proves C2 = C. �

Using the projector property C2 = C, elementary calculations prove the following additional rela-
tions of the boundary integral operators V , W , K and K ′:

Corollary 2.10. There hold the following equations:

VW =
(
1
2 +K

)(
1
2 −K

)
, V K ′ = KV,

K ′W = WK, WV =
(
1
2 +K ′)(1

2 −K ′). (2.19)

Proof. From the projector property C = C2, we obtain

(
1
2 −K V
W 1

2 +K ′

)
=

(
1
2 −K V
W 1

2 +K ′

)(
1
2 −K V
W 1

2 +K ′

)

=

(
(12 −K)2 + VW (12 −K)V + V (12 +K ′)

W (12 −K) + (12 +K ′)W WV + (12 +K ′)2

)
.

This yields (2.19) according to some elementary calculations. �
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2.3 Integral Formulation of Dirichlet Problem

We consider the Dirichlet problem

−∆u = f ∈ H̃−1(Ω),

γint0 u = v ∈ H1/2(Γ).
(2.20)

According to Section 1.5, there is a unique weak solution u ∈ H1(Ω). With the (unknown) conormal
derivative φ = γint1 u ∈ H−1/2(Γ), the Calderón system states

(
v
φ

)
=

(
1
2 −K V
W 1

2 +K ′

) (
v
φ

)
+

(
N0f
N1f

)

according to Corollary 2.9. The first equation can be read in the form

V φ =
(1
2
+K

)
v −N0f, (2.21)

which is known as Symm’s integral equation. The following theorem states that the Dirich-
let problem (2.20) and Symm’s integral equation (2.21) are equivalent formulations of the same
problem.

Theorem 2.11. (i) If u ∈ H1(Ω) solves (2.20), the conormal derivative φ := γint1 u ∈ H−1/2(Γ)
solves Symm’s integral equation (2.21).
(ii) Conversely, if φ ∈ H−1/2(Γ) solves (2.21), the function u := Ñf + Ṽ φ− K̃v ∈ H1(Ω) solves
the Dirichlet problem (2.20).

Proof. (i) has just been proven to derive Symm’s integral equation. (ii) According to the mapping
properties of the three potential operators, there holds −∆u = f as well as

γint0 u = N0f + V φ+
(1
2
−K

)
v =

(1
2
+K

)
v +

(1
2
−K

)
v = v,

where we have plugged-in V φ from (2.21). �

Note that the theorem does not state the unique solvability of Symm’s integral equation. We still
have to show that φ = γint1 u is in fact the unique solution, which will be postponed to a later
subsection.

2.4 Integral Formulation of Neumann Problem

We consider the Neumann problem

−∆u = f ∈ H̃−1(Ω),

γint1 u = φ ∈ H−1/2(Γ).
(2.22)

The weak form, i.e. the first Green’s formula, then reads

〈f ; v〉 = (∇u ; ∇v)Ω − 〈φ ; γint0 v〉 for all v ∈ H1(Ω). (2.23)
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The choice v ≡ 1 therefore shows that

〈f ; 1〉+ 〈φ ; 1〉 = 0 (2.24)

is a necessary condition to allow weak solutions u ∈ H1(Ω) of (2.22). Moreover, solutions can
only be unique up to additive constants: According to Section 1.6, there is a unique solution
u ∈ H1

∗ (Ω) =
{
u ∈ H1(Ω)

∣∣ (u ; 1)Ω = 0
}
. With the (unknown) trace v := γint0 u ∈ H1/2(Γ), the

Calderón system states

(
v
φ

)
=

(
1
2 −K V
W 1

2 +K ′

) (
v
φ

)
+

(
N0f
N1f

)
.

The second equation can be read in the form

Wv =
(1
2
−K ′

)
φ−N1f (2.25)

and is then called hypersingular integral equation. The following theorem states that the
Neumann problem (2.22) and the hypersingular integral equation (2.25) are equivalent.

Theorem 2.12. (i) If u ∈ H1(Ω) solves (2.22), the trace v := γint0 u ∈ H1/2(Γ) solves the
hypersingular integral equation (2.25).
(ii) Conversely, if v ∈ H1/2(Γ) solves (2.25), the function u := Ñf + Ṽ φ − K̃v ∈ H1(Ω) solves
the Neumann problem (2.22).

Proof. (i) has just been proven to derive the hypersingular integral equation. (ii) According to
the mapping properties of the three potential operators, there holds −∆u = f as well as

γint1 u = N1f +
(1
2
+K ′

)
φ+Wv =

(1
2
+K ′

)
φ+

(1
2
−K ′

)
φ = φ,

where we have plugged-in Wv from (2.25). �

Note that the theorem again does not state the unique solvability of the hypersingular integral
equation. Moreover, neither the necessary assumption (2.24) nor the assumption

∫
Ω u dx = 0 have

been used in the proof of Theorem 2.12. In particular, we may expect that u ∈ H1(Ω) from (ii)
won’t satisfy

∫
Ω u dx = 0 in general.

The subsequent proposition states some elementary mapping properties of the hypersingular inte-
gral operator. For the statement, we recall the definition of the spaces

H
1/2
∗ (Γ) =

{
v ∈ H1/2(Γ)

∣∣ 〈1 ; v〉 = 0
}

and H
−1/2
∗ (Γ) =

{
ψ ∈ H−1/2(Γ)

∣∣ 〈ψ ; 1〉 = 0
}
. (2.26)

We first note that H
−1/2
∗ (Γ) is the dual space of H

1/2
∗ (Γ).

Lemma 2.13. H
−1/2
∗ (Γ) is the dual space of H

1/2
∗ (Γ) with respect to the extended L2-scalar

product.
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Proof. Clearly, each ψ ∈ H
−1/2
∗ (Γ) belongs to the dual space of H

1/2
∗ (Γ). Conversely, one has

to show that, given Ψ ∈ H−1/2(Γ), there is a ψ ∈ H
−1/2
∗ (Γ) such that 〈ψ ; v〉 = 〈Ψ ; v〉 for all

v ∈ H1/2
∗ (Γ). Obviously,

ψ := Ψ− 〈Ψ ; 1〉
〈1 ; 1〉

does this job. �

Proposition 2.14. (i) For any v ∈ H1/2(Γ) holds Wv ∈ H1/2
∗ (Γ).

(ii) For a constant function c ∈ H1/2(Γ) holds Wc = 0.

(iii) Provided f ∈ H̃−1(Ω), φ ∈ H−1/2(Γ) satisfy (2.24), there holds
(
1
2−K ′)φ−N1f ∈ H−1/2

∗ (Γ).

Proof. (i) The first Green’s formula reads (−∇u ; w) = (∇u ; ∇w)− 〈γint1 u ; γint0 w〉. If we plug-in

u = K̃v and w ≡ 1, we obtain 0 = −〈γint1 K̃v ; 1〉 = 〈Wv ; 1〉.
(ii) We consider the constant function c on Ω. Then, the representation formula shows c = −K̃c
almost everywhere in Ω, whence Wc = −γint1 K̃c = 0.

(iii) Using u = Ṽ φ and w ≡ 1 in the first Green’s formula, we see that 〈(12 + K ′)φ ; 1〉 =

〈γint1 Ṽ φ ; 1〉 = 0. Moreover, there holds 〈N1f ; 1〉 = 〈γint1 Ñf ; 1〉 = −〈f ; 1〉 as −∆Ñf = f .
Therefore,

〈
(
1
2 −K ′)φ−N1f ; 1〉 = 〈φ ; 1〉 − 〈

(
1
2 +K ′)φ ; 1〉+ 〈f ; 1〉 = 0

which concludes the proof. �

From (ii), we see that W cannot be elliptic on the entire space H1/2(Γ). However, factoring the

constant functions out, we obtain unique solvability on H
1/2
∗ (Γ), which is also the subject of a later

subsection.

2.5 Boundary Integral Operators

The main goal in this section is to derive integral representations of the introduced boundary
integral operators (2.10)–(2.14). Of course, this is a fundamental point for a numerical method
since one needs to know what has to be implemented.

The discretization is usually based on piecewise polynomials. Therefore, our discrete functions
always belong to L∞(Ω) and L∞(Γ), respectively. The first theorem shows that, for f ∈ L∞(Ω),
the Newton potential belongs to C1(Rd) with

N0f(x) := γint0 Ñf(x) =

∫

Ω
G(x− y)f(y) dy

N1f(x) := γint1 Ñf(x) =

∫

Ω

∂x
∂nx

G(x− y)f(y) dy

for x ∈ Γ.
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The proof of Theorem 2.15 uses the elementary properties of the convolution that g ∗ f ∈ C(Rd)
provided f ∈ L∞(Ω) and g ∈ L1

loc(R
d), which is stated in Lemma A.9.

Theorem 2.15. Let Ω ⊆ Rd be a bounded open set and f ∈ L∞(Ω). Then, Ñf := G∗f ∈ C1(Rd)
with ∂j(Ñf) = ∂jG ∗ f .
Proof. We define w := Ñf = G ∗ f and vj := ∂jG ∗ f . According to Lemma A.9, there holds
w, vj ∈ C(Rd). Let η ∈ C1(R) be a cut-off function which satisfies

0 ≤ η ≤ 1, η|{|x|≤1} = 0, and η|{|x|≥2} = 1.

For ε > 0, we define Gε ∈ C1(Rd) by Gε(x) := G(x)η(|x|/ε) for x ∈ Rd. According to Lemma A.9,
there holds wε := Gε∗f ∈ C1(Rd). Note that |Gε| ≤ |G| and G(y)−Gε(y) = G(y)

(
1−η(|y|/ε)

)
= 0

for |y| ≥ 2ε. Moreover, elementary calculations with polar coordinates prove

∫

Bε(0)
|G(z)| dz = O(ε2 log ε) and

∫

Bε(0)
|∂jG(z)| dz = O(ε).

Therefore,

|w(x)− wε(x)| = |(G−Gε) ∗ f(x)| ≤ ‖f‖L∞(Ω)

∫

Rd

|G(x− y)−Gε(x− y)| dy

= ‖f‖L∞(Ω)

∫

Rd

|G(z)−Gε(z)| dz

= ‖f‖L∞(Ω)

∫

Rd

(
1− η(z/|ε|)

)
|G(z)| dz

≤ ‖f‖L∞(Ω)

∫

B2ε(0)
|G(z)| dz ε→0−−−→ 0,

i.e. we have uniform convergence wε → w ∈ C(Rd) as ε → 0. We now show uniform convergence
∂jwε → vj as ε→ 0. With the same techniques as before, we are led to

|vj(x)− ∂jwε| ≤ ‖f‖L∞(Ω)

∫

B2ε(0)
|∂jG(z)− ∂jGε(z)| dz

≤ ‖f‖L∞(Ω)

∫

B2ε(0)

∣∣∂j
{(

(1− η(|z|/ε)
)
G(z)

}∣∣ dz

≤ ‖f‖L∞(Ω)

(∫

B2ε(0)
| ∂jη(|z|/ε)|︸ ︷︷ ︸
≤‖η′‖L∞/ε

|G(z)| dz +
∫

B2ε(0)
|1− η(|y|/ε)|︸ ︷︷ ︸

≤1

|∂jG(z)| dz
)

ε→0−−−→ 0.

Altogether, we have uniform convergence wε → w and ∂jwε → vj , and it only remains to prove
∂jw = v. However, this is a 1D problem as we are considering only the derivative in the xj-direction.
In 1D, the fundamental theorem of calculus states

wε(x)− wε(y) =

∫ x

y
w′
ε dt.
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According to the uniform convergence, the left-hand side converges to w(x) − w(y) as ε → 0,
whereas the right-hand side converges to

∫ x
y vj dt. Thus, the fundamental theorem of calculus

states w ∈ C1(R) with derivative w′ = vj . �

Next, we consider the single-layer potential. The following theorem proves that

V φ(x) := γint0 Ṽ φ(x) =

∫

Γ
G(x− y)φ(y) dsy for x ∈ Γ.

Theorem 2.16. For φ ∈ L∞(Γ), there holds Ṽ φ ∈ C(Rd). Moreover, Ṽ ∈ L
(
L∞(Γ);L∞(Γ)

)
.

The technical difficulties of the proof of Theorem 2.16 are stated in the following lemma.

Lemma 2.17. Given ε > 0, let gε(z) := |z|−(d−2+ε). Then, for any φ ∈ L∞(Γ), the
function Φ(x) :=

∫
Γ gε(x − y)φ(y) dsy is globally continuous on Rd. In particular, there hold

M := sup
x∈Γ
‖gε(x− ·)‖L1(Γ) <∞ and ‖Φ‖L∞(Γ) ≤M ‖φ‖L∞(Γ).

Proof. 1. step. Let us assume that we had already proven continuity of Φ for any φ ∈ L∞(Γ).
Choose the constant function φ ≡ 1 and observe that ‖gε(x − ·)‖L1(Γ) = Φ(x). Since Φ attains
its maximum on the compact set Γ, we infer M < ∞. Now, for arbitrary φ ∈ L∞(Γ), the Hölder
inequality proves |Φ(x)| ≤M ‖φ‖L∞(Γ) for any x ∈ Γ.

2. step. We now go two steps back and prove that, for fixed x ∈ Γ, there holds gε(x− ·) ∈ L1(Γ):
Let Ux be an open neighborhood of x and let χ : B1(0) → Ux be the bi-Lipschitz mapping
according to the definition of a Lipschitz boundary. Without loss of generality, we may assume
x̂ := χ−1(x) = 0. [Otherwise, we choose δ > 0 with Bδ(x̂) ⊂ B1(0) and consider the restriction
χ : Bδ(x̂) → χ(Bδ(x̂)) =: Ux. Note that Bδ(x̂) can be mapped onto B1(0) with a (bi-Lipschitz)
affine transformation.] Then,

‖gε(x− ·)‖L1(Γ) = ‖gε(x− ·)‖L1(Γ\Ux) + ‖gε(x− ·)‖L1(Γ∩Ux),

where the first contribution is finite since gε(x−·) is smooth on Γ\Ux. According to the bi-Lipschitz
property of χ, there holds

|ŷ − ẑ| . |χ(ŷ)− χ(ẑ)| . |ŷ − ẑ| for all ŷ, ẑ ∈ B1(0).

Therefore, with λ ∈ L∞(B1(0)) the surface element1, we obtain

‖gε(x− ·)‖L1(Γ∩Ux) =

∫

B0
1

∣∣gε
(
x− χ(ŷ, 0)

)∣∣λ(ŷ) dŷ =

∫

B0
1

1

|χ(0)− χ(ŷ, 0)|d−2+ε
λ(ŷ) dŷ

.

∫

B0
1

1

|(ŷ, 0)|d−2+ε
dŷ <∞

by use of polar coordinates.

1The surface element reads λ(ŷ) =
[
det

(
Jχ(ŷ, 0)

TJχ(ŷ, 0)
)]1/2

with the Jacobian Jχ(ŷ, 0) ∈ R3×2.
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3. step. It remains to prove the continuity of Φ on Rd. With the general observations from
Lemma 2.5, Φ is continuous in Rd\Γ, and it remains to prove continuity on Γ: Fix x ∈ Γ and adopt
the notation of step 2. Note that there holds

lim
x̃→x

∫

Γ\Ux

gε(x̃− y)φ(y) dsy =

∫

Γ\Ux

gε(x− y)φ(y) dsy,

since both sides have smooth integrands. It therefore remains to consider the integral over Γ∩Ux.
Let (xn)n∈N be a sequence in Rd with xn → x. We define x̂n := χ−1(xn) and assume, without loss
of generality, x̂n ∈ B1(0). We write x̂n = (ŷn, αn) ∈ B0

1 × R. Note that x̂n → x̂ = 0 and thus
ŷn → 0. There holds
∫

Γ∩Ux

gε(xn − y)φ(y) dsy =

∫

B0
1

gε
(
xn − χ(ŷ, 0)

)
φ(ŷ, 0)λ(ŷ) dŷ

=

∫

Rd−1

χB0
1
(ŷ)gε

(
xn − χ(ŷ, 0)

)
φ(ŷ, 0)λ(ŷ) dŷ

=

∫

Rd−1

χB0
1
(ŷ + ŷn)gε

(
xn − χ(ŷ + ŷn, 0)

)
φ(ŷ + ŷn, 0)λ(ŷ + ŷn)︸ ︷︷ ︸

=:fn(ŷ)

dŷ.

Note that fn ∈ L1(Rd−1) and that fn converges pointwise to f(ŷ) := χB0
1
(ŷ)gε(x−χ(ŷ, 0))φ(ŷ, 0)λ(ŷ).

To establish fn → f ∈ L1(Rd−1), it remains to prove that |fn| is pointwise bounded. With
x̂n = (ŷn, αn) ∈ B0

1 and xn = χ(x̂n) = χ(ŷn, αn) follows

|fn(ŷ)| .
χB0

1
(ŷ + ŷn)

|x̂n − (ŷ + ŷn, 0)|d−2+ε
=

χB0
1
(ŷ + ŷn)

|(ŷ, αn)|d−2+ε
≤

χB0
2
(ŷ)

|ŷ|d−2+ε
=: g(ŷ),

where we have used |ŷn| < 1 as well as φ, λ ∈ L∞(Γ). As g ∈ L1(Rd−1), the Lebesgue dominated
convergence theorem yields

∫

Γ∩Ux

gε(xn − y)φ(y) dsy =

∫

Rd−1

fn(ŷ) dŷ
n→∞−−−→

∫

Rd−1

f(ŷ) dŷ =

∫

Γ∩Ux

gε(x− y)φ(y) dsy.

Altogether, we have proven

lim
x̃→x

∫

Γ
gε(x̃− y)φ(y) dsy =

∫

Γ
gε(x− y)φ(y) dsy,

which is just the continuity of Φ. �

Proof of Theorem 2.16. 1. step. There holds G(x − ·) ∈ L1(Γ) for all x ∈ Γ and M :=
supx∈Γ ‖G(x− ·)‖L1(Γ) <∞: For d = 3, there holds |G(z)| . g0(z) and we may choose ε = 0. For
d = 2, we fix an arbitrary ε ∈ (0, 1). As the function tε log t is globally continuous on R≥0, there
holds |G(x − y)| . gε(x − y) for all x, y ∈ Γ. For both cases, we hence obtain ‖G(x − ·)‖L1(Γ) .

‖gε(x− ·)‖L1(Γ), and thus an upper bound of M by use of Lemma 2.17.

2. step. There holds Ṽ ∈ L
(
L∞(Γ);L∞(Γ)

)
: For x ∈ Γ, a Hölder inequality proves

|Ṽ φ(x)| =
∣∣∣
∫

Γ
G(x− y)φ(y) dsy

∣∣∣ ≤ ‖φ‖L∞(Γ)‖G(x− ·)‖L1(Γ) ≤M ‖φ‖L∞(Γ).
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Thus, ‖Ṽ φ‖L∞(Γ) ≤M ‖φ‖L∞(Γ) which is our claim.

3. step. For φ ∈ L∞(Γ), there holds Ṽ φ ∈ C(Rd): For d = 3, the proof follows from Lemma 2.17
and G(z) = 1

4π g0(z). For d = 2, the reader may imitate the proof of the preceding lemma — now for
a logarithmic instead of an algebraic singularity of the kernel function. This is left as an exercise. �

Next, we stress some immediate consequence of Theorem 2.16, namely the symmetry of V on
H−1/2(Γ). In Section 2.7 we shall see that V even induces an equivalent scalar product onH−1/2(Γ).

Corollary 2.18. The single-layer potential V ∈ L
(
H−1/2(Γ);H1/2(Γ)

)
is a symmetric operator,

i.e. 〈V φ ; ψ〉 = 〈φ ; V ψ〉 for all φ, ψ ∈ H−1/2(Γ).

Proof. Note that L∞(Γ) is a dense subspace of H−1/2(Γ). We have to show that the bilinear form

〈〈φ ; ψ〉〉 := 〈V φ ; ψ〉,

is symmetric. Due to continuity, it thus suffices to consider φ, ψ ∈ L∞(Γ). We apply the Fubini
theorem to verify

〈〈φ ; ψ〉〉 =
∫

Γ
ψ(x)

∫

Γ
G(x− y)φ(y) dsy dsx =

∫

Γ
φ(y)

∫

Γ
G(y − x)ψ(x) dsx dsy = 〈〈ψ ; φ〉〉

as the kernel is symmetric, i.e. G(y − x) = G(x− y). �

Next, we investigate the operators K and K ′. To this end, we restrict to the case that Γ is not only
a Lipschitz boundary but even piecewise C2. The results can also be obtained in a more general
setting but this would lead to even more technical difficulties. However, the assumption seems not
to be too restrictive: In numerical simulations Γ is almost always a piecewise polygonal boundary
and thus even piecewise C∞.

Definition 2.19. We first define the so-called reference element

Tref =

{
(0, 1)× {0} for d = 2,{
x ∈ R2

∣∣x1, x2 > 0, x1 + x2 < 1
}
× {0} for d = 3,

(2.27)

which correspond to the open unit simplices in Rd−1. ✷

We now extend the idea of Lipschitz boundaries to the definition of piecewise smooth boundaries,
where the reader might want to recall the definition of Lipschitz domains from Section 1.4.2. We
stress that the following definition is also used to introduce the boundary element method later-on.

52



CHAPTER 2. INTEGRAL OPERATORS

Definition 2.20. The boundary Γ = ∂Ω of a Lipschitz domain Ω in Rd is piecewise C2C2C2 provided
there hold the following: There are finitely many relatively open boundary pieces Γ1, . . . ,ΓN ⊆ Γ
with Γj ∩ Γk = ∅ for j 6= k. To each Γj belong open sets Uj , Vj ⊂ Rd and a C2-diffeomorphism
χj : Uj → Vj such that

• there hold the set inclusions Tref ⊂ Uj and Γj ⊂ Vj,

• and χ0
j := χj |Tref

is a parametrization of Γj, i.e. Γj = χj(Tref).

The subsets Γj are called smooth screens in the following. ✷

We first consider the (abstract) operators K and K ′, which are defined by

K :=
1

2
+ γint0 K̃ ∈ L

(
H1/2(Γ);H1/2(Γ)

)

and

K ′ := −1

2
+ γint1 Ṽ ∈ L

(
H−1/2(Γ);H−1/2(Γ)

)
,

respectively. To derive integral representations, we further introduce integral operators K0 and K ′
0

on L∞(Γ). In fact, it will essentially turn out that K = K0 and K ′ = K ′
0, respectively.

Lemma 2.21. Assume that Γ is piecewise C2. Then, for any smooth screen Γℓ and x ∈ Γℓ,
there holds γint1,xG(x− ·), γint1,yG(x− ·) ∈ L1(Γ). In particular, the double layer potential

K0v(x) :=

∫

Γ
γint1,yG(x− y)v(y) dsy (2.28)

and the adjoint double layer potential

K ′
0φ(x) :=

∫

Γ
γint1,xG(x− y)φ(y) dsy (2.29)

are well-defined for v, φ ∈ L∞(Γ) and almost all x ∈ Γ.

Proof. 1. step. We first prove that γint1,xG(x − ·), γint1,yG(x − ·) ∈ L1(Γ): Let χ : U → V

be the C2-diffeomorphism from the definition of a C2-piecewise boundary, where U and V are
the open neighborhoods of Tref and Γℓ, respectively. Consider the restriction χ0 to Tref and the
corresponding Jacobian J(ŷ) ∈ Rd×(d−1) of χ0 at ŷ ∈ Tref . Note that J(ŷ) gives the tangential plane
of Γ at y = χ0(ŷ), whence n(y) · [J(ŷ)(ŷ − x̂)] = 0 for any x̂, ŷ ∈ Tref . Given x = χ0(x̂), y = χ0(ŷ),
the mean value theorem provides ζ̂ ∈ conv{x̂, ŷ} such that

n(y) · (y − x) = n(y) ·
[
χ0(ŷ)− χ0(x̂)

]
= n(y) ·

[
J(ζ̂)(ŷ − x̂)

]

= n(y) ·
[(
J(ζ̂)− J(ŷ)

)
(ŷ − x̂)

]
.

Therefore, the bi-Lipschitz property proves

|n(y) · (y − x)| . |ŷ − x̂|2 . |y − x|2,

53



CHAPTER 2. INTEGRAL OPERATORS

where the constants only depends on the smooth screen Γℓ. Consequently, we have

|γint1,xG(x− y)|+ |γint1,yG(x− y)| .
1

|x− y|d−2
for all x, y ∈ Γℓ.

According to Lemma 2.17, we finally obtain
∫

Γ
|γint1,xG(x− y)| dsy =

∫

Γ\Γℓ

|γint1,xG(x− y)| dsy +
∫

Γℓ

|γint1,xG(x− y)| dsy <∞

as well as
∫

Γ
|γint1,yG(x− y)| dsy =

∫

Γ\Γℓ

|γint1,yG(x− y)| dsy +
∫

Γℓ

|γint1,yG(x− y)| dsy <∞,

where we remark that the integrals over Γ\Γℓ contain the smooth part of the kernels and are thus
obviously finite.

2. step. In particular, the Hölder inequality now proves that K0v(x) and K
′
0φ(x) are well-defined.

This concludes the proof. �

Theorem 2.22. Assume that Γ is piecewise C2. Then, there holds the following:
(i) The double layer potential operator K0 from (2.28) allows a unique extension from γint0 (C∞(Ω))

to an operator K0 ∈ L
(
H1/2(Γ);H1/2(Γ)

)
, and there holds K0 = K := 1

2 + γint0 K̃.
(ii) The adjoint double layer potential operator K ′

0 from (2.29) allows a unique extension from

L∞(Γ) to an operator K ′
0 ∈ L

(
H−1/2(Γ);H−1/2(Γ)

)
, and there holds K ′

0 = K ′ := −1
2 + γint1 Ṽ .

(iii) The adjoint double layer potential K ′ ∈ L
(
H−1/2(Γ);H−1/2(Γ)

)
is the adjoint operator of

K ∈ L
(
H1/2(Γ);H1/2(Γ)

)
in the functional analytic sense, i.e.

〈Kv ; φ〉 = 〈v ; K ′φ〉 for all v ∈ H1/2(Γ) and φ ∈ H−1/2(Γ). (2.30)

Before we prove Theorem 2.22, we need a small technical lemma which explains that one has to
expect jump terms in the limit case for γint1 Ṽ and γint0 K̃.

Lemma 2.23. Assume that Γ is piecewise C2. For x ∈ Rd, we consider the function

κ : Rd → R, κ(x) =

∫

Γ
γint1,yG(x− y) dsy. (2.31)

Then, the range of κ is discrete, and there holds

κ(x) =





−1 for x ∈ Ω,

−1/2 for x ∈ Γ and Γ smooth around x,

0 for x ∈ Ωext := Rd\Ω.
(2.32)

Moreover, for any x ∈ Γ, holds κ(x) = − lim
ε→0+

∫

∂Bε(x)∩Ω
γint1,yG(x− y) dsy, and the limit exists.
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Proof. 1. step. For x ∈ Ω holds κ(x) = K̃(1) = −1 according to the representation formula for
the constant function 1.

2. step. For x ∈ Ωext, we choose ε > 0 with Bε(x) ⊂ Ωext and consider Ω̃ := Ω ∪ Bε(x).
Applying step 1 for the domains Ω̃ and Bε(x), respectively, we see

−1 =

∫

∂Ω̃
γint1,yG(x− y) dsy = κ(x) +

∫

∂Bε(x)
γint1,yG(x− y) dsy = κ(x)− 1,

which proves κ(x) = 0.

3. step. Finally, we consider the case x ∈ Γ and assume that, for some ε > 0, Γ∩Bε(x) is smooth.
We have already proven, that γint1,yG(x − ·) ∈ L1(Γ). Hence, the Lebesgue dominated convergence
theorem proves

κ(x) =

∫

Γ
γint1,yG(x− y) dsy = lim

ε→0+

∫

Γ\Bε(x)
γint1,yG(x− y) dsy

= − lim
ε→0+

∫

∂Bε(x)∩Ω
γint1,yG(x− y) dsy,

where we have applied integration by parts on Ωε := Ω\Bε(x) in the last step, namely 0 =∫
Ωε

∆G(x− y) =
∫
∂Ωε

γint1,yG(x− y) dsy. Note that the integrand over ∂Bε(x) ∩ Ω reads

γint1,yG(x− y) = −
1

|Sd
2 |

y − x
|x− y|d · n(y) = −

1

|Sd
2 |

y − x
|x− y|d ·

x− y
|x− y| = +

1

|Sd
2 |εd−1

=
1

|∂Bε(x)|
.

Altogether, we thus obtain

κ(x) = − lim
ε→0+

|∂Bε(x) ∩ Ω|
|∂Bε(x)|

.

As Γ is smooth around x, it is asymptotically flat and therefore ∂Bε(x)∩Ω asymptotically is a half
sphere, i.e. we obtain κ(x) = −1/2. �

Proof of Theorem 2.22. Throughout, let Γℓ be some smooth screen and x ∈ Γ and (xn)n∈N in
Ω a sequence that converges to x.

1. step. First, we show that for any v ∈ C∞(Ω) holds

lim
n→∞

∫

Γ
γint1,yG(xn − y)

(
v(y)− v(xn)

)
dsy =

∫

Γ
γint1,yG(x− y)

(
v(y)− v(x)

)
dsy, (2.33)

where the existence of the right-hand side follows from Lemma 2.17. Obviously, convergence holds
at least pointwise almost everywhere in Γ. Choose an open neighborhood Ux of Γ and a bi-Lipschitz
function χx : B1(0) → Ux according to the definition of a Lipschitz boundary. We stress that the
convergence (2.33) is clear for the integration domain Γ\Ux. It remains to prove convergence for
the domain Γ∩Ux. Without loss of generality, we assume x̂ = χ−1(x) = 0. Let x̂n := χ−1(xn). We
may then assume that x̂n = (ŷn, αn) with ŷn ∈ B0

1 and αn ∈ R. We now proceed as in the proof of
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Lemma 2.17 to apply the Lebesgue differentiation theorem. There holds
∫

Γ∩Ux

γint1,yG(xn − y)
(
v(y)− v(xn)

)
dsy = − 1

|Sd
2 |

∫

Γ∩Ux

(y − xn) · n(y)
|y − xn|d

(
v(y)− v(xn)

)
dsy

= − 1

|Sd
2 |

∫

B0
1

(χ(ŷ, 0)− xn) · n(χ(ŷ, 0))
|(ŷ, 0)− xn|d

(
v(χ(ŷ, 0))− v(xn)

)
λ(ŷ) dŷ

= − 1

|Sd
2 |

∫

Rd−1

χB0
1
(ŷ)

(χ(ŷ, 0)− xn) · n(χ(ŷ, 0))
|(ŷ, 0)− xn|d

(
v(χ(ŷ, 0))− v(xn)

)
λ(ŷ) dŷ.

Again, we use the translation ŷ 7→ ŷ + ŷn in the integrand, which yields the integrand

fn(ŷ) := χB0
1
(ŷ + ŷn)

(χ(ŷ + ŷn, 0)− xn) · n(χ(ŷ + ŷn, 0))

|(ŷ + ŷn, 0)− xn|d
(
v(χ(ŷ + ŷn, 0))− v(xn)

)
λ(ŷ + ŷn).

We now plug-in x = χ(ŷn, αn) and use λ ∈ L∞(Rd), the bi-Lipschitz property of χ, and the Lipschitz
property of v to see

|fn(ŷ)| . χB0
1
(ŷ + ŷn)

1

|(ŷ + ŷn, 0)− (ŷn, α)|d−2
≤ χB0

1
(ŷ + ŷn)

1

|(ŷ, α)|d−2

≤ χB0
2
(ŷ)

1

|ŷ|d−2
.

Note that the upper bound belongs to L1(Rd−1). Therefore, (2.33) follows from the Lebesgue
dominated convergence theorem.

2. step. For v ∈ C∞(Ω) holds γint0 K̃v =
(
− 1

2 + K0

)
v almost everywhere on Γ: We apply

Lemma 2.23 for xn ∈ Ω and x ∈ Γ, which yields

K̃v(xn) = v(xn)

∫

Γ
γint1,yG(xn − y) dsy +

∫

Γ
γint1,yG(xn − y)

(
v(y)− v(xn)

)
dsy

n→∞−−−→ −v(x) +
∫

Γ
γint1,yG(x− y)

(
v(y)− v(x)

)
dsy = −1

2
v(x) +K0v(x).

3. step. By definition of K, the last step implies Kv =
(
1
2 + γint0 K̃

)
v = K0v for all v ∈

γint0

(
C∞(Ω)

)
=: V . Since C∞(Ω) is dense in H1(Ω), the space V is dense in H1/2(Γ). In particular,

K is the unique extension of K0 to the entire space H1/2(Γ).

4. step. There holds (K0v ; φ)Ω = (v ; K ′
0φ) for all v ∈ γint0

(
C∞(Ω)

)
and φ ∈ L∞(Γ): From step 3,

we infer that K0v ∈ H1/2(Γ) ⊆ L1(Γ). Therefore, the product on the left-hand side is well-defined.
Moreover, Fubini’s theorem proves

(
v ; K ′

0φ
)
=

∫

Γ
v(x)

∫

Γ
γint1,xG(x− y)φ(y) dsy dsx =

∫

Γ
φ(y)

∫

Γ
γint1,xG(x− y)v(x) dsx dsy

=

∫

Γ
φ(y)

∫

Γ
γint1,xG(y − x)v(x) dsx dsy

= (K0v ; φ) .

5. step. For φ ∈ L∞(Γ) and v ∈ C∞(Ω) holds

〈γint1 Ṽ φ ; γint0 v〉 = 〈
(
1
2 +K ′

0

)
φ ; γint0 v〉,
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where the right-hand side exists as L2-scalar product: Starting from the first Green’s formula, we
have

〈γint1 Ṽ φ ; γint0 v〉 =
(
∇Ṽ φ ; ∇v

)
Ω
=

∫

Ω
∇v(x) ·

(∫

Γ
∇xG(x− y)φ(y) dsy

)
dx,

where we have used, for x ∈ Ω fixed, that one may interchange integral and differential for the
single-layer potential, cf. Lemma 2.5. We now apply the Fubini theorem and obtain

〈γint1 Ṽ φ ; γint0 v〉 =
∫

Γ
φ(y)

∫

Ω
∇v(x) · ∇xG(x− y)dx dsy. (2.34)

Fix y ∈ Γ. Since ∇xG(x− y) ∈ L1
ℓoc(R

d) and ∇v ∈ L∞(Rd), we may use the Lebesgue theorem to
obtain

∫

Ω
∇v(x) · ∇xG(x− y)dx = lim

ε→0

∫

Ω\Bε(y)
∇v(x) · ∇xG(x− y)dx.

For ε > 0, integration by parts yields
∫

Ω\Bε(y)
∇v(x) · ∇xG(x− y) dx =

∫

Γ\Bε(y)
γint1,xG(x− y)v(x) dsx +

∫

Ω∩∂Bε(y)
γint1,xG(x− y)v(x) dsx.

In the limit ε→ 0, the first boundary integral converges to K0v(y) for almost all y ∈ Γ. The second
boundary integral is split into

∫

Ω∩∂Bε(y)
γint1,xG(x− y)v(x) dsx

= v(y)

∫

Ω∩∂Bε(y)
γint1,xG(x− y) dsx +

∫

Ω∩∂Bε(y)
γint1,xG(x− y)

[
v(x)− v(y)

]
dsx.

According to Lemma 2.23, the first term converges to 1
2 v(y) for ε→ 0. The second integral vanishes

because of
∣∣∣
∫

Ω∩∂Bε(y)
γint1,xG(x− y)

[
v(x)− v(y)

]
dsx

∣∣∣ ≤ sup
x∈Bε(y)

|v(x)− v(y)|
∫

Ω∩∂Bε(y)
|γint1,xG(x− y)| dsx

︸ ︷︷ ︸
≤1

.

Altogether, we thus obtain
∫

Ω
∇v(x) · ∇xG(x− y)dx = K0v(y) +

1

2
v(y) for almost all y ∈ Γ.

Plugging this into (2.34) and using the adjointness from step 4, we finally obtain

〈γint1 Ṽ φ ; γint0 v〉 = (φ ; K0v)Γ +
1

2
(φ ; v)Γ =

(
K ′

0φ ; v
)
Γ
+

1

2
(φ ; v)Γ =

((
1
2 +K ′

0

)
φ ; v

)
Γ
.

6. step. Since γint0

(
C∞(Ω)

)
is dense in H1/2(Γ), step 5 and the Hahn-Banach theorem imply

K ′φ =
(
− 1

2 + γint1 Ṽ
)
φ = K ′

0φ for all φ ∈ L∞(Γ). Since L∞(Γ) is dense in H−1/2(Γ), we infer that

K ′ is the unique extension of K ′
0 to the entire space H−1/2(Γ).
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7. step. There holds 〈Kv ; φ〉 = 〈v ; K ′φ〉 for all v ∈ H1/2(Γ) and all φ ∈ H−1/2(Γ): According
to step 4, this equality holds on dense subspaces. Therefore, continuity arguments prove the equal-
ity for the entire duality pairing. �

The integral representation of the hypersingular integral operator W is more involved, and we only
state the corresponding results. For the proof, we refer to [SS11].

Theorem 2.24. Assume that Γ is piecewise C2 and let v ∈ H1/2(Γ) ∩ C(Γ). Then, for x ∈ Γ,
the operator W has the representation

Wv(x) = −
∫

Γ

∂

∂nx

∂

∂ny
G(x− y)(v(y)− v(x))dsy,

where the integral is understood as a Cauchy principal value, i.e., as the limit limε→0

∫
Γ\Bε(x) ·

For implementation of the hypersingular integral operator usually a different representation using
the single-layer operator is used. For that, we define the surface curl

curlΓ u :=

(
∂x2u
−∂x1u

)
· n

for d = 2 and

curlΓ u := n×∇u

for d = 3.

Lemma 2.25. Assume that Γ is piecewise C2 and let u, v ∈ H1/2(Γ) ∩ C(Γ) ∩ C1
pw(Γ). Then,

we have

(Wu ; v)Γ =

∫

Γ

∫

Γ
curlΓ v(x) · curlΓ u(y)G(x− y) dsy dsx = (V curlΓ u ; curlΓ v)Γ

as a weakly singular integral.

2.6 Exterior Trace and Conormal Derivative

Let Ω be a bounded Lipschitz domain in Rd with boundary Γ := ∂Ω. We define the exterior
domain

Ωext := Rd\Ω.

For a sufficiently large radius R > 0 with Ω ⊂ BR(0), we use the abbreviate notation

Ωext
R := Ωext ∩BR(0) with boundary ΓR := ∂Ωext

R .
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Note that Ωext
R is again a Lipschitz domain and that ΓR is the disjoint union of Γ and the sphere

∂BR(0). In this section, we introduce the exterior trace γext0 u and the exterior conormal derivative

γext1 u for a function u ∈ H1
ℓoc(Ω

ext). To that end, H1
ℓoc(Ω̂) denotes the set of all local H1-functions

H1
ℓoc(Ω̂) :=

{
v ∈ L2

ℓoc(Ω̂)
∣∣ ∀R > 0 v ∈ H1(Ω̂ ∩BR(0))

}
. (2.35)

Next, we give the definition of the exterior trace γext0 u, which shall satisfy at least γext0 u|Γ = u|Γ
for all u ∈ C(Ωext).

Proposition 2.26. (i) Let ω be a bounded Lipschitz domain in Rd with Ω ⊂ ω, i.e. Γ∩ ∂ω = ∅.
Then, ω̂ := ω\Ω is a bounded Lipschitz domain with boundary Γ̂ := ∂ω̂ = Γ ∪ ∂ω. Therefore, the
trace operator γint0,ω ∈ L

(
H1(ω̂);H1/2(Γ̂)

)
with respect to ω̂ induces an operator

γext0 ∈ L
(
H1(ω̂);H1/2(Γ)

)
, γext0 u := (γint0,ωu)|Γ. (2.36)

(ii) For u ∈ H1
ℓoc(Ω

ext), the exterior trace γext0 u ∈ H1/2(Γ) is independent of ω, i.e.

γext0 u := (γint0,ωu)|Γ = (γint0,ω̃u)|Γ (2.37)

for all bounded Lipschitz domains ω, ω̃ ⊂ Rd with Ω ⊂ ω ∩ ω̃.
Proof. To prove (i), one only has to realize that the restriction of v 7→ v|Γ is a continuous linear
operator from H1/2(Γ̂) to H1/2(Γ).
(ii) Without loss of generality, we assume ω̃ ⊆ ω since we may otherwise consider ω ∩ ω̃ instead of
ω̃. For u ∈ H1(ω̂), we find a sequence un ∈ C∞(ω̂) which converges to u in H1(ω̂) and whence in

H1(̂̃ω). Recall that, e.g., γint0,ωun = un|Γ̂. Thus, there holds γext0 un = un|Γ independently of whether

we consider ω̂ or ̂̃ω. In particular, the convergence un|Γ = γext0 un → γext0 u ∈ H1/2(Γ) concludes the
proof. �

Second, we want to define the exterior conormal derivative which shall satisfy γext1 u = (∂u/∂n)|Γ
for u ∈ C1(Ωext), where n is the outer normal vector on Γ with respect to Ω and thus the inner
normal vector with respect to Ωext. In particular, we want to formalize the first Green’s formula
on Ωext, which reads, for u ∈ C2(Ωext), in classical terms

(−∆u ; v)Ωext = (∇u ; ∇v)Ωext +
(
γext1 u ; γext0 v

)
Γ

for all v ∈ D(Rd).

Note the plus sign on the right-hand side which stems from the fixed orientation of the normal
vector n on Γ, i.e. n is the outer normal vector of Ω so that −n is the outer normal vector of Ωext

on Γ.

The following proposition generalizes the exterior conormal derivative for Sobolev spaces and pro-
vides a stability estimate, similar to Theorem 1.30. As the proofs do not provide any new insight,
we leave them to the reader as an exercise.
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Proposition 2.27. Let ω be a bounded Lipschitz domain in Rd with Ω ⊂ ω and define the
bounded Lipschitz domain ω̂ := ω\Ω, i.e. Γ̂ := ∂ω̂ = Γ ∪ ∂ω and Γ ∩ ∂ω = ∅. Then, there hold:
(i) The conormal derivative γint1,ω ∈ L

(
H1

∆(ω̂);H
−1/2(Γ̂)

)
induces an operator

γext1 ∈ L
(
H1

∆(ω̂);H
−1/2(Γ)

)
, γext1 u := −φ̂ for φ := γint1,ωu ∈ H−1/2(Γ̂), (2.38)

where φ̂ ∈ H−1/2(Γ) denotes the functional defined by 〈φ̂ ; v〉 := 〈φ ; v̂〉 for φ ∈ H−1/2(Γ̂),
v ∈ H1/2(Γ) and its zero-extension v̂ ∈ H1/2(Γ̂).
(ii) For u ∈ H1

ℓoc(Ω
ext) with −∆u ∈ L2

ℓoc(Ω
ext), the exterior conormal derivative γext1 u ∈

H−1/2(Γ) is independent of ω, and there holds

(−∆u ; v)Ωext = (∇u ; ∇v)Ωext + 〈γext1 u ; γext0 v〉 for all v ∈ D(Rd). (2.39)

(iii) Let u ∈ H1
ℓoc(Ω

ext) with −∆u ∈ L2(Ωext). Moreover, we assume that u has finite energy, i.e.
∇u ∈ L2(Ωext). Then, there holds the stability estimate

‖γext1 u‖H−1/2(Γ) . ‖ −∆u‖L2(Ωext) + ‖∇u‖L2(Ωext). (2.40)
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2.7 Ellipticity of Single-Layer Operator

We have already seen that the single-layer operator V = γint0 Ṽ ∈ L
(
H−1/2(Γ);H1/2(Γ)

)
is a sym-

metric operator, cf. Corollary 2.18. In this section, we prove that V is also elliptic. To that
end, we need some more facts about Ṽ φ. The first proposition provides the jump relations of Ṽ φ.
Throughout, we use the notation Ωext := Rd\Ω and Ωext

R := Ωext ∩ BR(0) as introduced in the
previous section.

Proposition 2.28. For φ ∈ H−1/2(Γ) holds Ṽ φ ∈ H1
ℓoc(R

d) with −∆(Ṽ φ) = 0 weakly in Rd\Γ.
In particular, the following jump relations are well-defined:
(i) [γ0Ṽ φ] := γext0 Ṽ φ− γint0 Ṽ φ = 0 ∈ H1/2(Γ).

(ii) [γ1Ṽ φ] := γext1 Ṽ φ− γint1 Ṽ φ = −φ ∈ H−1/2(Γ).

Proof. 1. step. Exterior trace γext0 Ṽ and conormal derivative γext1 Ṽ are well-defined: For

φ ∈ H−1/2(Γ), we have already proven that Ṽ φ ∈ H1(Ω) with −∆Ṽ φ = 0 ∈ H̃−1(Ω). The crucial
step in the proof was to provide the identity

(
Ṽ φ ; f

)
Ω
= (φ ; N0f)Γ for φ ∈ L2(Γ) and f ∈ D(Ω).

The remaining steps were just based on abstract functional analysis, namely density arguments and
mapping properties of N0 = γint0 Ñ . We then obtained Ṽ ∈ L

(
H−1/2(Γ);H1(Ω)

)
with −∆Ṽ φ = 0

weakly in Ω for all φ ∈ H−1/2(Γ). From this, we derived that the operators

γint0 Ṽ ∈ L
(
H−1/2(Γ);H1/2(Γ)

)
and γint1 Ṽ ∈ L

(
H−1/2(Γ);H−1/2(Γ)

)

are well-defined. It is important to notice that even the same arguments apply for Ωext
R and thus

prove Ṽ ∈ L
(
H−1/2(Γ);H1(Ωext

R )
)
with −∆Ṽ φ = 0 weakly in Ωext

R for all φ ∈ H−1/2(Γ). In
particular, the operators

γext0 Ṽ ∈ L
(
H−1/2(Γ);H1/2(Γ)

)
and γext1 Ṽ ∈ L

(
H−1/2(Γ);H−1/2(Γ)

)

are well-defined. Moreover, we have seen in Section 2.6 that neither γext0 Ṽ nor γext1 Ṽ depend on
the radius R > 0. Altogether, the jump operators also satisfy

[γ0Ṽ ] ∈ L
(
H−1/2(Γ);H1/2(Γ)

)
and [γ1Ṽ ] ∈ L

(
H−1/2(Γ);H−1/2(Γ)

)
.

2. step. There holds [γ0Ṽ ] = 0: For φ ∈ L∞(Γ), holds Ṽ φ ∈ C(Rd) and therefore [γ0Ṽ φ] = 0.
From density L∞(Γ) in H−1/2(Γ), we thus obtain [γ0Ṽ φ] = 0 for any φ ∈ H−1/2(Γ).

3. step. There holds Ṽ φ ∈ H1(BR(0)) for all φ ∈ H−1/2(Γ) and R > 0: We know that Ṽ φ ∈
H1(Ω) ∩ H1(Ωext

R ) for all R > 0. Moreover, for φ ∈ L∞(Γ), there holds Ṽ φ ∈ C(Rd). This and

BR(0) = Ω ∪ Ωext
R imply Ṽ φ ∈ H1(BR(0)) together with the continuity estimate

‖Ṽ φ‖2H1(BR(0)) = ‖Ṽ φ‖2H1(Ω) + ‖Ṽ φ‖2H1(Ωext
R ) . ‖φ‖2H−1/2(Γ)

.

By density and continuity, this proves that Ṽ ∈ L
(
H−1/2(Γ);H1(BR(0))

)
, where the operator norm

— of course — depends on the radius R > 0.
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4. step. There holds Ṽ φ ∈ H1
ℓoc(R

d) for all φ ∈ H−1/2(Γ): Formally, Ṽ φ ∈ H1(BR(0)) is obtained

by continuous extension of the operator Ṽ from L∞(Γ) to H−1/2(Γ) and thus Ṽ φ = ṼRφ depends
on the radius R. However, for φ ∈ L∞(Γ), there holds Ṽ φ ∈ C(Rd) and thus Ṽrφ = (Ṽ φ)|Br(0) =

(ṼRφ)|Br(0) for any 0 < r < R. Therefore, the function Ṽ φ is independent of the chosen radius and

Ṽ φ ∈ H1
ℓoc(R

d) in the limit R→∞.

5. step. There holds [γ1Ṽ ] = −φ: For φ ∈ L2(Γ) and f ∈ D(Rd), the first Green’s formula on Ωext

resp. Ω yields

〈[γ1Ṽ φ] ; γ0f〉 = 〈γext1 Ṽ φ ; γext0 f〉 − 〈γint1 Ṽ φ ; γint0 f〉
= −

(
∇Ṽ φ ; ∇g

)
Ωext
−
(
∇Ṽ φ ; ∇g

)
Ω

= −
∫

Rd

∇f(x) · ∇x

∫

Γ
G(x− y)φ(y) dsy dx.

For x ∈ Rd\Γ, we may interchange the gradient and the integration over the boundary Γ. Moreover,
the Fubini theorem gives

= −
∫

Γ
φ(y)

∫

Rd

∇xG(x− y) · ∇f(x) dx dsy.

For fix y ∈ Γ, we use integration by parts, which yields

∫

Rd

∇xG(x− y) · ∇f(x) dx =

∫

Rd

G(x− y)
(
−∆f(x)

)
dx = Ñ(−∆f)(y) = f(y)

since f ∈ D(Rd). We therefore end up with

〈[γ1Ṽ φ] ; γ0f〉 = −〈φ ; γ0f〉 for all f ∈ D(Rd).

Since γ0
(
D(Rd)

)
= γint0

(
C∞(Ω)

)
is dense in H1/2(Γ), the Hahn-Banach theorem yields the conor-

mal jump [γ1Ṽ φ] = −φ. �

The following exercise has been used in step 3 of the proof of Proposition 2.28.

Exercise 2. Let Ω1,Ω2 be two open sets in Rd and Ω := interior(Ω1 ∪ Ω2). Let u ∈ C(Ω) such
that u ∈ H1(Ω1) and u ∈ H1(Ω2). Prove that u is weakly differentiable in Ω and conclude that
therefore u ∈ H1(Ω). ✷

Theorem 2.22 proves γint1 Ṽ = 1
2 + K ′. In particular, we thus obtain an explicit formula for the

exterior conormal derivative γext1 Ṽ as well.

Corollary 2.29. If the boundary Γ is piecewise C2, there holds γext1 Ṽ = −1
2 +K ′.

Proof. There holds −φ = [γ1Ṽ φ] = γext1 Ṽ φ− γint1 Ṽ = γext1 Ṽ φ−
(
1
2 +K ′)φ. �
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With Proposition 2.28, we have provided the necessary tool to prove the ellipticity of V . However,
since the kernel function G(x−y) has a logarithmic singularity in 2D and may be of different signs,
we have to treat the 2D and the 3D case separately. As the analysis is simpler, we shall start with
the 3D case. To be more precise, Theorem 2.30 holds for d = 3 only, whereas Theorem 2.33 holds
for both d = 2, 3.

Theorem 2.30. Assume that Ω is a bounded Lipschitz domain in R3. Then, the single-layer
potential V ∈ L

(
H−1/2(Γ);H1/2(Γ)

)
is an elliptic and symmetric isomorphism. In particular,

given v ∈ H1/2(Γ), there is a unique φ ∈ H−1/2(Γ) such that V φ = v. Moreover, 〈〈φ ; ψ〉〉 :=
〈V φ ; ψ〉 defines a scalar product on H−1/2(Γ), and the induced norm |||φ||| := 〈〈φ ; φ〉〉1/2 is an
equivalent norm on H−1/2(Γ).

Before we prove Theorem 2.30, we provide some elementary observations on the decay of Ṽ φ at
infinity.

Lemma 2.31. Let d = 3, i.e. Ω is a bounded Lipschitz domain in R3. Let R > 0 with Ω ⊆ BR(0)
and y0 ∈ Ω. Then, there holds, for any φ ∈ L1(Ω) and x ∈ R3 with |x− y0| ≥ 3R,

|Ṽ φ(x)| . 1

|x− y0|
≤ 2

|x| = O
(
1/|x|

)
and |∇Ṽ φ(x)| . 1

|x− y0|2
≤ 4

|x|2 = O
(
1/|x|2

)

as |x| → ∞. The constant only depends on φ. In particular, there holds ∇Ṽ φ ∈ L2(R3)3.

Proof. 1. step. For any y ∈ BR(0) ⊃ Γ holds 1/|x− y| ≤ 3/|x− y0|, which follows from

|x− y0| ≤ |x− y|+ |y − y0| ≤ |x− y|+ 2R ≤ |x− y|+ 2

3
|x− y0|

and whence |x− y0| ≤ 3 |x− y|.
2. step. There holds 1/|x − y0| ≤ 2/|x|: From y0 ∈ Ω, we obtain |y0| ≤ R and whence |x| ≥
|x− y0| − |y0| ≥ 2R. Consequently, we have

1

|x− y0|
≤ 1

|x| − |y0|
=

1

|x|
1

1− |y0|/|x|
≤ 1

|x|
1

1− 1/2
=

2

|x| .

3. step. Estimate |Ṽ φ(x)| and |∇Ṽ φ(x)|: The preceding observations and |G(x− y)| ∼ 1/|x− y|
lead to

|Ṽ φ(x)| ≤
∫

Γ
|G(x− y)||φ(y)| dsy .

3

|x− y0|
‖φ‖L1(Γ) ≤

6

|x| ‖φ‖L1(Γ).

Recall that |∇G(x− y)| ∼ 1/|x− y|2. Therefore, the same arguments prove

|∇Ṽ φ(x)| . 9

|x− y0|2
‖φ‖L1(Γ) ≤

36

|x|2 ‖φ‖L1(Γ).

4. step. It now only remains to prove ∇Ṽ φ ∈ L2(R3)3: By use of polar coordinates, we see
∫

|x|≥R
|∇Ṽ φ|2 dx .

∫

|x|≥R

1

|x|4 dx = 4π

∫

r≥R

1

r4
r2 dr <∞.

63



CHAPTER 2. INTEGRAL OPERATORS

Since Ṽ φ ∈ H1
ℓoc(R

3), this yields ∇Ṽ φ ∈ L2(R3)3. �

Proof of Theorem 2.30. 1. step. For φ ∈ L2(Γ) and u := Ṽ φ, there holds ‖∇u‖2L2(Ωext) =

−〈γext1 u ; γext0 u〉: For sufficiently large R > 0, we consider the bounded Lipschitz domain Ωext
R :=

Ωext ∩ UR(0) and apply the first Green formula to see

‖∇u‖2L2(Ωext
R ) = −〈γext1 u ; γext0 u〉Γ + 〈γint1 u ; γint0 u〉∂BR(0). (2.41)

As ∇u ∈ L2(Ωext), the left-hand side in (2.41) converges to ‖∇u‖L2(Ωext) for R → ∞ according
to the Lebesgue dominated convergence theorem. The boundary integral over the sphere ∂BR(0)
satisfies

〈γint1 u ; γint0 u〉∂BR(0) =

∫

∂BR(0)
u(x)∇u(x) · n(x) dsx = O(|∂BR(0)|/R3) = O(R−1)

and thus vanishes in the limit R→∞. Altogether, this proves ‖∇u‖2L2(Ωext) = −〈γext1 u ; γext0 u〉.
2. step. For φ ∈ L2(Γ) and u := Ṽ φ, holds ellipticity ‖φ‖2

H−1/2(Γ)
. 〈V φ ; φ〉: First, the jump

condition [γ1u] = −φ proves that

‖φ‖H−1/2(Γ) = ‖[γ1u]‖H−1/2(Γ) ≤ ‖γint1 u‖H−1/2(Γ) + ‖γext1 u‖H−1/2(Γ) . ‖∇u‖L2(Ω) + ‖∇u‖L2(Ωext)

according to the stability estimates (1.48)–(2.40) for the conormal derivative. Second, the exterior
and interior Green formula prove

‖∇u‖2L2(Ω) + ‖∇u‖2L2(Ωext) = 〈γint1 u ; γint0 u〉 − 〈γext1 u ; γext0 u〉
= 〈γint1 u− γext1 u ; V φ〉
= −〈[γ1u] ; V φ〉
= 〈φ ; V φ〉,

where we have used the jump condition [γ1u] = −φ as well as [γ0u] = 0, whence γext0 u = γint0 u = V φ.
Combining both estimates, we obtain the ellipticity estimate for φ ∈ L2(Γ).

3. step. The single-layer potential operator V ∈ L
(
H−1/2(Γ);H1/2(Γ)

)
is elliptic: The proof

follows from the ellipticity of V on the dense subspace L2(Γ) by continuity arguments.

4. step. All remaining claims now follow from the Lax-Milgram lemma (Appendix, Theorem A.1).
�

A closer look on the proof of Theorem 2.30 shows that only Lemma 2.31 is crucial. For the 2D
kernel, the analogous result is slightly more involved since we have to deal with the logarithmic
singularity of the single-layer potential kernel.

Lemma 2.32. Let d = 2, i.e. Ω is a bounded Lipschitz domain in R2. Let R > 0 with Ω ⊆ BR(0)
and y0 ∈ Ω. Let φ ∈ L1

∗(Γ) :=
{
ψ ∈ L1(Γ)

∣∣ (ψ ; 1)Γ = 0
}
. Then, there holds, for any x ∈ R3 with

|x− y0| ≥ 3R,

|Ṽ φ(x)| . 1

|x− y0|
≤ 2

|x| = O
(
1/|x|

)
and |∇Ṽ φ(x)| . 1

|x− y0|2
≤ 4

|x|2 = O
(
1/|x|2

)

as |x| → ∞. The constant only depends on φ and R. In particular, there holds ∇Ṽ φ ∈ L2(R2)2.
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Proof. 1. step. As in the proof of Lemma 2.31 for the 3D case, there holds

1

|x− y| ≤
3

|x− y0|
as well as

1

|x− y0|
≤ 2

|x|

2. step. Decay of Ṽ φ(x) at infinity: For y ∈ BR(0) holds conv{y, y0} ⊂ R2\{x} since otherwise
x = y0+λ(y− y0) with some λ ∈ [0, 1] would imply 3R ≤ |x− y0| = λ |y− y0| ≤ 2R. Therefore, we
may use the Taylor expansion for the function f(t) := log |y0 + t(y − y0) − x| defined for t ∈ [0, 1]
to prove

log |y − x| = f(1) = f(0) +

∫ 1

0
f ′(t) dt

= log |y0 − x|+
∫ 1

0

y0 + t(y − y0)− x
|y0 + t(y − y0)− x|2

· (y − y0) dt.

Note that y0+ t(y−y0) ∈ BR(0) according to convexity and y0, y ∈ BR(0). Therefore, step 1 proves

∣∣∣ y0 + t(y − y0)− x
|y0 + t(y − y0)− x|2

· (y − y0)
∣∣∣ ≤ |y − y0|
|y0 + t(y − y0)− x|

≤ 6R

|x− y0|
.

Finally, φ ∈ L1
∗(Γ) and thus

∫
Γ log |y0 − x|φ(y) dsy = 0 imply

|Ṽ φ(x)| ∼
∣∣∣
∫

Γ
φ(y)

∫ 1

0

y0 + t(y − y0)− x
|y0 + t(y − y0)− x|2

· (y − y0) dt dsy
∣∣∣ ≤ 6R

|x− y0|
‖φ‖L1(Γ).

3. step. Decay of ∇Ṽ φ(x) at infinity: As ∂j Ṽ φ(x) ∼
∫
Γ ∂j,x log |y − x|φ(y) dsy, we my apply the

same technique for f(t) = ∂j,x log |y0 + t(y − y0) − x|. With |∂j log |z|| . 1/|z|, we then obtain

|∇Ṽ φ(x)| . 1/|x− y0|2 . 1/|x|2.
4. step. By use of polar coordinates, we obtain ∇Ṽ φ ∈ L2(R2)2. This concludes the proof. �

Theorem 2.33. Assume that Ω is a bounded Lipschitz domain in Rd. Then, there is a unique
equilibrium density φeq ∈ H−1/2(Γ) and a unique capacity λeq ∈ R such that

V φeq ≡ λeq and 〈φeq ; 1〉 = 1. (2.42)

With the space

H1/2
eq :=

{
v ∈ H1/2(Γ)

∣∣ 〈φeq ; v〉 = 0
}
, (2.43)

there hold the following assertions on the single-layer potential operator:
(i) V ∈ L

(
H−1/2(Γ);H1/2(Γ)

)
is a symmetric operator.

(ii) V ∈ L
(
H

−1/2
∗ (Γ);H

1/2
eq (Γ)

)
is a well-defined and elliptic isomorphism.

(iii) V ∈ L
(
H−1/2(Γ);H1/2(Γ)

)
is elliptic if and only if λeq > 0.

(iv) For d = 2 and diam(Ω) < 1, there holds λeq > 0 and thus ellipticity of V on H−1/2(Γ).

65



CHAPTER 2. INTEGRAL OPERATORS

Proof. 1. step. For φ ∈ H−1/2
∗ (Γ) and u := Ṽ φ holds ellipticity ‖φ‖2

H−1/2(Γ)
. 〈〈φ ; φ〉〉: For d = 3,

this claim holds even for general φ ∈ H−1/2(Γ). For d = 2, the proof of Theorem 2.30 works for

H
−1/2
∗ (Γ) since L2

∗(Γ) is dense in H
−1/2
∗ (Γ) and since functions φ ∈ L2

∗(Γ) lead to the proper decay
of Ṽ φ at infinity: One only has to replace Lemma 2.31 by Lemma 2.32. The reader may want to
check this in detail.
2. step. Unique existence of (φeq, λeq): We consider the saddle-point problem

a(φeq, ψ) + b(ψ, λeq) = 0,
b(φeq, µ) = −µ, (2.44)

for all (ψ, µ) ∈ H−1/2(Γ) × R, where a(φ, ψ) = 〈V φ ; ψ〉 and b(ψ, µ) = −µ 〈ψ ; 1〉. With the
notation of the Brezzi Theorem A.4, there holds ker(B1) :=

{
φ ∈ H−1/2(Γ)

∣∣ ∀λ ∈ R b(φ, λ) =

0
}
= H

−1/2
∗ (Γ). Since a(·, ·) is elliptic on ker(B1) and since B1 is surjective, (2.44) has a unique

solution (φeq, λeq) ∈ H−1/2(Γ) × R. From the first equation and the Hahn-Banach theorem, we
derive V φeq ≡ λeq. The second equation yields 〈φeq ; 1〉 = 1.

3. step. V ∈ L
(
H

−1/2
∗ (Γ);H

1/2
eq (Γ)

)
is a well-defined and elliptic isomorphism: From step 1, we

know that V is elliptic on H
−1/2
∗ (Γ). For φ ∈ H−1/2

∗ (Γ) holds

〈V φ ; φeq〉 = 〈φ ; V φeq〉 = λeq〈φ ; 1〉 = 0,

whence V φ ∈ H1/2
eq (Γ). Therefore, V ∈ L

(
H

−1/2
∗ (Γ);H

1/2
eq (Γ)

)
is well-defined. We now show that

H
1/2
eq (Γ) is the dual space of H

−1/2
∗ (Γ). To that end, recall that we have already proven that

H
1/2
∗ (Γ) is the dual space of H

−1/2
∗ (Γ). We thus only need to prove the following:

• Given v ∈ H
1/2
eq (Γ), there is an element w ∈ H

1/2
∗ (Γ) such that 〈φ ; v〉 = 〈φ ; w〉 for all

φ ∈ H−1/2
∗ (Γ): The obvious definition of w := v − 〈v ; 1〉/〈1 ; 1〉 ∈ H1/2

∗ (Γ) does the job.

• Given w ∈ H
1/2
∗ (Γ), there is an element v ∈ H

1/2
eq (Γ) such that 〈φ ; v〉 = 〈φ ; w〉 for all

φ ∈ H−1/2
∗ (Γ): Since 〈φeq ; 1〉 = 1, the definition of v := w − 〈φeq ; w〉 ∈ H1/2

eq (Γ) works.

Thus, H−1/2(Γ)∗ = H
1/2
eq (Γ) in the sense of the extended L2-scalar product. Therefore, the Lax-

Milgram lemma proves that V is an isomorphism between H
−1/2
∗ (Γ) and H

1/2
eq (Γ).

4. step. If V is H−1/2(Γ)-elliptic, there holds λeq > 0 since 0 < ‖φeq‖2H−1/2(Γ)
. 〈V φeq ; φeq〉 =

λeq〈φeq ; 1〉 = λeq.

5. step. Provided λeq > 0, the operator V is elliptic on H−1/2(Γ): Let φ ∈ H−1/2(Γ) and define

φ̃ := φ− 〈φ ; 1〉φeq. Note that φ̃ ∈ H−1/2
∗ (Γ). Moreover, the definition of φeq proves

〈V φ ; φ〉 = 〈V φ̃ ; φ̃〉+ 2〈φ ; 1〉 〈V φeq ; φ̃〉︸ ︷︷ ︸
=0

+|〈φ ; 1〉|2 〈V φeq ; φeq〉︸ ︷︷ ︸
=λeq

.

Recall that we have already proven that V is at least elliptic on H
−1/2
∗ (Γ). As ‖φeq‖H−1/2(Γ) and λeq

are just positive constants, the triangle inequality ‖φ‖H−1/2(Γ) ≤ ‖φ̃‖H−1/2(Γ)+|〈φ ; 1〉| ‖φeq‖H−1/2(Γ)

yields

‖φ‖2
H−1/2(Γ)

. ‖φ̃‖2
H−1/2(Γ)

+ |〈φ ; 1〉|2 . 〈V φ̃ ; φ̃〉+ λeq|〈φ ; 1〉|2 = 〈V φ ; φ〉.
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6. step. It only remains to prove that diam(Ω) < 1 implies λeq > 0. This is, however, a rather
deep result from complex analysis. The reader is therefore referred to the literature. �

The following corollary is an immediate consequence of Theorem 2.33 and the Lax-Milgram lemma.
However, we state it explicitly to stress the ellipticity of the single-layer potential in 2D.

Corollary 2.34. Assume that Ω is a bounded Lipschitz domain in R2 with diam(Ω) < 1. Then,
the single-layer potential V ∈ L

(
H−1/2(Γ);H1/2(Γ)

)
is an elliptic and symmetric isomorphism.

In particular, given v ∈ H1/2(Γ), there is a unique φ ∈ H−1/2(Γ) such that V φ = v. Moreover,
〈〈φ ; ψ〉〉 := 〈V φ ; ψ〉 defines a scalar product on H−1/2(Γ), and the induced norm |||φ||| := 〈〈φ ; φ〉〉1/2
is an equivalent norm on H−1/2(Γ). �

Remark. (i) One can show that the single-layer potential operator V ∈ L
(
H−1/2(Γ);H1/2(Γ)

)
is

an isomorphism if and only if λeq 6= 0.
(ii) Moreover, one can check (numerically) for ellipticity as follows:

• Solve V φ ≡ 1. — If the corresponding linear system has no solutions, V is not elliptic.

• Compute 〈φ ; 1〉. — If the value is less or equal zero, V is not elliptic.

• Otherwise, define λ := 1/〈φ ; 1〉 and φ̃ := λφ. Then, V φ̃ ≡ λ and 〈φ̃ ; 1〉 = 1, whence (φ̃, λ)
solves (2.44). Thus, (φ̃, λ) = (φeq, λeq).

In particular, this algorithm computes the capacity λeq. ✷

2.8 Ellipticity of Hypersingular Integral Operator

The following elementary lemma is left to the reader. The proof follows along the lines of the proof
of Lemma 2.31 and 2.32.

Lemma 2.35. Let R > 0 with Ω ⊂ BR(0) and y0 ∈ Ω. Then, there holds, for any v ∈ H1/2(Ω)
and x ∈ Rd with |x− y0| ≥ 3R

|K̃v(x)| . 1

|x− y0|d−1
= O(1/|x|d−1) and |∇K̃v(x)| . 1

|x− y0|d
= O(1/|x|d)

as |x| → ∞. The constant depends only on φ. In particular, there holds ∇K̃v ∈ L2(Ωext). �

For the following results, we assume that Γ is piecewise C2 so that we have integral representations
of the double-layer potential and the hypersingular integral operator.

Proposition 2.36. For v ∈ H1/2(Γ) holds K̃v ∈ C∞(Rd\Γ) ∩ H1(Ω) ∩ H1
ℓoc(Ω

ext) with

−∆(K̃v) = 0 weakly in Rd\Γ. Moreover, the following jump relations are well-defined:
(i) [γ0K̃v] := γext0 K̃v − γint0 K̃v = v ∈ H1/2(Γ).

(ii) [γ1K̃v] := γext1 K̃v − γint1 K̃v = 0 ∈ H−1/2(Γ).
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Proof. 1. step. We know that K̃v ∈ C∞(Rd\Γ) with −∆(K̃v) = 0 pointwise in Rd\Γ. The
fundamental step in the proof of Theorem 2.7 was the identity

〈K̃v ; f〉 = 〈v ; N1f〉 for all f ∈ D(Rd),

which led to K̃v ∈ H1(Ω). The same techniques prove K̃v ∈ H1(Ωext
R ) for any R > 0, whence

K̃v ∈ H1
ℓoc(Ω

ext).

2. step. There holds [γ0K̃v] = v: Theorem 2.22 provides γint0 K̃ = −1
2 +K. The reader may check

the proof to see that γext0 K̃ = 1
2+K. In particular, the jump satisfies [γ0K̃v] = γext0 K̃v−γint0 K̃v = v.

3. step. There holds [γ1K̃v] = 0: For f ∈ D(Rd), integration by parts proves

〈γint1 K̃v ; γint0 f〉 =
(
∇K̃v ; ∇f

)
Ω
=
(
K̃v ; −∆f

)
Ω
+ 〈γint0 K̃v ; γint1 f〉

as well as

〈γext1 K̃v ; γext0 f〉 =
(
∇K̃v ; ∇f

)
Ωext

=
(
K̃v ; −∆f

)
Ωext
− 〈γext0 K̃v ; γext1 f〉.

Therefore, γint0 f = γint0 f = γ0f and γint1 f = γext1 f = γ1f prove

〈[γ1K̃v] ; γ0f〉 =
(
K̃v ; −∆f

)
Rd
− 〈[γ0K̃v] ; γ1f〉 =

(
K̃v ; −∆f

)
Rd
− 〈v ; γ1f〉.

We consider the scalar product over Rd, which reads
(
K̃v ; −∆f

)
Rd

= −
∫

Rd

∆f(x)

∫

Γ
γint1,yG(x− y)v(y) dsy dx

= −
∫

Γ
v(y)γint1,y

∫

Rd

G(x− y)∆f(x) dx dsy

= 〈v ; γint1 Ñ(−∆f)〉
= 〈v ; γint1 f〉.

Here, we have used the Fubini theorem as well as the fact that the Newton potential Ñ(−∆f)
belongs to C∞. The combination of the latter two equalities proves

〈[γ1K̃v] ; γint0 f〉 = 0 for all f ∈ D(Rd).

Since γint0

(
D(Rd)

)
is dense in H1/2(Γ), the Hahn-Banach theorem proves [γ1K̃v] = 0. �

Corollary 2.37. For a piecewise C2 boundary Γ holds γext0 K̃ = 1
2 +K.

Proof. The proof follows from v = [γ0K̃v] = γext0 K̃v − γint0 K̃v = γext0 K̃v − (−1
2 +K)v. �

The following theorem states ellipticity of W in H
−1/2
∗ (Γ). For its proof, we refer to [SS11].

Theorem 2.38. The hypersingular integral operator W ∈ L
(
H

1/2
∗ (Γ);H

−1/2
∗ (Γ)

)
is an elliptic

and symmetric isomorphism. In particular, given φ ∈ H−1/2
∗ (Γ), there is a unique v ∈ H1/2

∗ (Γ)

such that Wv = φ. Moreover, 〈〈v ; w〉〉 := 〈Wv ; w〉 defines a scalar product on H
1/2
∗ (Γ), and the

induced norm |||v||| := 〈〈v ; v〉〉1/2 is an equivalent norm on H
1/2
∗ (Γ).
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Chapter 3

Galerkin Boundary Element Method

3.1 Abstract Galerkin Methods

Throughout this section, H is a Hilbert space and 〈〈· ; ·〉〉 is a continuous and elliptic bilinear form
on H. For given F ∈ H∗, the Lax-Milgram lemma proves the unique existence of a solution u ∈ H
of

〈〈u ; v〉〉 = F (v) for all v ∈ H, (3.1)

for what we use the short-hand notation

〈〈u ; ·〉〉 = F ∈ H∗ (3.2)

to indicate the set of test functions. Now, the Galerkin projection simply consists in replacing
the continuous space H by some finite dimensional subspace: Let Xh be a finite-dimensional (and
hence closed) subspace of H. Since the Lax-Milgram lemma applies to the Hilbert space Xh as
well, there is a unique Galerkin solution uh := Ghu ∈ Xh such that

〈〈Ghu ; ·〉〉 = F ∈ X∗
h. (3.3)

For u ∈ H and the corresponding functional 〈〈u ; ·〉〉 ∈ H∗, this defines the Galerkin projection

Gh : H → Xh where Ghu ∈ Xh solves 〈〈Ghu ; ·〉〉 = 〈〈u ; ·〉〉 ∈ X∗
h. (3.4)

Note that Ghu ∈ Xh is characterized by the Galerkin orthogonality

〈〈u−Ghu ; vh〉〉 = 0 for all vh ∈ Xh. (3.5)

If 〈〈· ; ·〉〉 is additionally symmetric, it is a scalar product, and the induced norm |||u||| := 〈〈u ; u〉〉1/2
is an equivalent norm on H. In this case 〈〈· ; ·〉〉 and ||| · ||| are called energy scalar product and
energy norm, respectively.

Before we proceed with the theoretical analysis of Galerkin schemes, we treat an implementational
issue. The following theorem is the fundamental observation: Usually, only the bilinear form 〈〈· ; ·〉〉
and the right-hand side F ∈ H∗ are known, whereas the exact solution u ∈ H∗ of (3.1) is unknown.
Then, the Galerkin solution Ghu ∈ Xh can be computed without knowing u by solving a linear
system of equations.
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Theorem 3.1. Let {φ1, . . . , φN} be a basis of Xh. We define the Galerkin matrix A ∈ RN×N

and the vector b ∈ RN by

Ajk := 〈〈φk ; φj〉〉 and bj := F (φj). (3.6)

Then, A is a regular matrix, and Ghu =
∑N

j=1 xjφj, where the vector x ∈ RN solves Ax = b.
Moreover, if 〈〈· ; ·〉〉 is symmetric, the Galerkin matrix A is symmetric and positive definite.

Proof. 1. step. To show that A is regular, we only need to show that A is injective: For any
x ∈ RN and vh :=

∑N
j=1 xjφj holds

‖vh‖2H . 〈〈vh ; vh〉〉 =
N∑

j,k=1

xjxk〈〈φj ; φk〉〉 = x ·Ax.

Therefore, Ax = 0 implies ‖vj‖H = 0 and finally x = 0.

2. step. Determine Galerkin solution: Let x ∈ Rn be the unique solution of the linear Galerkin
system Ax = b. We use the basis representation Ghu =

∑N
j=1 yjφj of the Galerkin solution with

some coefficient vector y ∈ Rn. By use of the linearity of 〈〈· ; ·〉〉, equation (3.3) becomes

bk = F (φk) = 〈〈Ghu ; φk〉〉 =
N∑

j=1

yj〈〈φj ; φk〉〉 = (Ay)k for all k = 1, . . . , N.

Therefore, the coefficient vector y ∈ RN satisfies Ay = b. This proves x = y, i.e., we obtain Ghu
by solving Ax = b.

3. step. If 〈〈· ; ·〉〉 is symmetric, the matrix A is symmetric as well. Moreover, step 1 proves even
positive definiteness of A. �

Remark. We just remark that Theorem 3.1 can be applied for any orthogonal-type projection,
e.g., the L2-orthogonal projection onto a discrete space. ✷

We now proceed with the abstract analysis of Galerkin schemes. The following two lemmata provide
elementary properties of the Galerkin projection. The first lemma, proves stability of the method
with respect to changes of the right-hand side F .

Lemma 3.2. The Galerkin projection Gh is a linear and continuous projection onto Xh. If
〈〈· ; ·〉〉 is symmetric, Gh is the orthogonal projection onto Xh with respect to the energy scalar
product 〈〈· ; ·〉〉.
Proof. For uh ∈ Xh, the Galerkin orthogonality (3.5) implies Ghuh = uh. Therefore Gh is a
projection onto Xh. Also the linearity of Gh follows from the Galerkin orthogonality (3.5). To see
the continuity of Gh it remains to estimate the operator norm: For u ∈ H holds

‖Ghu‖2H . 〈〈Ghu ; Ghu〉〉 = 〈〈u ; Ghu〉〉 . ‖u‖H‖Ghu‖H ,

where we have used ellipticity and continuity of 〈〈· ; ·〉〉. This proves ‖Ghu‖H . ‖u‖H and thus
continuity of Gh, where the operator norm is bounded by the quotient of continuity and ellipticity
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constant. Finally, if 〈〈· ; ·〉〉 is a scalar product, the unique orthogonal projection with respect to
this scalar product, is characterized by the orthogonality relation (3.5). �

The following Céa lemma states that the Galerkin error ‖u − Ghu‖H is quasi-optimal, i.e. it
behaves like the best approximation error up to multiplicative constants, which depend only on the
continuous setting but not on Xh.

Lemma 3.3 (Céa). The Galerkin error is quasi-optimal, i.e.

‖u−Ghu‖H . min
vh∈Xh

‖u− vh‖H for all u ∈ H, (3.7)

where the constant depends only on the ellipticity and the continuity of 〈〈· ; ·〉〉. If 〈〈· ; ·〉〉 is
symmetric, there holds

|||u−Ghu||| = min
vh∈Xh

|||u− vh||| for all u ∈ H, (3.8)

i.e. the Galerkin solution Ghu is the best approximation of u with respect to the energy norm.

Proof. For arbitrary vh ∈ Xh, the Galerkin orthogonality (3.5) proves

‖u−Ghu‖2H . 〈〈u−Ghu ; u−Ghu〉〉 = 〈〈u−Ghu ; u− vh〉〉 . ‖u−Ghu‖H‖u− vh‖H

with the same arguments as in the proof of the last lemma. This leads to (3.7) with an infimum
on the right-hand side. If we replace Gh by the orthogonal projection Πh onto Xh with respect
to ‖ · ‖H , we see that all inequalities of our estimate hold with constant 1. This proves that the
minimum in (3.7) is attained for vh = Πhu. Even the same argument proves (3.8). �

A major advantage of Galerkin methods is, that one can prove convergence to the exact solution
u ∈ H. In the following, think of the subscript h > 0 as a mesh-size parameter with corresponding
finite dimensional spaces Xh:

Proposition 3.4. We assume that there is a dense subspace D of H with approximation
property, namely

lim
h→0

min
vh∈Xh

‖v − vh‖H = 0 for all v ∈ D. (3.9)

Then, for any u ∈ H, there holds

lim
h→0
‖u−Ghu‖H = 0, (3.10)

i.e. the sequence of Galerkin solutions converges to the exact solution u.
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Proof. For v ∈ D holds the estimate

‖u−Ghu‖H ≤ ‖u− v‖H + ‖v −Ghv‖H + ‖Ghu−Ghv‖H
. ‖u− v‖H + min

vh∈Xh

‖v − vh‖H

=: C
(
‖u− v‖H + min

vh∈Xh

‖v − vh‖H
)

by use of continuity of Gh and the quasi-optimality estimate (3.7). We have to show that

∃C > 0∀ε > 0∃h0 > 0∀h ∈ (0, h0) ‖u−Ghu‖H ≤ ε.

For ε > 0, let v ∈ D with ‖u − v‖H ≤ ε. Choose h0 > 0 according to the approximation assump-
tion (3.10) so that ‖v −Ghv‖H ≤ ε for all h ∈ (0, h0). We thus finally obtain ‖u−Ghu‖H ≤ 2Cε,
which concludes the proof. �

Although the result of the preceding lemma seems to be very attractive, we stress, however, that
the convergence of a Galerkin scheme can be arbitrarily slow. We argue in the abstract setting: If
H is a separable Hilbert space, e.g., H is one of the introduced Sobolev spaces, there is a countable
orthonormal basis

{
φj
∣∣ j ∈ N

}
. Any u ∈ H can be written as u =

∑∞
j=1 xjφj with coefficients

(xn) ∈ ℓ2. If we define Xj := span{φ1, . . . , φj}, there holds

min
vh∈Xh

‖u− vh‖2H =
∞∑

j=k+1

x2j .

Finally, the decrease of the right-hand side can be very slow. One may think of, e.g., x2j = j−(1+ε)

for any ε > 0, so that the series converges but is — in the beginning — almost the divergent
harmonic series.

Another important fact is that the Galerkin scheme is stable with respect to certain perturbations
of the bilinear form 〈〈· ; ·〉〉 or the right-hand side F due to the so called Strang lemma.

3.2 A-Priori Error Analysis

We now turn our attention to Symm’s integral equation of finding φ ∈ H−1/2(Γ) such that

V φ = f (3.11)

for given right-hand side f ∈ H1/2(Γ). Our goal is to provide an a-priori estimate for the Galerkin
error to quantify the speed of convergence.
For the Galerkin boundary element method, we choose piecewise polynomial spaces Xh: Let Th be
a triangulation of Γ, i.e.

• Th = {T1, . . . , TN} is a finite set of subsets Tj ⊆ Γ,

• each Tj ∈ Th is (relatively) open and connected with positive surface measure |Tj | > 0,

• for Tj , Tk ∈ Th with j 6= k holds Tj ∩ Tk = ∅,
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• Γ =
⋃{

T
∣∣T ∈ Th

}
, i.e. Th is a covering of Γ.

For the ease of presentation, we additionally assume that the elements T ∈ Th are flat, i.e. there is
an open and connected set VT ⊂ Rd−1 and an affine bijection ΦT : Rd → Rd such that ΦT (VT ) = T .
Moreover, we assume that the elements are convex — this clearly holds in 2D and is the common
case in 3D, where the elements usually are flat triangles or rectangles. With χT the characteristic
function of a set T , we consider the space

P0(Th) := span
{
χT

∣∣T ∈ Th
}

(3.12)

of all Th-piecewise constant functions. We define the local mesh-width

h ∈ P0(Th), h|Tj = hTj := diam(Tj) := sup
x,y∈Tj

|x− y| (3.13)

as well as the maximal mesh-width

hmax := ‖h‖L∞(Γ) = max
T∈Th

hT . (3.14)

Moreover, we define the shape regularity constant

σ(Th) := max
T∈Th

hd−1
T

|T | (3.15)

to measure the degeneracy of the elements in Th.
Remark. In the finite element analysis, the shape regularity constant from (3.15) involves hdT
instead of hd−1

T . We stress that in the context of boundary elements hd−1
T coincides to the fact that

we are dealing with (d− 1)-dimensional manifolds.

Theorem 3.5 (Approximation Theorem). Let Πh : L2(Γ) → P0(Th) denote the L2-
orthogonal projection onto P0(Th). For ψ ∈ L2(Γ) ∩H1(Th), holds

‖ψ −Πhψ‖H−1/2(Γ) . ‖h3/2∇T ψ‖L2(Γ), (3.16)

where the constant only depends on the shape regularity constant σ(Th). Here, ψ ∈ H1(Th) means
that ψ ∈ H1(T ) for all T ∈ TH , and ∇T thus denotes the Th-elementwise gradient.

Proof. The elementary proof of (3.16) is split into four steps.

1. step. The L2-orthogonal projection onto P0(Th) can explicitly be written as

(Πhv)|T =
1

|T |

∫

T
v ds for all v ∈ L2(Γ) and all T ∈ Th. (3.17)

This follows from the orthogonality property

0 = (v −Πhv ; χT )L2(Γ) =

∫

T
v ds−

∫

T
(Πhv) ds =

∫

T
v ds− |T | (Πhv)|T for all T ∈ Th.

2. step. According to the Poincaré inequality, there holds, for any T ∈ Th,

‖ψ −Πhψ‖L2(T ) ≤
1

π
hT ‖∇ψ‖L2(T ),
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where convexity of T ∈ Th provides the Poincaré constant 1/π.

3. step. For any v ∈ H1/2(Γ) and T ∈ Th holds

‖v −Πhv‖L2(T ) ≤ σ(Th)1/2 h1/2T |v|H1/2(T ).

We recall that the H1/2-Sobolev-Slobodeckij seminorm is defined by

|v|H1/2(T ) =
(∫

T

∫

T

|v(x)− v(y)|2
|x− y|d dsy dsx

)1/2
.

For fixed x ∈ T , the closed form of Πhv from step 1 and the Cauchy inequality prove

|v(x)−Πhv(x)|2 =
1

|T |2
(∫

T
v(x)− v(y) dsy

)2

≤ 1

|T |2
(∫

T

|v(x)− v(y)|2
|x− y|d dsy

)(∫

T
|x− y|d dsy

)

≤ hd−1
T

|T | hT
∫

T

|v(x)− v(y)|2
|x− y|d dsy.

Integration over T now yields

‖v −Πhv‖2L2(T ) ≤ σ(Th)hT |v|2H1/2(T )
.

4. step. Finally, we estimate the dual norm

‖ψ −Πhψ‖H−1/2(Γ) = sup
v∈H1/2(Γ)\{0}

〈ψ −Πhψ ; v〉
‖v‖H1/2(Γ)

.

Let v ∈ H1/2(Γ). We stress that the duality brackets are just the L2-scalar product since both
ψ −Πhψ, v ∈ L2(Γ). Orthogonality of Πh provides

〈ψ −Πhψ ; v〉 = (ψ −Πhψ ; v −Πhv)L2(Γ) =
∑

T∈Th
(ψ −Πhψ ; v −Πhv)L2(T ) .

For fixed T ∈ Th holds

(ψ −Πhψ ; v −Πhv)L2(T ) ≤ ‖ψ −Πhψ‖L2(T )‖v −Πhv‖L2(T )

≤ σ(Th)1/2
π

h
3/2
T ‖∇ψ‖L2(T )|v|H1/2(T ).

Therefore, the Cauchy inequality proves

〈ψ −Πhψ ; v〉 ≤ σ(Th)1/2
π

(∑

T∈T
h3T ‖∇ψ‖2L2(T )

)1/2(∑

T∈T
|v|2

H1/2(T )

)1/2

≤ σ(Th)1/2
π

‖h3/2∇T ψ‖L2(Γ) |v|H1/2(Γ).

This concludes the proof. �
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Remark. We stress that the same techniques as in the preceding proof yield

‖ψ −Πhψ‖H−1/2(Γ) . ‖h1/2(ψ −Πhψ)‖L2(Γ) ≤ ‖h1/2ψ‖L2(Γ) for all ψ ∈ L2(Γ). (3.18)

Here, the second inequality follows from the Pythagoras theorem (i.e. the L2-orthogonality)

‖ψ −Πhψ‖2L2(T ) = ‖ψ‖2L2(T ) − ‖Πhψ‖2L2(T ) ≤ ‖ψ‖2L2(T ).

This Th-elementwise estimate is simply weighted by hT and then added over all T ∈ Th.
The combination of Céa-Lemma and approximation theorem provides an a-priori error estimate.

Corollary 3.6 (A-Priori Estimate for Galerkin Error). Provided that the exact solution
φ ∈ H−1/2(Γ) of (3.11) satisfies φ ∈ L2(Γ) ∩H1(Th), there holds

|||φ− φh||| . ‖h3/2∇φ‖L2(Γ), (3.19)

where the constant only depends on Γ and the shape regularity constant σ(Th).
Proof. First recall that the energy norm ||| · ||| is an equivalent norm on H−1/2(Γ), i.e.

Clower‖ψ‖H−1/2(Γ) ≤ |||ψ||| ≤ Cupper‖ψ‖H−1/2(Γ) for all ψ ∈ H−1/2(Γ).

The lower constant Clower > 0 is just the square-root of the ellipticity constant of V , whereas
Cupper > 0 is the square-root of the operator norm of V , i.e. both constants depend on Γ only.
With the L2-orthogonal projection onto P0(Th), the Céa-Lemma proves

|||φ− φh||| ≤ |||φ−Πhφ||| ≈ ‖φ−Πhφ‖H−1/2(Γ) . ‖h3/2∇φ‖L2(Γ),

where we have used that the energy norm ||| · ||| is an equivalent norm on H−1/2(Γ). �

The preceding corollary proves that

|||φ− φh||| = O(h3/2max)

in the case that φ is sufficiently regular and that the shape regularity constant remains bounded.
Finally, we prove that — even without any further regularity assumptions on the exact solution
φ ∈ H−1/2(Γ) — the sequence of Galerkin solutions φh converges to φ. To that end, we consider a

sequence T (n)
h of triangulations with

P0(T (n)
h ) ⊆ P0(T (n+1)

h ),

i.e. T (n+1)
h is obtained from certain refinements of T (n)

h . Let φ
(n)
h ∈ P0(T (n)

h ) the sequence of
corresponding Galerkin solutions.

Corollary 3.7 (Convergence of Galerkin Method). Provided that

σ := sup
n∈N

σ(T (n)
h ) <∞ and lim

n→∞
h(n)max = 0,

there holds convergence lim
n→∞

|||φ− φ(n)h ||| = 0.
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Proof. Note that H1(Γ) is dense in H−1/2(Γ). Given ε > 0, we therefore find ψ ∈ H1(Γ) such that

|||φ − ψ||| ≤ ε. According to the a priori error estimate, there holds |||ψ − G
(n)
h ψ||| = O((h(n)max)3/2).

Therefore, there is n0 ∈ N such that

|||ψ −G
(n)
h ψ||| ≤ ε

for any n ≥ n0. The triangle inequality now proves

|||φ− φ(n)h ||| ≤ |||φ− ψ|||+ |||ψ −G
(n)
h ψ|||+ |||G(n)

h ψ − φ(n)h ||| ≤ 3ε for all n ≥ n0,

where we have used G
(n)
h ψ − φ(n)h = G

(n)
h (ψ − φ) as well as |||G(n)

h (ψ − φ)||| ≤ |||ψ − φ|||. This proves
convergence. �

Remark. Since the step functions are dense in L2(Γ), one can prove that

P0(T (n)
h ) ⊆ P0(T (n+1)

h ) and lim
n→∞

h(n)max = 0

implies that X :=
⋃

n∈N P0(T (n)
h ) is dense in L2(Γ) as well. Recalling that L2(Γ) is dense in

H−1/2(Γ), we derive that X is dense in H−1/2(Γ) as well. In particular, this proves convergence of
the Galerkin boundary element method without the additional assumption of

σ := sup
n∈N

σ(T (n)
h ) <∞.

We stress, however, that this is a special observation for piecewise constant ansatz functions and
negative-order Sobolev spaces. The proof of Corollary 3.7 even applies for the finite element method
and positive-order Sobolev spaces, e.g., H1(Ω).

Remark. We finish the part about the boundary element method by stressing some advantages
and disadvantages of the Galerkin BEM for the boundary integral equation compared to the finite
element method (FEM) that is often used to compute numerical solutions to the PDE.
The advantages are:

+ BEM is suitable for exterior (unbounded) problems as well as transmission problems that
often appear in applications such as wave scattering.

+ The BEM converges with order h3/2 in the energy norm for sufficiently smooth solutions,
whereas the FEM converges with order h in the energy norm.

+ The boundary integral formulation gives rise to a formulation in Rd−1, i.e., the discretization
has to be done in one less dimension.

+ The condition number of the Galerkin matrix (for a uniform mesh) is κ(A) ∼ O(h−1).

However, there are significant disadvantages as well, such as:

- For basis functions φi, φj with suppφi ∩ suppφj 6= ∅, the integrals∫
suppφi

∫
suppφj

G(x − y)φj(y)φi(x)dsydsx have a singular integrand and can therefore not

be treated with classical Gaussian quadrature. However, these integrals can be computed
(semi-)analytical or be treated with so-called Sauter-Schwab quadrature (see [SS11]). A main
idea hereby, is to use a Duffy transformation to get rid of the point singularity.
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- Therefore, obtaining a stable implementation is way harder!

- Boundary integral operators are non-local. Therefore, the Galerkin discretization leads to
fully populated matrices A ∈ RN×N . Storing these or doing matrix-vector multiplications
leads to complexity O(N2), which is not feasibly for large N . This gave rise to a whole lot
of research on fast boundary element methods, such as the fast multipole method (FMM)
or hierarchical matrices (H-matrices). A main idea hereby is to approximate the kernel
function of the integral operators on suitably separated subsets, since the kernel function
is smooth provided x 6= y. Doing this in a right way gives computable approximations
with storage/matrix-vector-multiplication complexity of O(N log(N)) and error that decays
exponentially.
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Part II: Fractional Differential
Operators
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Chapter 4

Definitions of the Fractional Laplacian

4.1 The Integral Fractional Laplacian

4.1.1 Probabilistic Motivation

As a motivation for the fractional Laplacian, we start with a random walk approach with arbitrary
long jumps.
Let P be a probability measure on N given by

P (I) := c(s)
∑

j∈I

1

j1+2s
for I ⊂ N,

where c(s) :=
(∑∞

j=1
1

j1+2s

)−1
is a normalization constant (depending on s) such that P (N) = 1.

We study the motion of a particle described as follows: We assume that the particle does discrete
jumps and denote by h the minimal possible jump-width in space and by τ the step size in time
and link them by τ = h2s.
By u(x, t) we denote the probability of a particle being at time t at the place x. The particle moves
in the way that for each timestep τ , it chooses a random direction ν ∈ ∂B1(0) ⊂ Rd according to
a uniform distribution as well as a j ∈ N according to the probability distribution P and it makes
a step in space in the direction jhν.

Example. In one space dimension d = 1 and allowing only forward/backward jumps of length h
both with probability 1/2 gives a classical random walk. Then, we have

u(x, t+ τ) =
1

2
u(x+ h, t) +

1

2
u(x− h, t)

and assuming 2τ = h2

u(x, t+ τ)− u(x, t)
τ

=
u(x+ h, t)− 2u(x, t) + u(x− h, t)

h2
.

Taking the limit h, τ → 0 gives the heat equation

ut = ∆u. �
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In contrast to the previous example, we allow jumps of arbitrary length (although long jumps have
small probability).
The value u(x, t + τ) is given by the sum of all probabilities of the particle being at time t at
location x+ jhν multiplied with the probability of jumping from there to x, i.e.,

u(x, t+ τ) =
c(s)

|∂B1(0)|

∫

∂B1(0)

∑

j∈N

u(x+ jhν, t)

j1+2s
dsν ,

where the constant in front of the integral is the right normalization of both probability distribu-
tions. This gives

u(x, t+ τ)− u(x, t) = c(s)

|∂B1(0)|

∫

∂B1(0)

∑

j∈N

u(x+ jhν, t)− u(x, t)
j1+2s

dsν .

For fixed ν ∈ ∂B1(0), we define ψν(z, x, t) :=
u(x+zν,t)−u(x,t)

|z|1+2s and using τ = h2s, we obtain

u(x, t+ τ)− u(x, t)
τ

=
c(s)

|∂B1(0)|

∫

∂B1(0)

∑

j∈N
hψν(jh, x, t)dsν .

Now, the integrand is just a Riemann-sum for the integral
∫∞
0 ψν(z, x, t)dz. Taking (formally) the

limit h→ 0 and using polar coordinates y = zeiϕ, we arrive at

ut(x, t) =
c(s)

|∂B1(0)|

∫

∂B1(0)

∫ ∞

0
ψν(z, x, t)dzdsν

=

∫

Rd

u(x+ y, t)− u(x, t)
|y|d+2s

dy

=: C(d, s)(−∆)su(x, t).

Therefore, the limit of a random walk with arbitrary long jumps leads to the so-called fractional
heat equation.

4.1.2 The Integral Fractional Laplacian

The previous example motivates the definition of the fractional Laplacian as a non-local singular
integral operator.
We, at first, formally define it on Schwarz-functions in the space

S :=
{
u ∈ C∞(Rd) : sup

x∈Rd

|xα∂βu(x)| <∞ ∀α, β ∈ Nd
}
.
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Definition 4.1. Let s ∈ (0, 1) and u ∈ S. Then, the pointwise defined operator

(−∆)su(x) := C(d, s) P.V.

∫

Rd

u(x)− u(y)
|x− y|d+2s

dy (4.1)

= C(d, s) lim
ε→0

∫

Rd\Bε(x)

u(x)− u(y)
|x− y|d+2s

dy

is called integral fractional Laplacian. Here, P.V. denotes the Cauchy principal value and

the appearing normalization constant is given by C(d, s) := 22ssΓ(s+d/2)

πd/2Γ(1−s)
with the gamma-function

Γ(z) :=
∫∞
0 tz−1e−tdt.

Remark. The operator (−∆)s is well-defined pointwise for functions in S. Let ε > 0 be fixed and
choose an arbitrary R > ε. Then,

∫

Rd\Bε(x)

u(x)− u(y)
|x− y|d+2s

dy =

∫

BR(x)\Bε(x)

u(x)− u(y)
|x− y|d+2s

dy +

∫

BR(x)c

u(x)− u(y)
|x− y|d+2s

dy. (4.2)

For the first integral, we use Taylor expansion u(x)−u(y) = (x−y)·∇u(x)+ 1
2(x−y)TD2u(ζ)(x−y),

where ζ = x+ t(y − x) for some t ∈ (0, 1), and Polar coordinates to obtain

∫

BR(x)\Bε(x)

u(x)− u(y)
|x− y|d+2s

dy =

∫

BR(x)\Bε(x)

(x− y) · ∇u(x)
|x− y|d+2s

dy +

∫

BR(x)\Bε(x)

(x− y)TD2u(ζ)(x− y)
2|x− y|d+2s

dy

=

∫ R

r=ε

∫

ν∈Sd−1

rν · ∇u(x)
rd+2s

rd−1 dνdr +

∫ R

r=ε

∫

ν∈Sd−1

rνTD2u(ζ)rν

2rd+2s
rd−1 dνdr.

Here, the first integral vanishes since the integral in r is bounded and the inner integral vanishes:

∫ R

r=ε

∫

ν∈Sd−1

rν · ∇u(x)
rd+2s

rd−1 dνdr = ∇u(x) ·
∫ R

r=ε
r−2s

∫

ν∈Sd−1

νdνdr = 0.

For the second integral, we estimate

∫ R

r=ε

∫

ν∈Sd−1

rνTD2u(ζ)rν

2rd+2s
rd−1 dνdr . ‖u‖C2(Rd)

∫ R

r=ε
r1−2s = C(R2−2s − ε2−2s) . C ∀ε > 0,

i.e., the limit ε → 0 exists. Finally, the last term in (4.2) can be simply bounded using Polar
coordinates by

∫

BR(x)c

u(x)− u(y)
|x− y|d+2s

dy . 2‖u‖L∞(Rd)

∫

BR(x)c

1

|x− y|d+2s
dy .

∫ ∞

r=R

1

r1+2s
dr ≃ R−2s <∞.

Therefore, we have shown that the pointwise definition is well-defined. �

Remark. For s ∈ (0, 1/2) the Cauchy principal value in the integral in the definition of the
fractional Laplacian is not necessary, since it exists as an improper integral. To see this, we again
employ the splitting of (4.2) (with ε = 0) and only investigate the first term (the second term follows
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directly as in the previous remark). Using the Taylor expansion u(x)− u(y) = (x− y) · ∇u(ζ) and
Polar coordinates, we obtain

∫

BR(x)

u(x)− u(y)
|x− y|d+2s

dy ≤ ‖u‖C1(Rd)

∫

BR(x)

1

|x− y|d+2s−1
dy ≃

∫ R

r=0

1

r−2s
dr <∞,

since s < 1/2 implies 1− 2s > 0 and, consequently, the last integral exists. �

The definition employing the Cauchy principal value is oftentimes not handy for computations.
The following lemma gives an equivalent representation of the integral fractional Laplacian without
the need of the principal value (even for s ≥ 1/2) by using a weighted difference quotient of second
order.

Lemma 4.2. Let s ∈ (0, 1), u ∈ S and (−∆)su given by Definition 4.1. Then, for x ∈ Rd, we
have

(−∆)su(x) = −1

2
C(d, s)

∫

Rd

u(x+ y)− 2u(x) + u(x− y)
|y|d+2s

dy.

Proof. Using the transformations z = y − x as well as ẑ = −z, we obtain

(−∆)su(x) = −C(d, s) P.V.
∫

Rd

u(x+ z)− u(x)
|z|d+2s

dz

= −C(d, s) P.V.
∫

Rd

u(x− ẑ)− u(x)
|ẑ|d+2s

dz.

Relabeling ẑ to z and adding both equations leads to

2(−∆)su(x) = −C(d, s) P.V.
∫

Rd

u(x+ z)− 2u(x) + u(x− z)
|z|d+2s

dz.

It remains to show that the integral indeed exists as an improper integral. We use the same
arguments as in the previous remarks, i.e., we split Rd = BR(x)∪BR(x)

c and use Taylor expansion.
Here, the second order difference quotient has the Taylor expansion

u(x+ z)− 2u(x) + u(x− z) = u(x) + z · ∇u(x) + 1

2
zTD2u(ζ1)z − 2u(x)

+ u(x)− z · ∇u(x) + 1

2
zTD2u(ζ2)z

= O(z2).
Therefore, we obtain with Polar coordinates

∫

BR(x)

u(x+ z)− 2u(x) + u(x− z)
|z|d+2s

dz . ‖u‖C2(Rd)

∫

BR(x)

1

|z|d+2s−2
dz ≃

∫ R

r=0
r1−2sdr <∞.

Since
∫

BR(x)c

u(x+ z)− 2u(x) + u(x− z)
|z|d+2s

dz . 3‖u‖L∞(Rd)

∫

BR(x)c

1

|z|d+2s
dz ≃

∫ ∞

r=R
r−1−2sdr <∞,

this gives the existence of the integral. �
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4.2 The Fourier Definition

We have already mentioned that the Sobolev spaces Ht(Rd) for t ∈ R can be characterized using
the Fourier transformation F as

Ht(Rd) = {u ∈ L2(Rd) :

∫

Rd

(1 + |ζ|2)t|Fu(ζ)|2 dζ <∞}

due to the fact that the Fourier transformation turns derivatives into multiplications in the Fourier
image.
Using this observation, a possible way of defining fractional powers of differential operators would
be to do the multiplication with |ζ|2s in the Fourier space (which is well-defined for u ∈ S) and
then transform back, i.e., define the fractional Laplacian as

F−1(|ζ|2sFu(ζ)).

For an operator A, in literature, a function SF (ζ) : Rd → R is called Fourier-symbol of A if

F(Au)(ζ) = SF (ζ)Fu(ζ).

The following theorem shows, that the Fourier-symbol of the integral fractional Laplacian (−∆)s

is indeed |ζ|2s, i.e., the integral and the Fourier definition are equivalent.

Theorem 4.3. Let s ∈ (0, 1) and (−∆)s be the integral fractional Laplacian. Then, for u ∈ S,
we have

(−∆)su = F−1(|ζ|2sFu).

The proof of this theorem needs the following technical Lemma, which provides a different repre-
sentation for the constant C(d, s).

Lemma 4.4. The constant C(d, s) from Definition 4.1 satisfies

C(d, s) =

(∫

Rd

1− cos(z1)

|z|d+2s
dz

)−1

.

Proof. See [BV16, Lem. 3.1.3.]. �

Proof of Theorem 4.3. We use Lemma 4.2 to write for x ∈ Rd

(−∆)su(x) = −1

2
C(d, s)

∫

Rd

u(x+ y)− 2u(x) + u(x− y)
|y|d+2s

dy.

1. step. We show that the integrand is in L1(Rd): With the same arguments as in the proof of
Lemma 4.2 (Taylor-expansion), we estimate

|u(x+ y)− 2u(x) + u(x− y)|
|y|d+2s

≤ χB1(0)(y)|y|2−d−2s‖D2u‖L∞(B1(x))

+ χB1(0)c(y)|y|−d−2s|u(x+ y)− 2u(x) + u(x− y)|
. (1 + |x|d+1)−1

(
χB1(0)(y)|y|2−d−2s + χB1(0)c(y)|y|−d−2s

)
∈ L1(R2d)
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using that u ∈ S. Therefore, we may use Fubini’s theorem.

2. step. We use F(u(x + y))(ζ) = eiζ·yF(u(x)) and interchange the integral and the Fourier
transform to obtain

F((−∆)su)(ζ) = −1

2
C(d, s)

∫

Rd

F(u(x+ y)− 2u(x) + u(x− y))
|y|d+2s

dy

= −1

2
C(d, s)

∫

Rd

eiζ·y + e−iζ·y − 2

|y|d+2s
dy (Fu)(ζ)

= C(d, s)

∫

Rd

1− cos(ζ · y)
|y|d+2s

dy (Fu)(ζ).

3. step. We show that

C(d, s)I(ζ) := C(d, s)

∫

Rd

1− cos(ζ · y)
|y|d+2s

dy = |ζ|2s, (4.3)

which directly gives the Fourier symbol of (−∆)s and proves the theorem.
For ζ = (ζ1, . . . , ζd) with |ζ| small, we estimate

1− cos(ζ1)

|ζ|d+2s
≤ |ζ1|2
|ζ|d+2s

≤ 1

|ζ|d+2s−2
.

This shows that the integral
∫

Rd

1− cos(ζ1)

|ζ|d+2s
dζ

is indeed finite. We show that I(ζ) = I(|ζ|e1), where e1 = (1, 0, . . . , 0) ∈ Rd.
For d = 1 this is obvious since I(ζ) = I(−ζ) due to the same property for the cosine.
For d ≥ 2, we take a rotation R such that R(|ζ|e1) = ζ. Noting that detR = 1, we use the
transformation y 7→ RT y to write

I(ζ) =

∫

Rd

1− cos(R(|ζ|e1) · y)
|y|d+2s

dy =

∫

Rd

1− cos(|ζ|e1 ·RT y)

|RT y|d+2s
dy

=

∫

Rd

1− cos(|ζ|e1 · y)
|y|d+2s

dy = I(|ζ|e1).

With this equality, we may use the transformation z = |ζ|y and compute

I(ζ) = I(|ζ|e1) =
∫

Rd

1− cos(|ζ|y1)
|y|d+2s

dy =
1

|ζ|d
∫

Rd

1− cos(z1)

|z/|ζ||d+2s
dz

= C(d, s)−1|ζ|2s,

where the last step follows from the preceding Lemma. This finishes the proof of the theorem. �

Remark. From the previous theorem we can immediately deduce for u ∈ S and x ∈ Rd

lim
s→0+

(−∆)su(x) = u(x),

lim
s→1−

(−∆)su(x) = −∆u(x).
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We finally give a representation of the Hs(Rd)-seminorm using the fractional Laplacian.

Theorem 4.5. Let s ∈ (0, 1) and u ∈ Hs(Rd). Then,

|u|Hs(Rd) =
2

C(d, s)
‖(−∆)s/2u‖L2(Rd).

Proof. Using the transformation z = x− y, we obtain

|u|Hs(Rd) =

∫

Rd

∫

Rd

|u(x)− u(y)|2
|x− y|d+2s

dydx =

∫

Rd

∫

Rd

∣∣∣∣
u(z + y)− u(y)
|z|d/2+s

∣∣∣∣
2

dydz

=

∫

Rd

∥∥∥∥
u(z + ·)− u(·)
|z|d/2+s

∥∥∥∥
2

L2(Rd)

dz.

Now, Plancherel’s formula gives
∫

Rd

∥∥∥∥
u(z + ·)− u(·)
|z|d/2+s

∥∥∥∥
2

L2(Rd)

dz =

∫

Rd

∥∥∥∥F
(
u(z + ·)− u(·)
|z|d/2+s

)∥∥∥∥
2

L2(Rd)

dz

=

∫

Rd

∫

Rd

|eiζ·z − 1|2
|z|d+2s

|Fu(ζ)|2dζdz

= 2

∫

Rd

∫

Rd

1− cos(ζ · z)
|z|d+2s

|Fu(ζ)|2dzdζ.

With (4.3) this is further equal to

|u|Hs(Rd) = 2

∫

Rd

∫

Rd

1− cos(ζ · z)
|z|d+2s

|Fu(ζ)|2dzdζ = 2C(d, s)−1

∫

Rd

|ζ|2s|Fu(ζ)|2dζ

= 2C(d, s)−1‖|ζ|sFu‖2L2(Rd).

We stress that this argument shows the equivalence of the Sobolev-norms defined via Slobodeckij-
seminorm and via Fourier transformation. Now for u ∈ S, Theorem 4.3 gives with Plancherel’s
formula

|u|Hs(Rd) = 2C(d, s)−1‖|ζ|sFu‖2L2(Rd) = ‖F((−∆)s/2u)‖2L2(Rd) = ‖(−∆)s/2u‖2L2(Rd).

Since S is dense in Hs(Rd), we can extend this to the case of u ∈ Hs(Rd). �

As a corollary of the previous theorems, we obtain that the fractional Laplacian is an operator of
order 2s.

Corollary 4.6.

(i) (−∆)s is an operator of order 2s, i.e., (−∆)s : Hℓ(Rd)→ Hℓ−2s(Rd) is bounded for arbitrary
ℓ ∈ R.

(ii) If u ∈ L2(Rd) solves (−∆)su = f in Rd with f ∈ Hℓ(Rd), we have u ∈ Hℓ+2s(Rd).

We will see later on, that the second statement is not true for bounded domains Ω ⊂ Rd due to the
effect of boundary singularities.
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4.3 Definition via Heat Semigroup

In this subsection, we give yet another equivalent definition of the fractional Laplacian, this time
by using the semigroup of the heat equation.

As a motivation, we look at the Gamma-function, use integration by parts and the scaling τ = λt
for arbitrary λ > 0. Then,

−sΓ(−s) = Γ(1− s) =
∫ ∞

0
τ−se−τ dτ = −

∫ ∞

0
τ−s d

dτ
(e−τ − 1) dτ

= −s
∫ ∞

0
τ−s−1(e−τ − 1) dτ

= −sλ−s

∫ ∞

0
t−s−1(e−λt − 1) dt.

Solving for λs gives the expression

λs =
1

Γ(−s)

∫ ∞

0
t−s−1(e−λt − 1) dt. (4.4)

Using this approach for the fractional power, we formally replace λ = −∆ to obtain a possible
definition of (−∆)s

(−∆)s =
1

Γ(−s)

∫ ∞

0
t−s−1(et∆ − I) dt.

Here, et∆ is the heat semigroup since the function U(x, t) := et∆u(x) solves the PDE

∂tU =
∂

∂t
(et∆u(x)) = ∆(et∆u(x)) = ∆U,

U(x, 0) = u(x),

i.e., the heat equation on Rd × R+ with initial data u.

The following theorem shows that this formal approach can indeed be justified.

Theorem 4.7. Let s ∈ (0, 1), u ∈ S and U(x, t) solve

∂tU = ∆U in Rd × R+,

U(x, 0) = u(x) x ∈ Rd.

Then, the integral fractional Laplacian (−∆)s satisfies

(−∆)su(x) =
1

Γ(−s)

∫ ∞

0
t−s−1(U(x, t)− u(x)) dt.

Proof. We refer to the PDE-lecture for the fact that

U(x, t) =

∫

Rd

G(x− y, t)u(y)dy =

∫

Rd

G(y, t)u(x− y)dy
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with the heat kernel (Green’s function) G(x, t) = (4πt)−d/2e−
|x|2

4t satisfying
∫
Rd G(y, t)dy = 1. Since

G is normalized, we may write
∫ ∞

0
t−s−1(U(x, t)− u(x)) dt =

∫ ∞

0

∫

Rd

t−s−1G(y, t)(u(x− y)− u(x)) dy dt

Now, we employ the substitution τ := |y|2
4t noting that dt = − |y|2

4τ2
dτ and obtain

∫ ∞

0
t−s−1(U(x, t)− u(x)) dt =

∫ ∞

0

∫

Rd

|y|−2s−2(4τ)s+1τd/2(π|y|2)−d/2e−τ (u(x− y)− u(x))dy
( |y|2
4τ2

dτ

)

= 4sπ−d/2

∫ ∞

0
τd/2+s−1e−τdτ

1

2

∫

Rd

u(x+ y)− 2u(x) + u(x− y)
|y|d+2s

dy.

Now, Lemma 4.2 gives that the integral in y is equal to −C(d, s)−1(−∆)su(x) and the integral in
τ is just Γ(d2 + s) by definition of the Gamma-function. Plugging everything together, we obtain

1

Γ(−s)

∫ ∞

0
t−s−1(U(x, t)− u(x)) dt = − 22sΓ(d2 + s)

πd/2Γ(−s)C(d, s)(−∆)su(x),

and by choice of C(d, s) in Definition 4.1 (noting −sΓ(−s) = Γ(1 − s)) the constant in front of
(−∆)su(x) is equal to one, which finishes the proof. �

4.4 The Caffarelli-Silvestre Extension

In this section, we discuss yet another approach to interpret the fractional Laplacian. This time, we
study a PDE-approach, where the fractional Laplacian is given as a Dirichlet-to-Neumann operator
of a degenerated elliptic PDE in one additional space dimension. In literature, this is often called
Caffarelli-Silvestre extension, [CS07].

The Caffarelli-Silvestre extension problem reads as follows: For a given function u and α ∈ R, we
seek a function U = U(x, y) : Rd × R+ → R satisfying

div(yα∇U(x, y)) = 0 in Rd × R+, (4.5)

U(x, 0) = u(x) on Rd. (4.6)

The first equation can equivalently be written as

∆xU +
α

y
∂yU + ∂2y2U = 0. (4.7)

The following theorem links the solution of (4.5) with the integral fractional Laplacian.

Theorem 4.8. Let s ∈ (0, 1), u ∈ S , α = 1− 2s and U a solution of (4.5) with boundary data
u. Then, we have

lim
y→0+

yα∂yU(·, y) = −ds(−∆)su,

with the constant ds =
21−2sΓ(1−s)

Γ(s) .
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Proof. For (4.5) exists a integral representation of the solution U (think of it as a double layer
potential). We refer to [CS07] for the fact that

U(x, y) = C

∫

Rd

y2s

(|x− z|2 + |y|2)(d+2s)/2
u(z)dz

solves (4.5) with an appropriate normalization constant C.

As we have limy→0+ y
α∂yU(·, y) = limy→0+

U(x,y)−U(x,0)
y1−α in the sense that the existence of the former

limit implies the existence of the latter limit. Using the integral representation of U , we compute

lim
y→0+

U(x, y)− U(x, 0)
y1−α

= lim
y→0+

C

y1−α

∫

Rd

y2s

(|x− z|2 + |y|2)(d+2s)/2
(u(z)− u(x))dz

= C lim
y→0+

lim
ε→0

∫

Rd\Bε(x)

u(z)− u(x)
(|x− z|2 + |y|2)(d+2s)/2

dz,

where we used Lebesgue dominated convergence. As we have uniform convergence for the limit
with respect to y, we may interchange both limits. With dominated convergence, we may pull the
limit y → 0 inside the integral and obtain

lim
y→0+

U(x, y)− U(x, 0)
y1−α

= C lim
y→0+

lim
ε→0

∫

Rd\Bε(x)

u(z)− u(x)
(|x− z|2 + |y|2)(d+2s)/2

dz

= C lim
ε→0

lim
y→0+

∫

Rd\Bε(x)

u(z)− u(x)
(|x− z|2 + |y|2)(d+2s)/2

dz

= C lim
ε→0

∫

Rd\Bε(x)

u(z)− u(x)
|x− z|d+2s

dz = −C(−∆)su(x),

where the constant C can be explicitly computed to finish the proof. �

Remark. From the Fourier definition of the fractional Laplacian, we may define

(−∆)−su := F−1(|ζ|−2sF(u))
for functions, where the right-hand side makes sense (there is an additional singularity at ζ = 0
to be taken care of). Then, we obtain (−∆)−s = ((−∆)s)−1 directly from the Fourier definition.
This, together with the integral definition, motivates that a fundamental solution of the fractional
Laplacian is given by C 1

|x|d−2s . This knowledge can be used to derive the solution formula applied

in the previous proof.
In the following chapter, we present an alternative proof for the statement of Theorem 4.8 on
bounded domains, which could also be used for the problem posed on the whole space.

4.5 The Fractional Laplacian on Bounded Domains

From now on, we consider a bounded Lipschitz domain Ω ⊂ Rd. Our goal is to (numerically) solve
the equation

(−∆)su = f in Ω, (4.8)

u = 0 on Ωc.
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4.5.1 The Integral Definition

For a function u : Ω→ R, we denote its zero-extension by ũ : Rd → R. Then, we can easily extend
the definition (4.1) by

(−∆)su(x) := (−∆)sũ(x) = C(d, s) P.V.

∫

Rd

ũ(x)− ũ(y)
|x− y|d+2s

dy.

Obviously, this definition is well-defined for functions u ∈ C∞
0 (Ω) and can be, by density, extended

to functions in H̃s(Ω).

Moreover, the definition is still coherent with the probabilistic interpretation at the beginning of
the chapter with the modification that particles hitting ∂Ω are destroyed.

Remark. Sometimes in literature, a different definition, the so-called regional fractional Lapla-
cian,

(−∆)sΩu(x) := C(d, s,Ω) P.V.

∫

Ω

u(x)− u(y)
|x− y|d+2s

dy,

where integration is restricted to Ω, is used. While some of the results presented in the following
also hold for the regional fractional Laplacian, there are also some considerable differences, and in
the following, we will not discuss the regional definition any more.

4.5.2 The Spectral Definition

The Laplacian −∆ : H2(Ω) ∩H1
0 (Ω) → L2(Ω) is a symmetric, self-adjoint operator with compact

inverse. As such, classical spectral theory provides eigenfunctions φk and eigenvalues λk satisfying
−∆φk = λkφk, φk|∂Ω = 0 that are an orthonormal basis in L2(Ω) as well as an orthogonal basis in
H1

0 (Ω) such that

−∆u =

∞∑

k=1

λkukφk, uk :=

∫

Ω
uφkdx.

Using this expansion, and the spectral theorem, a possible way to define the s-th power of the
Laplacian would be to take the s-th power of the eigenvalues, i.e.,

(−∆)sσu :=

∞∑

k=1

λskukφk, uk :=

∫

Ω
uφkdx

for u ∈ C∞
0 (Ω). Extending this definition by density to the space H̃s(Ω) defines the so called

spectral fractional Laplacian (−∆)sσ.

4.5.3 The Caffarelli-Silvestre extension

Let u ∈ H̃s(Ω). Then, the extension problem

div(yα∇U(x, y)) = 0 in Rd × R+,

U(x, 0) = ũ(x) on Rd
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with data ũ ∈ Hs(Rd) is well-defined. Moreover, Theorem 4.8 is still valid, and we have

lim
y→0+

yα∂yU(·, y) = −ds(−∆)sũ = −ds(−∆)su.

Therefore, the integral fractional Laplacian on a bounded domain still has an interpretation of a
Dirichlet-to-Neumann operator of the same extension problem as in the case of the whole space.

A different approach for the extension problem would be to restrict the PDE to Ω, i.e., to study
the problem

LU := div(yα∇U(x, y)) = 0 in Ω× R+ (4.9a)

U = 0 on ∂Ω× (0,∞) (4.9b)

U(x, 0) = u(x) in Ω. (4.9c)

The following proposition shows that the Neumann-data of the extension problem (4.9a) actually
gives the spectral fractional Laplacian.

Theorem 4.9. Let s ∈ (0, 1), u ∈ S , α = 1− 2s and U a solution of (4.9a) with boundary data
u ∈ C∞

0 (Ω). Then, we have

lim
y→0+

yα∂yU(·, y) = −cs(−∆)sσu.

For the proof of the theorem, we make use of classical spectral theory, which we briefly recall here.

The spectral theorem for (un-)bounded self adjoint operators A states the existence of unique
spectral measure E : A → L(L2), where A is a sigma-algebra on the spectrum σ(A), and L(L2)
are the linear operators mapping from L2 to L2, such that

A =

∫

σ(A)
λdE(λ).

Moreover, for f, g ∈ L2(Ω), the spectral measure E weakly defines a complex measure Ef,g with
total variation bounded by ‖f‖L2(Ω)‖g‖L2(Ω) in terms of

Ef,g(∆) := (E(∆)f, g) ∀∆ ∈ A.

Using this notation as well as the functional calculus, that comes with this setting, we may write
for the spectral fractional Laplacian

(−∆)sσ =

∫ ∞

0
λsdE(λ), (4.10)

as the spectrum of the Laplacian is contained in R+.
Moreover, the heat-semigroup has the representation

et∆ =

∫ ∞

0
e−tλdE(λ).
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Using this together with formula (4.4), we can formally interchange integrations to write

(−∆)sσ =

∫ ∞

0
λsdE(λ) =

∫ ∞

0

1

Γ(−s)

∫ ∞

0
(e−tλ − 1)t−1−sdt dE(λ)

=
1

Γ(−s)

∫ ∞

0
(e−t∆ − I)t−1−sdt.

This formal computation can also be easily justified, and we observe that the heat equation approach
from Section 4.3 coincides with the spectral fractional Laplacian on bounded domains.

We are now in the position to proof the preceding theorem.

Proof of Theorem 4.9. We prove that the formula

V(x, y) := 1

Γ(s)

∫ ∞

0
et∆(−∆)sσu(x) e

−y2/(4t)ts−1dt (4.11)

defines a solution to (4.9a) in the weak L2(Ω) sense, i.e., we have (LV , g)L2(Ω) = 0 for all g ∈ L2(Ω)
as well as weak boundary conditions. Then, computing the Neumann-data proves the theorem.

1. step. At first, we show that V(·, y) ∈ L2(Ω) as well as

(V(·, y) ; g)L2 =
1

Γ(s)

∫ ∞

0

(
et∆(−∆)sσu ; g

)
L2 e

−y2/(4t)ts−1dt. (4.12)

In order to do so, let R > 0 and define VR as

VR(x, y) =
1

Γ(s)

∫ R

0
et∆(−∆)sσu(x) e

−y2/(4t)ts−1dt.

As e−y2/(4t)ts−1 is integrable and et∆(−∆)sσu is bounded, we may interchange the L2-scalar product
with the integration in t by standard rules of Bochner integration to obtain

(VR(·, y) ; g)L2 =
1

Γ(s)

∫ R

0

(
et∆(−∆)sσu ; g

)
L2 e

−y2/(4t)ts−1dt

1

Γ(s)

∫ R

0

∫ ∞

0
e−tλλsdEu,g(λ) e

−y2/(4t)ts−1dt,

where the last equality follows from the spectral calculus. Now interchanging the integration with
Fubini’s theorem, we obtain together with the scaling τ = tλ

(VR(·, y) ; g)L2 =
1

Γ(s)

∫ ∞

0

∫ R

0
e−tλλse−y2/(4t)ts−1dt dEu,g(λ)

=
1

Γ(s)

∫ ∞

0

∫ λR

0
e−ττ s−1e−y2/(4τ)λdτ dEu,g(λ)

≤ 1

Γ(s)

∫ ∞

0

∫ ∞

0
e−ττ s−1dτ dEu,g(λ)

≤ ‖u‖L2(Ω)‖g‖L2(Ω).
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Therefore, for all fixed y ∈ R+, we have VR(·, y) ∈ L2(Ω), and for any sequence (Rj)j∈N satisfying
Rj →∞ the sequence (VRj (·, y))j∈N is a Cauchy sequence that converges weakly to V(·, y), which
implies V(·, y) ∈ L2(Ω). Taking the limit R→∞ also immediately shows equation (4.12).

2. step. Similar arguments can be used to show that V(·, y) ∈ dom(−∆) by showing that the limit

limτ→0+

(
eτ∆V(·,y)−V(·,y)

τ ; g
)
L2

exists for all g ∈ L2(Ω). We refer to [ST10] for details.

3. step. V satisfies the boundary condition at y = 0. We use (4.12) and the transformation τ = tλ
as in step 1 to compute together with Lebesgue dominated convergence and the definition of the
Γ-function

(V(·, y) ; g)L2 =
1

Γ(s)

∫ ∞

0

∫ ∞

0
e−ττ s−1e−y2/(4τ)λdτ dEu,g(λ)

−→
y→0

1

Γ(s)

∫ ∞

0

∫ ∞

0
e−ττ s−1dτ dEu,g(λ) = (u ; g)L2 .

4. step. V is differentiable and satisfies equation (4.9a). With the help of Lebesgue dominated
convergence, we compute

lim
h→0

(V(·, y + h)− V(·, y)
h

; g

)

L2

=
1

Γ(s)

∫ ∞

0

(
et∆(−∆)sσu ; g

)
L2 ∂ye

−y2/(4t)ts−1dt.

Thus, V is differentiable in y, and the y-derivatives are just applied to e−y2/(4t). An elementary
calculation gives

(
∂2y2 +

1− 2s

y
∂y

)
e−y2/(4t) = ∂t

(
e−y2/(4t)

t1−s

)
.

With this identity and integration by parts, we obtain

((
∂2y2 +

1− 2s

y
∂y

)
V(·, y) ; g

)

L2

=
1

Γ(s)

∫ ∞

0

(
et∆(−∆)sσu ; g

)
L2 ∂t

(
e−y2/(4t)ts−1

)
dt

= − 1

Γ(s)

∫ ∞

0
∂t
(
et∆(−∆)sσu ; g

)
L2 e

−y2/(4t)ts−1dt

=
1

Γ(s)

∫ ∞

0

∫ ∞

0
λe−tλλsdEu,g(λ) e

−y2/(4t)ts−1dt

= ((−∆)V(·, y) ; g)L2

and V indeed solves the differential equation.

5. step. Finally, we compute the Neumann-data. With (4.12), and the substitution τ = y2/(4t)
we obtain

(V(·, y)− V(·, 0)
y2s

; g

)

L2

=
1

Γ(s)

∫ ∞

0

(
et∆(−∆)sσu ; g

)
L2

(e−y2/(4t) − 1)

y2s
ts−1dt

=
1

4sΓ(s)

∫ ∞

0

(
e

y2

4τ
∆(−∆)sσu ; g

)

L2

(e−τ − 1)τ s+1dt.
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Now, dominated convergence implies

lim
y→0

(
e

y2

4τ
∆(−∆)sσu ; g

)

L2

= ((−∆)sσu ; g)L2 ,

and taking the limit y → 0 in the previous equation gives

lim
y→0

(V(·, y)− V(·, 0)
y2s

; g

)

L2

=
Γ(−s)
4sΓ(s)

((−∆)sσu ; g)L2 ,

which finishes the proof. �

Remark. The operators (−∆)s and (−∆)sσ on Ω are indeed inherently different. We refer to
[SV14] for the following results regarding the eigenvalues and eigenfunctions:

• Let λ1 denote the smallest eigenvalue. Then,

λ1((−∆)s) < λ1((−∆)sσ).

• The eigenfunctions of (−∆)sσ coincide with the eigenfunctions of the Laplacian, the smooth-
ness does only depend on Ω. E.g., on the unit sphere they are C∞(B1(0)).

However, the eigenfunctions for (−∆)s are only Hölder-continuous for some Hölder-exponent
β, and [SV14, Pro. 2] provides that e1 /∈ W 1,∞(B1(0)) (for d > 2s), where e1 is the eigen-
function corresponding to λ1((−∆)s).

The differences in the operators can also be seen in the asymptotics of the solutions of the equations
(−∆)su = f and (−∆)sσũ = f . We refer to [Gru15, CS16], where f,Ω are assumed to be sufficiently
smooth, for the asymptotic behavior for x close to ∂Ω:

• u ≃ dist(x, ∂Ω)s + v(x), with v smooth;

• ũ ≃
{
dist(x, ∂Ω)2s + ṽ(x) 0 < s < 1/2

dist(x, ∂Ω) + ṽ(x) 1/2 < s < 1
with ṽ smooth.
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Chapter 5

Numerical Approximation

5.1 The Integral Fractional Laplacian - Weak Formulation

In the following, let Ω ⊂ Rd be a bounded Lipschitz domain. We consider the integral fractional
Laplacian (−∆)s and study the model problem

(−∆)su = f in Ω, (5.1)

u = 0 on Ωc (5.2)

with a given right-hand side f ∈ H−s(Ω).

Multiplying the equation with a test-function v ∈ H̃s(Ω) and integrating over Rd gives

∫

Rd

(−∆)su · vdx = C(d, s)

∫

Rd

P.V.

∫

Rd

u(x)− u(y)
|x− y|d+2s

v(x)dy dx.

Exploiting the symmetry in x, y and afterwards noticing that the principal value is not needed
(compare Lemma 4.2), we obtain

C(d, s)

∫

Rd

P.V.

∫

Rd

u(x)− u(y)
|x− y|d+2s

v(x)dy dx =
C(d, s)

2

∫

Rd

∫

Rd

(u(x)− u(y))(v(x)− v(y))
|x− y|d+2s

dy dx

=: a(u, v).

By definition a(·, ·) is a symmetric bilinear form.
The weak formulation of our model problem reads as: Finding u ∈ H̃s(Ω) such that

a(u, v) =

∫

Ω
fvdx ∀v ∈ H̃s(Ω). (5.3)

We recall that the norm on H̃s(Ω) is defined as the Hs(Rd)-norm of the zero extension, i.e.,
‖u‖

H̃s(Ω)
= ‖ũ‖Hs(Rd). In order to show ellipticity of the bilinear form, we employ a fractional

Poincaré inequality

‖u‖L2(Ω) ≤ C|ũ|Hs(Rd) ∀u ∈ H̃s(Ω).
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As a(u, u) ∼ |u|Hs(Rd), this immediately implies that

‖u‖2
H̃s(Ω)

. a(u, u)

and we may apply the Lax-Milgram lemma to prove the following proposition.

Theorem 5.1. There exists a unique weak solution u ∈ H̃s(Ω) of (5.3) that also satisfies

‖u‖
H̃s(Ω)

. ‖f‖H−s(Ω).

In the following, we are interested in approximative numerical solutions of (5.3) by employing a
Galerkin finite element scheme. However, compared to the finite element approximation of the
Laplace equation, there are some additional difficulties.

Remark.

• The bilinear form a(·, ·) is non-local, i.e., for functions ϕi, ϕj > 0 satisfying suppϕi∩suppϕj =
∅, we get

a(ϕi, ϕj) =
C(d, s)

2

∫

Rd

∫

Rd

(ϕi(x)− ϕi(y))(ϕj(x)− ϕj(y))

|x− y|d+2s
dy dx

= −C(d, s)
2

∫

Rd

∫

Rd

(ϕi(x)ϕj(y)− ϕi(y)ϕj(x))

|x− y|d+2s
dy dx

= −C(d, s)
∫

suppϕi

∫

suppϕj

ϕi(x)ϕj(y)

|x− y|d+2s
dy dx < 0

Thinking of ϕi as local basis functions, this computation shows that the system matrices will
be densely populated.

• The energy norm (H̃s(Ω)-norm) is non-local, and the seminorm part is not additive. Let
Ω = Ω1 ∪ Ω2 with Ω1 ∩ Ω2 = ∅. Then,

|v|2Hs(Ω) = |v|2Hs(Ω1)
+ |v|2Hs(Ω2)

+ 2

∫

Ω1

∫

Ω2

|u(x)− u(y)|2
|x− y|d+2s

dy dx,

and the last term can not be bounded by the first two terms on the right-hand side.

This leads to problems in the finite element analysis as error estimates are usually derived
elementwise. However, Proposition 5.2 gives a way to circumvent this by deriving a localized
upper bound for the seminorm.

For the discretization of (5.3), we consider a Galerkin method in a finite-dimensional subspace
Xh ⊂ H̃s(Ω) described in more detail in Section 3.1. The Galerkin formulation reads as: Finding
uh ∈ Xh such that

a(uh, vh) =

∫

Ω
fvhdx ∀vh ∈ Xh, (5.4)

and the Lax-Milgram lemma gives the existence and uniqueness of uh. Moreover, the Ceá-Lemma
is still valid and provides a best-approximation result

‖u− uh‖H̃s(Ω)
. min

vh∈Xh

‖u− vh‖H̃s(Ω)
. (5.5)
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It remains to choose the space Xh. To that end, we assume that T = {Ti : i = 1, . . . , N} is a
shape regular (with constant σ) triangulation of Ω without any hanging nodes (look at Section 3.2
for the definitions). Moreover, for T ∈ T , we define the element patch

ωT := interior
⋃
{T ′ : T ′ ∩ T 6= ∅}

and denote the diameter of T by hT .

Then, two possible choices of Xh are the piecewise constant functions P0(T ) ⊂ H̃s(Ω) for s < 1/2
or the piecewise affine functions

P1(T ) := {v ∈ C(Ω) : v|T ∈ P1(T )∀T ∈ T } ⊂ H̃s(Ω)

for 0 < s < 1. In the following, we only discuss the case of piecewise affine functions.

Before we can prove a-priori estimates, we need to discuss the mentioned localization of the Hs-
seminorm, which is also called Faermann localization in literature, [Fae00, Fae02].

Theorem 5.2. Let s ∈ (0, 1) and u ∈ Hs(Ω). Then,

|u|2Hs(Ω) ≤
∑

T∈T

∫

T

∫

ωT

|u(x)− u(y)|2
|x− y|d+2s

dy dx+
C

sh2sT
‖u‖2L2(T ),

where the constant C > 0 depends only on d and the shape-regularity constant σ.

Proof. Let T ∈ T and define ωc
T := Ω\ωT . We write

|u|2Hs(Ω) ≤
∑

T∈T

∫

T

∫

ωT

|u(x)− u(y)|2
|x− y|d+2s

dy dx+

∫

T

∫

ωc
T

|u(x)− u(y)|2
|x− y|d+2s

dy dx.

The first term already has the right form and it remains to estimate the second one. Using Fubini’s
theorem, we get
∫

T

∫

ωc
T

|u(x)− u(y)|2
|x− y|d+2s

dy dx ≤ 2

∫

T
|u(x)|2

∫

ωc
T

|x− y|−d−2sdy dx+

∫

ωc
T

|u(y)|2
∫

T
|x− y|−d−2sdx dy

=: IT,1 + IT,2.

In the following, we show that
∑

T∈T IT,1 =
∑

T∈T IT,2. With the characteristic function χωc
T
of

the set ωc
T , we write

∑

T∈T
IT,2 =

∑

T∈T

∫

Ω
χωc

T
|u(y)|2

∫

T
|x− y|−d−2sdx dy

=

∫

Ω
|u(y)|2

∑

T∈T
χωc

T

∫

T
|x− y|−d−2sdx

︸ ︷︷ ︸
=:f(y)

dy.

As χωc
T
(y) = 0 for y ∈ T̂ satisfying T̂ ∩ T 6= ∅, we get for y ∈ T̂

f(y) =
∑

T∈T
χωc

T

∫

T
|x− y|−d−2sdx =

∫

ωc
T̂

|x− y|−d−2sdx.
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This finally leads to

∑

T∈T
IT,2 =

∑

T̂∈T

∫

T̂
|u(y)|2

∫

ωc
T̂

|x− y|−d−2sdx dy =
∑

T̂∈T

I
T̂ ,1
.

Using this equality gives the estimate

|u|2Hs(Ω) ≤
∑

T∈T

∫

T

∫

ωT

|u(x)− u(y)|2
|x− y|d+2s

dy dx+ 4
∑

T∈T
IT,1,

and we have to estimate IT,1. Due to the assumption of shape-regularity of T , there is a constant
c > 0 depending only on the σ-shape regularity constant such that ωc

T ⊆ Ω\BchT
(x). This allows

to estimate using polar coordinates

IT,1 =

∫

T
|u(x)|2

∫

ωc
T

|x− y|−d−2sdy dx

.

∫

T
|u(x)|2

∫ ∞

chT

r−1−2sdr dx .
1

sh2sT
‖u‖2L2(T ),

which finishes the proof. �

5.2 The Integral Fractional Laplacian - Regularity

In the following, our goal is to derive a convergence rate of the finite element method applied to
the model problem. A key question when doing so, is always the regularity of the given problem,
i.e., if the right-hand side f of the equation satisfies f ∈ Hr(Ω) for r > −s, for which ℓ ≥ s can we
expect that u ∈ Hℓ(Ω)?

Comparing to the Laplace equation, the answer of this problem is more involved, and current
research is still conducted to derive the correct regularity results on polygonal Lipschitz domains,
[BN20]. For smooth domains or Hölder-regularity, we refer to [Gru15, ROS14].

We start with an example highlighting the difference to the integer order Laplacian.

Example 5.3. Let Ω = B1(0), f ≡ 22sΓ(1 + s)2. Then, the exact solution of (5.1) is given by

u(x) = (1− |x|2)s+, where g+ := max{g, 0}.

As an exercise, the reader may check that u ∈ Hs+1/2−ε(Ω) for all ε > 0, but u /∈ Hs+1/2(Ω).
Therefore, even for smooth Ω, f , one could not expect more additional regularity than 1/2 − ε,
which is vastly different to the case of the integer Laplacian, where the same problem setting would
give smooth solutions.

Examining the previous example shows that singularities in the derivatives appear at the whole
boundary. In order to capture these, one can introduce weight-functions and weighted Sobolev-
spaces.
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We recall the definition ρ(x) := dist(x, ∂Ω) and define ρ(x, y) := min{ρ(x), ρ(y)} as well as the
weighted Sobolev-spaces H1+s

α (Ω) := {v ∈ H1(Ω) : ‖v‖H1+s
α (Ω) <∞} with

‖v‖2
H1+s

α (Ω)
:= ‖v‖2H1(Ω) +

∑

β:|β|=1

∫

Ω

∫

Ω

|Dβv(x)−Dβv(y)|2
|x− y|d+2s

ρ(x, y)2αdy dx.

Moreover, in the following, we introduce two sets A,B ⊂ Ω×Ω. The idea behind the set A is that
for functions satisfying w(x, y) = w(y, x) the integration over Ω × Ω can be reduced to two times
the integration over A, which is defined as

A := {(x, y) ∈ Ω× Ω : ρ(x, y) = ρ(x)}.

Similarly to previous discussions, we split the set into a part containing the singularity at x = y
and the rest in

B := {(x, y) ∈ A : |x− y| ≥ ρ(x)}.

We now start to answer the question about regularity by citing some results on Hölder-regularity
of the solution u proven in [ROS14]. For the domain Ω, we additionally impose a so called exterior
ball condition, which means that ∀x ∈ ∂Ω there exists some ball Bρ0(y) ⊂ Rd\Ω with x ∈ ∂Bρ0(y),
i.e., each point on the boundary can be touched by a ball completely outside of Ω.

This condition either imposes convexity (e.g. for polygonal domains) or additional smoothness of
the domain (more than C1).

Proposition 5.4. Let Ω be a bounded Lipschitz domain that satisfies the exterior ball condition.
Let f ∈ L∞(Ω) and u solve (5.1).
Then, u ∈ Cs(Rd) and

‖u‖Cs(Rd) ≤ C‖f‖L∞(Ω),

where the constant C > 0 depends only on Ω and s.

Having established the Hölder-regularity, we next state that provided f has additional Hölder-
regularity in Cβ(Ω), β > 0, the solution u also gains additional Hölder regularity.

98



CHAPTER 5. NUMERICAL APPROXIMATION

Proposition 5.5.

(i) Let β > 0 be such that β, β+2s /∈ N. Assume f ∈ Cβ(Ω) and let u ∈ Cs(Rd) be the solution
of (5.1). Then, u ∈ Cβ+2s(Ω).

(ii) Let 0 < s < 1/2 and β ∈ (0, 1− 2s). Then,

sup
x,y∈Ω

ρ(x, y)β+s |u(x)− u(y)|
|x− y|β+2s

≤ C
(
‖f‖L∞(Ω) + ‖f‖Cβ(Ω)

)
.

Here, the constant C > 0 does only depend on Ω and s.

(iii) Let 1/2 < s < 1 and β ∈ (0, 2− 2s). Then,

sup
x,y∈Ω

ρ(x, y)β+s |∇u(x)−∇u(y)|
|x− y|β+2s−1

≤ C(‖f‖).

Here, the constant C(‖f‖) > 0 depends only on Ω, s and as indicated on some norm of f (a
weighted Hölder-seminorm).

Now, we can finally start proving Sobolev regularity of the solution u of (5.1). We start with the
case 0 < s < 1/2.

Theorem 5.6. Let 0 < s < 1/2, f ∈ C1/2−s(Ω) and u solve (5.1). Then, for every ε > 0, we
have u ∈ Hs+1/2−ε(Ω) with

|u|Hs+1/2−ε(Ω) ≤
C

ε
‖f‖C1/2−s(Ω),

where the constant C > 0 does only depend on Ω, d, and s.

Proof. Let θ ∈ (s, 1) and the sets A,B defined as above. Then, Proposition 5.4 implies
∫ ∫

B

|u(x)− u(y)|2
|x− y|d+2θ

dy dx . ‖f‖2L∞(Ω)

∫

Ω

∫

Bρ(x)(x)
c

|x− y|−d−2θ+2sdydx

.
1

θ − s‖f‖
2
L∞(Ω)

∫

Ω
ρ(x)2(s−θ)dx. (5.6)

As the distance function behaves locally like the function xi (after an affine transformation), one
can show that

∫

Ω
ρ(x)−αdx ≤ C

1− α for α > −1.

This implies that the right-hand side in (5.6) is finite if and only if θ < s+ 1/2.
It remains to estimate the integral over A\B. Let f ∈ Cβ(Ω) for β > 0. Then, Proposition 5.5 (ii)
gives in the same way

∫ ∫

A\B

|u(x)− u(y)|2
|x− y|d+2θ

dy dx . ‖f‖2Cβ(Ω)

∫

Ω
ρ(x)−2(β+s)

∫

Bρ(x)(x)
|x− y|−d−2θ+2β+4sdydx.
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In polar coordinates, the inner integral reads as C

∫ ρ(x)

0
r−1−2θ+2β+4sdr, which is finite provided

β + 2s > θ. In that case, we can estimate

∫ ∫

A\B

|u(x)− u(y)|2
|x− y|d+2θ

dy dx . ‖f‖2Cβ(Ω)

1

β + 2s− θ

∫

Ω
ρ(x)2(s−θ)dx <∞, (5.7)

which holds for θ < s+ 1/2 as well.
Choosing β = 1/2− s and θ = s+1/2− ε, we guarantee β+2s > θ as well as θ < s+1/2, and the
choice of parameters gives

1

β + 2s− θ

∫

Ω
ρ(x)2(s−θ)dx =

1

ε

∫

Ω
ρ(x)−1+2εdx .

1

ε2
.

Summing up the estimates for the integrals over B and A\B proves the theorem. �

Remark. Estimate (5.7) shows that higher regularity of f does not provide any benefit, as the
parameter β does not appear in the integrand on the right-hand side. However, this is not an
artifact of the proof as shown in Example 5.3.

Finally, we discuss the regularity for the case s > 1/2. We start by proving that, in this case, the
solution is in H1(Ω).

Lemma 5.7. Let 1/2 < s < 1, f ∈ L∞(Ω) and u solve (5.1). Then, u ∈ H1(Ω) and

|u|H1(Ω) ≤
C

(1− s)(2s− 1)
‖f‖L∞(Ω).

Proof. We only sketch the main arguments, for details, we refer to [AB17].
1. step. Local Hölder regularity: For γ ∈ (0, 2s), we have

|u|Cγ(Bρ(x)/2(x)) ≤ Cρ(x)
s−γ‖f‖L∞(Ω) ∀x ∈ Ω,

where the constant C > 0 blows up only for γ → 2s.

2. step. Estimate of the seminorm. Let ε ∈ (0, 1 − s), γ = 1 − ε/2, and the sets A,B defined as
above, where ρ(x) is replaced by ρ(x)/2. With step 1, we may estimate as in the previous lemma

∫ ∫

A\B

|u(x)− u(y)|2
|x− y|d+2(1−ε)

dy dx ≤ C

ε
‖f‖2L∞(Ω)

∫

Ω
ρ(x)2(s−1+ε)dx.

Using the global Hölder regularity of Proposition 5.4, we obtain

∫ ∫

B

|u(x)− u(y)|2
|x− y|d+2(1−ε)

dy dx ≤ C

1− s+ ε
‖f‖2L∞(Ω)

∫

Ω
ρ(x)2(s−1+ε)dx.

Adding both estimates and estimating the integral of ρ(x) by C
2s−1+ε , we obtain

|u|2H1−ε(Ω) ≤
C

ε(1− s+ ε)(2s− 1 + ε)
‖f‖2L∞(Ω).
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3. step. Taking the limit ε→ 0 gives

lim
ε→0

ε|u|2H1−ε(Ω) = C|u|H1(Ω),

which, together with step 2 proves the lemma. �

Thus, we have established that for s > 1/2 the solution is in H1(Ω), which allows us to look at the
regularity of ∇u.

Proposition 5.8. Let 1/2 < s < 1, f ∈ Cβ(Ω) and u solve (5.1). Then, for every ε > 0, we
have u ∈ Hs+1/2−ε(Ω) with

|∇u|Hs−1/2−ε(Ω) ≤
C√

ε(2s− 1)
‖f‖Cβ(Ω),

where the constant C > 0 does only depend on Ω, d, β, and s.

Using weighted Sobolev-spaces, the singular behavior of the derivatives can be more explicitly
captured by the weight-function.

Proposition 5.9. Let 1/2 < s < 1, f ∈ C1−s(Ω) and u solve (5.1). Then, for every ε > 0, we
have u ∈ Hs+1−ε

1/2−ε (Ω) with

‖∇u‖Hs+1−ε
1/2−ε

(Ω) ≤
C

ε
,

where the constant C > 0 does only depend on Ω, d, s, and ‖f‖C1−s(Ω).

For the proofs of both propositions, we refer to [AB17]. In fact, both can be proven simulta-
neously similarly to Theorem 5.6 by using the estimates on the weighted Hölder seminorms of
Proposition 5.5.

The case s = 1/2 can be proven with similar techniques and gives the estimate

|u|H1−ε(Ω) ≤
C

ε
‖f‖L∞(Ω),

which only needs L∞-regularity of f . However, the limit ε→ 0 does not exist in this case.

5.3 FEM for the Integral Fractional Laplacian

Having established the regularity of the exact solutions, we can turn our attention to derive a-priori
estimates for the finite element approximation.

Due to the quasi-optimality estimate (5.5) it remains to construct an operator mapping H̃s(Ω)→
P1(T ) with optimal approximation properties.
A possible choice hereby is the Scott-Zhang projection, introduced in [SZ90], which is a quasi-
interpolation operator based on local averaging. Its definition – given in the following – allows for
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a certain freedom in the choice of the averaging set, which can be exploited to deduce additional
properties of the operator, such as preservation of homogeneous Dirichlet boundary conditions.

For a given mesh T , we call the set of all vertices of the elements in T the nodes N (T ). Moreover,
we define the set of edges E(T ) as all faces of elements in T .
Let A(z) be a so called averaging set, which is for a fixed node z ∈ N (T ) either an edge Ez ∈ E(T )
with z ∈ Ez or an element Tz ∈ T with z ∈ Tz.
Moreover, for all z ∈ N (T ), there exists a local dual basis functions, i.e., ψz ∈ P1(A(z)) such that

∫

A(z)
ψzϕz′ = δzz′ ∀z′ ∈ N (T ),

where ϕz′ denotes the nodal basis function associated with the node z′ ∈ N (T ). With these
notations, we may define the Scott-Zhang projection.

Definition 5.10. Let z ∈ N (T ). Choose A(z) either as

• A(z) = Ez with Ez ⊆ ∂Ω, for z ∈ ∂Ω

• A(z) = Tz with z ∈ Tz for z ∈ Ω.

Then, the Scott-Zhang projection Jh is defined as

Jhv :=
∑

z∈N (T )

ϕz

∫

A(z)
ψzv dx.

We stress that the choice of averaging set is not unique, as there might be multiple elements with
z ∈ Tz. However, it can be shown that the value

∫
A(z) ψzv dx does not depend on the choice of the

possible averaging sets in this case.

The Scott-Zhang projection is well-defined for s > 1/2 and v ∈ Hs(Ω) and maps Hs(Ω)→ P1(T ).
Moreover, as the averaging set is chosen as boundary edge, for nodes at the boundary, it also sat-
isfies Jh : H̃s(Ω)→ P1

0 (T ), i.e., homogeneous Dirichlet boundary conditions are preserved.

The Scott-Zhang projection indeed is a projection, i.e., Jhvh = vh for all vh ∈ P1(T ) and stable in
L2 and H1 (and consequently in Hs for s ∈ (0, 1)). Moreover, it has local approximation properties
in Hs, which is stated in the following proposition, c.f., [Cia13].

Proposition 5.11. Let T ∈ T , max{1/2, s} < ℓ ≤ 2, v ∈ Hℓ(Ω) and Jh be the Scott-Zhang
projection of Definition 5.10. Then,

∫

T

∫

ωT

|(v − Jhv)(x)− (v − Jhv)(y)|2
|x− y|d+2s

dydx ≤ Ch2(ℓ−s)
T |v|2Hℓ(ωT ),

where the constant C > 0 depends only on Ω, d, s, ℓ, and the shape-regularity of T and blows up
for s→ 1.

Using the quasi-optimality (5.5), the Faermann localization (Theorem 5.2), the approximation
properties of the Scott-Zhang projection (Proposition 5.11) as well as the regularity results of
Section 5.2, we immediately prove the a-priori estimates of the following theorem.
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Theorem 5.12. Let Ω be a bounded Lipschitz domain that satisfies the exterior ball condition
and T be a uniform mesh. Let u solve (5.3), and uh solve (5.4) with right-hand side f ∈ L∞(Ω)
satisfying f ∈ C1/2−s(Ω) for 0 < s < 1/2 and f ∈ Cβ(Ω) for some β > 0 and 1/2 < s < 1. Then,

‖u− uh‖H̃s(Ω)
≤ C

ε
h1/2−ε‖f‖C1/2−s(Ω) 0 < s < 1/2

‖u− uh‖H̃s(Ω)
≤ C

ε
h1/2−ε‖f‖L∞(Ω) s = 1/2

‖u− uh‖H̃s(Ω)
≤ C√

ε(2s− 1)
h1/2−ε‖f‖Cβ(Ω) 1/2 < s < 1.

The previous theorem is formulated in the energy norm. However, using a classical Aubin-Nitsche
duality argument, one can also deduce estimates in L2.

Corollary 5.13. Let Ω be smooth, r ≥ 0 and f ∈ Hr(Ω) additionally to the assumptions of
Theorem 5.12. Then,

‖u− uh‖L2(Ω) . hα+β‖f‖Hr(Ω),

with α = min{s+ r, 1/2− ε}, β = min{s, 1/2− ε} for all ε > 0.

The result of Theorem 5.12 states that, provided f and Ω are regular enough, we obtain convergence
of the FEM-solution to the exact solution with rate h1/2−ε. Comparing this to the FEM for the
classical Laplacian, we see that this rate is sub-optimal due to the reduced regularity of the exact
solution.
One way to derive an approximation which converges faster to the exact solution is to use the
regularity in weighted Sobolev spaces of Proposition 5.9 as well as graded meshes, defined as
follows:

Let h be a global mesh-size parameter (think about a mesh-size of a uniform triangulation), and
µ > 1 be a grading parameter. Then, we call the shape-regular mesh Th graded, if every element
T ∈ Th satisfies

• hT ≤ Chµ if T ∩ ∂Ω 6= ∅,

• hT ≤ Ch dist(T, ∂Ω)1−1/µ if T ∩ ∂Ω = ∅.

where the constants depend only on the shape-regularity constant.

Proposition 5.14. Let Ω be a bounded Lipschitz domain that satisfies the exterior ball condition
and Th be a graded mesh with grading parameter µ = 2

1+2ε . Let s ∈ (1/2, 1), f ∈ C1−s(Ω), u solve
(5.3), and uh solve (5.4). Then,

‖u− uh‖H̃s(Ω)
≤ C

2s− 1
h1−2ε‖f‖C1/2−s(Ω).

Thus, using graded meshes, we gained a convergence rate of h1/2−ε compared to uniform meshes.
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5.4 FEM for the Extension Problem - Spectral Fractional Lapla-
cian

In the previous chapter, we established that the integral fractional Laplacian and the spectral
fractional Laplacian are indeed different operators. Therefore, deriving a numerical approximation
to the spectral fractional Laplacian is also of interest.
Recalling the definition (−∆)sσu :=

∑
λskukϕk with eigenvalues λk and eigenfunctions ϕk of the

Dirichlet-Laplacian (−∆) and the Fourier coefficients uk =
∫
uϕk, one can see that deriving a

numerical method directly is rather hard.
Fortunately, Theorem 4.9, provides us with a different interpretation by

lim
y→0+

yα∂yU(·, y) = −cs(−∆)sσu,

i.e., as Neumann-data of the solution U of the Caffarelli-Silvestre extension problem

div(yα∇U(x, y)) = 0 in Ω× (0,∞)

U = 0 on ∂Ω× (0,∞)

U(x, 0) = u(x) in Ω,

where α = 1− 2s ∈ (−1, 1).
As this is a degenerated elliptic problem, we can propose a finite element formulation to derive a
numerical approximation.

For simplicity, from now on, we assume that Ω is convex. A suitable function space for the extension
problem is given by weighted Sobolev spaces in the extended variable.
For a subset D ⊂ Rd×R+, we define the space L2(D; yα) as L2(D)-space with measure yαdλ(x, y)
and norm

‖v‖2L2(D;yα) =

∫

D
|v|2yαdxdy <∞.

Imposing this weighted integrability also for the gradient, we define the weighted Sobolev space
H1(D; yα) as

H1(D; yα) := {w ∈ L2(D; yα) : |∇w| ∈ L2(D; yα)}

with norm

‖w‖2H1(D;yα) := ‖w‖2L2(D;yα) + ‖∇w‖2L2(D;yα).

These spaces satisfy:

• For α = 0, we have the standard H1(D)-space.

• H1(D; yα) is a Hilbert space.

• C∞(D) ∩H1(D; yα) is dense in H1(D; yα).
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• Let Ω be bounded and Y > 0, then

H1(Ω× (0,Y)) →֒ H1(Ω× (0,Y); yα) α ∈ (0, 1)

H1(Ω× (0,Y)) ←֓ H1(Ω× (0,Y); yα) α ∈ (−1, 0)

In order to shorten notation, we write C := Ω× (0,∞) in the following.

As we want to derive a weak formulation for the extension problem, we need spaces with zero
boundary conditions, defined by

H̊1(C; yα) := {w ∈ H1(C; yα) : w = 0 on ∂Ω× (0,∞)}.
On this space, similarly to the non-weighted Sobolev space, holds a weighted Poincaré inequality

‖w‖L2(C;yα) . ‖∇w‖L2(C;yα) ∀w ∈ H̊1(C; yα).
Moreover, we have a trace inequality for the boundary at y = 0. Denoting the trace onto Ω× {0}
by trΩ, we have that trΩ H̊

1(C; yα) = H̃s(Ω) as well as

‖ trΩw‖H̃s(Ω)
. ‖w‖H1(C;yα).

5.4.1 Weak Formulation

We multiply equation (4.9a) by a test-function w ∈ H̊1(C; yα) and integrate by parts to obtain

0 = −
∫

C
div(yα∇U) · wdxdy =

∫

C
yα∇U · ∇wdxdy −

∫

∂C
yα∇U · nw dxdy

=

∫

C
yα∇U · ∇w dxdy +

∫

Ω×{0}
yα∂yUw dxdy,

where we used that the test-function vanishes on ∂Ω × (0,∞). Using Theorem 4.9 as well as the
fractional PDE, we obtain

∫

Ω×{0}
yα∂yUw dxdy = 〈−cs(−∆)sσu ; trΩw〉 = −cs〈f ; trΩw〉.

Inserting this in the equation above gives the weak formulation of finding U ∈ H̊1(C; yα) such that
∫

C
yα∇U · ∇w dxdy = cs〈f ; trΩw〉 ∀w ∈ H̊1(C; yα). (5.8)

5.4.2 Regularity

Before studying a finite element method applied to the extension problem, we need to discuss the
regularity of solutions of the extension problem. The main question hereby is, what regularity one
can expect in the extended variable y.

As a first step, we note that solutions of (−∆)sσu = f can be written as u =
∑
ukϕk, where ϕk are

the eigenfunctions of (−∆), and uk denote the Fourier-coefficients of u. As the inverse operator is
given by (−∆)−s

σ the Fourier coefficients of u and f satisfy the relation

uk = λ−s
k fk with uk =

∫
uϕk, and fk =

∫
fϕk,
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where λk is the k-th eigenvalue of the negative Laplacian.
The representation of u cane be used to derive a representation of U as

U(x, y) =
∞∑

k=1

ukϕk(x)ψk(y), (5.9)

see, e.g., [NOS15], where ψk solves a so called Bessel-ODE

ψ′′
k +

α

y
ψ′
k = λkψk in (0,∞)

ψk(0) = 1

lim
y→∞

ψk(y) = 0,

which directly follows from plugging (5.9) into the equation (4.9a).

For s = 1/2, we have α = 0 and the Bessel-ODE can be easily solved as

ψk(y) = e−
√
λky.

For s ∈ (0, 1)\{1/2} solving the Bessel-ODE is considerable harder. However, the solution can be
expressed by means of Bessel functions of second kind Ks as

ψk(y) =
21−s

Γ(s)
(
√
λky)

sKs(
√
λky).

These Bessel functions of second kind are given by

Ks(z) =
Js(z) cos(sπ)− J−s(z)

sin(sπ)
,

where Jm are Bessel functions of first kind, which are given by the power-series

Jm(z) =
∞∑

ℓ=0

(−1)ℓ
22ℓ+mℓ!(m+ ℓ)!

x2ℓ+m.

Using some properties of the Bessel-functions of second kind, we can derive asymptotic estimates.
We refer to [AS64, Sec. 9.6] for:

• Ks is positive for s > −1.

• Ks(z) = K−s(z).

• (zsKs(z))
′ = −zsK1−s(z).

• limz→0+ Ks(z)z
s = Cs.

• For z > 0, we have the zmin{s,1/2}ezKs(z) is decreasing.
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Using the second, third and fourth property gives

ψ′
k(y) ∼ y−α, ψ′′

k(y) ∼ y−α−1 for y → 0+.

Employing (5.9) theses properties directly transfer to ∂yU and ∂2yyU .
With this asymptotics for y → 0+, we can estimate the weighted Sobolev-norms of U . We start
with

∫

Ω×(0,Y)
yα|∂yU|2dxdy .

∫ Y

0
yα−2αdy ≤ C <∞

as α < 1. However, the same argument shows that dropping the weight function yα would lead to

∫

Ω×(0,Y)
|∂yU|2dxdx .

∫ Y

0
y−2αdy =∞

for s ≤ 1/4. Thus, we can expect that ∂yU ∈ L2(C; yα)\L2(C).
Looking at the second derivatives, we obtain even worse behavior concerning the weight for the
weighted Sobolev-spaces, as

∫

Ω×(0,Y)
yβ |∂2y2U|2dxdy .

∫ Y

0
yβ−2−2αdy ≤ C <∞

if we have β − 2 − 2α > −1 or β > 2α + 1, which is not valid for β = α. Therefore, we expect
∂2y2U ∈ L2(C; yβ)\L2(C; yα), which is made precise in the following theorem.

Theorem 5.15. Let s ∈ (0, 1) and f ∈ H̃1−s(Ω). Let U ∈ H̊1(C; yα) solve (5.8). Then, for
s ∈ (0, 1)\{1/2} and β > 2α+ 1 we have

‖∆xU‖2L2(C;yα) + ‖∂y∇xU‖2L2(C;yα) . ‖f‖2H̃1−s(Ω)

‖∂2y2U‖L2(C;yβ) . ‖f‖L2(Ω).

For s = 1/2 we have

‖U‖H2(C) . ‖f‖H̃1/2(Ω)
.

Proof. [NOS15]. �

Since Ω is assumed to be convex, we obtain a classical shift theorem, i.e., ‖v‖H2(Ω) . ‖∆v‖L2(Ω)

for v ∈ H2(Ω) ∩H1
0 (Ω). Using the first statement of the previous theorem provides

‖D2
xU‖2L2(C;yα) . ‖f‖2L2(Ω)

for all second derivatives in x as well as all mixed second order derivatives in x and y. However,
looking at the result for the second derivative in y-direction shows much worse regularity that has
to be compensated by a higher power yβ .

107



CHAPTER 5. NUMERICAL APPROXIMATION

5.4.3 Truncation in y-Direction

Before we can make a finite element formulation for the extension problem, we have to take care
of the problem that the extension problem is formulated in an unbounded domain ((0,∞) in y-
direction).

The most basic idea hereby is to truncate the domain and estimate the truncation error. In order
to formulate this, let CY := Ω× (0,Y) denote the truncated domain and we impose zero-Dirichlet
conditions at y = Y. Defining the space

H̊1(CY ; yα) := {w ∈ H1(CY ; yα) : w = 0 on ∂Ω× (0,∞) ∪ Ω× {Y}}

we can derive a weak formulation in the same way as (5.8), which reads: Find V ∈ H̊1(CY ; yα) such
that

∫

CY
yα∇V · ∇wdx dy = cs〈f ; trΩw〉 ∀w ∈ H̊1(CY ; yα). (5.10)

Our goal for this section is to prove the following theorem, which states exponential decay in the
cut-off parameter.

Theorem 5.16. Let U solve (5.8) and V denote the zero-continuation of the solution (5.10)
with data f ∈ H−s(Ω). Let Y > 0. Then,

‖∇(U − V)‖L2(C;yα) . e−
√
λ1Y/4‖f‖H−s(Ω),

where λ1 is the smallest eigenvalue of the negative Laplacian with homogeneous Dirichlet boundary
conditions.

The prove of the theorem makes use of the following lemma, which states exponential decay of the
solution U to the non-truncated domain.

Lemma 5.17. Let U solve (5.8) with data f ∈ H−s(Ω). Let Y > 0. Then,

‖∇U‖L2(Ω×(Y,∞);yα) . e−
√
λ1Y/2‖f‖H−s(Ω),

where λ1 is the smallest eigenvalue of the negative Laplacian with homogeneous Dirichlet boundary
conditions.

Proof. We use the representation (5.9) and the explicit formulas for ψk.
1. step. Case s = 1/2: Here, we have α = 0 and ψk = e−

√
λky. As the eigenfunctions ϕk are an

orthogonal system in H1
0 (Ω) with ‖∇xϕk‖L2(Ω) =

√
λk, we get

∫ ∞

Y

∫

Ω
|∇U|2dx dy =

∫ ∞

Y

∫

Ω
|∇xU|2 + |∂yU|2dx dy

= 2

∞∑

k=1

√
λk|uk|2e−2

√
λkY = 2

∞∑

k=1

(λk)
−1/2|fk|2e−2

√
λkY

. e−2
√
λ1Y‖f‖H−1/2(Ω).
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2. step. Case s ∈ (0, 1)\{1/2}: With the Bessel-functions of second kind, we have ψk(y) =
Cs(
√
λky)

sKs(
√
λky).

∫ ∞

Y
yα
∫

Ω
|∇U|2dx dy =

∫ ∞

Y
yα
∫

Ω
|∇xU|2 + |∂yU|2dx dy

=
∞∑

k=1

|uk|2
∫ ∞

Y
yα(λkψk(y)

2 + ψ′
k(y)

2)dy.

Multiplying the Bessel ODE with yα and integration by parts gives

(yαψk(y)ψ
′
k(y))

′ = yα(λkψk(y)
2 + ψ′

k(y)
2)

and using that in the previous formula implies

∫ ∞

Y
yα
∫

Ω
|∇U|2dx dy =

∞∑

k=1

|uk|2yαψk(y)ψ
′
k(y)

∣∣∣
∞

Y
. (5.11)

With the property that zmin{s,1/2}ezKs(z) is decreasing for z > 0, we may estimate using the
positivity as well as the formula for the derivative of the Bessel functions

yαψk(y)ψ
′
k(y) . (

√
λky)

sKs(
√
λky)(

√
λky)

1−sK1−s(
√
λky)λ

s
k . e−

√
λkyλsk

for y > 0. Inserting that in (5.11) gives

∫ ∞

Y
yα
∫

Ω
|∇U|2dx dy =

∞∑

k=1

|uk|2yαψk(y)ψ
′
k(y)

∣∣∣
∞

Y
.

∞∑

k=1

λsk|uk|2e−
√
λkY

. e−
√
λ1Y‖f‖H−s(Ω),

where the last estimate follows as in step 1. Taking the square-root proves the lemma. �

Proof of Theorem 5.16. We first note, that due to the homogeneous boundary conditions at
y = Y, the zero extension of V is indeed in H̊1(C; yα).

Using a test-function w in (5.10) and its zero-extension in (5.8), subtracting both equations leads
to

∫

CY
yα∇(U − V) · ∇wdx dy = 0 ∀w ∈ H̊1(CY ; yα),

which in turn gives the best-approximation property

‖∇(U − V)‖L2(CY ;yα) = inf
W∈H̊1(CY ;yα)

‖∇(U −W )‖L2(CY ;yα).

As on C\CY Lemma 5.17 gives the correct decay estimate, it remains to construct a function W
such that the same decay estimate holds on CY .
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Here, we use W (x, y) = η(y)U(x, y) with the piecewise affine cut-off function η given by

η(y) :=





1, 0 ≤ y ≤ Y
2

2
Y (Y − y), Y

2 < y < Y
0, Y ≤ y,

which satisfies |η| ≤ 1, |η′| ≤ 2
Y and therefore

|∇((1− η)U)|2 ≤ 2
(
|η′|2|U|2 + (1− η)2|∇U|2

)
≤ 2

(
4

Y2
U2 + |∇U|2

)
.

With the weighted Poincaré inequality, we estimate

‖∇(U −W )‖2L2(CY ;yα) .
1

Y2

∫ Y

Y/2

∫

Ω
yαU2dx dy +

∫ Y

Y/2

∫

Ω
yα|∇U|2dx dy

.

∫ Y

Y/2

∫

Ω
yα|∇U|2dx dy.

In the same way as in the previous lemma, we can exploit (5.9) as well as the properties of the
Bessel-functions to write

∫ Y

Y/2

∫

Ω
yα|∇U|2dx dy =

∞∑

k=1

|uk|2yαψk(y)ψ
′
k(y)

∣∣∣
∞

Y

. e−
√
λ1Y/2‖f‖2H−s(Ω),

which finishes the proof. �

5.4.4 FEM – a-priori Analysis

Again, we employ a Galerkin discretization of (5.10). In order to do that, we have to introduce a
grid and discrete space on CY .
Let TΩ be a regular, shape-regular mesh on Ω, and P1

0 (TΩ) the already introduced space of piecewise
affine functions with zero boundary conditions.
Moreover, we decompose the interval [0,Y] = ⋃M−1

m=0 Im where Im := [ym, ym+1] are subintervals
with yj < yj+1 for all j ∈ {0, . . . ,M}, and we denote the set of all intervals by IY := {Im : m =
0, . . . ,M−1}. We note, that we – on purpose – have not specified the points yj and that anisotropy
in y-direction will be allowed.

Now, a grid on CY can be defined in a tensor-product fashion, i.e., TY = TΩ⊗ IY , which means that
all elements T ∈ TY have the form T = K × I with K ∈ TΩ and I ∈ IY .
On the grid TY we define the discrete FEM-space

V (TY) :=
{
W ∈ C0(CY) : W |T ∈ P1(K)⊗ P1(I) ∀T = K × I ∈ TY ,W |∂Ω×(0,∞) = 0 =W |Ω×{Y}

}
.

For the discrete space V (TY), we immediately have the following properties:
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• trΩ V (TY) = P1
0 (TΩ);

• V (TY) ⊂ H̊1(CY ; yα);

• #TY =M#TΩ, so if #TΩ ∼Md, we have CMd+1 elements and degrees of freedom.

The discrete Galerkin formulation reads as: finding Vh ∈ V (TY) such that

∫

CY
yα∇Vh · ∇Whdx dy = cs〈f ; trΩWh〉 ∀Wh ∈ V (TY). (5.12)

Existence and uniqueness again follow from the Lax-Milgram Lemma. Moreover, the Galerkin-
orthogonality again gives the Ceá-Lemma

‖V − Vh‖H̊1(CY ;yα) . inf
Wh∈H̊1(CY ;yα)

‖V −Wh‖H̊1(CY ;yα).

Therefore, the a-priori convergence depends on the approximation properties of the discrete space
V (TY), which is discussed in the following proposition from [NOS15].

Proposition 5.18 (anisotropic interpolation). There exists a quasi-interpolation operator
ΠTY : L2(CY ; yα)→ V (TY) that satisfies forall j = 1, . . . , d+ 1 and T = K × I ∈ TY that

‖W −ΠTYW‖L2(T ;yα) . hK‖∇xW‖L2(ωT ;yα) + hI‖∂yW‖L2(ωT ;yα)

‖∂xj (W −ΠTYW )‖L2(T ;yα) . hK‖∇x∂xjW‖L2(ωT ;yα) + hI‖∂y∂xjW‖L2(ωT ;yα)

provided W is smooth enough that the right-hand side exists. Here, xd+1 = y denotes the extended
variable and hK , hI the diameters of K and I, respectively.

We use this proposition for two different types of meshes to derive a-priori rates of convergence. In
the following, we only sketch the ideas of the proof, for details, we refer to [NOS15].

We start with a quasi-uniform mesh, i.e., every element T ∈ TY satisfies hT ∼ h. Then, for the
solution V of (5.10) and y ≥ 2h, the previous proposition implies

∫ Y

2h
yα‖∂y(V −ΠTYV)‖2L2(Ω)dy . h2

∫ Y

h
yα
(
‖∂yyV‖2L2(Ω) + ‖∇x∂yV‖2L2(Ω)

)
dy. (5.13)

Using the regularity estimates of Section 5.4.2, we can bound the first term on the right-hand side
by

h2
∫ Y

h
yα‖∂yyV‖2L2(Ω)dy ≤ h2 sup

h≤y≤Y
yα−β

∫ Y

0
yβ‖∂yyV‖2L2(Ω)dy . h2+α−β‖f‖2L2(Ω)

as β > 2α + 1 > α allows to estimate yα−β by powers of h. For the second term in (5.13), we can
directly imply the regularity estimate to obtain

h2
∫ Y

h
yα‖∇x∂yV‖2L2(Ω)dy ≤ h2

∫ Y

0
yα‖∇x∂yV‖2L2(Ω)dy . h2‖f‖2

H̃1−s(Ω)
.
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On the elements in Ω× [0, h] and Ω× [h, 2h] one can use the stability of ΠTY as well as ∂yV ∼ y−α

to estimate

∫ 2h

0
yα‖∂y(V −ΠTYV)‖2L2(Ω)dy .

∫ 2h

0
y−αdy ≃ h1−α.

Since 2 + α− β < 1− α, choosing β = 2α+ 1 + ε, we arrive at the following a-priori estimate

‖∇(V − Vh)‖L2(CY ;yα) . hs−ε‖f‖
H̃1−s(Ω)

.

This estimate indeed is sharp, but sub-optimal as only a rate of hs is achieved compared to a rate
of h for the FEM for the classical Laplacian.
The problem hereby lies in the missing regularity of ∂yyV . However, this can be compensated by
using graded meshes only in y-direction. With a grading parameter γ, we choose the intersection
points

ym =
(m
M

)γ
Y m = 0, . . . ,M.

Using the Ceá-Lemma together with the anisotropic interpolation result as well as the exponentially
decaying truncation, we arrive at the following proposition.

Proposition 5.19. Let TY = TΩ ⊗ IY , where IY is a graded mesh with parameter γ > 3
2s . Let

U be the solution of (5.8) and Vh ∈ V (TY) the FEM-approximation of the truncated problem at
Y > 0. Then,

‖∇(U − Vh)‖L2(C;yα) . e−
√
λ1Y/4‖f‖

H̃1−s(Ω)
+ Ys(#TY)−1/(d+1)‖f‖

H̃1−s(Ω)
.

Choosing Y ≃ log(#TY) balances both terms and gives

‖∇(U − Vh)‖L2(C;yα) . | log(#TY)|s(#TY)−1/(d+1)‖f‖
H̃1−s(Ω)

,

which resembles – up to the logarithmic factor – the classical a-priori estimate for the FEM applied
to the Laplacian in d + 1-dimension. However, the usual problem was posed on Ω ⊂ Rd, i.e. in d
dimensions, the exponent is still suboptimal due to the added “artificial” dimension. Doing some
more advanced hybrid hp-FEM this can also be corrected.
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Chapter 6

Dunford-Taylor Approach

6.1 The Dunford-Taylor Definition

The starting point for the Dunford-Taylor calculus is Cauchy’s integral formula, which states that

f(ζ) =
1

2πi

∫

D

f(z)

z − ζ dz,

where the contour D is a rectifiable Jordan curve oriented such that f is holomorphic on the right
of D and ζ is also on the right of D.
Now, the Dunford-Taylor calculus formalizes using this representation as an operator valued integral
for T being a linear operator between two Hilbert-spaces

f(T ) :=
1

2πi

∫

D

f(z)

z − T dz,

where the spectrum of T lies on the right of D and does not touch the contour. For more details
about the Dunford-Taylor calculus, we refer to [Yos80].

6.1.1 The Spectral Fractional Laplacian

Using this approach for the negative Laplacian (−∆), we may define the solution operator for
(−∆)sσu = f as

u = (−∆)−s
σ f =

1

2πi

∫

D
z−s(z +∆)−1fdz,

where the contour is chosen such that the negative real axis (as well as a neighborhood of the
origin) is on the left-side. Deforming the contour onto the real axis gives the so-called Balakrishnan
formula

(−∆)−s
σ f =

sin(sπ)

π

∫ ∞

0
µ−s(µ−∆)−1fdµ. (6.1)
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Inserting an eigenfunction ϕ of (−∆) into this representation and using the transformation µ = λt
indeed gives

(−∆)−s
σ ϕ =

sin(sπ)

π
ϕ

∫ ∞

0
µ−s 1

µ+ λ
dµ =

sin(sπ)

π
ϕλ−s

∫ ∞

0
t−s 1

t+ 1
dt = λ−sϕ,

which coincides with the spectral definition.

In the following, we present a numerical method based on the Balakrishnan formula, which consists
of two parts:

• Quadrature for the integral in the variable µ;

• FEM in the variables x to approximate (µ−∆)−1 in the quadrature points on the same mesh
for all quadrature points.

Using the transformation µ = ey in (6.1), we get

u = (−∆)−s
σ f =

sin(sπ)

π

∫ ∞

−∞
e(1−s)y(eyI −∆)−1fdy. (6.2)

In order to approximate the integral, we use so-called sinc-Quadrature, which we briefly intro-
duce.
Let f be an entire function that additionally satisfies for fixed k > 0 |f(z)| . K exp(π|z|k ) (which
allows the application of the Paley-Wiener theorem), and additionally assume f ∈ L1(R). Then, f
can be expanded in a sinc-series

f(z) =
∞∑

j=−∞
f(jk) sinc

(
z − jk
k

)
sinc(z) =

sin(z)

z
.

Using this expansion, we can integrate over the real-axis, interchange integration and summation
(since f ∈ L1(R)) to obtain

∫ ∞

−∞
f(t)dt =

∞∑

j=−∞
f(jk)

∫ ∞

−∞
sinc

(
t− jk
k

)
dt =

∞∑

j=−∞
f(jk)

∫ ∞

−∞
sinc

( s
k

)
ds

= k
∞∑

j=−∞
f(jk).

Truncating the sum gives the sinc-quadrature approximation.
More precisely, for N ∈ N set k := 1√

N
and yj := jk and applying the formula to (6.2) gives the

approximation

UN = QNf =
sin(sπ)

π
k

N∑

j=−N

e(1−s)yj (eyjI −∆)−1f.

The most important aspect of this quadrature approximation is that – in our setting – we obtain
exponential convergence, see, e.g., [BP15].

114



CHAPTER 6. DUNFORD-TAYLOR APPROACH

Proposition 6.1. Let r ∈ [0, 1], f ∈ H̃r(Ω), and u solve (−∆)sσu = f . Then,

‖u− UN‖
H̃r(Ω)

. e−c
√
N‖f‖

H̃r(Ω)
.

Proof. The proof uses the decay properties for |x| → ∞ as well as the holomorphy of the integrand
z−s(z −∆)−1. For details, we refer to [BP15]. �

The FEM part is done similarly to Chapter 5. Let T be a regular, shape-regular triangulation
of Ω and P1

0 (T ) the space of piecewise affine functions on T . We define the discrete Laplacian
−∆T : P1

0 (T )→ P1
0 (T ) by
∫

Ω
(−∆T )vhwhdx :=

∫

Ω
∇vh · ∇whdx ∀wh ∈ P1

0 (T ).

In order to be able to apply the discrete Laplacian to the function f , we need to first project
this function onto the discrete space by using the L2-orthogonal projection ΠT : L2(Ω) → P1

0 (T )
defined as

(ΠT v ; wh)L2(Ω) = (v ; wh)L2(Ω) ∀wh ∈ P1
0 (T ).

With the discrete Laplacian, we can define the FEM-approximation of (6.2) by

uT :=
sin(sπ)

π

∫ ∞

−∞
e(1−s)y(eyI −∆T )−1ΠT fdy.

Combining both the sinc-quadrature approximation and the FEM approximation, we arrive at a
fully discrete approximation

UN
T =

sin(sπ)

π
k

N∑

j=−N

e(1−s)yj (eyjI −∆T )−1ΠT f,

which approximates the solution of (−∆)sσu = f with rates specified in the following theorem.

Proposition 6.2. Let Ω be convex, s ∈ (0, 1) and f ∈ H̃2−2s(Ω). Then,

‖u− UN
T ‖H̃s(Ω)

≤ C| log h|
(
h2−s‖f‖

H̃2−2s(Ω)
+ e−c

√
N‖f‖

H̃s(Ω)

)
.

Proof. The proof combines the approximation results of the sinc-quadrature and FEM by using
some eigenspace decomposition, which can be found in [BP15]. �
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Remark.

• Choosing N ≃ | log(h)| equilibrates both error terms. In fact, using a quasi-uniform mesh
with mesh-size h ∼ (#T )−1/d gives the error bound (up to a constant depending polynomially
on | log h|)

‖u− UN
T ‖H̃s(Ω)

. h2−s‖f‖
H̃2−2s(Ω)

≃ (#T )−(2−s)/d.

Comparing that to the FEM for the Caffarelli-Silvestre extension problem, where we had
rates of (#T )−1/(d+1) or (#T )−1/d with more involved methods, we obtain better rates here.
However, higher regularity f ∈ H̃2−2s(Ω) was imposed, which translates to u ∈ H̃2(Ω), which
is not generic regularity. Nonetheless, compared to the FEM for the extension problem higher
rates with linear polynomials are possible, whereas additional regularity for the extension
problem does not give better rates than (#T )−1/d.

• Assuming only f ∈ H̃1−s(Ω), the Balakrishnan sinc-quadrature approach also reproduces
convergence order (#T )−1/d.

• The construction of the approximation is such that in each quadrature point yj , j = 1, . . . , N
a FEM approximation Uj solving eyj (I − ∆T )Uj = ΠT f has to be computed. In practice,
often N = 20 is used, and standard FEM-codes can be used to compute Uj . Moreover, these
problems are completely decoupled of each other and can be perfectly parallelized.

6.1.2 The Integral Fractional Laplacian

A direct definition like (6.1) is not possible for the integral fractional Laplacian, as the spectrum
does not need to be positive and the Dunford-Taylor calculus can not be justified.
However, using the Fourier definition of the fractional Laplacian, we can derive a different repre-
sentation. We have with Plancherel’s formula

a(u,w) = C(d, s)

∫

Rd

∫

Rd

(u(x)− u(y))(w(x)− w(y))
|x− y|d+2s

dx dy =

∫

Rd

(−∆)su(x)w(x)dx (6.3)

=

∫

Rd

F((−∆)su)(ζ)Fw(ζ)dζ =

∫

Rd

|ζ|2sF(u)(ζ)Fw(ζ)dζ. (6.4)

Using Parseval’s theorem, we can write

∫

Rd

|ζ|2
1 + µ2|ζ|2F(u)(ζ)Fw(ζ)dζ =

∫

Rd

(−∆)(I − µ2∆)−1u(x)w(x)dx,

which leads, using the transformation t = µ|ζ| to

Cs

∫ ∞

0
µ1−2s

∫

Rd

(−∆)(I − µ2∆)−1u(x)w(x)dx dµ = Cs

∫

Rd

F(u)(ζ)Fw(ζ)
∫ ∞

0

|ζ|2µ1−2s

1 + µ2|ζ|2dµ dζ

= Cs

∫

Rd

F(u)(ζ)Fw(ζ)
∫ ∞

0

|ζ|2st1−2s

1 + t2
dt dζ

= Cs
π

2 sin(πs)

∫

Rd

|ζ|2sF(u)(ζ)Fw(ζ)dζ.
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Choosing Cs = 2 sin(πs)
π and inserting this into (6.3), we obtain a different representation for the

bilinear form a(·, ·)

a(u,w) =
2 sin(πs)

π

∫ ∞

0
µ1−2s

∫

Rd

(−∆)(I − µ2∆)−1u(x)w(x)dx dµ.

Again, sinc-quadrature can be employed to approximate the integral on the right-hand side. How-
ever, this leads to a non-conforming method with approximative bilinear forms, which can be
analyzed by Strang-type estimates. For details, we refer to [BLP19].
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Appendix A

Some Facts from other Lectures

In this appendix we collect some results from other courses which are used throughout.

A.1 Abstract Existence & Uniqueness Theorems

This section concludes the mathematical framework which allows the prove the unique existence of
solutions of partial differential equations and integral equations. Everything is stated in the context
of elliptic problems. We start with the so-called Lax-Milgram lemma which states that an elliptic
operator A ∈ L(X;X∗) is an isomorphism. We prove the lemma for reflexive Banach spaces X and
show that the reflexive Banach space X is isomorphic to a Hilbert space provided A is elliptic and
symmetric.

Theorem A.1 (Lax-Milgram Lemma). Let X be a reflexive Banach space and A ∈ L(X;X∗)
be an elliptic operator, i.e.

‖x‖2X . 〈Ax ; x〉 for all x ∈ X. (1.1)

Then, A is an isomorphism. In particular, given x∗ ∈ X∗, there is a unique x ∈ X such that
Ax = x∗. Moreover, if A is a symmetric operator, i.e.

〈Ax ; y〉 = 〈Ay ; x〉 for all x, y ∈ X, (1.2)

the bilinear form 〈〈x ; y〉〉 := 〈Ax ; y〉 is a scalar product, and the induced norm |||x||| := 〈〈x ; x〉〉1/2
is an equivalent norm on X.

Throughout this section, we are going to use the following observation.
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Lemma A.2.

(i) Let X and Y be normed spaces and A ∈ L(X;Y ) be an operator with α :=
infx∈X ‖Ax‖Y /‖x‖X > 0. Then, A is injective and the well-defined operator A−1 :
range(A) → X is continuous with ‖A−1‖ ≤ α−1, i.e. A is an isomorphism between X
and range(A) ≤ Y .

(ii) If X and Y are Banach spaces, A is an isomorphism if and only if α > 0 and A∗ ∈ L(Y ∗;X∗)
is injective.

Proof. (i) Note that non-injectivity of A implies α = 0. Thus, A is injective and A−1 : range(A)→
X. The equality ‖A−1‖ = α−1 follows from elementary calculations:

α = inf
x∈X
‖Ax‖Y
‖x‖X

= inf
y∈range(A)

‖y‖Y
‖A−1y‖X

=
(

sup
y∈range(A)

‖A−1y‖X
‖y‖Y

)−1
= ‖A−1‖−1.

(ii) Let A be an isomorphism. First, there holds α−1 = ‖A−1‖ > 0. Moreover, A∗ is an isomorphism
as well. Conversely, α > 0 implies that A is an isomorphism between X and range(A) ≤ Y ∗. In
particular, range(A) is a closed subspace of Y ∗. Therefore, we may apply Banach’s closed range
theorem to obtain

range(A) = ker(A∗)◦.

Thus, ker(A∗) = {0} implies range(A) = Y . �

Proof of Theorem A.1. 1. step. A is an isomorphism: The ellipticity of A implies

α := inf
x∈X
‖Ax‖X∗

‖x‖X
> 0.

It thus remains to prove that ker(A∗) = {0} by use of the reflexivity of X. Let x∗∗ ∈ ker(A∗) and
x ∈ X with x∗∗ = IXx, where IX : X →֒ X∗∗ is the Hahn-Banach embedding. Then,

‖x‖2X . 〈Ax ; x〉 = 〈x∗∗ ; Ax〉 = 〈A∗x∗∗ ; x〉 = 0,

which yields x = 0 and thus x∗∗ = IXx = 0. Therefore, range(A) = X∗, which concludes the first
step.

2. step. 〈〈· ; ·〉〉 is a scalar product: Linearity and symmetry of 〈〈· ; ·〉〉 are obvious. It remains
to prove that 〈〈· ; ·〉〉 is definite, i.e. 〈〈x ; x〉〉 = 0 implies x = 0, which obviously follows from the
ellipticity of A.

3. step. ||| · ||| is an equivalent norm on X: From the continuity of A, we derive |||x|||2 =
〈Ax ; x〉 ≤ ‖Ax‖X∗‖x‖X ≤ ‖A‖‖x‖2X . The converse estimate follows from the ellipticity of A,
namely ‖x‖2X . 〈Ax ; x〉 = |||x|||2. �

Before we proceed, we state the Lax-Milgram lemma for bilinear forms. We stress that — with
respect to the Riesz theorem for Hilbert spaces X — the Lax-Milgram lemma does not need the
symmetry of the bilinear form a(·, ·).
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Corollary A.3 (Lax-Milgram). Let a(·, ·) : X × X → R be a continuous bilinear form on
a reflexive Banach space X which is reflexive, i.e. ‖x‖2X . a(x, x) for all x ∈ X. Then, given
f ∈ X∗, there is a unique x ∈ X such that a(x, ·) = f .

Proof. We consider the operator A ∈ L(X;X∗) defined by Ax := a(x, ·) which is continuous and
elliptic. Thus, the claim follows from Theorem A.1. �

One generalization of the Lax-Milgram lemma is to consider linear problems with side-constraint.
This leads to so-called saddle point problems. The following theorem states the unique solvability
of a saddle point problem. There are more general formulations proven by Brezzi. However, this
formulation should be strong enough for the lecture.

Theorem A.4 (Brezzi). Let X be a Hilbert space, Y a reflexive Banach space, a : X ×X → R

and b : X × Y → R a continuous bilinear forms. Define X0 :=
{
x ∈ X

∣∣ b(x, ·) = 0 ∈ Y ∗} and
assume that a(·, ·) is X0-elliptic, i.e.

‖v‖2X . a(v, v) for all v ∈ X0. (1.3)

Moreover, we assume

∀y∗ ∈ Y ∗∃x ∈ X b(x, ·) = y∗. (1.4)

Then, given (x∗, y∗) ∈ X∗ × Y ∗, there is a unique solution (x, y) ∈ X × Y of the saddle point
problem

a(x, ·) + b(·, y) = x∗ ∈ X∗

b(x, ·) = y∗ ∈ Y ∗.
(1.5)

In particular, the element x ∈ X satisfies the weak form

a(x, ·) = x∗ ∈ X∗
0 . (1.6)

Remark. With B1 ∈ L(X;Y ∗) defined by B1x := b(x, ·), the assumptions (1.3)–(1.4) read

• a(·, ·) is elliptic on X0 = kerB1,

• B1 is surjective.

We hope that the reader may keep this (abstract) formulation in mind much easier. ✷

Sketch of Proof. Let (x, y) be a solution of (1.5). We decompose x = x1 + x2 with x1 ∈ X0 and
x2 ∈ X⊥

0 . Note that there hold

b(x2, ·) = b(x, ·) = y∗ ∈ Y ∗, a(x1, ·) = x∗ − a(x2, ·) ∈ X∗
0 , and b(·, y) = x∗ − a(x, ·) ∈ X∗.

Thus, we first prove that

∃!x2 ∈ X⊥
0 b(x2, ·) = y∗ ∈ Y ∗. (1.7)
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The next step is to prove that

∃!x1 ∈ X0 a(x1, ·) = x∗ − a(x2, ·) ∈ X∗
0 . (1.8)

Defining x = x1 + x2, we thus obtain a solution of (1.6) and b(x, ·) = y∗ ∈ Y ∗. Moreover, x is in
fact the unique solution which solves these two equations. Finally, it remains to prove

∃!y ∈ Y b(·, y) = x∗ − a(x, ·) ∈ X∗. (1.9)

This last step is slightly involved and is based on operator techniques. �

Proof of Theorem A.4. The proof is split into several steps:
1. step. We first prove (1.7): According to (1.4), there is an element x̃ ∈ X with b(x̃, ·) = y∗ ∈ Y ∗.
Since X0 is a closed subspace of the Hilbert space X, there holds X = X0 ⊕X⊥

0 . Thus, there are
x̃1 ∈ X0 and x̃2 ∈ X⊥

0 with x̃ = x̃1 + x̃2. With the definition of X0, there holds b(x̃2, ·) = y∗.
If x2 ∈ X⊥

0 also satisfies b(x̃2, ·) = y∗, there holds x2 − x̃2 ∈ X⊥
0 ∩ X0 = {0}. Altogether, this

concludes the proof of (1.7).

2. step. Second, we prove (1.8): We may apply the Lax-Milgram lemma to the operator A1 ∈
L(X0, X

∗
0 ) defined by A1x1 := a(x1, ·). Therefore, there is a unique x1 ∈ X0 such that

a(x1, ·) = x∗ − a(x2, ·) ∈ X∗
0 .

3. step. We define x := x1 + x2 and observe

a(x, ·)− x∗ ∈ (X0)
◦ :=

{
x∗ ∈ X∗ ∣∣ ∀v ∈ X0 x∗(v) = 0

}
.

4. step. We now prove (1.9): To that end, we consider the operators B1 ∈ L(X,Y ∗) and
B2 ∈ L(Y,X∗) defined by B1x := b(x, ·) and B2y := b(·, y), respectively. We now prove that

B∗
1 is injective and B2 = B∗

1 ◦ IY is bijective onto (X0)
◦.

According to (1.4), the operator B1 is surjective, and, in particular, the range of B1 is closed.
Consider the adjoint operator B∗

1 ∈ L(Y ∗∗, X∗). Now, let y∗∗ ∈ ker(B∗
1). For x ∈ X, we have

y∗∗(B1x) = (B∗
1y

∗∗)(x) = 0, whence ker(B∗
1) ⊆ (range(B1))

◦ = {0} as range(B1) = Y ∗, i.e. B∗
1 is

injective. By definition of the adjoint operator, we have

B∗
1y

∗∗(x) = y∗∗(B1x) = (B1x)(y) = b(x, y) = (B2y)(x)

for any y ∈ Y and y∗∗ = IY (y) with IY : Y →֒ Y ∗∗ the Hahn-Banach embedding. As Y is reflexive,
IY is an (isometric) isomorphism. Thus, B2 = B∗

1 ◦ IY is injective and range(B2) = range(B∗
1). As

the range of B1 is closed, we may apply Banach’s closed range theorem to infer

range(B2) = range(B∗
1) = (kerB1)

◦ = (X0)
◦.

Altogether, B2 : Y → (X0)
◦ is an isomorphism, and there is a unique y ∈ Y such that

b(·, y) = x∗ − a(x, ·) ∈ (X0)
◦ ≤ X∗. (1.10)
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5. step. The constructed (x, y) ∈ X × Y solves (1.5): The equality a(x, ·) + b(·, y) = x∗ ∈ X∗

follows from (1.10). The side constraint follows from y∗ = b(x2, ·) = b(x, ·). We have therefore
proven the solvability of (1.5), and it remains to prove the uniqueness of solutions.

6. step. Let (x̃, ỹ) ∈ X × Y solve (1.5). We decompose x̃ = x̃1 + x̃2 with x̃1 ∈ X0 and x̃2 ∈ X⊥
0 .

Then, y∗ = b(x̃, ·) = b(x̃2, ·) and therefore x2 = x̃2 according to step 1. As b(·, ỹ) = 0 ∈ X∗
0 , we have

a(x̃1, ·) = x∗ − a(x2, ·) ∈ X∗
0 and thus x1 = x̃1 from step 2. Finally, we obtain x∗ − a(x, ·) = b(·, ỹ).

Since the left-hand side is in (X0)
◦, we obtain y = ỹ from step 4. �

Remark. In general, step 2 of the proof only needs that the operator A1 ∈ L(X;X∗) defined by
A1x := a(x, ·) is an isomorphism A1 ∈ Iso(X0;X

∗
0 ). This is usually stated in the so-called LBB-

condition, cf. Exercise 3.

Moreover, the theorem holds if X only is a reflexive Banach space as was proven by Brezzi in 1974.
However, the proof is then much more involved since one may not use the orthogonal decomposition
X = X0 ⊕X⊥

0 . ✷

Exercise 3. Let a(·, ·) be a continuous bilinear form on a reflexive Banach space X. Prove that
A1 ∈ L(X;X∗) defined by A1x := a(x, ·) is an isomorphism if and only if it satisfies the inf-sup
condition

α := inf
v∈X\{0}

sup
w∈X\{0}

a(v, w)

‖v‖X‖w‖X
> 0 (1.11)

and the non-degeneracy condition

∀w ∈ X\{0}∃v ∈ X\{0} a(v, w) 6= 0. (1.12)

(The combination of both conditions is also called LBB-condition and named after Ladyshenskaja,
Babuška, and Brezzi.) ✷

A.2 Lebesgue Spaces

In this section, we recall the most fundamental result for the Lebesgue integral, the dominated
convergence theorem.

Theorem A.5 (Lebesgue Dominated Convergence Theorem). Let Ω be a measurable
subset of Rd and (fn) a sequence in L1(Ω) which converges to a function f : Ω → R ∪ {±∞}
pointwise almost everywhere in Ω. Provided there is an integrable function g ∈ L1(Ω) with |fn| ≤ g
pointwise almost everywhere, there holds f ∈ L1(Ω) and convergence of the integrals

lim
n→∞

∫

Ω
fn dx =

∫

Ω
f dx, (1.13)

i.e. one may interchange integral and limit. �
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Exercise 4. Let Ω be a measurable set in Rd and f ∈ L1(Ω). For fixed x ∈ Ω, define Ωε :=
Ω\Bε(x). Then, there holds lim

ε→0

∫
Ωε
f dx =

∫
Ω f dx. ✷

In the following, we prove the Lebesgue differentiation theorem which implies that an Lp-function
is uniquely defined by its integral means, cf. (1.15). We state the theorem for L1

ℓoc-functions, but
we stress the inclusion Lp(Ω) ⊆ Lp

ℓoc(Ω) ⊆ L1
ℓoc(Ω) for any 1 ≤ p ≤ ∞, which follows from the

Hölder inequality.

Theorem A.6 (Lebesgue Differentiation Theorem). Let Ω ⊆ Rd be an open set and
u ∈ L1

ℓoc(Ω). Then, there holds

lim
ε→0
−
∫

Bε(x)
|u(x)− u(y)| dy = 0 for almost every x ∈ Ω. (1.14)

In particular, we have

u(x) = lim
ε→0
−
∫

Bε(x)
u(y) dy for almost every x ∈ Ω. (1.15)

We remark that the points x ∈ Ω, for which (1.14) holds, are called Lebesgue points of u.

A.3 Convolution

For measurable functions u, v : Rd → R on the entire space, we define the convolution

(u ∗ v)(x) :=
∫

Rd

u(x− y)v(y) dy pointwise for x ∈ Rd, (1.16)

if the integral exists. The substitution z = x− y yields

(u ∗ v)(x) =
∫

Rd

u(z)v(x− z) dz = (v ∗ u)(x), (1.17)

i.e. convolution is a commutative operation. Moreover, convolution is associative
(
(u ∗ v) ∗ w

)
(x) =

(
u ∗ (v ∗ w)

)
(x) (1.18)

as follows from the same kind of direct calculation as the commutativity. Throughout this section,
the integration domain will be Rd and is hence omitted. In particular, we abbreviate Lp = Lp(Rd),
C0 = C0(R

d) (for continuous functions with compact support), etc. For 1 ≤ p ≤ ∞, we denote
with p′ := p/(p− 1) ∈ [1,∞] the conjugate index, i.e. 1/p+ 1/p′ = 1.

Theorem A.7 (Young Inequality). For 1 ≤ p, q, r ≤ ∞ with 1
p + 1

q = 1 + 1
r and functions

u ∈ Lp and v ∈ Lq, there holds u ∗ v ∈ Lr with ‖u ∗ v‖Lr ≤ ‖u‖Lp‖v‖Lq .

Proof. The case r =∞ has to be treated separately: For q = p′, there holds

|u ∗ v(x)| =
∣∣∣
∫
u(x− y)v(y) dy

∣∣∣ ≤ ‖v‖Lq

(∫
|u(x− y)|p dy

)1/p
= ‖u‖Lp‖v‖Lq
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according to the Hölder inequality and the translation invariance of the Lebesgue integral. There-
fore, we may restrict to r <∞. According to the Hahn-Banach theorem, we have to prove that

|〈w ; u ∗ v〉| ≤ ‖w‖Lr′‖u‖Lp‖v‖Lq for all w ∈ Lr′ (1.19)

as Lr′ is the dual space of Lr for 1 ≤ r <∞. For w ∈ Lr′ define w̃(x) := w(−x) and observe

w̃ ∗ u ∗ v(x) =
∫
w̃(x− y)u ∗ v(y) dy.

Thus,

〈w ; u ∗ v〉 =
∫
w̃(−y)u ∗ v(y) dy = w̃ ∗ u ∗ v(0).

Define f1 := |u|p/‖u‖pLp , f2 := |v|q/‖v‖qLq , f3 := |w̃|r′/‖w̃‖r′
Lr′ and observe that fj ∈ L1 is non-

negative with norm ‖fj‖L1 = 1. Using ‖w‖Lr′ = ‖w̃‖Lr′ , we have

|〈w ; u ∗ v〉|
‖u‖Lp‖v‖Lq‖w‖Lr′

=
|w̃ ∗ u ∗ v(0)|

‖u‖Lp‖v‖Lq‖w̃‖Lr′
≤ f1/p1 ∗ f1/q2 ∗ f1/r

′

3 (0), (1.20)

and it remains to show that the right-hand side is bounded by 1: To that end, we consider the
function g : [0, 1]3 → R,

g(λ) := fλ1
1 ∗ fλ2

2 ∗ fλ3
3 (0) =

∫ ∫
fλ1
1 (−y)fλ2

2 (y − z)fλ3
3 (z) dz dy for λ = (λ1, λ2, λ3).

For scalars aj > 0, there holds

aλ1
1 a

λ2
2 a

λ3
3 = exp

( 3∑

j=1

λj log(aj)
)
,

and the exponential function is convex. We apply the convexity estimate pointwise for the integrand
to see, that g is a convex function. We now consider λ := (1/p, 1/q, 1/r′) ∈ R3. Note that

1− λj ≥ 0 and
3∑

j=1

(1− λj) = 3−
3∑

j=1

λj = 1.

We define ẽj := (1, 1, 1)− ej , where ej ∈ R3 is the standard unit vector. Note that

g(ẽj) = 1 as well as
3∑

j=1

(1− λj)ẽj = (1, 1, 1)−
3∑

j=1

(1− λj)ej = λ.

From convexity of g, we infer

g(λ) ≤
3∑

j=1

(1− λj)g(ẽj) = 1,

which proves that the right-hand side of (1.20) is bounded by 1. �
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Remark. We shall later see as an exercise that q = p′ and thus r = ∞ does not only imply
u ∗ v ∈ L∞ but also uniform continuity of u ∗ v. ✷

Theorem A.8. Let 1 ≤ p ≤ ∞, u ∈ Lp, k ∈ N0, and v ∈ Ck
0 . Then, u∗v ∈ Lq for all p ≤ q ≤ ∞

and u ∗ v ∈ Ck with ∂α(u ∗ v) = u ∗ ∂αv, where α ∈ Nd
0 is a multi-index with |α| ≤ k. Moreover,

u ∗ v and its partial derivatives up to order k are uniformly continuous on Rd.

Proof. 1. step. The claim u ∗ v ∈ Lr for all p ≤ r ≤ ∞ follows from Young’s inequality as v ∈ Lq

for all 1 ≤ q ≤ ∞: Given r ∈ [p,∞], one may choose q ∈ [1,∞] such that 1 − 1/q = 1/p − 1/r as
the right-hand side is non-negative. Now, 1/p+ 1/q = 1 + 1/r, whence u ∗ v ∈ Lr.

2. step. Next, we prove that each function v ∈ C0 is uniformly continuous on Rd, i.e.

∀ε > 0∃δ > 0∀x, y ∈ Rd
(
|x− y| ≤ δ ⇒ |v(x)− v(y)| ≤ ε

)
.

Let R > 0 be large enough such that supp(v) ⊆ BR(0) and let ε > 0. As v is uniformly continuous
on the compact set B3R(0), we may choose δ > 0 such that

∀x, y ∈ B3R(0)
(
|x− y| ≤ δ ⇒ |v(x)− v(y)| ≤ ε

)
.

Without loss of generality, we assume δ ≤ R. For x, y ∈ Rd with |x − y| ≤ δ, there holds either
|x| ≤ 2R and thus |y| ≤ |x| + |x − y| ≤ 3R, whence |v(x) − v(y)| ≤ ε, or |x| > 2R and thus
|y| ≥ |x| − |x− y| > R, whence v(x) = 0 = v(y).

3. step. For v ∈ C0, the convolution u ∗ v is uniformly continuous, i.e.

∃C > 0∀ε > 0∃δ > 0∀x, x0 ∈ Rd
(
|x− x0| ≤ δ ⇒ |u ∗ v(x)− u ∗ v(x0)| ≤ Cε

)
.

For x, x0 ∈ Rd, the Hölder inequality yields

|u ∗ v(x)− u ∗ v(x0)| =
∣∣∣
∫
u(y)

(
v(x− y)− v(x0 − y)

)
dy
∣∣∣

≤ ‖u‖Lp

(∫
|v(x− y)− v(x0 − y)|p

′
dy
)1/p′

.

(1.21)

For y 6∈ B2R(0), there holds |x0 − y| > 2R ≥ R, whence v(x0 − y) = 0. Moreover, provided
|x − x0| ≤ R, there holds |x − y| ≥ |x0 − y| − |x0 − x| ≥ R, whence v(x − y) = 0. Therefore, the
integrand on the right-hand side of (1.21) has compact support ⊆ B2R(x0). — For ε > 0, choose
δ > 0 according to the uniform continuity of v on Rd and assume that δ ≤ R. Provided |x−x0| ≤ δ,
we obtain |v(x− y)− v(x0 − y)| ≤ ε and therefore

|u ∗ v(x)− u ∗ v(x0)| ≤ ‖u‖Lp |B2R(x0)|1/p
′
ε = ‖u‖Lp |B2R(x0)|1/p

′
ε,

i.e. u ∗ v is uniformly continuous.

4. step. We prove the theorem for k = 1: According to the last step u ∗ ∂jv ∈ C, and it remains
to prove that u ∗ v is differentiable with ∂j(u ∗ v) = u ∗ ∂jv. Consider the difference operator ∆h

defined by

∆hw(x) :=
w(x+ hej)− w(x)

h
for scalars h 6= 0.
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We then have to show

∃C > 0∀ε > 0∃δ > 0∀h ∈ R
(
|h| ≤ δ ⇒ |∆h(u ∗ v)(x)− u ∗ ∂jv(x)| ≤ Cε

)
.

First, note that ∆hv ∈ C0 for fixed h > 0. Let x ∈ Rd be fixed. Then,

|∆h(u ∗ v)(x)− u ∗ ∂jv(x)| = |u ∗ (∆hv − ∂jv)(x)|

≤ ‖u‖Lp

(∫
|∆hv(x− y)− ∂jv(x− y)|p

′
dy
)1/p′

.
(1.22)

With the same arguments as in step 3, the support of the integrand on the right-hand side is
contained in the compact ball B2R(x) for |h| ≤ R. For fixed y ∈ B2R(x), there holds

lim
h→0

∆hv(x− y) = ∂jv(x− y).

Thus, for given ε > 0, there holds

∀y ∈ B2R(0)∃δy > 0∀h ∈ R
(
|h| ≤ δy ⇒ |∆hv(x− y)− ∂jv(x− y)| ≤ ε

)
.

Without loss of generality, we assume δy ≤ min{δ∆hv, δ∂jv}, where δ∆hv, δ∂jv > 0 are chosen
accordingly to the uniform continuity of ∆hv and ∆jv, respectively. By compactness, there is a
finite set F ⊂ B2R(x) such that B2R(x) ⊆

⋃{
Bδy(y)

∣∣ y ∈ F
}
. Choose δ := min

{
δy
∣∣ y ∈ F

}
. For

arbitrary y ∈ B2R(x), there is an ỹ ∈ F with |y − ỹ| ≤ δỹ. Thus, for |h| ≤ δ, there holds

|∆hv(x− y)− ∂jv(x− y)|
≤ |∆hv(x− y)−∆hv(x− ỹ)|+ |∆hv(x− ỹ)− ∂jv(x− ỹ)|+ |∂jv(x− ỹ)− ∂jv(x− y)|
≤ 3ε,

where the first and the last term are estimated by the uniform continuity. Now, (1.22) becomes

|∆h(u ∗ v)(x)− u ∗ ∂jv(x)| ≤ 3‖u‖Lp |B2R(x)|1/p
′
ε.

5. step. The case of arbitrary k ∈ N now follows from induction. �

We finish this section with a slightly different formulation of the previous result, which can be
proven with similar techniques.

Lemma A.9. Let Ω ⊆ Rd be a bounded open set, f ∈ L∞(Ω), and g ∈ L1
ℓoc(R

d). Then,
g ∗ f ∈ C(Rd). Moreover, if g ∈ Ck(Rd), there holds g ∗ f ∈ Ck(Rd) with ∂α(g ∗ f) = (∂αg) ∗ f .
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