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Part

Introduction



0.1 Non-local Operators

In this lecture, we study the analytical behavior of certain non-local operators and present some
numerical methods for these.

We call an operator A : X — Y acting between two function spaces X,Y of functions u : R* — R
local, if for all # € R? the value (Au)(z) (if point-evaluation is possible) only depends on the values
of u|p,(z) for all ¢ > 0, where B.(z) := {y € R? : |z —y| < &} denotes the open ball of radius e
around x € R,

Classical examples of local operators are, e.g., differential operators such as the Laplacian

on the function space C%(R%), since computing derivatives at a point 2 only needs the function
values in a neighborhood of z.

Conversely, if an operator is not local, we call it a non-local operator.

Non-local operators appear oftentimes in physics by modeling of non-local effects such as gravity
or quantum entanglement. As a simple mathematical example, we consider the integral operator

1
Au(x) = /0 (x —y)uly) dy u € L(0,1).

From the definition, one directly sees, that the computation of Au(z) needs all values u(y) for
y € (0,1). This also leads to the effect, that, even if u is locally supported, e.g., u is the characteristic
function of a sub-interval u = X(1/4,1/2), We compute that supp Au := {2 : Au(z) # 0} = [0,1],
i.e., Au does have global support.

This observation is particularly important for numerics, since the discretization of local operators
(e.g. by finite element methods for the Laplacian) usually leads to sparse linear systems of equations,
which can be solved efficiently. In contrast, non-local operators lead to fully-populated matrices,
and computations with these can be too expensive. Therefore, an additional challenge for non-local
operators is to derive efficient numerical methods that circumvent the problem of fully populated
systems. This, however, is out of the scope of this lecture, but the topic of some other special
lectures given at TU Wien, such as “matrix-compression and H-matrices”, [FP17].

In this lecture, we are primarily concerned with two classes of non-local operators:

1. Part I: Integral operators of convolution type with singular kernel

Autw) i= [ ke, p)uty) dy
where the kernel function & is the fundamental solution for the Laplacian, see Section 1.3;
2. Part II: Fractional differential operators
(—A)* for s € (0,1),

where the different formal definitions are given in Chapter 4.
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Mainly, we will present the precise mathematical definitions of these operators, prove some mapping
properties and boundedness in appropriate function spaces, discuss the solvability of the equations

Au = f

for given data f, and briefly introduce numerical approximations to the solutions of these equations.

In the following, we briefly motivate why both classes of operators are of interest.

0.2 Recasting a PDE as Integral Equation
Our model problem is the elliptic PDE
—Au=f in §,

where Q € R? is a (bounded) domain, and f is a given right-hand side.
We refer to the PDE lecture, for the fact that, if k(-, ) is a fundamental solution to the PDE, then,
the so called Newton potential

u@) = Nfa) = k= fo) = [ Wan)idy  aen

is a classical solution to the PDE provided f € C5°(€2) and 0f is sufficiently smooth. The Newton
potential is an example of a non-local operator of convolution type, described in the previous
subsection.

One (if not in fact, THE) advantage of the integral equation approach presented in the following
is that it works for unbounded domains of the form Rd\ﬁ, where () is bounded, as well.

0.2.1 Direct Integral Method

If we additionally impose boundary conditions (to have a well-posed problem), such as Dirichlet
boundary conditions

—Au=f in Q, (0.1)
ulpg =g on 09

with given boundary data g, additional terms need to be taken into account.
In fact, the representation formula (presented in (1.14)) gives

w(z) = Nf(x)+ Vé(z) — Kg(x) for z € Q, (0.2)

where ¢ := Ju/In is the normal derivative on 9 (which is unknown), and V, K are the so-called
single-layer potential and double-layer potential given by

Vo(z) :_/ k() o(y)ds, req,

—k(z,y)g(y)ds x € .
/6Q8ny () Y



The potentials ‘7, K again are non-local operators of convolution type. So far, the integral equation
(0.2) contains two unknowns: The solution u in §2 and the normal derivative ¢ on 992. Now, the
idea is to consider the limit process Q@ > = — x € 9. The left-hand side then converges to
u(Z) = u(z) = g(z), and we are left with just a single unknown function ¢.

We now simply state some of the results of the following chapters:

e Because of f € C(9Q), the Newton potential is continuous on R? and thus N f (%) — N f(z) :=
Nof(z). The limit is the integral

Nof(z) = /Q Gz — ) f(y) dy.

e Because of ¢ € C(01), the single-layer potential is continuous on R? and thus XN/qb(%) —
Vo(x) := Vo(x). The limit is the boundary integral

Vo(z)= | Gz —y)o(y)dsy.
o0

e The double-layer potential is more involved: For the limit ¥ — =z, we have convergence
Kg(z) — (K —1/2)g(z), where Kg is a Cauchy principal value

Altogether, the representation formula (1.14) in £ becomes
g(x) = Nof(x) + Vo(x) — (K —1/2)g(x) for x € 9Q.
Finally, we thus end up with the following boundary integral equation
Vo =—Nof +(K+1/2)g on 09, (0.3)

which is known as Symm’s integral equation. We have now seen that ¢ = du/9n is a solution
to (0.3). Moreover, it can be shown that V has certain ellipticity properties so that the solution
of (0.3) is unique.

The direct boundary integral method for the solution of the model problem (0.1) consists of
two steps:

e Solve Symm’s integral equation to obtain the normal derivative ¢ = du/0On.
e Compute the solution u of the model problem by use of the representation formula.

In praxis it is often not possible to compute the solution ¢ of Symm’s integral equation (0.3)
analytically. The boundary element method is a numerical scheme to compute an approximate
(discrete) solution ¢y, instead of ¢.



0.2.2 Indirect Integral Method for the Model Problem

The indirect method avoids the use of the explicit representation formula. Instead one uses the
superposition principle for linear equations: According to the representation formula, there holds
—A(Nf) = f. With the ansatz u = ug + N f, the solution of the model problem (0.1) is equivalent
to
—AUO =0 in Q,
uyg =g — Nof on 0f).

We will show later that the single-layer potential YN/qbo is a potential in the sense that it solves
~A(Veo) =0 in Q.

Therefore, for a function ¢g on 0f), we can make the ansatz ug = 17<Z>0, which leads to the boundary
integral equation

Voo=9—Nof,
since Vg is the trace of 1~/q§0 on 0f).

The indirect boundary integral method consists of the following steps
e Solve the single-layer potential equation V¢g =g — Nof.
e Compute the solution u = 179250 +N f of the model problem.

This procedure is called indirect since the computed function ¢g has no physical meaning.

0.3 Fractional Operators

Recently (since ~2000), more complex physical and biological models started to take non-local
diffusive effects into account. A simple model for such operators is the fractional Laplacian

(—A)° se (0,1),

where the choice of s gives an additional model-parameter for more precise modeling.

As such, further applications in peridynamics, finance, image processing and materials science
followed.

Mathematically, these operators are also of interest as some crucial differences to the Laplacian
appear. As already mentioned, fractional differential operators are non-local, which makes their
analysis and numerical approximation challenging. In fact, even the precise mathematical definition
of these operators is not straight forward. On the whole space R? there are multiple definitions,
which turn out to be equivalent. A formally easy way is to use the Fourier transformation to write

(=A)'u = FH(|¢]* Fu),

which, however, is unpractical for numerical methods. A definition, which is more in line with the
singular integral operators of the previous subsection is given by the so called integral fractional
Laplacian defined pointwise as the Cauchy principal value

(—A)u(z) = C(d, 5) PV. /R d Wdy.



Restricting oneself from the full-space to a subdomain 2 makes matters more complicated, as dif-
ferent definitions turn out to be not equivalent any more. In this lecture, we discuss two different
definitions, the integral fractional Laplacian, which is the formula above applied to functions van-
ishing outside of the domain, and the so called spectral fractional Laplacian, which uses the
eigenvalues \; and eigenfunctions ¢y of (—A) to define

(—A)ou:= Z AL UL, U = /ngokdac.
k=1

There are some other definitions, like the regional fractional Laplacian, which we do not discuss
in detail in the following, and given your application in mind you need to choose the appropriate
definition accordingly.

0.4 Outlook and Literature

In the following, we briefly sketch the content of the lecture notes and mention the used literature.

0.4.1 Partl

The first part of these lecture notes are an iteration of the course “The Boundary Element Method”
given by Dirk Praetorius in 2007. Classical literature for the boundary element method (BEM) and
(boundary integral equations) are the books by MCLEAN, [McL00] and SAUTER, SCHWAB, [SS11],
on which most of the lecture notes are based. We also mention the book of STEINBACH, [Ste08],
where both finite and boundary element methods are derived in a compact and readable way.

As you probably know, the Laplace problem (0.1) may lack the existence of classical solutions u €
C?(92). Instead one seeks for so-called weak solutions that belong to the Sobolev space u € H'(().
A big part of the lecture is thus concerned with the mathematical understanding of the operators
N , 17, and K , which act between certain Sobolev spaces.

Chapter 1: Function Spaces and Weak Formulations

e We start with the main ingredient of the reformulation of PDEs as (boundary) integral equa-
tions, the existence of a fundamental solution. Consequently, we prove the mentioned repre-
sentation formula for classical solutions.

e We introduce (resp. recall) the Sobolev spaces on domains and boundaries which are needed
for the functional analytic framework of the representation formula.

e We recall the main theorems on Sobolev spaces and introduce (different) Sobolev spaces that
take homogeneous boundary conditions into account.

e We recall the weak form of the model problem and prove unique existence of solutions for the
pure Dirichlet and Neumann problem.



Chapter 2: Integral Operators

e The chapter is concerned with the mathematical framework of the representation formula.
We consider the trace as well as the normal derivative of the equation

u= N(—Au) + V(du/on) — K(u) inQ,

which leads to the integral equations

u = No(—Au) +V(0u/dn) + (1/2 — K)(u) on 90 (0.4)
and
gz = Ny(—Au) + (1/2 + K')(0u/0n) + W(u) on 90, (0.5)

where Ny, N1, V, W, K are certain integral operators. Writing the last equations as linear
system, we see that the Cauchy data (u,du/0dn) solve the Calderén system

()= ) () (RERs) oo

e With the help of the Calderén system, we come up with equivalent integral formulations of
our model problem. For instance, if the Dirichlet data u|sn are known, the Calderén system
resp. (0.4) provides Symm’s integral equation

D[

V(Ou/on) = (K 4+ 1/2)(u) — No(—Au). (0.7)
Having computed the normal derivative Ou/0n, we obtain u from the representation formula.

e An important property of the traces of the potentials TN/,IN( is that they can be written as
integral operators as well, which is essential for implementation of a numerical method.

e Finally, we prove that the operators V' and W have certain ellipticity properties, i.e. we are
in the context of the Lax-Milgram lemma: In particular, du/0n is the unique solution of
Symm’s integral equation.

Chapter 3: Galerkin Boundary Element Method

e Within the last chapters, we obtained the mathematical framework needed for a Galerkin
method. We recall the idea of a Galerkin scheme and directly obtain unique solvability of the
Galerkin formulation due to the ellipticity of the operators.

e We present some a-priori estimates to quantify the speed of convergence of the Galerkin
discretization in a space of piecewise constant functions on a quasi-uniform mesh (for Symm’s
integral equations).



0.4.2 Part II

Compared to the BEM, numerical methods for fractional operators are studied quite recently.
Therefore, few textbooks suitable for lectures are available, and the course is mainly designed using
research articles. As such, this lecture notes can also be seen as a collection of readable literature
for an introduction to the topic. Different definitions — and their equivalences — can be found in
the rather technical paper of KwasNICKI [Kwal7]. Among them, we mention the ground breaking
work of CAFFARELLI and SILVESTRE, [CS07]|, where the fractional Laplacian was identified as a
Dirichlet-to-Neumann operator for a degenerated elliptic PDE.

The sections on numerical approximation are based on the overview article by NOCHETTO ET AL.,
[BBN 18], which collects results of AcOSTA and BORTHAGARAY, [AB17] for the integral fractional
Laplacian, as well as NOCHETTO, OTAROLA, SALGADO, [NOS15] for the spectral fractional Lapla-
cian. For a different approach using the Dunford-Taylor calculus, we refer to the article of BoNITO
and PAsciak, [BP15].

Chapter 4: Definitions of the Fractional Laplacian

e We start with a probabilistic motivation by looking at a random walk approach with arbitrary
long jumps. It turns out that taking the limit of the discrete random walk gives a fractional
heat equation u; = (—A)%u, with the integral fractional Laplacian, whereas a fixed length
random-walk gives the classical heat equation.

e We formally introduce different definitions of the fractional Laplacian, the integral definition,
the Fourier definition, the definition via a heat-semigroup as well as the famous Caffarelli-
Silvestre extension problem, which gives a PDE-approach to fractional diffusion. On the
full-space R?, we prove that all definitions are equivalent.

e Having understood the definitions in R?, we turn to the case of a bounded subdomain Q C R,
Here, we state the integral and spectral definition and show that they are indeed different
operators. Moreover, we formulate the Caffarelli-Silvester extension for both operators, which
is very useful for analysis and numerical methods.

Chapter 5: Numerical Approximation

e We start by deriving a weak formulation for the equation (—A)*u = f using the integral
fractional Laplacian, which leads to the bilinear form

N (u(z) — u(y))(v(z) —vly)) , .
a(u,v)_/Rd/Rd dy dx.

’l‘ _ y|d+25

Hereby, analyzing a Galerkin approximation has two main difficulties, the non-locality of the
bilinear form, i.e., plugging in two functions with disjoint support gives in general a non-zero
contribution, as well as the non-locality of the energy-norm in a fractional Sobolev-space.
The non-locality of the norm does not allow for elementwise a-priori estimates. However, we
mention a remedy for this problem by proving a localizable upper bound for the energy norm.

e With a Cea-type best-approximation estimate, the a-priori analysis of a finite element ap-
proximation then comes down to a question of providing a quasi-interpolation operator with

10



the right approximation properties — here the Scott-Zhang projection — as well as regularity
of the solution. Regularity for the integral fractional Laplacian is rather delicate, and it turns
out that solutions tend to be not more regular than H/2+s—< (Q) even if the geometry and
right-hand side are smooth.

e Using the best-approximation property, localization, approximation properties of the Scott-
Zhang projection as well as the regularity results, we prove convergence of the FEM approx-
imation with rate h'/27¢ on quasi-uniform meshes, which can be improved to h'~¢ by using
graded meshes.

e Finally, we study a numerical approximation for the spectral fractional Laplacian as well.
Hereby, the PDE interpretation using the Caffarelli-Silvestre extension problem is used, and
the PDE (in d + 1-dimensions) is approximated using FEM. Again, questions of approxima-
tion properties and regularity are discussed, where especially the regularity in the extended
dimension is the limiting factor.

e Using quasi-uniform tensor grids, we prove convergence of order h*~¢, which can be improved
using an anisotropic grid (only in the extended variable).

Chapter 6: Dunford-Taylor Approach

e Using Cauchy’s integral formula gives yet another definition of the fractional Laplacian with
the so-called Dunford-Taylor calculus. In fact, one can deform Cauchy’s formula to the real-
axis to obtain an operator-valued integral over R™, the so called Balakrishnan formula.

e With the Balakrishnan formula at hand, one can derive a numerical method using FEM
to approximate the shifted Laplacian in the integrand and so-called sinc-Quadrature to ap-
proximate the integral, which converges exponentially. Balancing the FEM error and the
quadrature error gives convergence rates up to h?~* for highly regular solutions.

e The Balakrishnan formula only holds for the spectral integral Laplacian. However, one can
derive a similar formula for the bilinear form corresponding to the integral fractional Laplacian
using the Fourier transform.

11
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Chapter 1

Function Spaces, Weak Formulations

1.1 Model Problem

Throughout the first part of the lecture notes, we consider the Laplace operator

d
0%u
Au(z) = 922
j=1 T

(z) (1.1)

for a function u € C2?(Q) on a domain Q C R? with d = 2,3. The model problem for a second-order
elliptic partial differential equation (PDE) reads: Find u such that

—Au=f inQ, (1.2)
which satisfies certain boundary conditions, e.g.,
ulp =g onT :=090. (1.3)
Here, f € C() is a given volume force and g € C(I') are given Dirichlet boundary conditions.

We stress that other second-order elliptic operators lead to the same results. However, it seems to
be the right idea to understand the analytical techniques for some precise model example.

One goal of this lecture is to reformulate the PDE (1.2) in the domain € into an integral equation
only posed on the surface I'. As the concept of classical solutions, i.e., u € C?(Q) is usually
too strong, we shall look at weaker formulations both of the PDEs and the integral equations in
appropriate function spaces (Sobolev spaces defined below).

We start with some additional assumptions on our domain 2. For simplicity, we assume that € is
bounded and simply connected. However, most of the results also work for unbounded domains
provided R4\Q is bounded.

More important, we impose additional regularity on I', we consider so called bounded Lipschitz
domains. Hereby, ) is locally only on one side of the boundary I', and the boundary I' can
locally be parametrized by Lipschitz continuous functions. This is stated formally in the following
definition.

14



CHAPTER 1. FUNCTION SPACES, WEAK FORMULATIONS

Definition 1.1.  (Lipschitz domain) We start with the definition of the sets Bg(0) := {z €
R?||z| < R} and

Bf == {x € Bg(0) |z > 0}, Bp:={z € Br(0)|zqa <0}, and By :={z € Br(0)|zq=0}.

Now, a set Q C R? is called Lipschitz domain, if Q is an open, bounded, and connected set such
that for each x € T := 0K, there is an open neighborhood U, C R? of x and a bijective function
Xz : B1(0) = U, such that

e x. as well as x; ! are Lipschitz continuous,

e x:(BY) =T NU,, ie xu provides a local parametrization of T,
e xx(By)=QNnU,,

o xz(Bf) = RNQ)NU,,

where the latter assumptions state that Q) is (locally) only on one side of the boundary.

We note that the choice of radius R = 1 in the definition of the Lipschitz domain is arbitrary.

In the following, we usually consider the case when €2 is a Lipschitz domain. According to the
Rademacher theorem, a Lipschitz continuous function is differentiable almost everywhere. There-
fore, we may define an outer normal vector n = n(x) for almost every x € I'. The smoothness of

the boundary is measured by the smoothness of the local parametrizations y, in the definition of
a Lipschitz domain.

Definition 1.2. A function f : Q — R is Holder continuous of order (k,\), if f € C*(Q)
and all k-th derivatives satisfy

. sup 122 = 1)

A
aeNg z,y€eq |$ - y‘
laj=k 7Y

< 00

The space of all Hélder continuous functions on Q is denoted by C**(Q). The domain 2 is called
a C*X domain if it is a Lipschitz domain and if all local parametrizations x5 as well as o1 are
Holder continuous of order (k,\). O

Remark. Obviously, C%1(€) is the space of all Lipschitz continuous functions, and Lipschitz
domains are just C%! domains. Moreover, C*Y domains are usually abbreviated as C* domains. O

Remark. One can show that C**((), associated with the norm

0%f(x) — 0%
1 loer = sup [0 flloa + sup sup 12I2) =01 ()]
aeNg aeNg ERISY ‘x - y‘
lal<k laj=k "7V

is a Banach space. O
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CHAPTER 1. FUNCTION SPACES, WEAK FORMULATIONS

1.2 Integration by Parts

From now on, we shall assume that € is a bounded domain in R% with smooth boundary I" := 9.
Here, smooth just means that we may use the integration by parts formula

auvda:—i—/uavdx:/uvnjds for u,v € C*(Q), (1.4)

where n; denotes the j-th component of the outer normal vector of 2. We note some immediate
consequences:

e For f € CH(Q)%, let div f := E;-lzl ng; denote the divergence operator. Then, there holds the
Gauss divergence theorem

/ div fdx = / f-nds for f e CHQ)L (1.5)
Q r
e From the identity —Au = — div(Vu), we obtain the first Green’s formula

/(—Au)vdx = / Vu-Vodr — / @vds for u € C*(Q) and v € C1(Q). (1.6)
Q QO r on

e Using the first Green’s formula twice, we prove the second Green’s formula
/ —Au) Udm+/vds—/ —Av) dm—i—/uds for u,v € C*(Q). (1.7)

In the following sections, we shall see that the requirements u,v € C2?(Q) can be substantially
weakened.

1.3 Fundamental Solutions, Representation Formula

The starting point for the reformulation of the PDE to an integral equation is the so-called repre-
sentation formula (or third Green’s formula) proven in the next subsection. In order to obtain this
formula, we need to have a fundamental solution for our PDE.

Definition 1.3. Let
C5o(Q) :=={p e C®(Q) : suppy C Q compact}

be the space of compactly supported, infinitely differentiable functions. Employing the topology
defined by the sequential convergence

(¢n)neny — 0 <= IK C Q compact : supp ¢, C K, 0%, — 0 uniformly in K,Va € Ng

gives the space of test functions D((2).
Its dual space D(QY) = {€: D(Q) — R, cont., linear} is called the space of distributions.
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CHAPTER 1. FUNCTION SPACES, WEAK FORMULATIONS

Example.

e Every function u € L (Q) := {u € LY(K) VK C Q compact} defines a distribution
ue D) by

@; o) = lp) = /Q upd g€ D).

We write u = u for such distributions and call them regular distributions.

e The Dirac delta distribution d, defined for fixed y € 2 by

Oy590):=0y) D)

is an example of a non-regular distribution.

Remark. We stress that distributions are always differentiable, where the derivative of u € D(2)’
is defined by

(D% ; ) = (—1)l*Nu; D) 9 e D(Q),a €N

For regular distributions u € L (€2), we call D®u the weak derivative. If all weak derivatives

with |a| = 1 satisfy D% € LL (Q), we call u weakly differentiable. We stress that if a function

loc
is weakly differentiable, its weak gradient is uniquely defined and it coincides with the classical

derivative if u € C1(€Q).

Definition 1.4. Let L be a scalar differential operator. Then, a function G : Q x Q — R s
called o fundamental solution (or Green’s function), if

LG(z,y) =4y
i the sense of distributions.
Example.
e For our model problem L = —A, the fundamental solution is given by the Newton kernel
11—z —yl), for d =1,
G(x,y) == —%log\x—y\, for d = 2, (1.8)
ﬁlxiiy\’ for d = 3.

Since the fundamental solution does only depend on |z —y|, we will write G(z —vy) := G(z,y)
using only one input argument.

e For the Helmholtz operator L = —A — kI and d = 3 the fundamental solution is given by
eik‘x_y‘

Gi(z,y) = prp—,

17



CHAPTER 1. FUNCTION SPACES, WEAK FORMULATIONS

We refer to the PDE-lecture for the classical result that the convolution of Green’s function and

right-hand side
ula) =G fla) = | Gla—u)f(w)ay
solves Lu = f in the sense of distributions.

In the following, we only consider the operator L = —A for d = 2,3. We note that there holds
|S2| = 27 and |S3| = 4, where |S¢| denotes the measure of the unit sphere in R%. Our first lemma
easily follows from direct calculations and is left to the reader (The last two statements are easily
obtained by use of polar coordinates).

Lemma 1.5. (i) There holds G € C*(R\{0}) with first and second derivatives
1z 1 Glz? —dzzm
ajG(Z) = @ W and 8jkG(Z) = ’Sgl’ ’2‘d+2 (19)
(ii) There holds —AG(z) =0 for z # 0.
(iii) G € L} (RY) for d < 2p/(p — 1), in particular G € L} (R?).
(iv) 0;G € LY (R?) for d < p/(p — 1), in particular 8;G € L}, (R?). [

The main result of this section is the representation formula. It states that the (smooth) solution
of a Laplace problem —Awu = f is uniquely determined by its Cauchy data (u,du/0n) on the
boundary I', i.e. we know u if we know the Dirichlet and Neumann data on the entire boundary
I.

Proposition 1.6 (Representation Formula). Let Q be a bounded domain in R with smooth
boundary T := 0Q and u € C*(Q). With f = —Au € C(Q), there holds

- [ e-nswir+ [ 6e—ngrswds, — [ 06— ds,

for all x € Q, where n(y) denotes the outer normal vector aty € I.

Proof. Fix x € Q2. We want to apply, for v and v(y) = G(x —y), the second Green’s formula which
reads in classical terms

(—Au ;) + (Qu/On ; v)p = (u; —Av)g + (u; dv/dn)p  for u,v € C*(Q). (1.10)

As v ¢ C?(Q), we cut-off the singularity for y = = and consider (1.10) on Q. := Q\B.(z). Here,
e > 0 is chosen small enough so that B.(x) C Q. Then, with 'z := 99, there holds I'. = TUOB:(z)
and I' N 0B (z) = 0. The second Green’s formula proves

(=Au;v)q + (Ou/On;v)p — (u; Ov/On)p = = (Ou/On s v)p () + (u; Ov/ON)yp () -

It now remains to consider the convergence of the terms for ¢ — 0, where the left-hand side tends
to the right-hand side of the representation formula, cf. step 1, and where the right-hand side tends
to u(x), cf. step 2 and 3.

18
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e—0

1. step. There holds (—Au;v), — (—Au;v)g which follows obviously from the Lebesgue
dominated convergence theorem as —Au = f € L?(Q2) and v € L*(Q).
e—0

2. step. There holds (Ju/9n ; v)yp () — 0: Note that, for y € 0B.(z), there holds

1 —loge for d = 2,
(y) = Gla —y) { 5

ICREYE for d = 3.
Therefore, v is constant on 0B, (z), and we can estimate

—loge for d = 2,

. _ _ d-1
[0 /0n 5 0) o,y | < lullcr @l l10Be ()| < Cllullor e {1/&_ o

vanishes with ¢ — 0.
e—0

3. step. There holds (u; 9v/0n)yp_(,) — w(z): The normal vector for y € dB.(z) is given by
n(y) = 1(z — y). We plug-in the formula for VG to obtain

Oy 1
u(y G(x —y)ds :—/ u(y)(y —x) -n(y)ds
L MOty O =0y =~ | w2 niwas,
1
=— dsy.
GE=T UL

We write using the Taylor expansion u(y) = u(z) + (y — ) - Vu(¢) for ( = x +t(y — x), t € (0,1).
Then,

1
- ds, — ——
‘Séi|€d—1 /8Bg(m) u(y) dsy |S¢21|6d—1

We note that g5 |0B:(x)| = 1, and the second term on the right-hand side can be estimated by

1 1

9B ) + gy [ () Qs

[Sg|ed—1
! 1
(59241 Jo5 (x)(y — ) - Vu(()dsy| < W@ggw ellullor g = Ce — 0.
Therefore, we have proven (u ; 8v/0n)yp, () =% w(x) and consequently the representation for-
mula. .

The representation formula from Proposition 1.6 allows to represent u € C%(Q) in terms of the
following three integral operators N, V', and K, namely

e the Newton potential of f: Q) — R

Nf(z) := /Qc;(g; — ) f(y)dy for z € Q, (1.11)
e the single layer potential of ¢ : ' - R

V(z) = /FG(af —y)o(y)ds, for z € Q, (1.12)
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e the double layer potential of v : I' = R

K % —y)v sy for x
Ku(z) .:/Fan(y)G(x y)v(y)ds, f e Q. (1.13)

Obviously, the operators N , 17, and K are linear operators. Moreover, with this notation, the
representation formula can simply be written as follows:

Corollary 1.7 (Representation Formula). For u € C?(Q), there holds

uw=N(—Au) + V(du/0n) — K(u) inQ, (1.14)

which is just the operator statement of Proposition 1.6. |

In particular, we see that the Newton kernel G is the fundamental solution of the Laplace operator.

Corollary 1.8. Foru € D(Q) = C5°(R2), there holds u = N(—Au).

Proof. The proof follows from the representation formula (1.14) as u =0 = du/dn on T n

As already mentioned, the Laplace problem (1.2)—(1.3) may lack the existence of classical solutions
u € C%(Q). Instead one seeks for so-called weak solutions that belong to the Sobolev space u €
H'(Q). About the first half of the lecture is thus concerned with the mathematical understanding
of the operators N, V', and K, which act between certain Sobolev spaces.

1.4 Sobolev Spaces

1.4.1 Sobolev spaces on domains

This section briefly recalls the definition of Sobolev spaces H*(£2), for s > 0, on domains 2 C R?
and of the corresponding dual spaces H~*(€2). Throughout, 2 is a domain in R? je. Qis a
connected open subset of R,

We start with integer order Sobolev spaces.
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Definition 1.9. The Sobolev space H'(Q) is defined by
HY(Q) = {ue L*(Q) | u weakly differentiable, Vu € LQ(Q)} (1.15)
and associated with the graph norm
el = (lulfey + 1 Vullza@) (1.16)
Higher-order Sobolev spaces of integer order m € N may be defined inductively by
H™(Q) := {u € L*(Q) | u weakly differentiable, Vu € H™ ()}, (1.17)
with associated norm

1/2

lull ) = (lullF2iq + IVullFm-1q)) (1.18)

In this sense, there holds H(Q) := L*(Q).

We also need Sobolev spaces of non-integer order, which can either be defined by interpolation or
by a non-local seminorm as below.

Definition 1.10. For a fractional order 0 < o < 1, one first defines the Sobolev-Slobodeckij
seminorm

g (/Q deyd;ﬁ)m. (1.19)

‘33 _ y‘d+2a

|u

As | - |o0 stems from an inner product, it is clear that it satisfies homogeneity and triangle
inequality. In particular, it is a seminorm. Then, for m € Ny and 0 < o < 1, one defines the
fractional order Sobolev spaces

m-r+o m m m 1 2
H™(Q) = {u € H™(Q)|[D™ulpq < 00}, Nullpme(y = (12 + 1D™ul2.0) ",

where D™ denotes the m-th (weak) derivative of .

By definition, the Sobolev spaces H™+7(£2) are subspaces of (product spaces of) L?(2). Moreover,
the norm || - || gym+o(q) is obviously induced by an inner product. In fact, H™*7(Q) is complete,
that is, H™7(Q) is a Hilbert space. For integer order, i.e. ¢ = 0, it is rather simple to prove
that H™(Q2) is a Hilbert space: For m = 1, we have to show that H'(Q) is a closed subspace of
L*(Q) x L*(2)%. One may therefore assume that (u,, Vu,) converges to (u,g) in L2(Q) x L?()%.
One then has to show, that u is weakly differentiable with d;u = g;. For the fractional order
Sobolev spaces H™17(Q) the completeness proof is more involved.

In the following, we shall write H*(2) for s > 0 instead of splitting s = m + o into an integer part
m € Ny and a fractional part o € (0,1).

21



CHAPTER 1. FUNCTION SPACES, WEAK FORMULATIONS

Theorem 1.11.  For s > 0, H*(Q) is a Hilbert space. Moreover, for t > s there holds the
continuous inclusion H'(QY) C H*(Q), i.e. the identity id : H' () — H*(Q) is well-defined and
CONLINUOUS. |

Remark. Note that H*(Q) cannot be a closed subspace of L?() with respect to the L? norm
since there holds D(Q) C H*(Q2) C L*(Q), and D(Q) is dense in L?(€). 0

Remark. We stress that for Lipschitz domains, an equivalent characterization of Sobolev spaces
using the Fourier transformation can be made. Since the Fourier transformation F turns derivatives
into multiplications, we can characterize H*(R%)-functions by satisfying

Ml == | (0 [P IFu@)PC < o

and define H*(Q) := {u € D(Q) : u = Ulq,|[|U|l|gsmasy < oo}. We refer to [McL00] for the
equivalence of the definitions and make use of it in a proof once.

Sobolev spaces are made to provide an existence theory for the solution of elliptic differential equa-
tions. For instance, let us consider the Laplace equation with homogeneous boundary conditions,

—Au=f in Q,

1.20
u=0 onlT. ( )

The so-called weak solution u € H*(£2) solves a weak formulation, which is obtained by multiplying
the differential equation by a test function v and integrating over 2, i.e., the weak form of the
model problem reads

/ Vu-Vou = /(—Au)v dx = / fvdx  for all v € D(Q), (1.21)
Q Q Q

where we have used integration by parts to obtain the left-hand side. For f € L?(£2), the right-hand
side defines a continuous linear functional on H*(£2) with operator norm < || f|[z2(q). This follows
from the Cauchy inequality and the definition of || - || s (),

| [ poda| < Uflleyllvlle < 1zl forall v e (@),

Therefore, it makes sense to consider the dual space H*(2)* of H*(€)) with respect to the extended
L?(92) scalar product, i.e. the duality brackets are defined by

(f;v):= /vadx for v e H*(Q) and f € H*(Q)*, (1.22)

where the integral is only a symbol if f € H*(Q)*\L?(f2) is not L? integrable. This can be well-
stated mathematically as follows, where X = H*(Q2) and Y = L?(Q).

Lemma 1.12. Let X and Y be real Hilbert spaces with continuous inclusion X C Y. Then,
the Riesz mapping Jy 1Y = Y™, Jyy = (y; )y is well-defined as operator Jy € L(Y;X*), and
Jy (Y) is a dense subspace of X*.
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Proof. According to the assumptions, there holds ||z|ly < C'||z| x for all z € X. Thus, the Cauchy
inequality proves

(5 2)y < llyllyllzlly < Cllyllyllelx-

Thus, Jy € L(Y; X*) is well-defined. Let Jx : X — X* denote the Riesz mapping for X. Then,
Jy(Y) is dense in X* if and only if V := Jy'(Jy(Y)) is dense in X = V @ v Therefore, it
remains to prove that vt = {0}. Let x € v Then, for y € Y, there holds

0=(z; Jx' (Jyy) x = (Fyy)(@) = (y; 2)y .

Choose y = x € v CY toseexz=0in Y D X, which concludes the proof. |

According to the preceding lemma, equation (1.22) defines the duality brackets on a dense subspace
of H*(Q)*. In particular, given ¢ € H*(Q)* there is a sequence (f,,) in L?(2) such that

(p;v) = nh_}mgO (fnsv)p2 forallve H*(Q).

Definition 1.13.  We denote with H=*(Q), for s > 0, the dual space of H*() with respect
to the extended L*(Q) scalar product (1.22). Note that these dual spaces are also called Sobolev
spaces, and there holds H°(Q) = L%(Q). O

Remark. Note that the definition of H *(Q2) is only a special choice of the representation of
the dual space H*(Q)*. As H*®(Q2) is a Hilbert space, the Riesz theorem states the existence of

an element f € H5(Q) with (f, U)H ( = [, fvdz, and this is just another representation of

)
H*(Q2)*. However, the representation with the extended L?(f2) scalar product is more convenient
for our purposes. ]

Remark. A triple (X,Y, X*) with continuous inclusion X C Y and continuous and dense inclusion
Y C X*is usually called Gelfand triple in the literature. Here, the inclusions X C Y and Y C X*
are usually understood with respect to some injective linear inclusion operator, cf. Lemma 1.12
above. O

1.4.2 Sobolev Spaces on the boundary

In this section we define the Sobolev spaces H*(I') and the corresponding dual spaces H*(I") for
s >0 and I' := 0Q2. However, throughout the first part of the lecture we will never work with the
basic definition. Instead, the important space H*/ 2(T") will be characterized as the trace space of
H'(Q), i.e. u belongs to H'(Q) if and only if the restriction u|p belongs to HY/?(I'). The precise
mathematical statement follows in Theorem 1.22, Theorem 1.24, and Corollary 1.25.

In the following, we always consider bounded Lipschitz domains, and define Sobolev spaces on
Lipschitz boundaries I'. We present two different equivalent definitions, one by using local charts
and one by employing the Sobolev-Slobodeckij seminorm.

We start with the first definition, which employs a few steps:
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e For z € T, let U, C R% be the open neighborhood and y, be the bi-Lipschitz function
according to the definition of a Lipschitz domain.

e Choose e, > 0 with By (z) C U,.

e Since I' is compact, we may choose finitely many 1, ...z, such that I' C U?Zl B, (xj), where
€j 1= Eg, etc.

e There are smooth functions ¢; € D(Ba,(;)) such that ¢; > 0and 3 7, ¢j(z) = 1forx € T
e For a function v : I' = R, we define v; := ¢;v : I' = R, and we remark that v = Z}Ll ;.
e Finally, we may define v; := vj o x;j : B) = R.

With the introduced notation, the definition reads as follows:

Definition 1.14. For s > 0, the Sobolev space H*(T") is defined as
H¥I):={v: T = R|Vj=1,...,n ©; € HY(B))} (1.23)

and associated with the norm
L 1/2
lollsry == (Zl 1502 o)) - (1.24)
]:

Note that this definition formally depends on the choice of (Xj,aj)}l:l as well as on the corre-
sponding partition of unity (qu)?:l, and both is non-unique. For the moment, we should therefore
write H*(I') = H*([;7) and || - | gsry = || - | s (ryr), where 7 abbreviates the particular choice of
the parametrization (x;,€;, gbj);”:l of I. O

The following important theorem states that the Sobolev space H*(I') does not depend on the
choice of the parametrization 7 = (x;, €5, ¢j)?=1- Clearly, there is an upper bound of s involved
since the derivatives of x; implicitly enter the game according to the chain rule.

Theorem 1.15. Assume that Q is a C*~51 domain and 0 < s < k.

(i) For m,n" two arbitrary parametrizations of T, there holds the set equality H*(T') := H*(T'; ) =
H*(T;7"), and the corresponding norms are equivalent, || - || gy ~ ||+ | ms (i)

(ii) There holds L*(T') = H(T') with equivalent norms.

(iii) H*(T') is a Hilbert space, and the inclusion H'(T') C H*(T') for k >t > s is continuous. M

With the continuous inclusion H*(I'") C L?(T'), Lemma 1.12 allows to define the dual space H*(T')*
with respect to the extended L?(T) scalar product, i.e.

(f;v):= /Ffvds forve H*(T') and f € H*(I")", (1.25)

where the integral is only a symbol and defined by continuous extension if f € H*(T')*\L?(T) is
not L? integrable.
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Definition 1.16. For Q a bounded C*~11 domain and 0 < s < k, we define the Sobolev space
H=*(T") as dual space H*(T')* with respect to the extended L*(T') scalar product. O

We finish this section with a more practical, equivalent definition of Sobolev spaces on the boundary.
For the actual proof of the equivalence, we again refer to [McL00].

Definition 1.17. Let Q) be a bounded Lipschitz domain and 0 < s < 1. Then, the Sobolev
space H*(T') can also be defined as

H*(D) == {u € L*(T) : [lull =(ry < o0},

where

u\x
||U||§{s(r) = HUH%?( //’ ’d 1+2s d dx

denotes the Sobolev-Slobodeckij norm.

1.4.3 Main Theorems on Sobolev Spaces

Unless otherwise stated, we assume throughout that 2 is (at least) a bounded Lipschitz domain in
R?. The first theorem states that we may always restrict to smooth functions within the proofs.

Theorem 1.18 (Meyers-Serrin). For each non-negative order s > 0, C*(Q) N H*(Q) is
a dense subspace of H*(Y). Moreover, for each non-negative order s > 0, C*=(Q) := {ulg|u €
C®(R%)} is a dense subspace of H*(). [

If the order s > 0 is large enough, we are dealing with classical continuous functions. Here, large
enough means s > 1/2 for d = 1 (or on the boundary T' of @ C R?), s > 1 for d = 2 (or on the
boundary T of 2 C R3), and s > 3/2 for d = 3, respectively.

Theorem 1.19 (Sobolev Inequality). For d/2 < s, there holds H*(Q) C C() with
continuous embedding, i.e. ||ulloo S ||ullfs(q) for all w € H*(Q). [

Here and in the following, the symbol < states that there is a multiplicative constant C' > 0 involved
which does neither depend on terms of the right-hand side nor on terms of the left-hand side. For
example, the Sobolev inequality reads [[ulloc < Cljul|gs(q) for all u € H*(Q), where C' > 0 depends
not on u but (possibly) on  and s.

From the classical Arzéla-Ascoli theorem one derives the so-called Rellich theorem which states
that the identity operator id : H(Q) < H'(Q) for s > ¢ is not only well-defined and continuous,
but even is a compact operator, which is a pretty strong result.

Theorem 1.20 (Rellich Compactness Theorem). For any orders s > t, the embedding
H*(Q) C HY(Q) is compact. [
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A classical tool in the Sobolev space H'(Q) is the Poincaré inequality, which essentially provides
estimates for the L?(Q2)-norm by the H'(f2)-seminorm.

Lemma 1.21 (Poincaré Inequality). For all u € H'(Q), there holds

lulloe) S IVl + | [ wdal. (1.26)

In particular, we have |lul|12) S [[Vullp2(q) for allu € HY(Q) with [, udz =0.

1.4.4 The Trace Operator

For certain Sobolev functions u € H*(f2), one can define the trace v{™u on the boundary. The
induced trace operator is linear and continuous. This is stated in the following theorem.

Theorem 1.22 (Trace Operator). Let Q C R? be a bounded C*~%' domain and 1/2 < s < k.
Forue H*(Q) and x € ', we define formally the trace

in : 1
0 u(z) = lim / u(y) dy
‘QE| Qe

e—0

with Q. := QN Be(x). Then, v is defined almost everywhere on T and
At HA(Q) — HV2(D) (1.27)
18 a well-defined bounded linear operator, i.e.

int

[0 uHHst(F) N ||UHH5(Q) (1.28)

for allw € H*(Q). [

Remark. If u € H*(Q) is continuous at z € I', we have y{™u(z) = u(x). That is, 7™ extends the
classical trace defined as restriction u|r on the boundary for smooth functions u € C(2). O

As a first corollary to Theorem 1.22, we can prove that the integration by parts formula also holds
for Sobolev functions u,v € H'(€).

Corollary 1.23 (Integration by Parts).  For all u,v € H*(2), there holds

wdr+ | v de = / Y u g v ng ds. (1.29)
o Oz Q IT;j r

Proof. The formula (1.29) holds for u,v € C1(Q). All three terms define continuous bilinear
forms on H'(Q) x H'(Q). Therefore (1.29) follows for arbitrary u,v € H'(Q) from the density
of C1(Q) in HY(Q): Given u,v € H'(Q), there are sequences (u,) and (v,) in C1(Q2) which con-
verge to u resp. v in H'(Q). Therefore, if a(-,-) : H'(2) x H'(2) — R is continuous, there holds

lim a(uy,vy,) = a(u,v). This concludes the proof. [ |
n—o0
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Under the same assumptions as in the Trace Theorem 1.22, one can define a right-inverse of the
trace operator. This operator is usually called lifting operator since it maps some boundary values
onto some corresponding Sobolev functions in the domain.

Theorem 1.24 (Lifting Operator). Let Q C R? be a bounded C*~1 domain and 1/2 < s < k.
Then, there is a continuous linear operator

L:HYXD) = H(Q) (1.30)

such that 4 Lu = u for all u € H~Y2(T). [

As a remarkable corollary of Theorem 1.22 and Theorem 1.24, we obtain that an equivalent defi-
nition of Sobolev spaces on the boundary can be given by use of the trace operator. In particular,
the important space H'/2(T) is just the space of all traces of functions in H'(€2).

Corollary 1.25. Let Q C R? be a bounded C*~' domain and 1/2 < s < k. Then,

H7V(T) = {yia|a e HY(Q)}, (1.31)
and
[ ul| = inf {||@]| gy | @ € H*(Q) with 7" = u} (1.32)

defines an equivalent norm on H*~'/2(T).

Proof. The set inclusion D follows from the existence of the trace operator. The converse inclusion
C follows from the existence of the lifting operator £ and 4L = id. For u € H s=1/2(I"), there
holds

lull < 1 Lull s @) S llull ge-1r2r)

with £ the (continuous) lifting operator. To prove the converse estimate, let ¢ > 0 be arbi-
trary. According to the definition of an infimum, there is an extension u € H*(Q) with 7"t = u
and ||ullgs@) < [ull +e. With the (continuous) trace operator, we are led to |lullgs-1/2p) =

int >

170" ull grs-172(ry S Il 15 (c2)- Therefore

[ll o=z S Nl ooy < llull +¢,

for all e > 0. With € — 0, we prove the equivalence of |- || and || - || fs-1/2(p). In particular, |lul| =0
implies u = 0, i.e. || - || is definite. The homogeneity ||Au|| = |A|||u| is clear by definition and the
linearity of the trace operator. Finally, for u,v € H*~'/2(I'), there holds

lu+ ol < [1L(u+v)llms@) < [1Lullgs@) + 1£0]gs @)

Taking the infimum over all extensions u and ¥ of u and v, respectively, we prove the triangle
inequality. |
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Remark. In fact, if we define H§(Q) := {u € H*(Q) |7iMu =0} for 1/2 < s < k, then H*—1/2(T)
is (isomorphic to) the quotient space H*(€2)/H{(€2). Note that the norm || -|| from (1.32) is nothing
but the quotient norm. O
With the trace operator, we can provide a similar result to Poincaré inequality, which will be used
for the analytical treatment of the Dirichlet problem, the so-called Friedrichs inequality.

Lemma 1.26 (Friedrichs Inequality). Assume that the Dirichlet boundary T'p C T' has
positive surface measure |I'p| > 0. Then, there holds

ullL2(0) < IVullr2) + H’Y(i)ntUHB(FD) (1.33)
for all w € HY(Y). In particular, |Vul[2(q) defines a Hilbert norm on the closed subspace

Hy(Q) :={ue H' () |7)"u =0} (1.34)

of HY(Q), and this norm is equivalent to || - 1) on H (D).

1.4.5 Sobolev Spaces with Zero Boundary Conditions

In this subsection, we incorporate zero boundary conditions into the function spaces H*(€2). The
main observation is that there are multiple ways to do this, and Lemma 1.28 shows that these
definitions can be equivalent or different depending on the parameter s.

Definition 1.27. For s € Ry we define Sobolev spaces with homogeneous boundary

conditions as follows:

o H{(Q2) := C§°(S2), where the closure is understood with respect to the || - || grs(q)-norm.

o H*(Q):= {ue HR?) : suppu C O} with the norm

||u|]ﬁs(ﬂ) = ||tl| s (may with w denoting the 0-extension of u

o H5(Q) := H*(Q)*

Remark. For s > 1/2 an equivalent definition of the space H{(2) is given as the kernel of the

trace operator, i.e., .
Hj(Q) :={ue HQ) : ’yé)ntu = 0}.

Remark. The norm on H #(Q2) defined by the 0-extension is oftentimes hard to work with due to
the non-local nature of the norms on H® for s ¢ N. However, for s € N, we indeed have

I T
For non-integer s € (0,1) and bounded Lipschitz domains €2, an equivalent norm on H 5(Q) is given

by
HU\I2~3(Q) ~ HUH%IS(Q) + IIU/pSHiZ(Q),
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where p(z) := dist(z,T) for 2 € Q. Replacing u by higher derivatives in the L2-term gives an
equivalent norm for s > 1. N
The following lemma shows in which cases the space H*(2) and H(2) are equal or not.

Lemma 1.28. Let Q C R? be a bounded Lipschitz domain.
(i) Let s ¢ 3 +n forn € No. Then,
H*(Q) = H(Q)

with equivalent norms.
(ii) Let s = 5. Then,
HYA(Q) ¢ Hy*(9) = H'(Q),
(iii) Let s < 5. Then,
H*(Q) = H*(Q).

Proof. We only provide the main idea for the first statement, for the other two statements, we
refer to [Grill].

For an C%-domain, we refer to [Nec67] for the density of C§°(€2) in H*(Q). Therefore, it remains
to show the equivalence of the norms onto both spaces.

By definition of the H S-norm, we obviously have

llsze(@y < Tl 7o .

For the converse inequality, we take v € C§°(Q2). Since v = 0 on Q¢, we compute using Fubini’s
theorem

2 _ v(@) —o(y)?
01575 (Re) _/Q 0 |z— y‘d+28 d:cdy+2 |z _y|d+25dydx

< 2 - -
S bl + [Pl [ ‘x_ywsdydx

[v()]?
< [vlfrea)

p(z)?s

where the last inequality follows from using polar coordinates. For a Lipschitz domain £ and
s —1/2 ¢ N the Hardy-inequality, c.f., [Grill, Thm. 1.4.4.4],

|0%v(x)[? 2 s d
/Q/Wdﬂfﬁcnvnm(ﬂ) Vv € Hj(Q), 0 € N [a| < s

holds, and finally gives
1ol = Iellarsuay S ol

which finishes the proof. |
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CHAPTER 1. FUNCTION SPACES, WEAK FORMULATIONS

1.5 The Dirichlet Problem

Strong Form of Dirichlet Problem. We consider the model problem
—Au=f in €,

1.35
u=g¢g onl, ( )

where Q@ C R? is a bounded Lipschitz domain with boundary T' and where the Dirichlet data
g € H'?(I") and the volume forces f are given. We recall the first Green’s formula

/fvd:c:/(—Au)vda::/Vu~Vvdm—/8uvds, (1.36)
Q Q Q r on

which holds in a classical sense, provided u and v are smooth enough. The main step in this section
is to understand (1.36) in a mathematical sense for Sobolev functions u and v, respectively. For
ve HH Q) = {u € HY(Q) ’ ity = O}, the boundary integral vanishes and we are led to

/vad:v = /QVU-Vde. (1.37)

Weak Form of Dirichlet Problem. If H~1() is the dual space of H}(Q) = ker(y{"* : H}(Q) —
H'Y2(I")) with respect to the extended L? scalar product, we may write (1.37) in the form

(f;v) = (Vu; Vo), forallve Hj(Q), (1.38)

where (- ; -} denote the duality brackets and (- ; -)o, denotes the L? scalar product. Therefore, we
may state the weak form of our model problem (1.35): Given f € H*(Q) and g € HY*(I'), find
u € H'(Q) such that

(Vu; Vo) = (f;v) forall v € Hj(Q),

int

Yo u=49-

(1.39)

Note that a classical solution u of our model problem (1.35) is also a solution of the weak form
since we derived our weak form by nothing but integration by parts. Therefore it is necessary to
study the (unique) solvability of the weak form (1.39).

Usually the weak form (1.39) is written in a sloppy way as
~Au=fecHYQ),

- (1.40)
Yy =g € H1/2(F).
Here, the notation —Au € H~1(2) is a symbol which is defined by
(=Au;v) = (Vu; Vo) for ve HJ(Q). (1.41)

To get familiar with the introduced notation, we show that —A : H'(Q) — H~(Q) is a continuous
linear operator:

Vu ; Vv
| = Aullg-1) = sup (u; Volg < |Vulle) < llull g, (1.42)
veHL (@) ”UHHl(Q)
v#0
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CHAPTER 1. FUNCTION SPACES, WEAK FORMULATIONS

where the first equality is just the definition and where the first estimate follows from the Cauchy
inequality in L2. Thus, the operator norm satisfies || — A : H'(Q) — H1(Q)|| < 1.

Theorem 1.29. Given f € H-'(Q) and g € H'/?(T), there is a unique weak solution u € H'(Q)
of (1.39) resp. (1.40), and there holds the stability estimate

lullzr) S N flla-1@) + 19l g2 (1.43)

Proof. With the lifting operator £, we define ug := u — Lg € H} (). Then, (1.39) is equivalent to

(Vug ; Vo) = (f + A(Lg) ;v) for all v € HY(Q). (1.44)

Note that f + A(Lg) € H (). According to the Friedrichs inequality, the left-hand side defines
an equivalent scalar product on H&(Q) Therefore, the Riesz theorem proves the unique existence
of a solution ug € H} (). In particular, u = ug + Lg is the unique solution of (1.39). To prove the
stability estimate, we first estimate |[ugl| ;1 (). The Friedrich’s inequality proves

luollFr1 0y S Vol 72y = (Vu s Vuo)g — (VLg ; Vug)g
= (f ;uo0) — (VLg ; Vug)q
< (I -1 + 19l ) lluoll o)

Finally, we thus obtain

lull i) < luollar@) + 1£91lm @) S 1z + 1£90 @) S N Fla-1@) + N9l g1r2(rys

where we have used the continuity of L. |

The Conormal Derivative. In the following we assume that —Au = f € ﬁ_l(Q). Note that, by
definition, H}(2) C H'(Q) and therefore H1(Q) ¢ H1(Q), i.e. the assumption on the volume
forces f € H ~1(Q) is now stronger than before. In this setting, we want to explain the first
Green’s formula mathematically — now for v € H1(Q) instead of only v € H}(€2). The first Green’s
formula (1.36) becomes formally, with vi"u = du/dn,

(f50) = (Vu; Vo)g — (31" s 75 0) (1.45)

for u € H'(2) the weak solution of (1.39) and a test function v € H'(Q). The first term is well-
defined by our assumption on f € H~1(2). The second term is well-defined since both gradients
are in L?. However, so far the last term is mathematically undefined since we have not defined the
conormal derivative v u, yet. Because of vy € HY/2(T"), we must look for vi™u € H1/2(T') as
an element of the dual space.

Since we would like the first Green’s formula (1.45) to hold for any v € H'(f2), we must define
Yi"u € H-/2(I) by

(7" 5 v) = (Vu; Vo) — (f ;D) (1.46)

for all v € HY?(I") and an arbitrary extension o € H'(Q) with 7% = v. However, one has to
prove that the right-hand side in (1.46) is independent of the extension o € H*(Q) of v € HY?(I).

31
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Theorem 1.30. Letu € HY(Q) be the unique weak solution of (1.39) for given data f € H=1(Q)
and g € HY?(I"). Then, the conormal derivative vi"*u € H=Y2(T') from (1.46) is well-defined and
there holds the first Green’s formula (1.45) for all v € H'(2). Moreover, we have the stability
estimate

int

I ull ey S 1 - + 192 S 10—y + 9l e, (1.47)

Proof. To prove that 4"y € H~1/2(T") is well-defined, let 7,7 € H'(Q) satisfy 40 = v = 427,
Then, v — v € H(Q) and therefore (1.38) states

0=(Vu; V@ —0)g—(f;7-0) = [(Vu; VO)o — (f; )] = [(Vu; VO)y — (f; 7)].

Thus, the definition (1.46) of yi"u € H~1/?(T) is mathematically correct, and (1.45) holds for all
v € HY(Q). It only remains to verify the stability estimate. By definition, there holds

i int,, .
”’Yllntu”Hflm(p) = sup M
veH/2(T) HUHHl/?(F)
v#0

For the nominator, we plug-in the first Green’s formula to see
(s v) = (f 5 Lo) = (Vu; V(L))g < Ifll gy I£0llar @) + IVull L2 IV (£0) [ 22() -
The continuity of the lifting operator £ proves
IV (L) 20 < [[Lv]la1@) S 10l gz
Altogether, we hence obtain [|[y{™u/l-1/2ry S 1l =10y + IVullr2(). Finally, the inequality
[Vaul[z20) S ||f||;[_1(9) + 119ll zr1/2(ry follows as in the proof of Theorem 1.29. [ |

For the following exercise, recall that H “1(Q) c H71(Q). Thus, it is an important question under
which circumstances —Au, for given v € H'(£2), does not only belong to H~'(2) but even to
H~1(Q)). However, this question can very easily been answered.

Ezercise 1. Let u € H'(Q) and f := —Au € H~(Q). Then, there holds f € H~(Q) if and
only if there is a functional ¢ € H~1/2(I") such that

(f;v) = (Vu; Vu)g — (¢ ; 7Mv)  for all v € H(Q).

In this case, there holds ¢ = yi"tv. O

Remark. The first Green’s formula is also well-defined, if we have u € H'(Q), Au € L?(Q), often
written as HA(Q) := {u € H'(Q) : Au € L?(Q2)}, which allows us to define a conormal derivative
by

(VM A = (Vu; Vo)g + (Au s v)g  for all v € HY(R).
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With the same arguments as above, the conormal derivative is well-defined, unique and bounded
with

||7i1ntu||H—1/2(r) S A2y + VUl L2, (1.48)

and by definition the first Green’s formula holds.

1.6 The Neumann Problem
Strong Form of Neumann Problem. We consider the model problem

—Au=f in Q,

ou/On=¢ onT, (1.49)

where Q € R? is a bounded Lipschitz domain with boundary I' and where the Neumann data
¢ € H~'/2(") and the volume forces f € H~'(Q) are given. The first Green’s formula reads
(Vu; Vo)g = (f50) + (¢;7"v) forve H(Q). (1.50)
If we plug-in the constant function v = 1, we see that the data must satisfy
0=(f;1)+(¢;1) (1.51)

to allow solutions of (1.49). Moreover, additive constants are not fixed in the formulation of the
problem, i.e. if u is a solution of (1.49) and « € R, then u+« is a solution of (1.49). To fix additive
constants, we define the Sobolev space

H}(Q) = {ve H(Q)| [pvdz =0} (1.52)

Weak Form of Neumann Problem. The weak form of (1.49) then reads: Find u € H} () such
that (1.50) holds.

Theorem 1.31. Let f € HY(Q) and ¢ € H V2T satisfy (1.51). Then, there is a unique
solution u € HL () of (1.50). There holds the stability estimate

lullzr @) S 1A -1y + 19l -172r)- (1.53)

Proof. For a function v € H'(Q2), we define

1
Ui=v—7€ HNQ), where v—/vdaﬁ.
€2 Jao

As the right-hand side of (1.50) reads

(fiv)+ (o ;") = (f ;D) + (¢ 5 1"D),

(1.50) can be stated equivalently with H () replacing H'(£2). According to the Poincaré inequality,
the left-hand side of (1.50) defines an equivalent scalar product on H}(f2). Therefore, the Riesz
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theorem applies and proves the unique existence of a weak solution u € H}(£2). Another application
of the Poincaré inequality and v = u in (1.50) proves
2 2 in
el iy < IVl = (F 5 u) + {6 2i)
< N gor o lullzre) + 10l -7y 196" ull gy

< lullirsay N -1 + 19172 -

This concludes the proof. [ |

Saddle Point Formulation of Neumann Problem. As in the previous section, we may state
the weak form (1.50) equivalently as a saddle point problem with solution (u,\) € H*(Q) x R in
order to eliminate the side constraint [, udz =0 contained in the definition of H}(Q).

(Vu; Vu)g + A [puvde = (f;0) + (¢ )

1
1 foudz -0 } for all (v, ) € H'(Q) x R. (1.54)

Proposition 1.32. The Brezzi theorem (Theorem A.J) applies to the saddle point prob-
lem (1.54): Provided f € H-Y(Q) and ¢ € H-Y*(T') satisfy (1.51), (1.54) has a unique solution
(u,\) € HY(Q) x R. There holds A\ =0 and v € H}(), and u is the unique solution of the weak
form (1.50) of the Neumann problem.

Proof. With respect to the abstract setting of the Brezzi theorem, we have X = H'(Q), Y = R,
a(u,v) = (Vu; Vv)g, and b(u,A) := X [yudz. There holds Xo = {u € H'(Q) } b(u,-) = 0} =
H(Q), and a(-,-) is an equivalent scalar product on H}(€). Therefore, the Brezzi theorem pro-
vides a unique solution (u, \) € H'(Q) x R. Note that b(u,-) = 0 implies u € H} (). Plugging-in
v = 1 into the first equation of (1.54), we obtain A = 0. Therefore, the first equation simplifies to
the first Green’s formula, and u is the unique solution of (1.50). [

Remark. 1t is also possible to consider mixed boundary value problems of the form

—Au=f in €,
u=gp onlp, (1.55)
8u/8n:gjv on FN>

where  C R? is a bounded Lipschitz domain with boundary I'. I'p and T’y are open subsets of T
with TpNTy =0 and Tp UT Ny = I', where we assume ITp| > 0. To come up with a functional
analytic setting, we would have to specify the Sobolev spaces to which gp and gx belong, which
leads to Sobolev spaces H*(y) on screens v C I'. The essential ideas are hereby the same as in the
previous sections, but the discussion is a bit more technical. For details, we refer, e.g., to [Ste08].
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Chapter 2

Integral Operators

In Chapter 1, we have proven the representation formula
uw= N(—Au) + V(du/dn) — K(u) inQ (2.1)

only for u € C’E(ﬁ), cf. Proposition 1.6. Here, we abbreviate notation by use of three linear integral
operators N, V, and K, namely

e the Newton potential of f: Q) — R

Nf (@) = / GE—y)f(y)dy forT e, (2.2)
Q
e the single layer potential of ¢ : ' = R
V(Z) = / G(Z —y)o(y)ds, for Z € Q, (2.3)
r
e the double layer potential of v: ' - R
~ 0
KU&E:—/ Y G —y)v(y)ds, forz e Q. 2.4
@ = [ GuteyCE D)) ds, (2.4)

The goal of this chapter is threefold: First, we want to study the mapping properties of the three
operators with respect to our functional analytic setting. This leads to a general statement of the
representation formula (2.1) as well as to the introduction of the Calderén projector. Second, we
derive integral equations which provide — at a fist glance — necessary conditions for a function
u € HY(Q) to solve the model problem —Awu = f for Dirichlet and Neumann boundary conditions,
respectively. In the next chapter, we shall show that these integral equations are in fact equivalent
formulations of our model problems. Finally, we want to derive integral representations of the
operators for the case T — x € I' := 0€). Throughout, we assume that 2 is a Lipschitz domain in
R,

Besides the function spaces of the last chapter, the following easy result from functional analysis
states the most important mathematical tool for the entire section.

Lemma 2.1. Let X and Y be Balmch spaces, D be C/L\dense subspace of X, and T € L(D;Y).
Then, there is a unique extension T € L(X;Y), i.e., Tx = Tx for all x € D. Moreover, there
holds [T : X = Y| = ||T : D — Y| for the corresponding operator norms.
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CHAPTER 2. INTEGRAL OPERATORS

2.1 Newton, Single-Layer, and Double-Layer Potential

In the following, we study the mapping properties of the three potential operators N , XN/, and K.
We start with the Newton potential N f of a function f : 2 — R as well as with its trace and its
conormal derivative

Ny := (i)ntﬁ and Nj:= yilntﬁ, (2.5)

respectively. We start with an elementary observation, which allows to verify the mapping proper-
ties for smooth functions only.

Lemma 2.2. For each domain Q2 and s > 0, D() is a dense subspace of both, H~*(2) as well
as H=%(Q).

Proof. We consider the case of H=5(Q) = H*(Q)*. Recall that || - lz20) < | - |5 (@), whence
o < | - [|2()- To conclude the proof, we recall that D((2) is a dense subspace of L?(Q)

I e
with respect to the L?-norm and that L*(2) is a dense subspace of H—5() with respect to the
H~%-norm. Altogether, we thus have density of D(Q2) in H~*(£2). The same arguments work for
H=5(Q) = H}(Q)*. [

The following theorem gathers the most important mapping properties of N together.

Theorem 2.3. (i) There holds Nf € C>®(RY) for f € D(Q). N

(ii) N allows for a unique extension N € L(H(2); H'(Q)) from D(2) to H~ ().
(i) ~A(Nf) = f for all f € H1(Q).

(iv) No := "N € L(H-Y(Q); HY/2(T)).

(v) Ny :=~™N e L(H-1(Q); H'/*(I)).

Lemma 2.4. For f € D(Q), there holds Nf € C*®°(R?) as well as f = N(=Af) = —A(Nf).
Moreover, the partial derivatives satisfy 0%(G * f) = G %« 0% f.

Proof. 1. step. To prove Nf € C*°(R%), recall that Nf = G % f and G € L} (RY). We now
prove that

VR > 03GR € L'RY) (G * f)lppo) = (Gr* f)lBr0)>

so that usual results on convolution apply and yield N f € C®(R%): Given R > 0, we assume
without loss of generality that © C Bg(0). Choose xg € D(R?) with XR|Byp(o) = 1 and define
Gpr := Gxpg. Provided |y| > 2R and |z| < R, there holds x —y & €2 since |z —y| > |y| — |z| > R.
In particular, we have f(z —y) = 0 and consequently

G f@) = [ fe=9)Gwdy= [ Jla-5)G)dy =G f(z) for all x € Ba(0)
ly|<2R

since G(y) = Gr(y) for |y| < 2R.

2. step. The equality f = N (—Af) follows from the representation formula (1.14) as f =0 =
Of /On on T.
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3. step. To prove the equality f = —A(N f), we apply the fundamental theorem of calculus: For
g € D(Q), integration by parts and the application of the Fubini theorem prove

(—A(Nf);g)ﬂz(ﬁf;—Ag) / (—Ag)(x /Gw— y) dy da
= [ 1) [ 6= n)(-Ag)a) drdy
=(f;9)q

Here, we used that G(z —y) = G(y — x) so that the inner integral is just N(=Ag)(y) = g(y) as
g € D(Q). This implies —A(N f) = f almost everywhere in © and thus everywhere in 2 according
to continuity. [

Proof of Theorem 2.3. The statement (i) follows directly from the previous lemma.

Proof of (ii): The proof is rather technical and makes use of the equivalent definition of the Sobolev
spaces H®(Q) in terms of the Fourier transform and the so called Bessel potential. Here, we sketch
the arguments and refer to [Ste08] for the complete details. We have to show that

INFllas iy S 115

It suffices - by using a density argument - to show this result for f € D(Q).
1. step. The property supp f C € gives

(f7 )Hl (R4) < sup (f7 )

1S =1 ey = sup = [ f I -1

veH1(R4) V][ 2 (R%) veEHL(Q HUHH

which allows us to work in the full-space R, Applying the definition of Sobolev spaces via Fourier
transformation gives for s € R

oy = [ (FHOP U+ Py (2.6
2. step. Let u = Nf and u, (z) := [,
is a cut-off function satisfying 0 < x

such that 2 C Br(0).
Then, we have u,, = u on  as well as u, € H*(R?). This gives together with (2.6) that

X(lz = y[)G(z —y) f(y)dy for z € R, where x € C§°([0,00))
<1, x(r) =1 for r € [0,2R], and R > 0 is sufficiently large

el gy = Ml ey < ot ey = /R (Fun 01+ [A)dc. (2.7)

Therefore, it remains to estimate the Fourier transform of u,. We write using that the Fourier
transform turns convolutions into multiplications

Fux(€) = FOI(C)  with  I([¢]) := /Rd e x(|2))G(2) dz.
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We note, that indeed I(¢) = I(|¢|) is rotational symmetric, since the Fourier transform preserves
this property and the integrand is rotational symmetric. Using some properties of Bessel potentials,
some tedious calculations (see [Ste08]) provide estimates for I

<=2 Kl =1,

1461 < {1 o

Inserting everything into (2.7), we may estimate

| Fura+icbic= |

I¢[>1

L+ ICPHIACHIPIFF()PdS + /c (1 + [CIACHPIFF(C)1dC

[¢l<1

1
St [ T ORI = 171 sy

where we used the bound on I(|¢|) and elementary estimates to show I(|¢|)?(1 4+ [¢|?) < 41+\1C|2 for

both cases for || as well as (2.6) for s = —1. With step 1, this finishes the proof of (ii).
Proof of (iv): (iv) follows immediately from (ii) and the mapping properties of the trace operator.

Proof of (iii) and (v): Both statements are proven simultaneously by use of density arguments:

1. step. There holds —A(]\fo) = f for all test functions f € D(2) as proven in Lemma 2.4.

2. step. There is a unique operator Ny € L(ﬁ‘j(Q);H‘l/z(F)) with Ny = it N on D(): For
f € D(Q), there holds Nf € C®(Q) with —A(Nf) = f € D(Q) € H'(Q). We may therefore
apply Theorem 1.30 and derive that Ny f := "N f € H=Y/2(I) is well-defined with

IVl vaey S 1 g-sgay + Il S 1110y

where we have used the continuity of N in the final estimate. As D(Q) is a dense subspace of

H~1(Q), there is a unique extension of Ny from D(Q2) to an operator Ny € L(H ' (Q); H_l/Q(F)).

3. step. There holds —A(Nf) = fforall fe ﬁ_l(Q): By definition, we have to show that there
is an element ¢ € H~/2(T") such that

(f;v)= (V(ﬁf) ; VU>Q — (¢ ; yiMw)  for all v € HY(Q). (2.8)

We choose ¢ := N1 f with N; the extended operator from step 2. Now, let (f,) be a sequence in
D(Q) with le fn=f€ H Q). For each n € N, there holds

(fn:0) = (V(N fa) s w)Q — (Nifp s i) for all v e HY(Q) (2.9)

as —A(an) = f, and Ny f, = yilntﬁfn. Note that limy, oo Nf, = Nf € H'(Q) according to (ii).
Moreover, lim,, oo N1fn = N1f € H-Y2(I'). Thus, the equality (2.9) implies the equality (2.8) in
the continuous limit n — oo.

4. step. The operator N; from step 2 satisfies N1 f = ’yilnt]vf for all f € ﬁ[‘l(Q): From step 3,
we derive that ’yilntﬁ fe HVY 2(T) is well-defined. Moreover, from the definition of yilntﬁ fin
Theorem 1.30, we obtain that ¢ = 'yilmﬁ f in (2.8). As we have just proven ¢ = N f, we conclude
Nif =~+"Nf. u
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We next consider the single-layer potential ‘7¢ of a function ¢ : I' = R defined as
Vo= [ Gla=notds,
which is well-defined for z € R\T and ¢ € L'(T).

The following lemma generalizes some known facts from basic analysis for the convolution, which
will be applied for the Newton kernel G and its derivatives 0*G.

Lemma 2.5. For any ¢ € L'(T') and g € CF(RN\{0}), the function u(z) == [.g(z — y)d(y) ds,
belongs to C*(RI\T). Moreover, there holds

0%u(z) = / 0%g(x —y)p(y)ds, for all x € RAT and all o € N3 with |a| < k.
r

Proof. Clearly, the lemma follows from the special case k = 1 by induction. We thus only have to
consider the cases k = 0 and k = 1 to derive that u € C1(RI\T).

1. step. We first show that u is continuous in R\T': To that end, fix 29 € RA\I" and 1 > 0 such
that B,(zo) C RA\T. Note that

lu(z) — u(zo)| = ‘ / (9(z —y) — glzo —y))o(y) dsy’ < |16l 1y sup |g(z —y) — g(zo — v)|
T yel’

for all z € R?. Tt thus remains to show that for all ¢ > 0 exists a § > 0 such that

sup [g(z —y) — g(zo —y)| <& Vo € Bs(xo).

yel’
We define K := {:E -y ’ x € By(xo),y € I‘} and note that K is compact. Letting € > 0, we choose
9 > 0 with respect to the uniform continuity of ¢ on K. For = € Bs(xzp) and any y € I holds
|(z —y) — (w0 — y)| < 6. This yields |g(x — y) — g(zo — y)| < & for any y € I".
2. step. Next, we sketch the proof of the differentiability of u: Fix 2 € RA\T. For h > 0, we define
the j-th difference quotient A? by

u(x + hej) — u(x)
h )
which is well-defined for h < ¢ with B-(z) C RI\I'. With vj := [1.9;.9(z — y)¢(y) dsy, there holds

Ahu(z) =

J

Au(e) = (@) = | [ (Ahaote =9) = 0y9(a ~)(0) s,
< 8l ) 120w =) = By — ) eiry

Note that I'" is compact. Thus, the right-hand side converges to 0 with h — 0 since A;{mg(x —)
and 0jg(z — -) are uniformly continuous for fixed z ¢ I' and variable y € I'. The details follow as
in the proof of Theorem A.8 and are left to the reader. This proves u € CH(RN\T) with dju = v;. B
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With this result in hand, we directly obtain that on RIAT the single-layer potential is infinitely
differentiable. In fact, the main theorem for V' reads as follows:

Theorem 2.6. (i) There holds Vo € C>(RINT) at least for ¢ € L*(T).

(ii) V allows for a unique extension V € L(H “12(r); HY(Q )) from L2(T) to H-Y/(I).
(iii) AV =0€ HY(Q) for all p € HY(T).

(iv) V i= A0tV e L(H-Y2(T); HYA(T)).

(v) YV e L(H-Y2(D); H-Y(I)).

Remark. We shall see later that for ¢ € L°°(I'), there does not only hold V¢ € C°(RND) but
also V¢ € C(RY). O

Proof of Theorem 2.6. The proof is split into several steps, from which only the first step may
be innovative. The remaining steps just follow the proof of Theorem 2.3. However, we first stress
that, for ¢ E~L2(F), the preceding lemma implies V¢ € C®°(RY\T'). Moreover —AG = 0 in R\ {0}
proves —A(V¢) = 0 in RA\T in this case.

1. step. For ¢ € L*(T'), there holds V¢ € H'(Q) with ||‘7¢HH1(Q) Sl gr-120ry: As Vo e C=(Q),
it only remains to estimate the H'-norm. With the density of D() in H~1(Q), the Hahn-Banach
theorem yields

> Vo ; Vv
Wolmo = sop 000 g, VOiA)
feH-1()\{0} ”f”ﬁfl(g) rep@\{oy 11l 1(Q)

Let f € D(Q) and recall that Nf € C°°(R%). The Fubini theorem and the symmetry G(z — y) =
G(y — z) prove

Woi 1) = [ 1) [ Ge—nows,de= [ o) [ G- deds,

= (¢; Nof)
< ol g—r2@y [Nofll grr2(ry
S 8l g1zl fll -1y

ie. |Vollm@y < &l g-1/2(ry-

2. step. As L*(T) is a dense subspace of H~Y2(I"), V may be uniquely extended from L2(T') to
an operator V € L(H‘1/2(F)' H'Y(Q)).

3. step. The operator V := mtV € L(H‘1/2( ); HY2(T )) is well-defined.

4. step. There holds —A(V¢) = 0 € H1(Q): For ¢ € L?(T), there holds ~A(V¢) = 0 almost
everywhere, whence in L2(Q) ¢ H~*(Q). Thus, Vi¢ := v"V¢ € H-/2(I') is well-defined with
IVidll g-1/2ry < ”‘7¢HH1(Q) < Ml gr-1/2(ry according to Theorem 1.30. Therefore, we may extend
Vi from L?(T) to an operator Vi € L(Hfl/Q(F); Hfl/Q(F)). With continuity arguments, we prove
that

0= <V(x7¢) : Vv) — (Vig; 7i™0) for all ¢ € H~Y2(T) and v € H(Q),
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since the equality holds for all ¢ € L*(I') and v € H'(Q). By definition, this proves ~A(V$) =0
in H=1(0Q).

5. step. The operator 7"V € L(Hfl/Q(F);Hfl/Q(F)) is well-defined. Moreover, there holds
4ty — V; with the operator Vi from step 4. [ |

Finally, we consider the double layer potential Kv of a function v: T — R given by
Ro= [ 21360 = puim)ds,

which again is well-defined for x € RAT and v € LY(T).
The main result for K reads as follows:

Theorem 2.7. (i) There holds Kv e C®(RA\T) for all v e HY2(T).
(ii) There holds K € L(Hl/Q(F); H'(Q)).

(i) —~AKv=0¢€ H Y(Q) for all v e HY(T).

(iv) v K € L(HY*(D); HY2(T)).

(v) W= —y™K ¢ L(HY*(T); H-Y/2(T)).

Proof of Theorem 2.7. 1. step. For w € L'(I'), we show
0% (Kw)(z) = / ’yin; G (x — y)w(y)ds, for x € RA\I and a € Ng,
r

which implies Kw € C*°(RA\D) as well as —A(Kw) = 0.

To prove that, we note that, because of = € €, 'yin;G(x —y) = %’yG(az —y) =n(y) - V,G(z —y).

In particular, the Schwartz theorem applies and proves that one may interchange the order of

derivatives to obtain 91" G (x — y) = "2 G (x — y). Moreover, the trivial observation

[AfaKv(@) = K@) < ollay sup WALG(w = ) = 13050 Gla = )l
y
< l[vllzrery Sup ALV G(a —y) = 8,2V, Gz —y)|
ye
allows to apply the arguments of Lemma 2.5 for the kernel g(z) = VG(z).

2. step. For f € D(Q), there holds N f € C*(Q) with aj(ﬁf)(m) = [ 0;.G(x—y)f(y) dy: Recall
that Lemma 2.4 implies N f € C>*(2) and

0NN = [ G =)y
With the Lebesgue theorem and integration by parts, we obtain
GOyl =)y =~ [ Gt —y)dy
Rd Rd

= —lim G(y)0jyf(x —y)dy
e—0 R4\ B, (0)

= — lim —/ 0yG T —y dy+/
a—>0( R4\ B (0) 5y (y) f( )

ly|=e

Gy)f(a —y)n;(y) dsy)-
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Note that the boundary integral vanishes for ¢ — 0, whereas the volume integral exists due to
9;G € L}, (R%). This proves

0= [ 0G0 fa =) dy = 0,6) £ = [ 0.6 —) F)

3. step. There holds |]I~(v||H1 S vl ga/2ry: We proceed along the lines of the proof for the
single-layer potential: Let f € D( ) Then, the Fubini theorem proves

(Ro:1),,= [ 1@ [l =pew s de = [ o)at)- [ V,66 =9 f@ deds,

:/ V/Gx— d:cdsy

:<U7N1f>

S HUHHl/Q(F)”fHH'*(Q)

From the Hahn-Banach theorem, we now derive HJ’?{”UHHl(Q) S vl g1/2(ry, which proves (i), from
which (iv) immediately follows.

4. step. Note that —A(Kv) = 0 in RA\T and hence in H~1(Q). In particular 4" Kv € H-1/2(I)
is well-defined.
5. step. There holds 4" K L(Hl/Q(F); H_l/Q(F)): For v € H'/2(T") holds

Iyt K| 2y S ||KUHH1 @ S ol gy

since —A(Kv) =0 € H1(€). This concludes the proof. [

2.2 Representation Formula and Calderén Projector
So far, we have introduced the boundary integral operators arising from the Newton potential
Np:="N e L(HY(Q); HY*T)) and Ny :=~"N e L(HH(Q); HY2(I)). (2.10)
Furthermore, we now define the single-layer operator
V=~V e L(H-YA(T); HY2(T)) (2.11)
and the hypersingular operator
W ="K e L(H*(T); H-Y*(T)) (2.12)

as well as the double-layer operator

K = % +iK e L(HY*(T); HY/*(I)) (2.13)

42



CHAPTER 2. INTEGRAL OPERATORS

and the adjoint double-layer operator
K' = —% + AV e L(H-YA(T); H-VA(T)). (2.14)
The notation for the operators K and K’ stems from the fact that there holds
(Kv; ¢) = (v; K'¢) forallve H/*(I') and ¢ € H (D), (2.15)

i.e. K’ is the adjoint operator for K in the functional analytic sense. However, we postpone the
proof of (2.15) to a later section and take a second glance on the representation formula:

Theorem 2.8 (Representation Formula).  For u € H'(Q) with —Au = f € H1(Q), there
holds

u=Nf+VHitu) - K@), (2.16)

Proof. 1. step. We first prove (2.16) for —Au = f € L?(Q): So far, we have proven (2.16) only
pointwise in Q for u € C?(€),

uw) == | Gla—)duty)dy+ [

ou Oy
g Gz — y)ale(y) dsy — /r T%G(x —y) u(y) dsy,

which is the pointwise statement of (2.16), cf. Proposition 1.6.
The main ideas of the proof are similar to the proof of Proposition 1.6, but the estimates using the
C'-norm and Taylor expansion are replaced by application of the Lebesgue differentiation theorem,
Theorem A.G.
For a fix x € Q, we cut-off the singularity for y = x and consider the second Green’s formula on
Q. := Q\B.(z) to obtain

(=Au;v)q + (Ou/On;v)p — (u; Ov/On)p = — (Ou/On ; v)yp () + (u; Ov/On)yp (4
as in the proof of Proposition 1.6. It remains to analyze the convergence of the terms for ¢ — 0.

e—0

e There holds (—Au ; v)q. — (—Au ; v)q which follows obviously from the Lebesgue domi-
nated convergence theorem as —Au = f € L*(Q) and v € L*(Q).

e There holds (Ou/0n ; v)yp_ (4 2% 0: The Gauss divergence theorem gives

0
/ 9 s = —/ Audy = —|B:(x) Audy,
8B, (z) O Be(x) Be(x)

where here and in the following f,-dy := |B|™" [ -dy denotes the integral mean. There
holds |B.(z)| = |BY|e?, and the integral mean fBE(a:) Audy converges to Au(z) as e — 0
almost everywhere due to the Lebesgue differentiation theorem. Moreover, for y € 0B (z),

—1 for d =2
we have v(y) = G(z —y) = @ { o8e o " which leads to

1/e for d = 3,

|BY| £2|loge] for d = 2,
ou/on ;v = -7 Audy -
(Ou/ )635(1) |5§z‘ B.(x) Y &2 for d = 3,

vanishing for ¢ — 0.
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e—0

e There holds (u ; 9v/0n)yp () — u(x): We plug-in the formula for VG and use the Gauss
divergence theorem to obtain

0 1
/835(30) u(y) 8néjy) Gz —y) dsy = _W /HBS(J;) u(y)(y —z) - n(y) dsy

1
= Vuly) - (y — du(y) dy.
SdJe /Bs(x) u(y) - (y — z) + du(y) dy

With | B.(z)| = |BY|e?, there holds

Bd
|Bsle \Vu|dyﬂ>0,

; /
S Vu(y) - (y — x) dy| <
|S§l!€d’ - (z) ‘ 159 JB.()

since the integral mean converges to |Vu(z)| by the Lebesgue differentiation theorem. For
the remaining term, we obtain

d d| B
y d/ udy = |d2| udyﬂu(x),
1951 JB.(2) 55| /B ()
——

=1
which finishes the proof for f € L?(€).

2. step. We prove (2.16) for —Au = f € H1(Q): As L2(Q) is a dense subspace of H1(), we

choose a sequence (f,) in L?(£2) which converges to f in H~(Q). Then, let u, € H*(Q) be the
unique weak solution of the Dirichlet problem

—Au, = fr, in Q  and y(i)ntun = y(i)ntu onT.
According to Theorem 1.29, there holds ||u—up || g1() S ||f—fn||g_1(ﬂ), whence (u,,) converges to u
in H'(Q). Moreover, Theorem 1.30 states |]7i1ntu—7i1ntun||H71/z(p) S ||f—fn\|ﬁ_1(m+||u—unHH1(Q),

whence (yi"*u,,) converges to vi™u in H~Y/2(I"). As (2.16) is already proven for u,, the continuity
of the involved operators concludes the proof for the limit case n — oo. |

Corollary 2.9. We define the Calderén projector as operator matriz

1 _
C = < 2 B IK, ) CHY2(T) x H-V2(T) = HY2(T) x BV, (2.17)
2

If u € HY(Q) satisfies —Au = f € H1(Q), then the Cauchy data (yintu, yimty) satisfy
int int
Yo U :C(’VQ“>+<N°JC) 2.18
(T )= (2 )+ (37): (2.18)

i.e. the Cauchy data solve the so-called Calderdén system. Moreover, the Calderdn projector
has the projector property C? = C.
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Proof. We start from the representatlon formula (2.16) and consider the trace and the conormal
derivative. From V = vmtV and —3 —|— K= ’y(l)ntK we obtain

1
,Yéntu — ,Yénth 4 ,ylnt ,_ylnt th"}/mt'LL — NOf 4 V")/mt (2 K) ,Ytl)nt .
From 1 + K’ = 4"V and W = —™ K, we obtain

o~ 1
'Yintu o thf 4 ,ylntv,ylnt 'YintK’)’(l)ntU — le 4 <7

5 —I—K’) 1ntu+W,ylntu

Writing the latter equations in a 2 X 2-system, we prove (2.18). To prove C* = C, let (v,¢) €
HY2(T') x H-Y/2(T") and define u := V¢ — Kv € H*(Q). Note that —Au = 0 so that the Calderén

system simplifies to
() =c (70)
,ﬁnt Vllnt

From 7{"u = V¢ + (3 — K)v and vi"u = (3 + K')¢ + Wv we derive

YW\ [(i-K V v _of v
int - 1 / - .
it u w 5+ K 10) 10)
Plugging this into the Calderdn system, we obtain
“(5)= (k) -e (k) - (5)
0 7t it o)
As (v, ¢) is arbitrary, this proves C? = C. |

Using the projector property C? = C, elementary calculations prove the following additional rela-
tions of the boundary integral operators V, W, K and K:

Corollary 2.10. There hold the following equations:

VW = (3+K)(5-K), VK' = KV, (2.19)

K'W = WK, WV = (3+K')(3-K). '
Proof. From the projector property C' = C?, we obtain

;-K V [ 3-K V ;-K V
wooi+k )\ W 4+ K W i+ K
_ G-K?+VW G-K)WV+V(E+K)
W(3—K)+(5+ KW WV+(§+K’)

This yields (2.19) according to some elementary calculations. |
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2.3 Integral Formulation of Dirichlet Problem

We consider the Dirichlet problem

—~Au=fe HYQ),

: 2.20
W =ve H'(T). (220)

According to Section 1.5, there is a unique weak solution v € H*($2). With the (unknown) conormal
derivative ¢ = yi"u € H~1/2(T), the Calderén system states

(2= ) () (3

according to Corollary 2.9. The first equation can be read in the form

D=

V¢::<%+aK>v—Ahﬂ (2.21)

which is known as Symm’s integral equation. The following theorem states that the Dirich-
let problem (2.20) and Symm’s integral equation (2.21) are equivalent formulations of the same
problem.

Theorem 2.11. (i) If u € H'(Q) solves (2.20), the conormal derivative ¢ = vi*u € H~Y/2(T)
solves Symm’s integral equation (2.21). N N N

(ii) Conversely, if ¢ € H-Y2(T') solves (2.21), the function u := Nf + V¢ — Kv € H'(Q) solves
the Dirichlet problem (2.20).

Proof. (i) has just been proven to derive Symm’s integral equation. (ii) According to the mapping
properties of the three potential operators, there holds —Awu = f as well as

- 1 1 1
Yy = Nof + Ve + <§ —K)v: <§+K>v+ (§—K)v:v,
where we have plugged-in V¢ from (2.21). |

Note that the theorem does not state the unique solvability of Symm’s integral equation. We still

have to show that ¢ = +i% is in fact the unique solution, which will be postponed to a later

subsection.
2.4 Integral Formulation of Neumann Problem

We consider the Neumann problem

—Au=feH Q)

. B (2.22)
W =¢ € H(I).
The weak form, i.e. the first Green’s formula, then reads
(f;0) = (Vu; Vu)g — (¢ ;M) for all v € HY(Q). (2.23)
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The choice v = 1 therefore shows that

(fiD)+(0;:1)=0 (2.24)

is a necessary condition to allow weak solutions u € H!(Q) of (2.22). Moreover, solutions can
only be unique up to additive constants: According to Section 1.6, there is a unique solution
ue H(Q) = {ue H(Q)] (u; 1)y = 0}. With the (unknown) trace v := vu € H'Y2(T"), the
Calderon system states

v % - K Vv v Nof
= 1 ! + :
¢ w5+ K ¢ Ny f
The second equation can be read in the form
1 !
Wo = (§—K>¢—N1f (2.25)

and is then called hypersingular integral equation. The following theorem states that the
Neumann problem (2.22) and the hypersingular integral equation (2.25) are equivalent.

Theorem 2.12. (i) If u € HY(Q) solves (2.22), the trace v := 4i™u € HY?(T) solves the
hypersingular integral equation (2.25). N N N

(ii) Conversely, if v € HY/?(T') solves (2.25), the function u = Nf + V¢ — Kv € H'(Q) solves
the Neumann problem (2.22).

Proof. (i) has just been proven to derive the hypersingular integral equation. (ii) According to
the mapping properties of the three potential operators, there holds —Au = f as well as

. 1 1 1
Yy = Nif + (5 +K')¢+Wv = (5 +K’>¢+ (5 - K’)¢ = ¢,
where we have plugged-in Wuv from (2.25). |
Note that the theorem again does not state the unique solvability of the hypersingular integral
equation. Moreover, neither the necessary assumption (2.24) nor the assumption fQ udr = 0 have

been used in the proof of Theorem 2.12. In particular, we may expect that u € H(Q) from (ii)
won'’t satisfy fQ udzr = 0 in general.

The subsequent proposition states some elementary mapping properties of the hypersingular inte-
gral operator. For the statement, we recall the definition of the spaces

HP(T) = {ve HM)|(1;0) =0} and H, V*(T) = {p e HY2I)|(w;1) =0}, (2.26)

We first note that H*_l/Q(F) is the dual space of H,}/Z(I‘).

Lemma 2.13. H*_I/Q(F) is the dual space of Hi/Q(I‘) with respect to the extended L?*-scalar
product.
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Proof. Clearly, each ¥ € H, 1 2(F) belongs to the dual space of Hi/ 2(F). Conversely, one has

to show that, given ¥ € H~/2(T), there is a 1) € H;1/2(F) such that (¢ ;v) = (¥ ; v) for all

v E Hi/2(1“). Obviously,

does this job. |

Proposition 2.14. (i) For any v € H'/*(T) holds Wv € Hi/Z(F).

(ii) For a constant function ¢ € H'/?(T') holds We¢ = 0.
(iit) Provided f € H=*(Q), ¢ € H-Y2(I') satisfy (2.24), there holds (3—K')¢—Nif € H*_l/2(F).

Proof. (i) The first Green’s formula reads (—Vu ; w) = (Vu ; Vw) — (yi%y ; 4ty). If we plug-in
u= Kvand w = 1, we obtain 0 = —(yi"*Kv ; 1) = (Wwv ; 1).

(i) We consider the constant function ¢ on €. Then, the representation formula shows ¢ = ~Kec
almost everywhere in 2, whence We = —yilntK c=0.

(iii) Using u = V¢ and w = 1 in the first Green’s formula, we see that (3 + Ko ;1) =
(yi*V¢ ;1) = 0. Moreover, there holds (N1f ;1) = (v\™Nf ;1) = —(f ;1) as ~ANf = f.
Therefore,

(3-K)o—Nif;1)=(¢:1) —((5+K)o: 1)+ (f;1) =0

which concludes the proof. |

From (i), we see that W cannot be elliptic on the entire space H'/?(T"). However, factoring the

constant functions out, we obtain unique solvability on H. i / Q(F), which is also the subject of a later
subsection.

2.5 Boundary Integral Operators

The main goal in this section is to derive integral representations of the introduced boundary
integral operators (2.10)—(2.14). Of course, this is a fundamental point for a numerical method
since one needs to know what has to be implemented.

The discretization is usually based on piecewise polynomials. Therefore, our discrete functions
always belong to L>(Q2) and L*°(T"), respectively. The first theorem shows that, for f € L>°(Q),
the Newton potential belongs to C'!'(R?) with

Nof () = 4 N f(z) = / Gz — )/ (y) dy

Q

M (@)= PR S ) = [ Gl = )r) dy

Q 0Ny

forz €T.
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The proof of Theorem 2.15 uses the elementary properties of the convolution that g * f € C(R%)
provided f € L®(Q2) and g € Li _(R?), which is stated in Lemma A.9.

loc

Theorem 2.15. Let Q2 C R? be a bounded open set and f € L(Q). Then, Nf := Gxf € CH(R%)

Proof. We define w := Nf = G * f and vj := 0;G * f. According to Lemma A.9, there holds
w,v; € C(RY). Let n € C*(R) be a cut-off function which satisfies

0<n<1, nlga<1y =0, and nlgg>a =1.

For € > 0, we define G. € C'(R?) by G.(z) := G(x)n(|z|/e) for z € R?. According to Lemma A.9,
there holds w. := G- f € C'(R?). Note that |G.| < |G| and G(y)—G(y) = G(y)(1—n(ly|/e)) =0
for |y| > 2e. Moreover, elementary calculations with polar coordinates prove

/ |G(2)|dz = O(e*loge) and / 10;G(2)| dz = O(e).
B:(0) )

£

Therefore,
() = wa()| = |(G = Ge) + F@)| < |10y [ |Gla =) = Gelar =)l dy
= fllz=o) [, 16(2) = o] d:
= Wllz~o [ (1= (/D) 6] d:

e—0

éwmwmé(mwme—%&
2e

i.e. we have uniform convergence w. — w € C(R?) as ¢ — 0. We now show uniform convergence
Ojwe — v; as € — 0. With the same techniques as before, we are led to

!w@ﬂ—@wAélﬂumm%/

B (0

<N llzee () [9;{((1 = n(l2l/2)) G(2)}| d=
Bs.(0)

< Wl ( [

e—0
—

0,G(2) — 0;Ce(2)| d=
)

|95n(|z|/e)] |G (2)| d= +/ 1 —n(lyl/2)] 10;G(2)] dZ)

B (0
<ln'llzee /e <1

2e

0.

Altogether, we have uniform convergence we — w and Jjw. — vj, and it only remains to prove
O0jw = v. However, this is a 1D problem as we are considering only the derivative in the z;-direction.
In 1D, the fundamental theorem of calculus states

%@_%@zéﬁwt
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According to the uniform convergence, the left-hand side converges to w(z) — w(y) as € — 0,
whereas the right-hand side converges to fyx vjdt. Thus, the fundamental theorem of calculus

states w € C*(R) with derivative w’ = v;. [ ]

Next, we consider the single-layer potential. The following theorem proves that

Vo(z) = vV e(z) = /FG(a: —-y)o(y)ds, forxzel.

Theorem 2.16. For ¢ € L>(I), there holds V¢ € C(R%). Moreover, V € L(L>(T); L>=(I)).

The technical difficulties of the proof of Theorem 2.16 are stated in the following lemma.

Lemma 2.17. Given ¢ > 0, let g.(z) = |2|7@=24) Then, for any ¢ € L®(T), the
function ®(x) = [ g-(x — y)o(y)dsy is globally continuous on Re. In particular, there hold

M = sup 19=(@ = )[L1(r) < 00 and [|[®| ooy < M ||| oo (r)-

Proof. 1. step. Let us assume that we had already proven continuity of ® for any ¢ € L*>(I).
Choose the constant function ¢ = 1 and observe that [|g-(z — )11y = ®(z). Since ® attains
its maximum on the compact set I', we infer M < oo. Now, for arbitrary ¢ € L*(T"), the Holder
inequality proves |®(x)| < M ||¢|| oo (ry for any = € T'.

2. step. We now go two steps back and prove that, for fixed € T, there holds g.(z —-) € L*(I):
Let U, be an open neighborhood of = and let x : B1(0) — U, be the bi-Lipschitz mapping
according to the definition of a Lipschitz boundary. Without loss of generality, we may assume
7 := x“!(x) = 0. [Otherwise, we choose § > 0 with Bs(Z) C B1(0) and consider the restriction
X : Bs(Z) = x(Bs(Z)) =: U,. Note that Bs(Z) can be mapped onto B;(0) with a (bi-Lipschitz)
affine transformation.] Then,

ge(x = oy = llge(x = v,y + l9=(x = )z v,y

where the first contribution is finite since g.(z—-) is smooth on I'\U,. According to the bi-Lipschitz
property of y, there holds

-2 S @ - xBI S 7—3 forall 2 € Bi(0).
Therefore, with A € L>(B1(0)) the surface element!, we obtain

1
o X(0) = X(3,0)

1
< | —— dj< oo
/Bg |(y,0)|d—2Fe

loc(e = Musowy = [ lo-(e = x@O) @ a7 = | M@

by use of polar coordinates.

'The surface element reads A(y) = [det (Jy(7,0)" Jy(¥,0))] '/? With the Jacobian Jy(7,0) € R3*2,
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3. step. It remains to prove the continuity of ® on R?. With the general observations from
Lemma 2.5, ® is continuous in Rd\F, and it remains to prove continuity on I': Fix x € I' and adopt
the notation of step 2. Note that there holds

lim [ goF - y)ly) ds, = / ge( — ) () ds,,

T—=r JI\U, N\Us

since both sides have smooth integrands. It therefore remains to consider the integral over I' N U,.
Let (2,,)nen be a sequence in R? with z,, — x. We define Z,, := x~'(z,,) and assume, without loss
of generality, Z,, € B1(0). We write Z,, = (Jn, ) € B} x R. Note that Z,, — 7 = 0 and thus
Yn — 0. There holds

[ aan—ot)dsy = [ go(en — (5.0)6F.07@) 47
I'nU, B?
- /R X9 (7)9e (#n = X(, 0)) 67, 0)A(@) dj

= [ Xl 53 (0 = T+ 00) T+ G ONT + 1)
=:fn(¥)

A~

Note that f,, € L'(R?~1) and that f,, converges pointwise to f(7) := X0 (¥)ge(@—x (¥, 0)) (7, 0)A(Y).
To establish f, — f € L'(R9"!), it remains to prove that |f,| is pointwise bounded. With
Ty = (Yn, o) € BY and z,, = x(Z) = X(Yn, @) follows

)] < Xpo (Y + Yn) ~ xBy (U +Yn) - xpg(y) @
n\Y)l % — (5 + ’y‘n70)‘d—2+5 - ’(@\7 an)‘d—2+5 = ”y\|d—2+a = 9\Y),

where we have used |7,| < 1 as well as ¢, A € L=(T'). As g € L'(R9"!), the Lebesgue dominated
convergence theorem yields

[ aen=wotds,= [ 5@d5"S [ i@di= [ oo - o) ds,
U, Rd—1 Rd—1 INU,
Altogether, we have proven

lim | (2 — y)d(y) dsy = / ge(x = y)p(y) dsy,

T—z JT7 r

which is just the continuity of ®. |

Proof of Theorem 2.16. 1. step. There holds G(z —-) € LY(T') for all x € T and M :=
sup,er |[|G(z — )|y < oo: For d = 3, there holds |G(2)| < go(2) and we may choose € = 0. For
d = 2, we fix an arbitrary ¢ € (0,1). As the function ¢°logt is globally continuous on R>, there
holds |G(z — y)| S ge(w —y) for all 7,y € T'. For both cases, we hence obtain ||G(z — )||L1r) S
|ge(x — -)|l1(ry, and thus an upper bound of M by use of Lemma 2.17.

2. step. There holds Ve L(LOO(F); LOO(F)): For x € I", a Holder inequality proves

<@L IG(@ = )y < M ol Loo(r)-

Vo) = | [ G-t ds,
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Thus, H1~/¢||Loo(p) < M [[¢]| ooy Which is our claim.

3. step. For ¢ € L*>°(T"), there holds YN/gb € C(R%): For d = 3, the proof follows from Lemma 2.17
and G(z) = ﬁ go(z). For d = 2, the reader may imitate the proof of the preceding lemma — now for
a logarithmic instead of an algebraic singularity of the kernel function. This is left as an exercise. B

Next, we stress some immediate consequence of Theorem 2.16, namely the symmetry of V on
H~Y2(I"). In Section 2.7 we shall see that V even induces an equivalent scalar product on H~1/2(T").

Corollary 2.18. The single-layer potential V € L(H_l/Q(T); Hl/Q(F)) s a symmetric operator,

ie. (Vi) = (¢ V) for all ¢, € H™V2(I).

Proof. Note that L>°(T') is a dense subspace of H~/2(I"). We have to show that the bilinear form
(o5 9) = (Vo5 ),

is symmetric. Due to continuity, it thus suffices to consider ¢,v € L*°(I"). We apply the Fubini
theorem to verify

(6;0) = /F () /F Gl — 1)ply) dsy ds, = /F o(v) /F Gly — 2)(z) dsy ds, = (4 ; 6)
Y) ]

as the kernel is symmetric, i.e. G(y — z) = G(z —

Next, we investigate the operators K and K’. To this end, we restrict to the case that I' is not only
a Lipschitz boundary but even piecewise C2. The results can also be obtained in a more general
setting but this would lead to even more technical difficulties. However, the assumption seems not
to be too restrictive: In numerical simulations I' is almost always a piecewise polygonal boundary
and thus even piecewise C'*.

Definition 2.19. We first define the so-called reference element

0,1) x {0 ford =2,

Tret = (0,1) 2{ } (2.27)
{z e R?| 21,22 > 0,21 + 22 < 1} x {0} for d =3,

which correspond to the open unit simplices in RY~1. O

We now extend the idea of Lipschitz boundaries to the definition of piecewise smooth boundaries,
where the reader might want to recall the definition of Lipschitz domains from Section 1.4.2. We
stress that the following definition is also used to introduce the boundary element method later-on.
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Definition 2.20. The boundary T’ = 99 of a Lipschitz domain Q in RY is piecewise C? provided
there hold the following: There are finitely many relatively open boundary pieces I'y,...,I'y C T
with T'; N Ty = 0 for j # k. To each T'; belong open sets U;,V; C R? and a C?-diffeomorphism
x; : Uj = Vj such that

e there hold the set inclusions Tres C U; and I'; C Vj,

e and X? = Xj|T.s @5 a parametrization of I';, i.e. I';j = x;j(Tret)-

The subsets I'; are called smooth screens in the following. O

We first consider the (abstract) operators K and K’, which are defined by
K = % +itK e L(HY*(T); HY/*(I))
and
K'i= =5 0V € L(HTAr) BOA()),

respectively. To derive integral representations, we further introduce integral operators K¢ and K|
on L*°(T"). In fact, it will essentially turn out that K = Ky and K’ = K, respectively.

Lemma 2.21. Assume that T is piecewise C?. Then, for any smooth screen I'y and x € Ty,
there holds V"G (x — -),7"sG(x — -) € L'(T). In particular, the double layer potential

Koole) i= [ 213G = 9)os) ds, (2.28)
and the adjoint double layer potential

Kh(a) = / WG — y)d(y) ds, (2.29)

are well-defined for v, ¢ € L>®(I") and almost all x € T'.

Proof. 1. step. We first prove that ’yin;G(ac - ),’yin;G(ac —) e LYT): Let x : U = V
be the C?-diffeomorphism from the definition of a CZ?-piecewise boundary, where U and V are
the open neighborhoods of Tie¢ and I'y, respectively. Consider the restriction x° to T.s and the
corresponding Jacobian J () € R¥(@=1) of x0 at 3 € Tir. Note that J(7) gives the tangential plane

of I at y = x'(7), whence n(y) - [J(5) (7 — 7)) = 0 for any 7,7 € Trr. Given & = @),y = x*(7),
the mean value theorem provides ¢ € conv{Z,y} such that

n(y) - (y— ) =n(y) - 1°@) — @] =ny) - [J(OF 7))

() [(J(O) = J@)([F - 2)].

I
S

Therefore, the bi-Lipschitz property proves

In(y) - (y —2)| S 17— 21> < ly — 2|,
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where the constants only depends on the smooth screen I'y. Consequently, we have
1
int mt
MG —y)| + Gz y)’ﬁm for all z,y € Ty.

According to Lemma 2.17, we finally obtain

lﬁwﬁG@—y>$y=A% G — )| ds, + /|¢mG y)| ds, < o

as well as

[t —lds, = [ G —lds+ [ pGE—lds, <o
Iy

where we remark that the integrals over I'\I'y contain the smooth part of the kernels and are thus
obviously finite.

2. step. In particular, the Holder inequality now proves that Kov(z) and K)¢(z) are well-defined.
This concludes the proof. |

Theorem 2.22. Assume that T is piecewise C%. Then, there holds the following:

(i) The double layer potential operator Ko from (2.28) allows a unique extension from v (C>(Q))
to an operator Ky € L(H1/2(F); H1/2(F)), and there holds Ky = K := 5 + ’yé)ntl?.

(ii) The adjoint double layer potential operator K|, from (2.29) allows a unique e:vtension from
L=(T) to an operator K{) € L(H~Y/*(I'); H=Y*(I)), and there holds K}, = K' := — Aty
(i) The adjoint double layer potential K' € L(Hil/z(I‘);Hfl/Q(F)) is the adjomt opemtor of
K e L(HI/Q(I‘); H1/2(F)) in the functional analytic sense, i.e.

(Kv; @)= (v: K'¢) forallve H/*I') and ¢ € H-V(T). (2.30)

Before we prove Theorem 2.22, we need a small technical lemma which explains that one has to
expect jump terms in the limit case for vmtV and y(i)ntK .

Lemma 2.23. Assume that I' is piecewise C?. For x € R%, we consider the function

kiRY SR, k(z) = / 'yin;G(z: —y)dsy. (2.31)

Then, the range of k is discrete, and there holds

-1 for x € Q,
k(x) =14 —1/2 for x € T and T’ smooth around =, (2.32)
0 for x € Q= .= RN\Q.
Moreover, for any x € T, holds k(x) = — lim ’yin;G(x —y) dsy, and the limit exists.

e=0" JoB. (z)nQ
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Proof. 1. step. For z € Q holds k(z) = K(1) = —1 according to the representation formula for
the constant function 1.

2. step. For z € Q%' we choose ¢ > 0 with B.(z) C Q%" and consider Q = QU B.(x).
Applying step 1 for the domains Q and B.(z), respectively, we see

-1 = /~ 1yGlx —y)dsy = k(w) + / 1yGla —y) dsy = w(z) — 1,
o OB.(z)
which proves r(x) = 0.
3. step. Finally, we consider the case x € I" and assume that, for some ¢ > 0, ' B.(x) is smooth.

We have already proven, that 'yilf‘;G (r —-) € L}Y(T'). Hence, the Lebesgue dominated convergence
theorem proves

k() = / WGz — y) ds, = lim WGz — ) ds,
r e—=0" JT\B. ()

= — lim wintG(:U —y)dsy,
e=0* JaB. (z)nQ by Y

where we have applied integration by parts on Q. := Q\B:(z) in the last step, namely 0 =
er AG(x —y) = faﬂe Yt G(z — y) ds,. Note that the integrand over dB.(z) N reads

Ly
. 1 y—u I y—x x—y 1 1
int
Glx — = <2 __.n = — . = + = .
G ) = e g ) = TS oyl e — gl Visget - 0B (o)

Altogether, we thus obtain

. #B@)nQ
wle) == @)

As T is smooth around z, it is asymptotically flat and therefore dB.(z) N asymptotically is a half
sphere, i.e. we obtain k(z) = —1/2. [ ]

Proof of Theorem 2.22. Throughout, let I'y be some smooth screen and = € I' and (z,,)npen in
Q) a sequence that converges to x.

1. step. First, we show that for any v € C*°(Q) holds

Jm [ G~ 1) (0) — v(e) ds, = /F Gz — ) (v(y) — v(@)) ds,, (2.33)
where the existence of the right-hand side follows from Lemma 2.17. Obviously, convergence holds
at least pointwise almost everywhere in I'. Choose an open neighborhood U, of I' and a bi-Lipschitz
function y, : B1(0) — U, according to the definition of a Lipschitz boundary. We stress that the
convergence (2.33) is clear for the integration domain I'\U,. It remains to prove convergence for
the domain I' N U,. Without loss of generality, we assume 7 = x~(z) = 0. Let 2, := x~(z,,). We
may then assume that Z,, = (Y, ay,) with 7, € BY and «,, € R. We now proceed as in the proof of
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Lemma 2.17 to apply the Lebesgue differentiation theorem. There holds

s —y)(v(y) —v(z Sy = — ! (y —an) - n(y) o(u) — vz <
/l“ﬂUz%’yG(xn y>( (y) ( n)) a Y |S§l| I'nU,; |y - wn\d ( (y) ( ”)) d Y

_ 1 (X(#:0) = 25) - n(x(¥,0)) (= 0\ P,

ST e (G0 —mat X)) AE) 4

__1 ~ (X(#,0) — zn) - n(x(¥,0)) ~ PR,

= 18] Jea O TG0 g (V@0 @) A@) 45

Again, we use the translation § — ¥ + ¥, in the integrand, which yields the integrand

) (X(g//\"_ Un, 0) - xn) ) n(X(@\+ Un, 0))
(T + Jn, 0) — @

fa(®) == Xpo (U + Un (0T + Tn, 0)) — v(xn)) AT + Fn)-

We now plug-in & = x(7n, ) and use A € L>®(R?), the bi-Lipschitz property of x, and the Lipschitz
property of v to see

1
/y\—i_ ?/J\m 0) - (/y\rh «

1
— < xpo (Y +Vn) =75
a2 < Xpy 0+ In) 5oy

~ 1
< xny(¥) 7z

’fn(/y\)‘ S XB?(:U"" ?Jn) ’(

Note that the upper bound belongs to L'(R?1). Therefore, (2.33) follows from the Lebesgue
dominated convergence theorem.

2. step. For v € C*°(Q) holds y(i)ntf(v = (- % + Ko)v almost everywhere on I': 'We apply
Lemma 2.23 for x,, € Q2 and x € I', which yields

Roan) =o(an) [ 3G =) dsy + [ 3G, =) (o) = v(o) ds,
D70 () + / TG —y) (v(y) — v(x)) dsy = —% v(z) + Kov(z).

3. step. By definition of K, the last step implies Kv = (% + v(i)ntf()v = Kov for all v €
YP(C>(Q)) =: V. Since C>(Q) is dense in H'(Q), the space V' is dense in H'Y?(T). In particular,
K is the unique extension of K to the entire space H/2(T).

4. step. There holds (Kov ; ¢)g, = (v ; Kj¢) for all v € vt (Coo(ﬁ)) and ¢ € L*°(T"): From step 3,
we infer that Kov € H'/?(T') € LY(I"). Therefore, the product on the left-hand side is well-defined.
Moreover, Fubini’s theorem proves

(v: Kbo) :/F (2 )/fyi“;G(x— ) dsydsx—/qﬁ /vin;Gx— y)o(z) dsy ds,

/¢ /ﬁi y - )o(a) ds, ds,

= (Kov; ¢).
5. step. For ¢ € L°°(T') and v € C*°(Q) holds

(176 98"0) = (5 + K5)6 5 9§™),
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where the right-hand side exists as L?-scalar product: Starting from the first Green’s formula, we
have

OFT6 590 = (Vo Vo) = [ Vo) ( [ VuGla - o) ds,) da,

where we have used, for z € () fixed, that one may interchange integral and differential for the
single-layer potential, c¢f. Lemma 2.5. We now apply the Fubini theorem and obtain

(v mthﬁ 'ymt /ng(y)/QVU(:c)-VIG(ac—y)dxdsy. (2.34)

Fix y € I'. Since V,G(x —y) € L} (R?) and Vv € L>®°(R?), we may use the Lebesgue theorem to
obtain

/ Vou(z) - V,G(z — y)dxr = lim Vou(z) - V,G(z — y)dz.
Q =20 Jo\B. ()

For € > 0, integration by parts yields

/ Vo(z) - V,G(x —y)dx = / 'yin;G(x —y)v(z) dsy + / ’yin;G(x —y)v(x) dsy.
O\ Be(y) M\ Be(y) QNOB:(y)

In the limit € — 0, the first boundary integral converges to Kov(y) for almost all y € I'. The second
boundary integral is split into

/ VG — y)o(x) dss
QNOB:(y)

= u(y) / WG — y) s, + / WG — ) [o(z) — v(y)] dss.
QNOB:(y) QNIB:(y)

According to Lemma 2.23, the first term converges to % v(y) for e — 0. The second integral vanishes
because of

‘/ ’Yth (& —y)[v(@) —v(y)] dss| < sup Jo(z) = v(y)] M2G @ — )| dss .
QNOB:(y

2€B:(y) QNIB:(y)

<1

Altogether, we thus obtain
1
/ Vo(z) - V,G(x — y)dx = Kov(y) + 5 v(y) for almost all y € T.
Q

Plugging this into (2.34) and using the adjointness from step 4, we finally obtain

in in 1
(V¢ 5 i) = (¢ Kov)p+ 5 (63 0)p = (Ko v)p+ 5 (05 0)p = (3 + Ko)d s v)p
6. step. Since 7yint (C’OO (ﬁ)) is dense in H'/2(I'), step 5 and the Hahn-Banach theorem imply
Ke¢=(-3+ fyintV)¢ = K}¢ for all ¢ € L>®(T). Since L>°(T") is dense in H~'/2(T"), we infer that

K' is the umque extension of K} to the entire space H~'/2(T).
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7. step. There holds (Kv ; ¢) = (v ; K'¢) for all v € HY/?(T') and all ¢ € H~'/>(T"): According
to step 4, this equality holds on dense subspaces. Therefore, continuity arguments prove the equal-
ity for the entire duality pairing. |

The integral representation of the hypersingular integral operator W is more involved, and we only
state the corresponding results. For the proof, we refer to [SS11].

Theorem 2.24. Assume that T' is piecewise C? and let v € HY/?() N C(T'). Then, for x € T,
the operator W has the representation

5 Gz —y)(v(y) —v(x))ds,y,

where the integral is understood as a Cauchy principal value, i.e., as the limit lim._,q fF\Ba(m) .

For implementation of the hypersingular integral operator usually a different representation using
the single-layer operator is used. For that, we define the surface curl

curlp v := < Oryu ) n

—Op, U
for d = 2 and
curlpu :=n x Vu

for d = 3.

Lemma 2.25. Assume that I' is piecewise C? and let u,v € HY/?(I') N C(I') N Chy(T). Then,
we have

(Wu s v)p = / / curlp v(z) - curlp u(y)G(xz — y) dsy ds, = (V curlp u ; curlp v)
I Jr

as a weakly singular integral.

2.6 Exterior Trace and Conormal Derivative

Let © be a bounded Lipschitz domain in R? with boundary I' := 0. We define the exterior
domain

Q= = RN\Q.
For a sufficiently large radius R > 0 with Q C Br(0), we use the abbreviate notation

Q5" = Q' N Br(0) with boundary T'g := 003",
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Note that Q5" is again a Lipschitz domain and that I'g is the disjoint union of I' and the sphere
OBRr(0). In this section, we introduce the exterior trace 7§*'u and the exterior conormal derivative
vy for a function u € H) (Q%F). To that end, H}, () denotes the set of all local H'-functions

HL Q) :={ve L} (Q)|YR>0 ve H'(QnNBg(0))}. (2.35)

Next, we give the definition of the exterior trace 4§**u, which shall satisfy at least 7§ u|r = ulp

for all u € C(Qext).

Proposition 2.26. (i) Let w be a bounded Lipschitz domain in R with Q C w, i.e. TNOw = 0.
Then, @ := w\Q is a bounded Lipschitz domain with boundary I' := 0w =T Udw. Therefore, the
trace operator 'y(i)l?(z € L(H'(@); H1/2(F)) with respect to @ induces an operator

§ e L@ HT), %= ()] (236)
(ii) For u € H} (), the exterior trace 7§*u € HY/?(T) is independent of w, i.e.

75U = (Wigu)lr = (vou)le (2.37)

for all bounded Lipschitz domains w,® C R% with Q C wN ®.

Proof. To prove (i), one only has to realize that the restriction of v — v|r is a continuous linear
operator from HY/2(T') to HY/2(T).

(ii) Without loss of generality, we assume w C w since we may otherwise consider w N instead of
w. For v € HY(&), we find a sequence u,, € C°°(@) which converges to v in H'(&) and whence in
H 1@) Recall that, e.g., Y% un = un|s. Thus, there holds ¥ u, = u,|r independently of whether

we consider & or w. In particular, the convergence u,|r = 7§ u, = 7§'u € H 1/2(T) concludes the

proof. |

Second, we want to define the exterior conormal derivative which shall satisfy v§*'u = (u/dn)|r
for u € C*(Qt), where n is the outer normal vector on I' with respect to 2 and thus the inner
normal vector with respect to Q. In particular, we want to formalize the first Green’s formula
on Q¢ which reads, for u € C?(Qext), in classical terms

(=AU ; V) ge = (VU ; V) gt + (150 ; 'ySXtv)F for all v € D(RY).

Note the plus sign on the right-hand side which stems from the fixed orientation of the normal
vector n on I, i.e. n is the outer normal vector of Q) so that —n is the outer normal vector of Q°x*
on I'.

The following proposition generalizes the exterior conormal derivative for Sobolev spaces and pro-
vides a stability estimate, similar to Theorem 1.30. As the proofs do not provide any new insight,
we leave them to the reader as an exercise.
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Proposition 2.27.  Let w be a bounded Lipschitz domain in R with Q C w and define the
bounded Lipschitz domain @ := w\Q, i.e. I' := 0w =TlUdw and I' N dw = (). Then, there hold:
(i) The conormal derivative ", € L(HA(®); H‘l/z(F)) induces an operator

1w
e L(HA@) HVAD)), Aitui= — for 6 = Phue HVAE),  (2.39)
where ¢ € H-Y2(T') denotes the functional defined by <$ cv) = (¢ ;D) for ¢ € H VAT,
v e HY2(T') and its zero-extension v € H'/?(T).
(ii) For u € H} (Q%Y) with —Au € L2 (Q°V), the exterior conormal derivative 7{'u €
H~Y2(I') is independent of w, and there holds
(—Au; ) gext = (VU VU)gext + (78% 5 7&)  for all v € D(RY). (2.39)

(iil) Let u € H},.(Q™) with —Au € L*(Q®"). Moreover, we assume that u has finite energy, i.e.
Vu € L?(Q°%). Then, there holds the stability estimate

IV ull 12y S 1= Aull 2oy + [Vl L2ie). (2.40)
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2.7 Ellipticity of Single-Layer Operator

We have already seen that the single-layer operator V = y(i)ntf/ € L(H_l/Q(F); Hl/Q(F)) is a sym-
metric operator, cf. Corollary 2.18. In this section, we prove that V is also elliptic. To that
end, we need some more facts about f/gi) The first proposition provides the jump relations of I~/¢>
Throughout, we use the notation Q¢ := RN\Q and Q% := Q™' N Bg(0) as introduced in the
previous section.

Proposition 2.28. For ¢ € HY2(T) holds V¢ € H} (R?) with —A(V¢) = 0 weakly in RI\T.
In particular, the following jump relations are well-defined:

(i) hoVel =15V — 7"V =0 H'/I).

(i) (V@] ="V — 1"V = —¢ € H2(T).

Proof. 1. step. Exterior trace 78’“17 and conormal derivative 71'3’“17 are well-defined: For
¢ € H-'/2(T"), we have already proven that V¢ € H'(Q) with —AV¢ = 0 € H~ (). The crucial
step in the proof was to provide the identity

(Vo: 1), = (@5 Nof)p for ¢ € LAT) and f € D(S).

The remaining steps were just based on abstract functional analysis, namely density arguments and
mapping properties of No = 7" N. We then obtained V € L(H_l/z(F); Hl(Q)) with —AV¢p =0
weakly in Q for all ¢ € H~Y/ 2(T). From this, we derived that the operators

Mty e L(HVAT); HY2(T)) and AV e L(H-Y(D); H V(1))

are well-defined. It is important to notice that even the same arguments apply for Q%" and thus
prove V € L(H_l/Q(F);Hl(Q%‘t)) with —AV¢ = 0 weakly in Q¢ for all ¢ € H-Y/2(T). In
particular, the operators

WV e L(HVA(); HY2(D)) and APV e L(HV2(D); HY2(T))

are well-defined. Moreover, we have seen in Section 2.6 that neither A&V nor 4&*V depend on
the radius R > 0. Altogether, the jump operators also satisfy

V] € L(HY2(T); HY/*(T)) and  [y1V] € L(HY*(T); H~Y2(D)).

2. step. There holds [yoV] = 0: For ¢ € L=(I), holds V¢ € C(R%) and therefore [yoV @] = 0.
From density L>°(T") in H~'/(T), we thus obtain [yoV¢] = 0 for any ¢ € H~/2(T).

3. step. There holds V¢ € H'(Bg(0)) for all ¢ € H~V/?(T') and R > 0: We know that V¢ €
HY(Q) N HY(Q$Y) for all R > 0. Moreover, for ¢ € L>®(T), there holds V¢ € C(R?). This and
Bpr(0) = QU QS imply V¢ € H(Bg(0)) together with the continuity estimate

176120 5oy = IVl ) + 17620 gy < 16130-1/2r.

By density and continuity, this proves that Ve L(H*I/Q(F); HI(BR(O))), where the operator norm
— of course — depends on the radius R > 0.
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4. step. There holds V¢ € H} (R for all ¢ € H~/2(T): Formally, Ve HI(BR(O)) is obtained
by continuous extension of the operator V from L™ (I') to H™ 1/2(I") and thus qu VRd) depends
on the radius R. However, for ¢ € L>(T'), there holds V¢ € C(RY) and thus V,¢ = (V(b)]B ©) =

(VRqﬁ)\ B.(0) for any 0 <7 < R. Therefore, the function V¢ is independent of the chosen radius and
Ve HIOC(Rd) in the limit R — oo.

5. step. There holds [y ‘7] = —¢: For ¢ € L?(I") and f € D(R?), the first Green’s formula on **
resp. §2 yields

((MV ] 5 70f) = (W5V ;A& ) — (Vi V g ; At f)
= —(VWesivy) . —(VVesivy)

_/Rd Viz)- Vw/FG(:U —y)¢(y) dsy da.

For z € RN\T', we may interchange the gradient and the integration over the boundary I'. Moreover,
the Fubini theorem gives

- o) [ 9:G— v Vi(e) dads,,
r Rd
For fix y € I', we use integration by parts, which yields
[, VeGa =) Vi@ dn = [ G —)(= Af@)) de = F(-AN) = 1)

since f € D(R?). We therefore end up with

(MVe];v0f) = —(6;70f) forall f e DRY.

Since 7o (D(Rd)) =M (C>~(Q)) is dense in H 1/2(T), the Hahn-Banach theorem yields the conor-
mal jump [11V¢] = —¢. o

The following exercise has been used in step 3 of the proof of Proposition 2.28.

Ezxercise 2. Let Q1,2 be two open sets in R? and € := interior(Q; UQy). Let u € C(Q) such
that u € H'(Q1) and u € H'(Q2). Prove that u is weakly differentiable in Q and conclude that
therefore u € HY(Q). O

Theorem 2.22 proves 'ymtV = % + K’. In particular, we thus obtain an explicit formula for the

exterior conormal derivative v{**V as well.

Corollary 2.29. If the boundary T is piecewise C2, there holds ’nyt‘N/ = —% +K'.

Proof. There holds —¢ = [y1V¢] = 1V — MY = A&t ¢ — (2 + K")g. [ |
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With Proposition 2.28, we have provided the necessary tool to prove the ellipticity of V. However,
since the kernel function G(x — y) has a logarithmic singularity in 2D and may be of different signs,
we have to treat the 2D and the 3D case separately. As the analysis is simpler, we shall start with
the 3D case. To be more precise, Theorem 2.30 holds for d = 3 only, whereas Theorem 2.33 holds
for both d = 2, 3.

Theorem 2.30. Assume that Q is a bounded Lipschitz domain in R3. Then, the single-layer
potential V € L(H_I/Q(F);H1/2(F)) is an elliptic and symmetric isomorphism. In particular,
given v € HY2(T'), there is a unique ¢ € H-Y2(T) such that V¢ = v. Moreover, (¢ ;1) =
(Vo ;1) defines a scalar product on H=Y*(T'), and the induced norm ||| = (¢ ; ¢)*/? is an
equivalent norm on H~/?(T).

Before we prove Theorem 2.30, we provide some elementary observations on the decay of YN/qzﬁ at
infinity.

Lemma 2.31. Letd =3, i.e. Q is a bounded Lipschitz domain in R®. Let R > 0 with Q C Bg(0)
and yo € Q. Then, there holds, for any ¢ € L*(Q) and x € R with |z — yo| > 3R,
2 ~ 1 4

=O(l/lel) and [VVo(@)| S =5 < [ = O(1/12P)

V()] <

S <
|z — Yol

]

as |x| — oco. The constant only depends on ¢. In particular, there holds V‘~/¢ € L3(R3)3.

Proof. 1. step. For any y € Br(0) D I" holds 1/|z — y| < 3/|x — yol|, which follows from
[z —yol < |z —y[+ ]y —wol <z —yl+2R < \ﬂf—yH |z = yol

and whence |z —yo| < 3|z —yl.
2. step. There holds 1/|z — yo| < 2/|z|: From yy € 2, we obtain |yo| < R and whence |z| >
|z — yo| — |yo| > 2R. Consequently, we have

1 1 1 1 1 1
— <7

< == < ==
[z —wol = |zl —lyol  [z[ 1 —Tyol/lx] = x| 1-1/2  |a]

3. step. Estimate |V¢(z)| and |[VV¢(z)|: The preceding observations and |G(z — y)| ~ 1/]z — y|
lead to

6
Vo)l < [ 166 =)o) ds, S = Wl < o7 19l
Recall that |VG(z — y)| ~ 1/|z — y|?. Therefore, the same arguments prove

~ 9 36
VVo(z)| < ==l 9l Ly < EE 9l 21 ()

4. step. It now only remains to prove V‘7¢ € L*(R3)3: By use of polar coordinates, we see

~ 1
IVV o2 dx < —dm —r?dr < oo.
2[4 A
|z|>R lz|>R r>R
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Since V¢ € HY (R?), this yields VV¢ € L*(R3)3. |

Proof of Theorem 2.30. 1. step. For ¢ € L*(T') and u := V¢, there holds HVUHL2 Qexty =

—(v§*u ; 7§%u): For sufficiently large R > 0, we consider the bounded Lipschitz domain QeXt =
Q' N UR(0) and apply the first Green formula to see

IVl ooy = =08 w5 A5 U + (1™ u s 96" W) o (0)- (2.41)

As Vu € L?(Q%%), the left-hand side in (2.41) converges to [Vullp2(qexty for R — oo according
to the Lebesgue dominated convergence theorem. The boundary integral over the sphere 0Br(0)
satisfies

G o wom = [ ) Vute) nte) dse = O(0BrO)/ ) = O

and thus vanishes in the limit R — co. Altogether, this proves HVuH%Q (Qexty = — (¥ 5 ).

2. step. For ¢ € L?(T') and u := V¢, holds ellipticity H(bHH Vary S < (Vo ; ¢): First, the jump
condition [yju] = —¢ proves that

1Ml s7-172(0y = Wvrulll =120y < I wll g2y + I8 Ul g-roey S IVl z2g) + 1Vl 2oy

according to the stability estimates (1.48)—(2.40) for the conormal derlvatlve. Second, the exterior
and interior Green formula prove

IVulZ20) + IVullZ2igeny = (1" 5 26" u) — (45w 5 75 )
<,yint extu Vv ¢>
_<['71u] ) V¢>
=(¢;V9),

where we have used the jump condition [y,u] = —¢ as well as [you] = 0, whence 7§u = vty = V.
Combining both estimates, we obtain the ellipticity estimate for ¢ € L?(T").
3. step. The single-layer potential operator V & L(Hil/Q(I‘);Hlﬁ(F)) is elliptic: The proof
follows from the ellipticity of V on the dense subspace L?(I') by continuity arguments.

4. step. All remaining claims now follow from the Lax-Milgram lemma (Appendix, Theorem A.1).

A closer look on the proof of Theorem 2.30 shows that only Lemma 2.31 is crucial. For the 2D
kernel, the analogous result is slightly more involved since we have to deal with the logarithmic
singularity of the single-layer potential kernel.

Lemma 2.32. Letd =2, i.e. Q is a bounded Lipschitz domain in R%. Let R > 0 with Q C Bg(0)
and yo € Q. Let ¢ € LL(T) := {1/1 e LY(T) ‘ (W;1)p= O}. Then, there holds, for any x € R® with
“T; - yO’ > 3R7
1 2
S i
|z = yol

3 <o = O(U/lef)

[z —yol* ~ [z

as |xz| — oo. The constant only depends on ¢ and R. In particular, there holds VV¢ e L?(R?)2.

V(@) S =0(1/lzl) and |VVe()| <

]
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Proof. 1. step. As in the proof of Lemma 2.31 for the 3D case, there holds

1 3 1 2
as well as <

lz —y| = |z — ol |z —yol = 2|

2. step. Decay of V() at infinity: For y € Br(0) holds conv{y,yo} C R?\{z} since otherwise
x = yo+ My — yo) with some A € [0, 1] would imply 3R < |z —yo| = A |y — yo| < 2R. Therefore, we
may use the Taylor expansion for the function f(t) := log |yo + t(y — yo) — x| defined for t € [0, 1]
to prove

log |y — 2] = /f £) dt

1
Yo+ t(y —yo) —x
=log|yo — x —|—/ - (y — yo) dt.
| | o lvo+tly—wyo) — x| ( )

Note that yo+t(y —yo) € Br(0) according to convexity and g,y € Br(0). Therefore, step 1 proves

ly — ol < 6R
“yo+ty —yo) — x| T |z —yol

yo+tly —yo) —x
lyo + t(y — yo) — z/?

(y—yo)| <

Finally, ¢ € L1(T') and thus [.log |yo — z|¢(y) ds, = 0 imply

1
= yo+ty —yo) — 6R
Vo(z)| ~ / / (y —yo)dtds,| < —
| ¢( )| ‘ F¢(y) 0 |y0 + t(y — yO) — 5L'|2 (y yO) y‘ ’$ — y0’ H¢||L1(F)
3. step. Decay of V‘~/¢( ) at infinity: As 0; VqS ~ [ 0jxlogly — x|¢(y) dsy, we my apply the

same technique for f(t) = 0;,log|yo + t(y — yo) — :1:\ With |0;log|z|| < 1/|z|, we then obtain
IVVe()| S 1/]z — ol < 1/|xf.
4. step. By use of polar coordinates, we obtain VV¢ € L?(R?)2. This concludes the proof. |

Theorem 2.33. Assume that Q is a bounded Lipschitz domain in R%. Then, there is a unique
equilibrium density ¢, € H ~Y2(I') and a unique capacity Aeq € R such that

Veq = Aeq and (peq; 1) = 1. (2.42)
With the space
HY? = {v e HYAT) | (¢eq s v) = 0}, (2.43)

there hold the following assertions on the single-layer potential operator:

(i) VeL(H —12(1); H1/2(F)) is a symmetric operator.

(i) V e L(H_l/Q(F); Helf(F)) is a well-defined and elliptic isomorphism.

(i) V € L(H-Y2(I"); HY2(T')) is elliptic if and only if Aeq > 0.

(iv) For d =2 and diam(Q) < 1, there holds Aeq > 0 and thus ellipticity of V on H~'/?(T).
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Proof. 1. step. For ¢ € H. "/*(I') and u := V¢ holds ellipticity [[¢|2,_, oy S (93 @): Ford =3,

this claim holds even for general ¢ € H~'/?(T). For d = 2, the proof of Theorem 2.30 works for
H*_I/Q(I‘) since L?(T) is dense in H*_I/Q(F) and since functions ¢ € L2(T") lead to the proper decay
of ‘~/¢ at infinity: One only has to replace Lemma 2.31 by Lemma 2.32. The reader may want to
check this in detail.

2. step. Unique existence of (¢eq, Aeq): We consider the saddle-point problem

a(foq: ) + b1, Aeq) = 0,
b(gbeqalﬁ) = —u, (2.44)

for all (y,p) € H-Y2(I') x R, where a(¢,v) = (Ve ;1) and b(v, ) = ,u(zb 1). With the
notation of the Brezzi Theorem A.4, there holds ker(B;) := {¢ € H~ 12T ’V)\ eR b, N\ =
0} = 1/2 . Since a(-, ) is elliptic on ker(B;) and since Bj is surjective, (2.44) has a unique
olutlon (¢eq, eq) e H Y 2(T') x R. From the first equation and the Hahn-Banach theorem, we
derive Veq = Aeq. The second equation yields (¢eq ; 1) = 1.

3. step. V € L(H, Y 2(F);ILI;({Z(F)) is a well-defined and elliptic isomorphism: From step 1, we
know that V' is elliptic on H;l/Z(F). For ¢ € H;l/Q(F) holds

<V¢ 5 ¢eq> = <¢ ; V¢eq> = )\eq<¢ 5 1> =0,

whence V¢ € HGIC{Q( I). Therefore, V € L(H _I/Z(F); Hgf(F)) is well-defined. We now show that
Helc{z(f‘) is the dual space of H, 1/ 2(F). To that end, recall that we have already proven that
Y 2(F) is the dual space of H, Y 2(I‘). We thus only need to prove the following:

e Given v € H§({2(F) there is an element w € Hi/*(T (I") such that (¢ ;v) = (¢ ; w) for all
¢ e H, 1/2( I'): The obvious definition of w:=v — (v;1)/(1;1) € Hi/Q(F) does the job.

e Given w € H1/2( I'), there is an element v € HelO{Q(F) such that (¢ ;v) = (¢ ; w) for all
¢ e H_1/2( I'): Since (¢eq ; 1) = 1, the definition of v 1= w — (peq ; W) € H%Q(F) works.

Thus, H-Y2(I)* = 542(F) in the sense of the extended L2-scalar product. Therefore, the Lax-
Milgram lemma proves that V' is an isomorphism between H, Y 2( I') and Helf( )
4. step. If V is H~Y/2(I)-elliptic, there holds \eq > 0 since 0 < ”¢eq|’H e(r S (Vieq 5 eq) =

)\eq<¢eq 5 1> = )\eq-
5. step. Provided Ay > 0, the operator V is elliptic on H*1/2(I‘): Let ¢ € H*1/2(F) and define
5 i=¢ — (¢; 1) peq. Note that 5 € H*_l/Q(F). Moreover, the definition of ¢y proves

(Vo3 0) = (Vd; ) +2(¢;5 1) (Veq 5 0) +1(d: 1)|* (Vg 5 beq) -

=0 =Xeq

Recall that we have already proven that V is at least elliptic on H, Y *(T). As [@eall fr-1/2(ry and Aeq

are just positive constants, the triangle inequality [|@]| -1/2(r) < HaHHq/z(F)H(qﬁ s Dl [ @eqll 172y
yields

16171720y S Nl -1/2my + 185 DIP S (VY5 8) + Aeal (65 DI = (V5 9).
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6. step. It only remains to prove that diam(€2) < 1 implies Aeq > 0. This is, however, a rather
deep result from complex analysis. The reader is therefore referred to the literature. |

The following corollary is an immediate consequence of Theorem 2.33 and the Lax-Milgram lemma.
However, we state it explicitly to stress the ellipticity of the single-layer potential in 2D.

Corollary 2.34. Assume that Q is a bounded Lipschitz domain in R? with diam(Q) < 1. Then,
the single-layer potential V € L(H_I/Q(F);Hl/Q(F)) is an elliptic and symmetric isomorphism.
In particular, given v € H1/2(F), there is a unique ¢ € H_I/Q(I‘) such that V¢ = v. Moreover,

(65 9) = (Vo ;1) defines a scalar product on H='/?(T), and the induced norm ||| := (¢ ; ¢)'/?
is an equivalent norm on H~'/?(T). [

Remark. (i) One can show that the single-layer potential operator V € L(Hil/z(f‘); Hl/Q(I‘)) is
an isomorphism if and only if Ay # 0.
(ii) Moreover, one can check (numerically) for ellipticity as follows:

e Solve V¢ = 1. — If the corresponding linear system has no solutions, V' is not elliptic.
e Compute (¢ ; 1). — If the value is less or equal zero, V' is not elliptic.

o Otherwise, define A := 1/(¢; 1) and ¢ := A¢. Then, Vé = X and (¢ ; 1) = 1, whence (¢, )
solves (2.44). Thus, (¢, A) = (eq, Aeq)-

In particular, this algorithm computes the capacity Aeq. O

2.8 Ellipticity of Hypersingular Integral Operator

The following elementary lemma is left to the reader. The proof follows along the lines of the proof
of Lemma 2.31 and 2.32.

Lemma 2.35. Let R > 0 with Q C Br(0) and yo € Q. Then, there holds, for any v € HY/?(Q)
and x € R% with |z — yo| > 3R

~ 1 ~ 1
Kv(z)| S ———— =01/]z|*Y) and |VKv(z)| < ——r0 = O(1/]z|*
| ()\N‘x_yoyd_l (1/]2]*) | ()\N‘x_yoyd (1/12]%)
as |x| — oco. The constant depends only on ¢. In particular, there holds VKv e L2 (). [ |

For the following results, we assume that I is piecewise C? so that we have integral representations
of the double-layer potential and the hypersingular integral operator.

Proposition 2.36. For v € HY2() holds Kv € C®(RN\T) N HY(NQ) N H} (%) with
—A(I?g) = 0 weakly in Rd\f. Moreover, the following jump relations are well-defined:

(i) [YoKv] := 7§ Kv — i Kv = v € HY2(T).

(i) [ Kv] := 4 Kv — ™MKy =0 e HV/2(ID).
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Proof. 1. step. We know that Kv € C®°(RN\T') with —A(Kv) = 0 pointwise in RA\T. The
fundamental step in the proof of Theorem 2.7 was the identity

(Kvs f) = (v; Nif) forall f € D(RY),

which led to Kv € H 1(Q). The same techniques prove KveH 1Y) for any R > 0, whence
Kv e H} (Q%).

2. step. There holds [fyof( v] = v: Theorem 2.22 provides 'y(i)ntl? =—= + K. The reader may check
the proof to see that PySXtI? = %—&—K . In particular, the jump satisfies ['yoK v] = e"tK v— 'yth v =.

3. step. There holds [fylf? v] = 0: For f € D(R?), integration by parts proves
(Y Ky ; At £y — (VIN(U ; Vf)Q = (I?v ; —Af)Q ( thv ; AAnE £)
as well as
(PR a6 f) = (VR V) = (Kvs=af) = (05 Ko s 5).
Therefore, ™ f = A f = y0f and 1" f = ¢ = 7, f prove
((mKv] 5 y0f) = (Kv ; —Af)Rd — (oK) s 11 f) = (ffv ; —Af)Rd — (v 7f).

We consider the scalar product over R?, which reads
(I?v ; —Af) L= Af(=) / ’yin;G(x —y)u(y) dsy dx
R Rd
_ _/F ﬁl;/ Gz — y)Af(z) dz ds,

= i N-AD)

=(v; 71 )-

Here, we have used the Fubini theorem as well as the fact that the Newton potential N(—Af)
belongs to C*°. The combination of the latter two equalities proves

(IKv] ;A fy =0 for all f € D(RY).
Since v (D(R?)) is dense in H'/2(I), the Hahn-Banach theorem proves [y; Kv] = 0. [

Corollary 2.37. For a piecewise C? boundary T holds PySXtIN( = % + K.

Proof. The proof follows from v = [fyof?v] = fngtI?v — 'y(i]ntl?v = 78’“}?1) — (-3 + K)v. [

The following theorem states ellipticity of W in H, 1/2 (T"). For its proof, we refer to [SS11].

Theorem 2.38. The hypersingular integral operator W & L(Hl/Z(F), H_l/Q(F)) is an elliptic
and symmetric isomorphism. In particular, given ¢ € H, 1/2( I'), there is a unique v € Hl/z( I)

such that Wuv = ¢. Moreover, (v ; w) := (Wwv ; w) defines a scalar product on AT ("), and the
1/2

induced norm ||v|| := (v ; v)'/* is an equivalent norm on H,}/Q(F).
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Galerkin Boundary Element Method

3.1 Abstract Galerkin Methods

Throughout this section, H is a Hilbert space and (- ; -) is a continuous and elliptic bilinear form
on H. For given F' € H*, the Lax-Milgram lemma proves the unique existence of a solution v € H
of

(u;v) =F(v) forallve H, (3.1)
for what we use the short-hand notation
(u;-)=FeH" (3.2)

to indicate the set of test functions. Now, the Galerkin projection simply consists in replacing
the continuous space H by some finite dimensional subspace: Let X} be a finite-dimensional (and
hence closed) subspace of H. Since the Lax-Milgram lemma applies to the Hilbert space X as
well, there is a unique Galerkin solution u; := Gpu € X}, such that

(Gpu;-) =F € X}. (3.3)
For u € H and the corresponding functional (u ; -) € H*, this defines the Galerkin projection
Gy : H— X}, where Gpu € Xj, solves  (Gpu ;) = (u; ) € Xj. (3.4)

Note that Gpu € X}, is characterized by the Galerkin orthogonality

(u—Gpu;vp) =0 for all v, € Xp,. (3.5)
If (- ;-) is additionally symmetric, it is a scalar product, and the induced norm [Jul| := (u ; u)'/?
is an equivalent norm on H. In this case (- ; -) and || - || are called energy scalar product and

energy norm, respectively.

Before we proceed with the theoretical analysis of Galerkin schemes, we treat an implementational
issue. The following theorem is the fundamental observation: Usually, only the bilinear form (- ; -)
and the right-hand side F' € H* are known, whereas the exact solution v € H* of (3.1) is unknown.
Then, the Galerkin solution Gpu € X} can be computed without knowing u by solving a linear
system of equations.
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Theorem 3.1. Let {¢1,...,¢n} be a basis of Xp,. We define the Galerkin matriv A € RV*N
and the vector b € RN by

Aje = (03 6;) and by = F(g)). (3.6)

Then, A is a regular matriz, and Gru = Zévzl x;0;, where the vector x € RN solves Ax = b.
Moreover, if (- ; -) is symmetric, the Galerkin matriz A is symmetric and positive definite.

Proof. 1. step. To show that A is regular, we only need to show that A is injective: For any
r € RY and vy, := Z;VZI xj¢; holds

N
lonll3r < (on s vn) = Z zjzr{o; ; o) = - Ax.
J,k=1
Therefore, Az = 0 implies ||v;||z = 0 and finally x = 0.

2. step. Determine Galerkin solution: Let z € R™ be the unique solution of the linear Galerkin
system Ax = b. We use the basis representation Gpu = Z;\le y;¢; of the Galerkin solution with
some coefficient vector y € R™. By use of the linearity of (- ; -), equation (3.3) becomes

N
br = F(¢r) = (Gnus ¢) = > _uj{es 5 dx) = (Ay)p forallk=1,...,N.
j=1

Therefore, the coefficient vector y € RV satisfies Ay = b. This proves x = y, i.e., we obtain G,u
by solving Ax = b.

3. step. If (- ;) is symmetric, the matrix A is symmetric as well. Moreover, step 1 proves even
positive definiteness of A. [ |

Remark. We just remark that Theorem 3.1 can be applied for any orthogonal-type projection,
e.g., the L?-orthogonal projection onto a discrete space. O

We now proceed with the abstract analysis of Galerkin schemes. The following two lemmata provide
elementary properties of the Galerkin projection. The first lemma, proves stability of the method
with respect to changes of the right-hand side F'.

Lemma 3.2. The Galerkin projection Gy, is a linear and continuous projection onto Xp. If
(-5 -) is symmetric, Gy, is the orthogonal projection onto X with respect to the energy scalar
product (- ; -).

Proof. For up € X, the Galerkin orthogonality (3.5) implies Gpup = up. Therefore Gy is a
projection onto Xj. Also the linearity of Gy, follows from the Galerkin orthogonality (3.5). To see
the continuity of Gy, it remains to estimate the operator norm: For v € H holds

IGhully; S (Gru s Gru) = (u; Gru) < llullml|Grull,

where we have used ellipticity and continuity of (- ;-). This proves |Gpullg < ||ullz and thus
continuity of Gp,, where the operator norm is bounded by the quotient of continuity and ellipticity
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constant. Finally, if (- ; -) is a scalar product, the unique orthogonal projection with respect to
this scalar product, is characterized by the orthogonality relation (3.5). |

The following Céa lemma states that the Galerkin error |[u — Gpul/g is quasi-optimal, i.e. it
behaves like the best approximation error up to multiplicative constants, which depend only on the
continuous setting but not on Xj,.

Lemma 3.3 (Céa). The Galerkin error is quasi-optimal, i.e.
lu — Grullg < min |lu—wvy|lg  for allu € H, (3.7)
v €EXp

where the constant depends only on the ellipticity and the continuity of (- ;-). If (- ;-) is
symmetric, there holds

lu — Gpul| = min ||u —wva|| for allu € H, (3.8)
v EXp

i.e. the Galerkin solution Gpu is the best approximation of u with respect to the energy norm.

Proof. For arbitrary v, € X}, the Galerkin orthogonality (3.5) proves
lu = Grullyy S {u = Gru s u—Gpu) = (u—Gpu; u—wvn) < lu—Gpulullu—vpm

with the same arguments as in the proof of the last lemma. This leads to (3.7) with an infimum
on the right-hand side. If we replace Gy by the orthogonal projection Il onto X} with respect
to || - ||z, we see that all inequalities of our estimate hold with constant 1. This proves that the
minimum in (3.7) is attained for v, = II,u. Even the same argument proves (3.8). [

A major advantage of Galerkin methods is, that one can prove convergence to the exact solution
u € H. In the following, think of the subscript h > 0 as a mesh-size parameter with corresponding
finite dimensional spaces Xp:

Proposition 3.4. We assume that there is a dense subspace D of H with approximation
property, namely

li i — = D. .
Jim min lv—wvpllg =0 forallve (3.9)

Then, for any uw € H, there holds

lim ||u — Gpul|lg =0, (3.10)
h—0

i.e. the sequence of Galerkin solutions converges to the exact solution w.
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Proof. For v € D holds the estimate

lu—Gpullg < |[u—=vllg + [lv—Gpollg + [[Gru — Grolln
< |lu—wv||g+ min |lv—2v
| 0% uin. [ nlle

~

= C(||lu— i —
(I =l + i o~ vl

by use of continuity of G, and the quasi-optimality estimate (3.7). We have to show that
3C > 0Ve > 03hg > OVh € (0,ho) |Ju — Gpul|lg < e.

For € > 0, let v € D with ||u — v||g < e. Choose hg > 0 according to the approximation assump-
tion (3.10) so that ||[v — Gpv||g < e for all h € (0,hg). We thus finally obtain ||u — Gpul|l g < 2Ce,
which concludes the proof. |

Although the result of the preceding lemma seems to be very attractive, we stress, however, that
the convergence of a Galerkin scheme can be arbitrarily slow. We argue in the abstract setting: If
H is a separable Hilbert space, e.g., H is one of the introduced Sobolev spaces, there is a countable
orthonormal basis {qu ‘j € N}. Any w € H can be written as u = Z;; xj¢; with coeflicients
(xn) € L. If we define X :=span{¢i,...,¢;}, there holds

0o
. 2 z : 2
min ||u — UVp = xZ;.
v €EXp H HH j=kt1 J

Finally, the decrease of the right-hand side can be very slow. One may think of, e.g., w? = j—(1+e)
for any € > 0, so that the series converges but is — in the beginning — almost the divergent
harmonic series.

Another important fact is that the Galerkin scheme is stable with respect to certain perturbations
of the bilinear form (- ; -) or the right-hand side F' due to the so called Strang lemma.

3.2 A-Priori Error Analysis
We now turn our attention to Symm’s integral equation of finding ¢ € H~1/2 (T") such that
Vo= f (3.11)

for given right-hand side f € H'/2(I"). Our goal is to provide an a-priori estimate for the Galerkin
error to quantify the speed of convergence.

For the Galerkin boundary element method, we choose piecewise polynomial spaces Xj,: Let Tj, be
a triangulation of I'; i.e.

o T, ={T1,...,Tn} is a finite set of subsets T; C T',
e cach Tj € T}, is (relatively) open and connected with positive surface measure |75 > 0,

o for T}, T}, € T, with j # k holds T; N T}, = 0,
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o ['= U{T’T S 7}L}, i.e. Ty is a covering of T'.

For the ease of presentation, we additionally assume that the elements T' € 7}, are flat, i.e. there is
an open and connected set Vo C R%! and an affine bijection ®7 : R* — R¢ such that Op(Vp)=T.
Moreover, we assume that the elements are convex — this clearly holds in 2D and is the common
case in 3D, where the elements usually are flat triangles or rectangles. With yr the characteristic
function of a set T', we consider the space

PO(T) = span{xr | T € Tp} (3.12)
of all Tj-piecewise constant functions. We define the local mesh-width

h e PO(E), hl|r; = hr, = diam(7}) := supT |z — y| (3.13)
x,yely

as well as the maximal mesh-width

Pmax = ||h|| oo (ry = max hr. (3.14)

Moreover, we define the shape regularity constant

hd—l
o(Th) := max —-— 3.15
to measure the degeneracy of the elements in 7},.
Remark. In the finite element analysis, the shape regularity constant from (3.15) involves hi}
instead of th_l. We stress that in the context of boundary elements h%_l coincides to the fact that
we are dealing with (d — 1)-dimensional manifolds.

Theorem 3.5 (Approximation Theorem). Let Ty, : L*(T) — PYT;) denote the L2-
orthogonal projection onto P°(Ty,). For ¢ € L*(I') N H(Ty), holds

1 =Wl g-12py S IRV 79 2y, (3.16)

where the constant only depends on the shape reqularity constant o(Ty). Here, v € H'(Ty) means
that p € HY(T) for all T € Ty, and V7 thus denotes the Ty-elementwise gradient.

Proof. The elementary proof of (3.16) is split into four steps.
1. step. The L%-orthogonal projection onto P°(7,) can explicitly be written as

1
(ITpv)|r = m/ vds for allv € L*(T') and all T € Tj,. (3.17)
T
This follows from the orthogonality property

Oz(v—Hh’U;XT)Lz(F):/Tvds—/T(Hhv)ds:/TUds—\ﬂ (ITpv)|r  for all T € Ty,

2. step. According to the Poincaré inequality, there holds, for any T' € Tj,

1
14 =l 2ry < — hrl Vel L2y,
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where convexity of T' € Ty, provides the Poincaré constant 1/7.

3. step. For any v € HY/2(T') and T € T, holds
1/2
lo — Toll 2y < o (Ta) Y2 Ry vl /2 (1)

We recall that the H'/2-Sobolev-Slobodeckij seminorm is defined by

_ [v(@) —v()P? 1/2
W gr1/2iry = (/T/T p—T dsy dsw> .

For fixed x € T, the closed form of IIv from step 1 and the Cauchy inequality prove

o(0) = Moo @) = 5 ([ o) =) )

v(z) — v(y)]?
|1}’2(/T| (|;z_y|(§/)| dsy)(/T|~’U—y|ddsy)

hy! /!v(%)—v(y)!2
——h ————dsy.
T e eyl

IA

Integration over T' now yields
v — Hh””%%T) < o(Tn) hr ‘U’?{W(T)-

4. step. Finally, we estimate the dual norm

— Iy ;v
[ = p |l g-1/2(r) = sup w—h¢>
verzaongoy 0l

Let v € Hl/z(F). We stress that the duality brackets are just the L?-scalar product since both
¥ — Hyyp,v € L3(T). Orthogonality of IIj, provides

(=T 5 0) = ( =Tt 5 0 = Tp0) oy = Y, (& =Tt 5 0 = o) oy -

T€Th

For fixed T € T, holds

(¥ = Ipt 5 0 = po) 2oy < [[Y0 = a2y llv — Tpol|p2(r)

o(Ts 1/2
T 132 | oyl

™

IN

Therefore, the Cauchy inequality proves

1/2 /
(Y —Tpy;0) < 0(7;};) ( > h‘ﬁ%HViﬁHiz(T))1 2( > |U|§Il/2(T))

TeT TeT

1/2

o(Tn)'/?
< O 02 ey el ooy

This concludes the proof. |
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Remark. We stress that the same techniques as in the preceding proof yield
9 = Tl g2y S IR (0 = T) || L2y < B2 L2y for all ¢ € L(T). (3.18)
Here, the second inequality follows from the Pythagoras theorem (i.e. the L2-orthogonality)
16 = Tt Bary = 1022y — 1Tl 22y < 1122

This Tp-elementwise estimate is simply weighted by hr and then added over all T' € Tp,.
The combination of Céa-Lemma and approximation theorem provides an a-priori error estimate.

Corollary 3.6 (A-Priori Estimate for Galerkin Error).  Provided that the exact solution
¢ € H-Y2(T) of (3.11) satisfies ¢ € L*(T') N H(Ty,), there holds

g = nll < B2V |2y, (3.19)

where the constant only depends on I' and the shape regularity constant o(Ty,).

Proof. First recall that the energy norm || - || is an equivalent norm on H~/2(I), i.e.

ClowerH?bHHfW(F) < vl < CuppeerHH*W(F) for all ¢ € Hil/Q(P)-

The lower constant Clower > 0 is just the square-root of the ellipticity constant of V', whereas
Cupper > 0 is the square-root of the operator norm of V, i.e. both constants depend on I' only.
With the L2-orthogonal projection onto P°(7y), the Céa-Lemma proves

6 = énll < 16 = Tadll & |6 = Tndll 12y S 1** V| L2(r),

where we have used that the energy norm || - || is an equivalent norm on H~Y/2(T). [

The preceding corollary proves that
¢ — énll = O(hila)

in the case that ¢ is sufficiently regular and that the shape regularity constant remains bounded.
Finally, we prove that — even without any further regularity assumptions on the exact solution
e HY 2(T") — the sequence of Galerkin solutions ¢, converges to ¢. To that end, we consider a

sequence 771(") of triangulations with
PUT™) € POTY),

ie. 771(71“) is obtained from certain refinements of 771(71). Let d)%n) € 770(77L(n)) the sequence of
corresponding Galerkin solutions.

Corollary 3.7 (Convergence of Galerkin Method). Provided that

o= supa(ﬁl(n)) <oo and lim A =0,

neN n—oo M

there holds convergence Ii_)m o — gb;b") I =o0.
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Proof. Note that H(T') is dense in H~/2(I"). Given ¢ > 0, we therefore find ¢ € H'(T') such that

ll¢ — || <e. According to the a priori error estimate, there holds ||i) — Gén)lbm = O((hl(TTILaX)S/Z)'
Therefore, there is ng € N such that

Il — Gyl < e

for any n > ng. The triangle inequality now proves
6 — &N < 16 — ¥ll + 1 — Gl + IGy — 6| < 3¢ for all n > ng,

where we have used (G;ln)w — gbgn) = Ggln) (1 — @) as well as ‘”ng)(lﬁ — )|l < |lv» — ¢[|. This proves
convergence. ]

Remark. Since the step functions are dense in L?(T'), one can prove that

max

0/~—(n) 0/~—(n+1) . (n) _
PUT,) S P(T, ) and nh_)rroloh 0

implies that X := [J,cy 730(7;5")) is dense in L?(T") as well. Recalling that L?(T') is dense in
H~'/2(T"), we derive that X is dense in H~'/2(I') as well. In particular, this proves convergence of
the Galerkin boundary element method without the additional assumption of

o = sup 0(771(71)) < 0.
neN
We stress, however, that this is a special observation for piecewise constant ansatz functions and
negative-order Sobolev spaces. The proof of Corollary 3.7 even applies for the finite element method
and positive-order Sobolev spaces, e.g., H!(Q).

Remark. We finish the part about the boundary element method by stressing some advantages
and disadvantages of the Galerkin BEM for the boundary integral equation compared to the finite
element method (FEM) that is often used to compute numerical solutions to the PDE.

The advantages are:

+ BEM is suitable for exterior (unbounded) problems as well as transmission problems that
often appear in applications such as wave scattering.

+ The BEM converges with order h%2 in the energy norm for sufficiently smooth solutions,
whereas the FEM converges with order h in the energy norm.

+ The boundary integral formulation gives rise to a formulation in R%~!, i.e., the discretization
has to be done in one less dimension.

+ The condition number of the Galerkin matrix (for a uniform mesh) is k(A4) ~ O(h™1).
However, there are significant disadvantages as well, such as:

- For basis functions ¢;,¢; with supp¢; N supp@; # (), the integrals
fsupp 4 fsupp o G(x — y)¢;(y)¢i(z)dsyds, have a singular integrand and can therefore not
be treated with classical Gaussian quadrature. However, these integrals can be computed
(semi-)analytical or be treated with so-called Sauter-Schwab quadrature (see [SS11]). A main
idea hereby, is to use a Duffy transformation to get rid of the point singularity.
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- Therefore, obtaining a stable implementation is way harder!

- Boundary integral operators are non-local. Therefore, the Galerkin discretization leads to
fully populated matrices A € RY*N . Storing these or doing matrix-vector multiplications
leads to complexity O(N?), which is not feasibly for large N. This gave rise to a whole lot
of research on fast boundary element methods, such as the fast multipole method (FMM)
or hierarchical matrices (H-matrices). A main idea hereby is to approximate the kernel
function of the integral operators on suitably separated subsets, since the kernel function
is smooth provided = # y. Doing this in a right way gives computable approximations
with storage/matrix-vector-multiplication complexity of O(N log(N)) and error that decays
exponentially.
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Part 11

Part II: Fractional Differential
Operators
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Chapter 4

Definitions of the Fractional Laplacian

4.1 The Integral Fractional Laplacian

4.1.1 Probabilistic Motivation

As a motivation for the fractional Laplacian, we start with a random walk approach with arbitrary
long jumps.
Let P be a probability measure on N given by

1
P(I) :=¢(s) Z = for I C N,
jel

-1
where ¢(s) := <Z;’il ]1%) is a normalization constant (depending on s) such that P(N) = 1.

We study the motion of a particle described as follows: We assume that the particle does discrete
jumps and denote by h the minimal possible jump-width in space and by 7 the step size in time
and link them by 7 = h?*.

By u(z,t) we denote the probability of a particle being at time ¢ at the place z. The particle moves
in the way that for each timestep 7, it chooses a random direction v € B;(0) C R? according to
a uniform distribution as well as a j € N according to the probability distribution P and it makes
a step in space in the direction jhv.

Example. In one space dimension d = 1 and allowing only forward/backward jumps of length h
both with probability 1/2 gives a classical random walk. Then, we have

1 1
u(z,t+71) = 5u(:c + h,t) + iu(x — h,t)
and assuming 27 = h?

u(x, t+71) —u(z,t)  ulx+ h,t)—2u(x,t) +u(x — h,t)

T h?2

Taking the limit h, 7 — 0 gives the heat equation

Ut = Au. [ |
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In contrast to the previous example, we allow jumps of arbitrary length (although long jumps have
small probability).

The value u(z,t + 7) is given by the sum of all probabilities of the particle being at time ¢ at
location x + jhr multiplied with the probability of jumping from there to x, i.e.,

c(s) / u(x + jhv,t)
wa,t+7) = ———~F— ———"2ds,,
D) = BB oy 2 I

where the constant in front of the integral is the right normalization of both probability distribu-
tions. This gives

u(z,t+71) —u(z,t) = ﬂ u(x + jhr,t) — u(x,t) ds,.

10B1(0)] Jo,0) 75 jites

For fixed v € 9B1(0), we define 9, (z,x,t) := % and using 7 = h?®, we obtain

u(:c,t—i-T)—u(:U,t): c(s) b (ih p
T |aBl(0)|/831(0)% ,QZ}I/(.] ,Cl?,t) Sy

Now, the integrand is just a Riemann-sum for the integral fooo ¥y (z,z,t)dz. Taking (formally) the
limit h — 0 and using polar coordinates y = ze'?, we arrive at

_ (s >
ut(xvt) - |OBl(O)| /BBl(O)/O ¢V(Za$7t)d2dsu

t) — t
[ ternnunn,,
Rd |y|d+25

=:C(d,s)(—A)°u(z,1t).
Therefore, the limit of a random walk with arbitrary long jumps leads to the so-called fractional
heat equation.
4.1.2 The Integral Fractional Laplacian

The previous example motivates the definition of the fractional Laplacian as a non-local singular
integral operator.
We, at first, formally define it on Schwarz-functions in the space

S = {u e C*(RY) : su]é)d |z%8Pu(z)] < 00 Vo, € Nd}.
e
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Definition 4.1. Let s € (0,1) and u € S. Then, the pointwise defined operator

(—A)u(z) = C(d, 5) PV. /R d Wdy (4.1)

is called integral fractional Laplacian. Here, P.V. denotes the Cauchy principal value and

2s
the appearmg normalization constant is given by C(d,s) := %‘TW?) with the gamma-function

) =[St e L.

Remark. The operator (—A)? is well-defined pointwise for functions in S. Let € > 0 be fixed and
choose an arbitrary R > . Then,

To— g W= Sy + ————2dy. 4.2
/Rd\BE |z — y| T2 Br(z)\B.(x) 1T —Y |d+25 Br(x)e |T— yldt?s (4.2)

For the first integral, we use Taylor expansion u(z) —u(y) = (z—y)-Vu(z)+i(z—y)T D*u(¢)(z—y),
where ( = x + t(y — x) for some ¢ € (0, 1), and Polar coordinates to obtain

— \V4 — T D2 —
R B e I el
Br(x)\B.(x) [T =Yl N\Be(x) T Br(2)\B-(x) |z -y
T N2
/ / Ty - dvg d 1dVd7’+/ / rv Ddu(C)TVTdfl dVdT‘.
r=e¢ JyeSd-1 ratas r=e¢ JyeSd-1 2rd+2s

Here, the first integral vanishes since the integral in 7 is bounded and the inner integral vanishes:

R
/ / vV, Zg 2) -1 dvdr = Vu(zx) - / 7“_25/ vdvdr = 0.
r=¢ JveSi-1 r s r=e veSd-1

For the second integral, we estimate

R T2 R
/ / %’lﬂ_l dvdr < |u||CQ(Rd)/ pl=2s — C(R2—2s _ 52—25) <C Ve >0,
r=¢ JreSi-1 2rdtas r—c

i.e., the limit ¢ — 0 exists. Finally, the last term in (4.2) can be simply bounded using Polar
coordinates by

u(z) — u(y) / 1 1 -2
——————=dy < 2||u|| oo (pa ————dy S ———dr ~ R™°° < 0.
/BR(:L‘)C |‘f1j - y|d+25 H HL &%) Br(x) ‘.%' - y‘d+2s r=R T rit2s

Therefore, we have shown that the pointwise definition is well-defined. |

Remark. For s € (0,1/2) the Cauchy principal value in the integral in the definition of the
fractional Laplacian is not necessary, since it exists as an improper integral. To see this, we again
employ the splitting of (4.2) (with & = 0) and only investigate the first term (the second term follows
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directly as in the previous remark). Using the Taylor expansion u(x) —u(y) = (x — y) - Vu(¢) and
Polar coordinates, we obtain

u(z) — u(y) / 1 /R 1
——5dy < ||u|| o1 (rd ————dy ~ ——dr < oo,
/BR(:c) ‘$ — y‘d+25 H HC’ (R9) Br(@) ‘IL‘ _ y‘d+25—1 0 r—2s

since s < 1/2 implies 1 — 2s > 0 and, consequently, the last integral exists. |

The definition employing the Cauchy principal value is oftentimes not handy for computations.
The following lemma gives an equivalent representation of the integral fractional Laplacian without
the need of the principal value (even for s > 1/2) by using a weighted difference quotient of second
order.

Lemma 4.2. Let s € (0,1), u € S and (—A)*u given by Definition 4.1. Then, for x € R%, we
have

s 1 u(z +y) — 2u(z) + u(zr —y)
(—A)°u(x) = —iC(d, s) /Rd s dy.
Proof. Using the transformations z = y — x as well as Z = —z, we obtain
s u(z + z) — u(x)
(=A)’u(x) = -C(d,s) P.V. 5 s dz
u(x — 2) — u(x)
=—-C(d,s) P.V. » B dz.

Relabeling Z to z and adding both equations leads to

u(z + z) — 2u(x) + u(z — 2)

|2|d+2s dz.

2(=A)’u(z) = -C(d,s) P.V. /Rd

It remains to show that the integral indeed exists as an improper integral. We use the same

arguments as in the previous remarks, i.e., we split R4 = B r(x) UBR(x)¢ and use Taylor expansion.
Here, the second order difference quotient has the Taylor expansion

u(z + 2) — 2u(x) +u(z — 2) = u(x) + z - Vu(z) + %ZTD2’U,(<1)Z — 2u(x)
+u(z) — z- Vu(x) + %ZTDZ’LL(CQ)Z
= 0(z?).

Therefore, we obtain with Polar coordinates

u(z + 2) — 2u(x) + u(z — 2) 1 B
dz < ||ull o2 ra — s dz T dr < oo.
/BR(I) |2|d+2s C?(R%) Ba(x) || d+25-2 o
Since

u(x + z) — 2u(z) + u(z — 2) / 1 /°° _1-9
dz < 3||ul| oo (pd ————dz ~ r fdr < o0,
/BR(x)C || d+2s [l (R9) Br(z)° | 2| d+2s R

this gives the existence of the integral. |
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4.2 The Fourier Definition

We have already mentioned that the Sobolev spaces H!(RY) for t € R can be characterized using
the Fourier transformation F as

HYRY) = {u e L*(R?) : /Rd(l + [ Fu()|? d¢ < oo}

due to the fact that the Fourier transformation turns derivatives into multiplications in the Fourier
image.

Using this observation, a possible way of defining fractional powers of differential operators would
be to do the multiplication with |[¢|?® in the Fourier space (which is well-defined for v € S) and
then transform back, i.e., define the fractional Laplacian as

FHICPFul©)).
For an operator A, in literature, a function Sz(¢) : R? — R is called Fourier-symbol of A if

F(Au)(C) = SF(C) Fu(().

The following theorem shows, that the Fourier-symbol of the integral fractional Laplacian (—A)*
is indeed |¢|?*, i.e., the integral and the Fourier definition are equivalent.

Theorem 4.3. Let s € (0,1) and (—A)?® be the integral fractional Laplacian. Then, for u € S,
we have

(=A)'u = FH(¢)* Fu).

The proof of this theorem needs the following technical Lemma, which provides a different repre-
sentation for the constant C'(d, s).

Lemma 4.4. The constant C(d, s) from Definition 4.1 satisfies

C(d, s) = (/Rd W@) o

Proof. See [BV16, Lem. 3.1.3.]. [ |

Proof of Theorem 4.3. We use Lemma 4.2 to write for z € RY

w(z +y) — 2u(x) + ulz — y)
’y|d+25

(—A)’u(z) = —%C(d, s)/ dy.

R4

1. step. We show that the integrand is in L'(R?): With the same arguments as in the proof of
Lemma 4.2 (Taylor-expansion), we estimate

[u(r +y) — 2u(z) + u(r — y)| —d—2s
WE=E < X510) W)W Dl o (5, ()

X8, 0 (WY e + y) — 2u(@) + u(z — )|
S (1 L2 7 (0 @IV + Xy 0y () w747 € L (R
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using that u € §. Therefore, we may use Fubini’s theorem.

2. step. We use F(u(z + y))(¢) = e“YF(u(z)) and interchange the integral and the Fourier
transform to obtain

F(-a10(0) = —5Cld.s) [ FHEENZ S,
1 €Y 4 ey 2
=30 [ =Ry (P
1 —cos(C -
=C(d,s) /]Rd Wg%y)dy (Fu)(Q).
3. step. We show that
Cd.)1(Q) = Cldvs) [ =Py = i (4.9

which directly gives the Fourier symbol of (—A)® and proves the theorem.
For ¢ = ({3, .., (q) with |(] small, we estimate

_ 2
1 —cos(C1) - |C1] - 1 '
|<’d+28 — K|d+2s — |C|d+2572

This shows that the integral
1 —cos(¢1)
——"d
/Rd |<|d+2s Q
is indeed finite. We show that 1(¢) = I(|¢|e1), where e; = (1,0,...,0) € RY,
For d = 1 this is obvious since I({) = I(—() due to the same property for the cosine.

For d > 2, we take a rotation R such that R(|(|e;) = (. Noting that det R = 1, we use the
transformation y — RTy to write

— CoS ey)- — cos(|¢ler - RT
I(C):/Rdl (R<K| 1) y)dy:/ﬂgdl (’C‘ 1 R y)dy

’y‘d+2s ’RTy’d—f—Qs

1 — cos([Cler - )
= [ e =10l

With this equality, we may use the transformation z = |(|y and compute

1 —cos(|C|y1) 1 1 — cos(z1)
I =71 = — Iy = — . A
© = 1(6len = [ s = 1 J e
= CO(d,s) ¢,

where the last step follows from the preceding Lemma. This finishes the proof of the theorem. B

Remark. From the previous theorem we can immediately deduce for u € S and z € R?

lim (—A)*u(z) = u(x),

s—07F

lim (—A)%u(z) = —Au(z).

s—1—
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We finally give a representation of the H*(R?)-seminorm using the fractional Laplacian.

Theorem 4.5. Let s € (0,1) and u € H¥(R?). Then,

2 S
|U\H~9(Rd) = m”(—A) /2u||L2(Rd)'

Proof. Using the transformation z = = — y, we obtain

|2 / /
——= dydr
|U|Ha (R4) /Rd /Rd |.Z‘— |d+28 rd JRrd

:/<z+>(>

’Z ’d/2+s
Now, Plancherel’s formula gives

[ et w0
9

ERe

2
u(z +y) —u(y)
|Z|d/2+s

dydz

dz.
L2(R9)
dz

2
dz = / <u<2 +d32+ “ )>
L2(R4) |z|¢/2Fs L2(R9)

s — 12
/l%d /]Rd z‘d+25 u(C)PdeZ

— cos(( 9
dzdc.
=2 [ [ o pdac
With (4.3) this is further equal to

—cos(¢ _ s
iy =2 [ [ ISR muoPazac = 200 [ eIEuQPaC
R JRA Z‘ Rd

_2Cd3 1”|<| F“Hde

We stress that this argument shows the equivalence of the Sobolev-norms defined via Slobodeckij-
seminorm and via Fourier transformation. Now for v € &, Theorem 4.3 gives with Plancherel’s
formula

[ul s () = 20(d, 8) M P FullZ2gay = IF(—2)20) 172 ey = 1(=2)ull 72 ga)-
Since S is dense in H*(R?), we can extend this to the case of u € H*(R%). [

2

As a corollary of the previous theorems, we obtain that the fractional Laplacian is an operator of
order 2s.

Corollary 4.6.

(i) (—=A)* is an operator of order 2s, i.e., (—=A)* : H/(RY) — H*25(R%) is bounded for arbitrary
feR.

(i) If u € L2(RY) solves (—A)*u = f in R? with f € HY(RY), we have u € H*25(RY).

We will see later on, that the second statement is not true for bounded domains Q € R due to the
effect of boundary singularities.
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4.3 Definition via Heat Semigroup

In this subsection, we give yet another equivalent definition of the fractional Laplacian, this time
by using the semigroup of the heat equation.

As a motivation, we look at the Gamma-function, use integration by parts and the scaling 7 = At
for arbitrary A > 0. Then,

oo oo d
—s[(=s)=T(1—3s) = /0 T % T dr = —/0 7755(677 —1)dr
= —s/ 5 e T — 1) dr
0
= —s)\_s/ 757 e ™M = 1) dt.
0

Solving for \* gives the expression

1 oo
2 = / t=5 e N — 1) dt. (4.4)
0

Using this approach for the fractional power, we formally replace A = —A to obtain a possible
definition of (—A)*

1

(=A)® = ) /Ooo t=5 e — 1) dt.

Here, e'® is the heat semigroup since the function U(z,t) := e'®u(z) solves the PDE
U = gt(etAu(a:)) = A(e®u(x)) = AU,
U(z,0) = u(x),

i.e., the heat equation on R? x RT with initial data u.

The following theorem shows that this formal approach can indeed be justified.

Theorem 4.7. Let s € (0,1), u € S and U(x,t) solve

U =AU iR xR,
U(z,0) =u(zx) z € RY.

Then, the integral fractional Laplacian (—A)® satisfies

L [T x,t) —u(x
o T e )

Proof. We refer to the PDE-lecture for the fact that

(~A)u(z) =

Uat) = [ Glo—utiulwy = [ G0tz =iy
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|| 2

with the heat kernel (Green’s function) G(z,t) = (47rt)_d/26_TL satisfying [pa G(y,t)dy = 1. Since
G is normalized, we may write
|ty —u@yde= [ 60— g) - ula) dy di
0 0 R4

s
4712

2
Now, we employ the substitution 7 := vl noting that dt =

4t
> —S5— _ > — 48— S - —T ‘y|2
[T @y ae= [T [ e ) e e - ) - o)y (Pgar )

— 4sﬂ_fd/2 /OO Td/2+sflef‘rd7_l / u(m + y) — 2“(56) + u(m — y) dy.
0 2 Jre [y| @2

d7t and obtain

Now, Lemma 4.2 gives that the integral in y is equal to —C(d, s)"}(—A)*u(z) and the integral in
T is just F(% + s) by definition of the Gamma-function. Plugging everything together, we obtain

1 [ -  22T(§+9)
F(s)/o U ) — @) dt = — s e )

and by choice of C(d,s) in Definition 4.1 (noting —sI'(—s) = I'(1 — s)) the constant in front of
(=A)%u(x) is equal to one, which finishes the proof. [ |

(=4)%u(z),

4.4 The Caffarelli-Silvestre Extension

In this section, we discuss yet another approach to interpret the fractional Laplacian. This time, we
study a PDE-approach, where the fractional Laplacian is given as a Dirichlet-to-Neumann operator
of a degenerated elliptic PDE in one additional space dimension. In literature, this is often called
Caffarelli-Silvestre extension, [CS07].

The Caffarelli-Silvestre extension problem reads as follows: For a given function u and o € R, we
seek a function U = U(x,y) : R? x RT — R satisfying

div(y*VU(z,y)) = 0 in R x RT, (4.5)
U(x,0) = u(x) on R%L
The first equation can equivalently be written as

AU+ gayu +0%U = 0. (4.7)

The following theorem links the solution of (4.5) with the integral fractional Laplacian.

Theorem 4.8. Lets€ (0,1),ueS,a=1—2s andU a solution of (4.5) with boundary data
u. Then, we have

lim yaayl/{(,y) = _ds(_A>su7

y—07+

—2s
with the constant dg = %
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Proof. For (4.5) exists a integral representation of the solution ¢ (think of it as a double layer
potential). We refer to [CS07] for the fact that

2s

_ Y
Uz,y)=C ra (|2 — 22 + ‘y’2)(d+25)/2u(z)d'z

solves (4.5) with an appropriate normalization constant C.
As we have lim,_,o+ y*O,U(-,y) = lim,_,o+ w in the sense that the existence of the former

limit implies the existence of the latter limit. Using the integral representation of U/, we compute

. U(x,y)—M(w,O) 1 ¢ y2s
gy e Ty ) )

A u(z) —u(x)
=C lim 1
yi>r(r)lJr El—r>r(l) RA\ B, (z) (’x — ZP + ‘y’Q)(d—i-Zs)/Q

i

where we used Lebesgue dominated convergence. As we have uniform convergence for the limit
with respect to y, we may interchange both limits. With dominated convergence, we may pull the
limit y — 0 inside the integral and obtain

i 40 ZU@0) o
y—0t yl-o y—0t e=0 Jpa\ B_(z) ([T — 2| + |y|?)(@+29)/2

o u(z) — u(x)
=C1 1 d
200t Jpa (o) (17 — 22 + |y2) @292

u(z) — u(z)

u(z) — u(z)

=Cln ROB.(z) |© — 2|72 de = ~C(=A)ulx)
where the constant C' can be explicitly computed to finish the proof. |

Remark. From the Fourier definition of the fractional Laplacian, we may define
(—A)%u = F ¢ 7*F(u))

for functions, where the right-hand side makes sense (there is an additional singularity at ¢ = 0
to be taken care of). Then, we obtain (—A)~* = ((—A)*)~! directly from the Fourier definition.
This, together with the integral definition, motivates that a fundamental solution of the fractional
Laplacian is given by C W%QS. This knowledge can be used to derive the solution formula applied
in the previous proof.

In the following chapter, we present an alternative proof for the statement of Theorem 4.8 on
bounded domains, which could also be used for the problem posed on the whole space.

4.5 The Fractional Laplacian on Bounded Domains

From now on, we consider a bounded Lipschitz domain © C R%. Our goal is to (numerically) solve
the equation

(—A)’u=f inQ, (4.8)

u=0 onN°.
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4.5.1 The Integral Definition

For a function u : Q — R, we denote its zero-extension by @ : R — R. Then, we can easily extend
the definition (4.1) by

| _ i(x) - (y)

Obviously, this definition is well-defined for functions u € C5°(£2) and can be, by density, extended
to functions in H*(Q).

Moreover, the definition is still coherent with the probabilistic interpretation at the beginning of
the chapter with the modification that particles hitting 02 are destroyed.

Remark. Sometimes in literature, a different definition, the so-called regional fractional Lapla-

cian,

(—A)5u(z) == C(d, s,Q) P.V. ) Wdy,

where integration is restricted to {2, is used. While some of the results presented in the following
also hold for the regional fractional Laplacian, there are also some considerable differences, and in
the following, we will not discuss the regional definition any more.

4.5.2 The Spectral Definition

The Laplacian —A : H2(Q) N H () — L?(2) is a symmetric, self-adjoint operator with compact
inverse. As such, classical spectral theory provides eigenfunctions ¢ and eigenvalues \; satisfying

~A¢r = Mok, drloa = 0 that are an orthonormal basis in L?(Q) as well as an orthogonal basis in
HE(Q) such that

—Au = Z ALUE Ok, uy, = / ugpdx.
k=1 &

Using this expansion, and the spectral theorem, a possible way to define the s-th power of the
Laplacian would be to take the s-th power of the eigenvalues, i.e.,

(=A)u = Z AUk Dk ug = /Quqbkd:c
k=1

for w € C3°(f2). Extending this definition by density to the space H*(2) defines the so called

spectral fractional Laplacian (—A);.

4.5.3 The Caffarelli-Silvestre extension
Let u € H*(Q). Then, the extension problem
div(y* VU (z,y)) = 0 in RY x RT,
U(x,0) =u(x) on R?
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with data u € H*(R?) is well-defined. Moreover, Theorem 4.8 is still valid, and we have

lim y*O,U(-,y) = —ds(—A)°u = —ds(—A)*u.
y—0t

Therefore, the integral fractional Laplacian on a bounded domain still has an interpretation of a
Dirichlet-to-Neumann operator of the same extension problem as in the case of the whole space.

A different approach for the extension problem would be to restrict the PDE to €2, i.e., to study
the problem

LU = div(y*“VU(z,y)) =0 in QxRT (4.9a)
U=0 on 09 x (0, 00) (4.9b)
U(x,0) =u(z) in Q. (4.9¢)

The following proposition shows that the Neumann-data of the extension problem (4.9a) actually
gives the spectral fractional Laplacian.

Theorem 4.9. Letse€ (0,1),ue S, a=1-2s andU a solution of (4.9a) with boundary data
u € C§°(2). Then, we have

lim y*O,U(,y) = —cs(—A)ju.
y—0+

For the proof of the theorem, we make use of classical spectral theory, which we briefly recall here.

The spectral theorem for (un-)bounded self adjoint operators A states the existence of unique
spectral measure E : A — L£(L?), where A is a sigma-algebra on the spectrum o(A), and £(L?)
are the linear operators mapping from L? to L?, such that

A= / AE(N).
o(A)

Moreover, for f,g € L?(€), the spectral measure E weakly defines a complex measure Ey 4 with
total variation bounded by || f[|z2(q) |9l z2(q) in terms of

Epg(A):=(E(A)f,9) VA€ A

Using this notation as well as the functional calculus, that comes with this setting, we may write
for the spectral fractional Laplacian

(A) = /0 TN BN, (4.10)

as the spectrum of the Laplacian is contained in RT.
Moreover, the heat-semigroup has the representation

etA:/ e AdE(N).

0
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Using this together with formula (4.4), we can formally interchange integrations to write

(=A); = /OOO NdE(N) = /OOO F(is) /Ooo(e—tA — 1)t 7%dt dE(N)

o 1 > e—tA_ —1-—s
_F(—s)/o ( Dt 1=sdt.

This formal computation can also be easily justified, and we observe that the heat equation approach
from Section 4.3 coincides with the spectral fractional Laplacian on bounded domains.

We are now in the position to proof the preceding theorem.

Proof of Theorem 4.9. We prove that the formula

1 o 2
V(x,y) = ) /0 A (—A)u(x) eV /WLy (4.11)

defines a solution to (4.9a) in the weak L?(Q) sense, i.e., we have (LV, 92 =0forallg € L3 ()
as well as weak boundary conditions. Then, computing the Neumann-data proves the theorem.

1. step. At first, we show that V(-,y) € L?*(Q) as well as

1 [ - a
V)5 9) 2 = F(s)/o (em(—A)iu 5 9) s € vH/ D=1 gy, (4.12)

In order to do so, let R > 0 and define Vg as

R
Vr(z,y) = ! ] /0 e D (—A)u(z) e ¥/ —1gs,

I(s)

As e7¥?/(40)s—1 g integrable and etA(—A)f,u is bounded, we may interchange the L?-scalar product
with the integration in ¢ by standard rules of Bochner integration to obtain

R
Vr(Y) 5 9)12 = 1/ (em(_A)gu ; 9)L2 o= V2 (4 ps—1 gy

I'(s) Jo
R froo
1/ / e_tAASdEug(A) €_y2/(4t)t8_1dt,
L'(s) Jo Jo ’

where the last equality follows from the spectral calculus. Now interchanging the integration with
Fubini’s theorem, we obtain together with the scaling 7 = tA

1 o rR B . .
Vr() 5 9) 12 = F(S)/O /O e~V W1t 4R, (V)

) 1 /OO/AReTTsleyQ/(‘“)/\dT dEq4()\)
L(s)Jo Jo 79

ol e
< e " dEy g(A
I'(s)Jo Jo )

< MJullp2@)llgllz2()-
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Therefore, for all fixed y € RT, we have Vg(-,y) € L*(2), and for any sequence (R;);en satisfying
Rj — oo the sequence (Vg (+,y))jen is a Cauchy sequence that converges weakly to V(-,y), which
implies V(-,y) € L*(). Taking the limit R — oo also immediately shows equation (4.12).

2. step. Similar arguments can be used to show that V(-,y) € dom(—A) by showing that the limit
lim, o+ (M ; g) Lo exists for all g € L%(Q). We refer to [ST10] for details.

T

3. step. V satisfies the boundary condition at y = 0. We use (4.12) and the transformation 7 = ¢\
as in step 1 to compute together with Lebesgue dominated convergence and the definition of the
I’-function

1 RO 2
V(y) i 9)e = / / e T eV UG dE, 4 (A
vewioe = [ oy
1 oo oo .
4 Tt E, - ) :
y—0 F(S)/O /(; e 7 dr d 19<)‘) (u g)L2

4. step. V is differentiable and satisfies equation (4.9a). With the help of Lebesgue dominated
convergence, we compute

. V(7y+ h) _V('7y) . _ 1 /OO tA S, —y2/(4t) y;s—1
;{E,%( 3 i g LT o (e"( A)Uu,g)L2 Oye t° dt.

(4t)

Thus, V is differentiable in y, and the y-derivatives are just applied to e=v/ An elementary

calculation gives
1-—2s 2 e~y /(4)
2 —y2/(4t
With this identity and integration by parts, we obtain

2 1—2s . . _ 1 > A ANS,, . —y?/(4t) ;5—1
<<6y2+ , ay)V(,y)7g> _F(s/o (e (A)au,g)L2 8t<e t )dt

L2 )
1 tA _ _
- - —A) Y /(4t)ts 1dt
F(S) 0 t (6 ( )au ) g)L2 €
1 OO/OO —tA —y?/(4t) 45—
=— e PNAE, J(\) eV /W1 gy
L'(s) Jo 0 ¥

and V indeed solves the differential equation.

5. step. Finally, we compute the Neumann-data. With (4.12), and the substitution 7 = 32 /(4t)
we obtain

V(y) — V(-0 1 [ eV 1)
( ( y) — ( ) : g> _ / (etA(—A)iu : g) Lo ( — )ts ldt
Y 12 0 Y

B 1 > ﬁA B s . -7 s+1
= 43F(s)/0 <e4 ( A)Uu,g>L2 (e )75 dt.
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Now, dominated convergence implies

2
lim (eZTA(—A)f,u ; g) =((-A)usg)r,
y—0 L2

and taking the limit y — 0 in the previous equation gives

1 . — “AVu:
p (P 0) = gy (A e
which finishes the proof. n

Remark. The operators (—A)® and (—A)% on Q are indeed inherently different. We refer to

g
[SV14] for the following results regarding the eigenvalues and eigenfunctions:

e Let A1 denote the smallest eigenvalue. Then,
A ((=A)7) < Au((=A)3)-

e The eigenfunctions of (—A)3 coincide with the eigenfunctions of the Laplacian, the smooth-
ness does only depend on 2. E.g., on the unit sphere they are C°°(B1(0)).

However, the eigenfunctions for (—A)® are only Holder-continuous for some Holder-exponent
B, and [SV14, Pro. 2] provides that e; ¢ W1H>°(B1(0)) (for d > 2s), where e is the eigen-
function corresponding to A;((—A)?).

The differences in the operators can also be seen in the asymptotics of the solutions of the equations
(—=A)*u = fand (—A)Su = f. We refer to [Grulb, CS16], where f, (2 are assumed to be sufficiently
smooth, for the asymptotic behavior for x close to 0$2:

o u ~ dist(x, Q)% + v(x), with v smooth;

dist M)+ 1/2
° ﬁ:{ ist(z, 02) + v(x) 0<s<l/ with ¥ smooth.

dist(z, 002) + v(x) 1/2<s<1
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Chapter 5

Numerical Approximation

5.1 The Integral Fractional Laplacian - Weak Formulation

In the following, let Q@ € R? be a bounded Lipschitz domain. We consider the integral fractional
Laplacian (—A)® and study the model problem

(=A)Yu=f inQ, (5.1)

u=0 onQ°
with a given right-hand side f € H*(Q).

Multiplying the equation with a test-function v € H () and integrating over R? gives

AV vde — C(d. s w@) —uly) o
(4J NG Cw’féaRV [ Ry

Exploiting the symmetry in z,y and afterwards noticing that the principal value is not needed
(compare Lemma 4.2), we obtain

u(z) — u(y) _ C(d,s) (u(z) — u(y))(v(z) —vly)) ,
C(d,s) /Rd P.V./Rd Wv(x)dy dx = 5 /Rd /Rd PR dy d
a(u,v)

|z

By definition a(-,-) is a symmetric bilinear form. N
The weak formulation of our model problem reads as: Finding v € H*(£2) such that

a(u,v) = /vadx Yo € H3(R). (5.3)

We recall that the norm on H*() is defined as the H®(R%)-norm of the zero extension, i.c.,
]| 7. @ = [l g5 (ray- In order to show ellipticity of the bilinear form, we employ a fractional
Poincaré inequality

ullr2() < Clil s (ray Yu € H*(Q).
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As a(u,u) ~ |u] s (gay, this immediately implies that

lullf o) S alu,u)

(€2)

and we may apply the Lax-Milgram lemma to prove the following proposition.

Theorem 5.1. There exists a unique weak solution u € I;'S(Q) of (5.3) that also satisfies

HuHﬁs(Q) N HfHH*S(Q)

In the following, we are interested in approximative numerical solutions of (5.3) by employing a
Galerkin finite element scheme. However, compared to the finite element approximation of the
Laplace equation, there are some additional difficulties.

Remark.

e The bilinear form a(-, -) is non-local, i.e., for functions ¢;, ¢; > 0 satisfying supp p;Nsupp ¢; =

0, we get
(pi(z W)(@j(x) = ¢i(y))
is dy d
(QD QD] Rd R |1:_ |d+23 Yy ax
d s) iz — #i(y)p;())
= dy d
Rd/Rd 3/"”25 v

v;(y)
ds/ / ]a;— ’d+25d ydr <0
supp @; Jsupp ¢;

Thinking of ¢; as local basis functions, this computation shows that the system matrices will
be densely populated.

e The energy norm (H*(2)-norm) is non-local, and the seminorm part is not additive. Let
Q=0,UQ with Q1 NQy = 0. Then,

2
2 — ]2 2 y)|
\U\HS(Q) = |U\Hs(szl) + ’U‘HS(QQ) + 2/ /92 |z — y|d+25 Ty dz

and the last term can not be bounded by the first two terms on the right-hand side.

This leads to problems in the finite element analysis as error estimates are usually derived
elementwise. However, Proposition 5.2 gives a way to circumvent this by deriving a localized
upper bound for the seminorm.

For the discretization of (5.3), we consider a Galerkin method in a finite-dimensional subspace
X, € H?(Q) described in more detail in Section 3.1. The Galerkin formulation reads as: Finding
uy, € Xj, such that

a(up,vp) = / fopdx  Yu, € Xy, (5.4)
Q

and the Lax-Milgram lemma gives the existence and uniqueness of uy. Moreover, the Ced-Lemma
is still valid and provides a best-approximation result

lu — uh”f]s(g) S vini)l(lh lu — vhHﬁs(Q)- (5.5)
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It remains to choose the space Xj,. To that end, we assume that 7 = {7; : i =1,...,N}is a
shape regular (with constant o) triangulation of ) without any hanging nodes (look at Section 3.2
for the definitions). Moreover, for 7' € T, we define the element patch

wr := interior U{? :T'NT # 0}

and denote the diameter of T' by hrp.

Then, two possible choices of X, are the piecewise constant functions PO(T) € H*(Q) for s < 1/2
or the piecewise affine functions

PYT) :={veC(Q) : vlr e PUT)VT € T} C H*(Q)

for 0 < s < 1. In the following, we only discuss the case of piecewise affine functions.

Before we can prove a-priori estimates, we need to discuss the mentioned localization of the H*-
seminorm, which is also called Faermann localization in literature, [Fae00, Fae02].

Theorem 5.2. Lets € (0,1) and u € H*(Q?). Then,

‘2
ol < 3 [ [ iy e ol

TeT

where the constant C > 0 depends only on d and the shape-regularity constant .

Proof. Let T' € T and define w} := Q\wT. We write

(y)]? / / lu(z) — u(y)|?
s < _— .
|u’H Q) = Z / /w ‘w_y‘d—ﬂs dy dx + s |z — y|dt2s dy dx

TeT

The first term already has the right form and it remains to estimate the second one. Using Fubini’s
theorem, we get

// ]a:— |d+2 d dw<2/’“ !2/ |z —y[’d*%dy dw—i—/ |u(y)]2/T\x—y\d25dx dy
w OJ%

=:Ir1+ Irp.

In the following, we show that Y ;. Ir1 = > g Ir2. With the characteristic function Xuwe, Of
the set wf,, we write

ZITQ Z/XWT“ \2/]36 y| =% dx dy

TeT TeT

/|u S s /|x— 25 de dy.

TeT

= f(y)

As X (y) =0 for y € T satisfying TnT +£0, we get fory e T

ZX‘”T/ |z —y|™ —d- Qde—/ | —y|_d_2sd:v.

TeT
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This finally leads to

Solra=Y [ @l [ |z-yldvdy = Iz,
T

TeT TeT T TeT

Using this equality gives the estimate

2
\u]Hg < Z// ’:E— |d+22| dyd$+4ZIT,17

TeT TeT

and we have to estimate I7 ;. Due to the assumption of shape-regularity of 7, there is a constant
¢ > 0 depending only on the o-shape regularity constant such that w$ C Q\Bep, (x). This allows
to estimate using polar coordinates

Iry = / () ? / o~y dy do
T w%

oo
1

S IU(CC)!Q/ r e de S —55 el 22y,

\/T chp Sh%s L)

which finishes the proof. |

5.2 The Integral Fractional Laplacian - Regularity

In the following, our goal is to derive a convergence rate of the finite element method applied to
the model problem. A key question when doing so, is always the regularity of the given problem,
i.e., if the right-hand side f of the equation satisfies f € H"(Q2) for r > —s, for which ¢ > s can we
expect that u € H*(Q)?

Comparing to the Laplace equation, the answer of this problem is more involved, and current
research is still conducted to derive the correct regularity results on polygonal Lipschitz domains,
[BN20]. For smooth domains or Holder-regularity, we refer to [Gruls, ROS14].

We start with an example highlighting the difference to the integer order Laplacian.

Example 5.3. Let Q = B1(0), f =22°T(1 + s)2. Then, the exact solution of (5.1) is given by
u(z) = (1 - |z}, where g+ := max{g,0}.

As an exercise, the reader may check that v € H*t/2=5(Q) for all € > 0, but u ¢ H*T'/2(Q).
Therefore, even for smooth Q, f, one could not expect more additional regularity than 1/2 — ¢,
which is vastly different to the case of the integer Laplacian, where the same problem setting would
give smooth solutions.

Examining the previous example shows that singularities in the derivatives appear at the whole
boundary. In order to capture these, one can introduce weight-functions and weighted Sobolev-
spaces.
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We recall the definition p(x) := dist(z,9Q) and define p(x,y) := min{p(z), p(y)} as well as the
weighted Sobolev-spaces H1(Q) := {v € H(Q) : [0ll gra+5 () < 00} with

|DPv(z) — DPu(y)|?
||UH§I}1+s(Q) ||UHH1 + Z // ‘x_y‘d+25 P(JUaZ/)zady dx.
B:1Bl=1

Moreover, in the following, we introduce two sets A, B C 2 x ). The idea behind the set A is that
for functions satisfying w(z,y) = w(y, z) the integration over Q x  can be reduced to two times
the integration over A, which is defined as

A={(z,y) €2 xQ : p(z,y) = p(z)}

Similarly to previous discussions, we split the set into a part containing the singularity at x =y
and the rest in

B:={(z,y) €A : |z —y| > p(x)}.

We now start to answer the question about regularity by citing some results on Holder-regularity
of the solution u proven in [ROS14]. For the domain 2, we additionally impose a so called exterior
ball condition, which means that Va € 99 there exists some ball B, (y) C RN\Q with 2 € 0B,,(y),
i.e., each point on the boundary can be touched by a ball completely outside of €.

This condition either imposes convexity (e.g. for polygonal domains) or additional smoothness of
the domain (more than C1).

Proposition 5.4. Let 2 be a bounded Lipschitz domain that satisfies the exterior ball condition.
Let f € L*>(R) and u solve (5.1).
Then, u € C*(R?) and

[ullesray < Cllfllzee (o)

where the constant C > 0 depends only on Q2 and s.

Having established the Holder-regularity, we next state that provided f has additional Holder-
regularity in C?(Q), § > 0, the solution u also gains additional Holder regularity.
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Proposition 5.5.

(i) Let B> 0 be such that 3, 3+2s ¢ N. Assume f € CP(Q) and let u € C*(R?) be the solution
of (5.1). Then, u € C°+25(Q).

(i) Let 0 < s <1/2 and g € (0,1 —2s). Then,

s lu(z) —u(y)| ( )

su x, —t () + .

xvyepﬂp( Y) P——ET [ fllzoe ) + I flles )
Here, the constant C > 0 does only depend on £ and s.

(11i) Let 1/2 < s <1 and 8 € (0,2 —2s). Then,

o1s V) — Vuly)] _
su T, <C .
Lyepgp( y) o — P (L1

Here, the constant C(||f||) > 0 depends only on €2, s and as indicated on some norm of f (a
weighted Holder-seminorm).

Now, we can finally start proving Sobolev regularity of the solution u of (5.1). We start with the
case 0 < s < 1/2.

Theorem 5.6. Let 0 < s < 1/2, f € CY?*75(Q) and u solve (5.1). Then, for every ¢ > 0, we
have u € H¥Y/2=¢(Q) with

¢
£

[ulgst1/2-cq) < — [[fllcrr2-5 ()

where the constant C > 0 does only depend on Q,d, and s.

Proof. Let 6 € (s,1) and the sets A, B defined as above. Then, Proposition 5.4 implies

u(z) —u(y)|? // —d—20+42
—dy dr < f||7e T—y T2 dyda
[ Ly N e

2 2(s—0)
S Iy | ol da. (5.0

As the distance function behaves locally like the function z; (after an affine transformation), one
can show that

C
/ plx) %dr < —— for a > —1.
Q 1

This implies that the right-hand side in (5.6) is finite if and only if § < s 4 1/2.
It remains to estimate the integral over A\B. Let f € C?(Q) for 8 > 0. Then, Proposition 5.5 (ii)
gives in the same way

u(y)[? / 2 —d—20+42B+4
————=-—dy dx < ||f z)~2B+s) T —y 26448 dyda.
/ /A . |x_ M 112 [ o) [ ey
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p(x
In polar coordinates, the inner integral reads as C / P 1720428 +45dr, which is finite provided

B+ 2s > 6. In that case, we can estimate

u(y)? 1 »
//A\B Irzr— Id+29 Ay do 5 1 fllew )MS,_,g/QP(SU)Q( Jdz < oo, (5.7)

which holds for § < s+ 1/2 as well.
Choosing f =1/2—s and § = s+ 1/2 — ¢, we guarantee § +2s > 6 as well as § < s+ 1/2, and the
choice of parameters gives

1 o 1 _ 1
MS_Q/QP@)2( Do = 6/Qp(ﬂf) e S 22

Summing up the estimates for the integrals over B and A\ B proves the theorem. |

Remark. Estimate (5.7) shows that higher regularity of f does not provide any benefit, as the
parameter $ does not appear in the integrand on the right-hand side. However, this is not an
artifact of the proof as shown in Example 5.3.

Finally, we discuss the regularity for the case s > 1/2. We start by proving that, in this case, the
solution is in H'(().

Lemma 5.7. Let1/2<s<1, f € L>(Q) and u solve (5.1). Then, u € H'(Q) and
< ¢
~(1-s)(2s—1)

Proof. We only sketch the main arguments, for details, we refer to [AB17].
1. step. Local Holder regularity: For v € (0,2s), we have

£l 2o ()

ul 1)

[l (B o)y < Co@) M f o) Y EQ,

where the constant C' > 0 blows up only for v — 2s.

2. step. Estimate of the seminorm. Let € € (0,1 — s), v = 1 — £/2, and the sets A, B defined as
above, where p(z) is replaced by p(x)/2. With step 1, we may estimate as in the previous lemma

u(y)l? C o / 2s—1+2)
ey b < I .
//A\B \x—y‘d+2(1 g — gldr2(—e) Y 4T = 25”fHL ) Qp(a:) x

Using the global Holder regularity of Proposition 5.4, we obtain

‘2 ¢ 2 2(s—1+¢)
// |x_ |d+21 a)dy dz < 1_S+5||fHLoo(Q)/QP($) dx.

Adding both estimates and estimating the integral of p(z) by 25—#1%7 we obtain

C
2 <
il = e(l—s+¢e)(2s—1+¢)

(Rl
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3. step. Taking the limit ¢ — 0 gives
ii_f}(l)g\uﬁp—s(n) = Clulm(q)

which, together with step 2 proves the lemma. |

Thus, we have established that for s > 1/2 the solution is in H*(2), which allows us to look at the
regularity of Vu.

Proposition 5.8. Let 1/2 < s <1, f € C%(Q) and u solve (5.1). Then, for every ¢ > 0, we
have u € H*F1/275(Q) with

C
‘VU|H571/275(Q) < m Hf”CB(Q)’

where the constant C > 0 does only depend on Q,d, 3, and s.

Using weighted Sobolev-spaces, the singular behavior of the derivatives can be more explicitly
captured by the weight-function.

Proposition 5.9. Let 1/2<s <1, f € C'=%(Q) and u solve (5.1). Then, for every ¢ > 0, we

have u € Hlsle::(ﬁ) with

o|Q

H vu”Hf?';:;(Q) <

)

where the constant C' > 0 does only depend on Q,d, s, and || f||c1-sq)-

For the proofs of both propositions, we refer to [AB17]. In fact, both can be proven simulta-
neously similarly to Theorem 5.6 by using the estimates on the weighted Holder seminorms of
Proposition 5.5.

The case s = 1/2 can be proven with similar techniques and gives the estimate

C
[ulgi-0) < ZIfllz=(9),

which only needs L*°-regularity of f. However, the limit ¢ — 0 does not exist in this case.

5.3 FEM for the Integral Fractional Laplacian

Having established the regularity of the exact solutions, we can turn our attention to derive a-priori
estimates for the finite element approximation.

Due to the quasi-optimality estimate (5.5) it remains to construct an operator mapping H () —
PY(T) with optimal approximation properties.

A possible choice hereby is the Scott-Zhang projection, introduced in [SZ90], which is a quasi-
interpolation operator based on local averaging. Its definition — given in the following — allows for
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a certain freedom in the choice of the averaging set, which can be exploited to deduce additional
properties of the operator, such as preservation of homogeneous Dirichlet boundary conditions.

For a given mesh T, we call the set of all vertices of the elements in 7 the nodes N (7). Moreover,
we define the set of edges £(7) as all faces of elements in 7.

Let A(z) be a so called averaging set, which is for a fixed node z € N(T) either an edge E, € £(T)
with z € E, or an element T, € 7 with z € T.

Moreover, for all z € N'(T), there exists a local dual basis functions, i.e., 1, € P'(A(z)) such that

/ Vg = 6w Y2 € N(T),
A(z)

where ¢, denotes the nodal basis function associated with the node 2z’ € N(T). With these
notations, we may define the Scott-Zhang projection.

Definition 5.10. Let z € N(T). Choose A(z) either as
o A(z) = E, with E, C 0%, for z € 02
o A(2) =T, with z € T, for z € .

Then, the Scott-Zhang projection Jy, is defined as

Jpv = Z 0 /A(z) v dx.

2eN(T)

We stress that the choice of averaging set is not unique, as there might be multiple elements with
z € T.. However, it can be shown that the value | A() 1,v dr does not depend on the choice of the
possible averaging sets in this case.

The Scott-Zhang projection is well-defined for s > 1/2 and v € H*(2) and maps H*(Q) — PY(T).
Moreover, as the averaging set is chosen as boundary edge, for nodes at the boundary, it also sat-
isfies Jj, : H¥(Q) — P (T), i.e., homogeneous Dirichlet boundary conditions are preserved.

The Scott-Zhang projection indeed is a projection, i.e., Jyv, = vy, for all v, € PY(T) and stable in
L? and H' (and consequently in H* for s € (0,1)). Moreover, it has local approximation properties
in H*, which is stated in the following proposition, c.f., [Cial3].

Proposition 5.11. Let T € T , max{1/2,s} < ¢ < 2, v € HY(Q) and J}, be the Scott-Zhang
projection of Definition 5.10. Then,

(v = Jnv) (@) = (v = Jpo) (y)]? 2(0-5)) 12
/T/W |z — yldt2s dydr < Chy " |ole(y),

where the constant C' > 0 depends only on ,d, s, {, and the shape-reqularity of T and blows up
for s — 1.

Using the quasi-optimality (5.5), the Faermann localization (Theorem 5.2), the approximation
properties of the Scott-Zhang projection (Proposition 5.11) as well as the regularity results of
Section 5.2, we immediately prove the a-priori estimates of the following theorem.
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Theorem 5.12. Let Q be a bounded Lipschitz domain that satisfies the exterior ball condition
and T be a uniform mesh. Let u solve (5.3), and up solve (5.4) with right-hand side f € L ()
satisfying f € CY/275(Q) for 0 < s < 1/2 and f € CP(Q) for some B> 0 and 1/2 < s < 1. Then,

C

lu = unll ey < B2 llersz-s(a) 0<s<1/2
C 1o
Ju — Uh||ﬁ1s(ﬂ) = €h1/2 B RATZ) s=1/2

C

Hu - uth]s(Q) < mhlﬂisl‘fucﬁ(ﬂ) 1/2 <s<l1.

The previous theorem is formulated in the energy norm. However, using a classical Aubin-Nitsche
duality argument, one can also deduce estimates in L?.

Corollary 5.13.  Let Q be smooth, r > 0 and f € H"(Q2) additionally to the assumptions of
Theorem 5.12. Then,

[|w — Uh||L2(Q) S hOH_ﬂHfHHT(Q)a

with « = min{s + r,1/2 — e}, f = min{s, 1/2 — e} for all e > 0.

The result of Theorem 5.12 states that, provided f and €2 are regular enough, we obtain convergence
of the FEM-solution to the exact solution with rate h'/2=¢. Comparing this to the FEM for the
classical Laplacian, we see that this rate is sub-optimal due to the reduced regularity of the exact
solution.

One way to derive an approximation which converges faster to the exact solution is to use the
regularity in weighted Sobolev spaces of Proposition 5.9 as well as graded meshes, defined as
follows:

Let h be a global mesh-size parameter (think about a mesh-size of a uniform triangulation), and
1 > 1 be a grading parameter. Then, we call the shape-regular mesh 7}, graded, if every element
T € T, satisfies

e hy < Ch* if TNoQ+#0,
e hy < Chdist(T, Q) 1/ if TNnoQ=0.

where the constants depend only on the shape-regularity constant.

Proposition 5.14. Let Q) be a bounded Lipschitz domain that satisfies the exterior ball condition
and Ty, be a graded mesh with grading parameter p = ﬁ Let s € (1/2,1), f € C'=5(Q), u solve
(5.3), and uy solve (5.4). Then,

C _
||U - uh”ﬁs(g) S ﬁhl 2a||f||cl/2—s(Q).

Thus, using graded meshes, we gained a convergence rate of h'/27¢ compared to uniform meshes.
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5.4 FEM for the Extension Problem - Spectral Fractional Lapla-
cian

In the previous chapter, we established that the integral fractional Laplacian and the spectral
fractional Laplacian are indeed different operators. Therefore, deriving a numerical approximation
to the spectral fractional Laplacian is also of interest.

Recalling the definition (—A)Su := > Ajugpy with eigenvalues A\, and eigenfunctions ¢, of the
Dirichlet-Laplacian (—A) and the Fourier coefficients ur, = [y, one can see that deriving a
numerical method directly is rather hard.

Fortunately, Theorem 4.9, provides us with a different interpretation by

lim y*O,U(-,y) = —cs(=A)ju,

y—0t

i.e., as Neumann-data of the solution U of the Caffarelli-Silvestre extension problem

div(y*VU(z,y)) =0 in 2 x (0,00)
U=0 on 09 x (0, 00)
U(z,0) =u(xz) in Q,

where « =1 —2s € (—1,1).
As this is a degenerated elliptic problem, we can propose a finite element formulation to derive a
numerical approximation.

For simplicity, from now on, we assume that {2 is convex. A suitable function space for the extension
problem is given by weighted Sobolev spaces in the extended variable.

For a subset D C RY x R*, we define the space L2(D;y®) as L?(D)-space with measure y“d\(x,y)
and norm

012y = [ ol dady < .

Imposing this weighted integrability also for the gradient, we define the weighted Sobolev space
HY(D;y*) as

H'(D;y*) := {w € L*(D;y") : |Vu| € L*(D;y*)}
with norm
1wl (piyey = 1wllF2(pye) + IVwli2(piye)-
These spaces satisfy:
e For o = 0, we have the standard H'(D)-space.
e H'Y(D;y®) is a Hilbert space.

e C®(D)N HY(D;y") is dense in H'(D;y").
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e Let 2 be bounded and Y > 0, then
HY Q% (0,Y) = H'(Qx (0,Y);9%)  ac(0,1)
HY(Qx (0,Y)) ¢ H'(Qx (0,Y);9)  a€(-1,0)
In order to shorten notation, we write C := § x (0,00) in the following.

As we want to derive a weak formulation for the extension problem, we need spaces with zero
boundary conditions, defined by

HY(C;y*) :={w e H'(C;y*) : w=0o0ndQ x (0,00)}.
On this space, similarly to the non-weighted Sobolev space, holds a weighted Poincaré inequality
lwllr2cyey S IVWllr2@cyey  Vw € o' (C;y*).

Moreover, we have a trace inequality for the boundary at y = 0. Denoting the trace onto {2 x {0}
by trg, we have that trg H(C;y®) = H*(Q) as well as

Itro wl g ) S lwllmrcye)-

5.4.1 Weak Formulation

We multiply equation (4.9a) by a test-function w € H L(C;y®) and integrate by parts to obtain

0=-— / div(y*VU) - wdzdy = /yaVU - Vwdzdy — / y*VU - nw dzdy
C C ac

= /yaVU - Vwdzdy + / y*O,Uw dzxdy,
c Qx{0}

where we used that the test-function vanishes on 92 x (0,00). Using Theorem 4.9 as well as the
fractional PDE, we obtain

/ yroUw drdy = (—cs(—A)ju ; trow) = —cs(f ; tro w).
Qx{0}
Inserting this in the equation above gives the weak formulation of finding U € H L(C;y®) such that

/yO‘VU -Vwdzdy = cs(f ; trq w) vw e H'(C; y®). (5.8)
C

5.4.2 Regularity

Before studying a finite element method applied to the extension problem, we need to discuss the
regularity of solutions of the extension problem. The main question hereby is, what regularity one
can expect in the extended variable y.

As a first step, we note that solutions of (—A)Su = f can be written as u = ) uppk, where ¢ are
the eigenfunctions of (—A), and wuy denote the Fourier-coefficients of u. As the inverse operator is
given by (—A)_® the Fourier coefficients of w and f satisfy the relation

w=ACfe withu = [upn ad fi = [ fo,
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where Ay is the k-th eigenvalue of the negative Laplacian.
The representation of u cane be used to derive a representation of U as

Uz, y) =D urpr(@)dr(y), (5.9)
k=1

see, e.g., [INOS15], where 9, solves a so called Bessel-ODE

Vi + %% = Mtpr  in (0,00)
Yr(0) =1

which directly follows from plugging (5.9) into the equation (4.9a).
For s = 1/2, we have o = 0 and the Bessel-ODE can be easily solved as

Ui(y) = e VY,

For s € (0,1)\{1/2} solving the Bessel-ODE is considerable harder. However, the solution can be
expressed by means of Bessel functions of second kind K as

21—8 5
I(s) (VAY)° Ks(VAry).
These Bessel functions of second kind are given by

Js(2) cos(sm) — T—s(2)

sin(sm)

Yr(y) =

Ks(z) =

9

where J,, are Bessel functions of first kind, which are given by the power-series

> (_1)€ m
Im(2) = ; 920 m g1 (m 1 e)!‘”%+ '
=0

Using some properties of the Bessel-functions of second kind, we can derive asymptotic estimates.

We refer to [AS64, Sec. 9.6] for:
e K is positive for s > —1.

o Ki(z)=K_5(2).

(2°K4(2)) = —2°K1_4(2).

lim, o+ Ks(z)2° = Cs.

e For z > 0, we have the z™*{*1/2}e2 K (2) is decreasing.

106



CHAPTER 5. NUMERICAL APPROXIMATION

Using the second, third and fourth property gives
) ~y Y iy ~y T fory — 0T

Employing (5.9) theses properties directly transfer to d,U and 8§yl/{ :
With this asymptotics for y — 07, we can estimate the weighted Sobolev-norms of /. We start

with

y
/ y*|0,U | dxdy < / Yy 2y < C < o0
Qx(0,Y) 0

as a < 1. However, the same argument shows that dropping the weight function y* would lead to

Yy
/ 0,U|*dxdr < / Y~ 2%y = oo
Qx(0,Y) 0

for s <1/4. Thus, we can expect that 9,U € L*(C;y*)\L*(C).
Looking at the second derivatives, we obtain even worse behavior concerning the weight for the
weighted Sobolev-spaces, as

Y
/ Y |05U P dady S / yP 2y < C < oo
Qx(0,Y) 0

if we have f —2 —2a > —1 or 8 > 2a + 1, which is not valid for 8 = a. Therefore, we expect
8521/1 € L?(C;y?)\L?(C;y®), which is made precise in the following theorem.

Theorem 5.15. Let s € (0,1) and f € H'"5(Q). Let U € H'(C;y*) solve (5.8). Then, for
s € (0,1)\{1/2} and B > 2a + 1 we have

18U 2 ey + 10, Vall 2 ey S 15150
102U 2 ey S N 1220)-
For s = 1/2 we have

Ul S 1511/

Proof. [NOS15]. [ |

Since Q is assumed to be convex, we obtain a classical shift theorem, i.e., [[v][g2q) < [|Av][z2q)
for v € H%(Q) N H(Q). Using the first statement of the previous theorem provides

102U 22 ey S 1Bz

for all second derivatives in « as well as all mixed second order derivatives in z and y. However,
looking at the result for the second derivative in y-direction shows much worse regularity that has
to be compensated by a higher power 1/°.
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5.4.3 Truncation in y-Direction

Before we can make a finite element formulation for the extension problem, we have to take care
of the problem that the extension problem is formulated in an unbounded domain ((0,00) in y-
direction).

The most basic idea hereby is to truncate the domain and estimate the truncation error. In order
to formulate this, let Cy := Q x (0,)) denote the truncated domain and we impose zero-Dirichlet
conditions at y = )). Defining the space

H' (Cy;y®) = {w € H(Cy;y®) : w=0o0ndQ x (0,00) UQ x {V}}

we can derive a weak formulation in the same way as (5.8), which reads: Find V € H'(Cy;y®) such
that

/ y*VYV - Vwdz dy = cs(f ; trq w) Yw € H'(Cy;y®). (5.10)
Cy

Our goal for this section is to prove the following theorem, which states exponential decay in the
cut-off parameter.

Theorem 5.16.  Let U solve (5.8) and V denote the zero-continuation of the solution (5.10)
with data f € H=*(Q). Let Y > 0. Then,

IVU =)l 2ieyey S €V £l s,

where \1 is the smallest eigenvalue of the negative Laplacian with homogeneous Dirichlet boundary
condilions.

The prove of the theorem makes use of the following lemma, which states exponential decay of the
solution U to the non-truncated domain.

Lemma 5.17. Let U solve (5.8) with data f € H™*(Q2). Let Y > 0. Then,

< e—myﬂ‘

HVUHLQ(QX(J/,OO);y“) |f||H_S(Q)’

where \1 is the smallest eigenvalue of the negative Laplacian with homogeneous Dirichlet boundary
condilions.

Proof. We use the representation (5.9) and the explicit formulas for .
1. step. Case s = 1/2: Here, we have a = 0 and ¢y, = e~ VMY As the eigenfunctions ¢ are an
orthogonal system in H} () with IVarllL2@) = vV Ak, we get

/ /|Vu2d1: dy:/ /|Vmu2+|8y2/l|2dx dy
Y Q hY% Q

=23 VeV = 23T () T fel e VAR
k=1 k=1

—2Vx
Se 2\mnyHH—W(Q)-
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2. step. Case s € (0,1)\{1/2}: With the Bessel-functions of second kind, we have v;(y) =
Cs(VAey) Ks(VAry)-

/ ya/ \VU|*dx dy:/ ya/ VU2 + [0,U|*dx dy
Yy Q

Z 2 / Dkt (9)? + ¥ (y))dy.
k=

Multiplying the Bessel ODE with y® and integration by parts gives

VUL ®) = ¥* (et (y)® + ¥ (y)?)

and using that in the previous formula implies

[T [ vt ay= 3 o] (5.11)

k=1

With the property that pmin{s,1/2} o2 ¢ s(z) is decreasing for z > 0, we may estimate using the
positivity as well as the formula for the derivative of the Bessel functions

Y Py < (VM) Ks (V) (Vy) K (VAL S e VRIS

for y > 0. Inserting that in (5.11) gives

/v /|W|2dmdy—2|uk|yw< ;S D At

< e VMY flly

8

()
where the last estimate follows as in step 1. Taking the square-root proves the lemma. |

Proof of Theorem 5.16. We first note, :chat due to the homogeneous boundary conditions at
y = Y, the zero extension of V is indeed in H'(C;y®).

Using a test-function w in (5.10) and its zero-extension in (5.8), subtracting both equations leads
to

/ y*V(U —-V) - Vwdz dy =0 Yw € H'(Cy; y),
Cy

which in turn gives the best-approximation property

viu-y ) = inf viu-w ) -
IV( M2y et IV( N z2cyiye)

As on C\Cy Lemma 5.17 gives the correct decay estimate, it remains to construct a function W
such that the same decay estimate holds on Cy.
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Here, we use W(x,y) = n(y)U(x,y) with the piecewise affine cut-off function n given by

1, 0<y<?¥
ny)=43$¥-y), F<y<y
0, Y <y,

which satisfies |n| < 1, |n/| < % and therefore

4

V(L =) <2 (|0 PIUP + (1= n)*|VU?) <2 <y2

u* + \VU|2> .

With the weighted Poincaré inequality, we estimate
2 1 Y a7 42 Y « 2
||V(Z/{ — W)”LQ(Cy;yD‘) ,S ﬁ y U dx dy + Yy ’VU| dx dy
y/2Ja v/2Ja

Yy
5/ /ya]VU|2dx dy.
y/2/9

In the same way as in the previous lemma, we can exploit (5.9) as well as the properties of the
Bessel-functions to write

% 0 0
| [ evurs dy =3 Py wi o)
Y/2 70 k=1 Y
Se VIR g,

which finishes the proof. |

5.4.4 FEM — a-priori Analysis

Again, we employ a Galerkin discretization of (5.10). In order to do that, we have to introduce a
grid and discrete space on Cy.

Let T be a regular, shape-regular mesh on €, and Pg(75) the already introduced space of piecewise
affine functions with zero boundary conditions.

Moreover, we decompose the interval [0,)] = U%:_Ol I, where I, := [Ym,Ym+1] are subintervals
with y; < y;j41 for all j € {0,..., M}, and we denote the set of all intervals by Iy := {I, : m =
0,...,M—1}. We note, that we — on purpose — have not specified the points y; and that anisotropy
in y-direction will be allowed.

Now, a grid on Cy can be defined in a tensor-product fashion, i.e., 7y = Tq ® Iy, which means that
all elements 7" € Ty have the form T'= K x I with K € Tg and I € Iy.

On the grid 7y we define the discrete FEM-space
V(Ty) :={W e C%Cy) : Wlr e PHK)@P (I)VT' = K x I € Ty, W|gox(0,00) = 0= Wlax(y} } -

For the discrete space V(7y), we immediately have the following properties:
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o tro V(Ty) = Ps(Ta);
o V(Ty) € H'(Cy;y®);
o #Ty = M#Tq, so if #To ~ M?, we have CM*! elements and degrees of freedom.

The discrete Galerkin formulation reads as: finding V}, € V/(7y) such that
/ y*VVy, - VWhdzx dy = cs(f ; trq Wp) YW, € V(Ty). (5.12)
Cy

Existence and uniqueness again follow from the Lax-Milgram Lemma. Moreover, the Galerkin-
orthogonality again gives the Cea-Lemma

IV = Vall g inf [V = Wl gy

Cvr: a) S
vy WheH (Cyy®)

Therefore, the a-priori convergence depends on the approximation properties of the discrete space
V(Ty), which is discussed in the following proposition from [NOS15].

Proposition 5.18 (anisotropic interpolation).  There exists a quasi-interpolation operator
Iy, : L*(Cy;y®) — V(Ty) that satisfies forall j=1,...,d+1 and T = K x I € Ty that

W — HTyWHLQ(T;yO‘) S hKHvﬂCWHL2(wT;yO‘) + h[HayWHLQ(wT;yO‘)
Hax] (W - HTyW)HLQ(T;yO‘) S hK”vxaijHLQ(wT;ya) + hIHayanWHLQ(wT;yQ)

provided W is smooth enough that the right-hand side exists. Here, xq+1 =y denotes the extended
variable and hi, hy the diameters of K and I, respectively.

We use this proposition for two different types of meshes to derive a-priori rates of convergence. In
the following, we only sketch the ideas of the proof, for details, we refer to [NOS15].

We start with a quasi-uniform mesh, i.e., every element 7' € Ty satisfies h ~ h. Then, for the
solution V of (5.10) and y > 2h, the previous proposition implies

Yy y
/2 0y =TI V) gy 5 1 /h o (100 V 220y + Va0V B ) dy- (5.13)

Using the regularity estimates of Section 5.4.2, we can bound the first term on the right-hand side
by

y Yy
2 /h V10V gy < 1 sy /0 Y2110 VIBa oy S B 2
SYS

as > 2o+ 1 > « allows to estimate y®? by powers of h. For the second term in (5.13), we can
directly imply the regularity estimate to obtain

y Yy
WAyW%@W%@@SWAQWW@W§®@5MU%qm
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On the elements in © x [0, k] and € x [h, 2h] one can use the stability of Il7;, as well as 9,V ~ y=¢
to estimate

2h 2h
/0 Y 10,(V = Ty V)22 dy /0 Yy ~ B

Since 2+ a — B < 1 — a, choosing 8 = 2a 4+ 1 + €, we arrive at the following a-priori estimate

HV(V - Vh)HLQ(Cy;ya) S hs_aHfHﬁl—s(Q)-

This estimate indeed is sharp, but sub-optimal as only a rate of h® is achieved compared to a rate
of h for the FEM for the classical Laplacian.

The problem hereby lies in the missing regularity of d,,). However, this can be compensated by
using graded meshes only in y-direction. With a grading parameter v, we choose the intersection
points

ymZ(%)WJJ m=0,..., M.

Using the Cea-Lemma together with the anisotropic interpolation result as well as the exponentially
decaying truncation, we arrive at the following proposition.

Proposition 5.19. Let Ty = Tq ® Iy, where Iy is a graded mesh with parameter v > % Let
U be the solution of (5.8) and Vj, € V(Ty) the FEM-approximation of the truncated problem at
Y > 0. Then,

IV @ = Vi)llz2eyey S €Y 41l aesqy + Y FET) D fll e -

Choosing Y ~ log(#7y) balances both terms and gives
IV = Vi)ll 2y S osH# I #T) ™ TV F 12y,

which resembles — up to the logarithmic factor — the classical a-priori estimate for the FEM applied
to the Laplacian in d + 1-dimension. However, the usual problem was posed on Q C R%, i.e. in d
dimensions, the exponent is still suboptimal due to the added “artificial” dimension. Doing some
more advanced hybrid hp-FEM this can also be corrected.
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Chapter 6

Dunford-Taylor Approach

6.1 The Dunford-Taylor Definition
The starting point for the Dunford-Taylor calculus is Cauchy’s integral formula, which states that

fo =L [ 1

C2mi Jpz—¢C

dz,

where the contour D is a rectifiable Jordan curve oriented such that f is holomorphic on the right
of D and ( is also on the right of D.

Now, the Dunford-Taylor calculus formalizes using this representation as an operator valued integral
for T being a linear operator between two Hilbert-spaces

1 [ f(?)

——d
2mi Jpz—T =

1) =

where the spectrum of T lies on the right of D and does not touch the contour. For more details
about the Dunford-Taylor calculus, we refer to [Yos80].

6.1.1 The Spectral Fractional Laplacian

Using this approach for the negative Laplacian (—A), we may define the solution operator for

(=A)su = f as

u= () = o [ e 8 e
D

27

where the contour is chosen such that the negative real axis (as well as a neighborhood of the
origin) is on the left-side. Deforming the contour onto the real axis gives the so-called Balakrishnan
formula

sin(sm)

(=A);°f = /Ooo P (= A fdp. (6.1)

™
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Inserting an eigenfunction ¢ of (—A) into this representation and using the transformation u = At
indeed gives

_ sin(sm) <1 sin(sm) | _ /OO o 1 _
—A)fp= S———dp = A8 t7——dt=\"°
(=A)5%¢ - w/o W N A e @,

which coincides with the spectral definition.

In the following, we present a numerical method based on the Balakrishnan formula, which consists
of two parts:

e Quadrature for the integral in the variable u;

e FEM in the variables = to approximate (y— A)~! in the quadrature points on the same mesh
for all quadrature points.

Using the transformation p = e¥ in (6.1), we get

: 00
u= (—A)zsf = SmeT) / =9V T — A)~Lfdy. (6.2)
™ —0o0

In order to approximate the integral, we use so-called sinc-Quadrature, which we briefly intro-
duce.

Let f be an entire function that additionally satisfies for fixed k£ > 0 |f(2)| S K exp(%) (which
allows the application of the Paley-Wiener theorem), and additionally assume f € L'(R). Then, f
can be expanded in a sinc-series

_ i £(jk) sinc (Z _kjk> sine(z) = S22

z

j=—o0

Using this expansion, we can integrate over the real-axis, interchange integration and summation
(since f € L'(R)) to obtain

/_Zf(t) Z fjk/ smc( _Jk) Z fjk/ smc(%)ds

j=—oc J=—o0

Truncating the sum gives the sinc-quadrature approximation.
More precisely, for N € N set k := \;—N and y; := jk and applying the formula to (6.2) gives the
approximation

N
N:QNf_Sln Z 1syjey]]— A) f

The most important aspect of this quadrature approximation is that — in our setting — we obtain
exponential convergence, see, e.g., [BP15].
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Proposition 6.1. Let r € [0,1], f € H"(Q), and u solve (—A)Su = f. Then,

lu = UM grien S €Nl o
() ()

Proof. The proof uses the decay properties for |x| — oo as well as the holomorphy of the integrand
27%(z — A)~L. For details, we refer to [BP15]. [ ]

The FEM part is done similarly to Chapter 5. Let 7 be a regular, shape-regular triangulation
of Q and P(T) the space of piecewise affine functions on 7. We define the discrete Laplacian
~A s PY(T) = PA(T) by

/(—AT)vhwhdm = / Vo, - Vupdz Yy, € PAHT).
Q Q

In order to be able to apply the discrete Laplacian to the function f, we need to first project
this function onto the discrete space by using the L?-orthogonal projection Iy : L?(Q) — P&(T)
defined as

(70 3 wa) oy = (V5 w2y Vwn € Po(T).

With the discrete Laplacian, we can define the FEM-approximation of (6.2) by

ur = sm(sw)/ U= (VT — Ao fdy.

m —00

Combining both the sinc-quadrature approximation and the FEM approximation, we arrive at a
fully discrete approximation

sin

Uy =

N
(s7r)k Z eI (¥ [ — Ay) I f,
T j=—N

which approximates the solution of (—A)Su = f with rates specified in the following theorem.

Proposition 6.2. Let Q be conver, s € (0,1) and f € H2~25(Q). Then,

I = UF |y < Cllog bl (07211 a-negy + € 1) -

Proof. The proof combines the approximation results of the sinc-quadrature and FEM by using
some eigenspace decomposition, which can be found in [BP15]. [ |
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Remark.

e Choosing N ~ |log(h)| equilibrates both error terms. In fact, using a quasi-uniform mesh
with mesh-size h ~ (#7)~'/¢ gives the error bound (up to a constant depending polynomially
on |loghl|)

ot = U ey S 027 ey = (T~

Comparing that to the FEM for the Caffarelli-Silvestre extension problem, where we had
rates of (#7) /(@) or (#7)~1/? with more involved methods, we obtain better rates here.
However, higher regularity f € H 2-25(Q)) was imposed, which translates to u € H 2(Q), which
is not generic regularity. Nonetheless, compared to the FEM for the extension problem higher
rates with linear polynomials are possible, whereas additional regularity for the extension
problem does not give better rates than (#7')_1/ d.

e Assuming only f € H 1=5(Q), the Balakrishnan sinc-quadrature approach also reproduces
convergence order (#7)~1/4,

e The construction of the approximation is such that in each quadrature point y;, 7 =1,..., N
a FEM approximation U; solving e% (I — A7)U; = Ill7f has to be computed. In practice,
often N = 20 is used, and standard FEM-codes can be used to compute U;. Moreover, these
problems are completely decoupled of each other and can be perfectly parallelized.

6.1.2 The Integral Fractional Laplacian

A direct definition like (6.1) is not possible for the integral fractional Laplacian, as the spectrum
does not need to be positive and the Dunford-Taylor calculus can not be justified.

However, using the Fourier definition of the fractional Laplacian, we can derive a different repre-
sentation. We have with Plancherel’s formula

D@ =00, [ Al
a(u, ds/Rd/Rd ’x_y’(ms ddy= [ (A u@u@ds (63)
= [ P 0@Fed = [ 1@ Felddc. (6.4)

R4

Using Parseval’s theorem, we can write

I |
[ F T = [ (800 - w28 o) wiei

which leads, using the transformation ¢ = /(| to

o] K‘Q 1—2s

1o B ~2A) . ”
C [Tt [ )= a) ) w@drdu = €. | Fu)OF <<>/0 e

00 |<’2st1723

[ — 2s T .
= o) / 2 F () () FaQ)de
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Choosing Cys = 23%(”) and inserting this into (6.3), we obtain a different representation for the
bilinear form af(-,-)

™

a(u,w) = Zsin(s) /000 pt—2s /Rd(—A)(I — 12A) " u(z) w(z)dx dp.

Again, sinc-quadrature can be employed to approximate the integral on the right-hand side. How-
ever, this leads to a non-conforming method with approximative bilinear forms, which can be
analyzed by Strang-type estimates. For details, we refer to [BLP19].
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Appendix A

Some Facts from other Lectures

In this appendix we collect some results from other courses which are used throughout.

A.1 Abstract Existence & Uniqueness Theorems

This section concludes the mathematical framework which allows the prove the unique existence of
solutions of partial differential equations and integral equations. Everything is stated in the context
of elliptic problems. We start with the so-called Lax-Milgram lemma which states that an elliptic
operator A € L(X; X*) is an isomorphism. We prove the lemma for reflexive Banach spaces X and
show that the reflexive Banach space X is isomorphic to a Hilbert space provided A is elliptic and
symmetric.

Theorem A.1 (Lax-Milgram Lemma). Let X be a reflexive Banach space and A € L(X; X™)
be an elliptic operator, i.c.

x|k < (Axs2) forallx € X. (1.1)

Then, A is an isomorphism. In particular, given z* € X*, there is a unique x € X such that
Ax = z*. Moreover, if A is a symmetric operator, i.e.

(Az s y) = (Ay ;s x)  for all z,y € X, (1.2)

the bilinear form (x ; y) := (Ax ; y) is a scalar product, and the induced norm ||z|| := (z ; x)'/?

1$ an equivalent norm on X.

Throughout this section, we are going to use the following observation.
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Lemma A.2.

(i) Let X and Y be normed spaces and A € L(X;Y) be an operator with o :=
inf,ex |Az|ly/||z|lx > 0. Then, A is injective and the well-defined operator A~!
range(A) — X is continuous with ||[A™Y|| < a™', i.e. A is an isomorphism between X
and range(A) <Y.

(ii) If X andY are Banach spaces, A is an isomorphism if and only if a > 0 and A* € L(Y™*; X*)
18 injective.

Proof. (i) Note that non-injectivity of A implies & = 0. Thus, A is injective and A~! : range(A) —

X. The equality ||[A~Y| = a~! follows from elementary calculations:
A A1 -1
o= g 1A e gy BTy
reX HxHX yErange(A) ”A yHX yErange(A) HyHY

(ii) Let A be an isomorphism. First, there holds a~! = ||A~!|| > 0. Moreover, A* is an isomorphism
as well. Conversely, & > 0 implies that A is an isomorphism between X and range(A) < Y*. In
particular, range(A) is a closed subspace of Y*. Therefore, we may apply Banach’s closed range
theorem to obtain

range(A) = ker(A*)°.
Thus, ker(A*) = {0} implies range(A) =Y. [

Proof of Theorem A.1. 1. step. A is an isomorphism: The ellipticity of A implies

A *
« = inf 7” 7llx

> 0.
weX ||z||x

It thus remains to prove that ker(A*) = {0} by use of the reflexivity of X. Let 2** € ker(A*) and
r € X with 2™ = I'xx, where Ix : X — X*™ is the Hahn-Banach embedding. Then,

lz|% < (Az; x) = (2™ ; Az) = (A"2™ ; 2) =0,
which yields z = 0 and thus #** = Ixyz = 0. Therefore, range(A) = X*, which concludes the first
step.

2. step. (- ;-) is a scalar product: Linearity and symmetry of - ;-) are obvious. It remains
to prove that (- ;-) is definite, i.e. (z ; ) = 0 implies x = 0, which obviously follows from the
ellipticity of A.

3. step. |- | is an equivalent norm on X: From the continuity of A, we derive ||z|? =
(Az ; z) < ||Az|x+||z|lx < ||Alllz||%. The converse estimate follows from the ellipticity of A,
namely [lz|[% < (Az ; z) = ||l=]|*. u

Before we proceed, we state the Lax-Milgram lemma for bilinear forms. We stress that — with
respect to the Riesz theorem for Hilbert spaces X — the Lax-Milgram lemma does not need the
symmetry of the bilinear form a(-,-).
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Corollary A.3 (Lax-Milgram).  Let a(-,-) : X x X — R be a continuous bilinear form on
a reflezive Banach space X which is reflexive, i.e. ||z||% < a(z,z) for all x € X. Then, given
[ € X*, there is a unique v € X such that a(z,-) = f.

Proof. We consider the operator A € L(X; X*) defined by Az := a(x,-) which is continuous and
elliptic. Thus, the claim follows from Theorem A.1. [ |

One generalization of the Lax-Milgram lemma is to consider linear problems with side-constraint.
This leads to so-called saddle point problems. The following theorem states the unique solvability
of a saddle point problem. There are more general formulations proven by Brezzi. However, this
formulation should be strong enough for the lecture.

Theorem A.4 (Brezzi). Let X be a Hilbert space, Y a reflexive Banach space, a : X x X — R
and b : X xY — R a continuous bilinear forms. Define X¢y 1= {x c X } b(xz,-) =0 € Y*} and
assume that a(-,-) is Xo-elliptic, i.e.

vk < a(v,v)  for allv € X,. (1.3)
Moreover, we assume
Vy*eY*3xr e X b(x,-) =y". (1.4)

Then, given (z*,y*) € X* x Y*, there is a unique solution (z,y) € X x Y of the saddle point
problem

_ o *
Z((f)) t H0) _ Zj :f (1.5)
In particular, the element x € X satisfies the weak form
a(z,) =2" € Xj. (1.6)
Remark. With By € L(X;Y™) defined by Bjz := b(x, -), the assumptions (1.3)—(1.4) read
e a(-,-) is elliptic on Xy = ker By,
e B is surjective.
We hope that the reader may keep this (abstract) formulation in mind much easier. |

Sketch of Proof. Let (x,y) be a solution of (1.5). We decompose = = x; + x2 with z; € X and
73 € Xy . Note that there hold

b(xe,:) =blz,")=y" €Y™, a(xy,)=2"—a(r,-) € X;, and b(-,y)=2"—a(z,:) € X".
Thus, we first prove that

zy € Xy b(xy,) =y* e Y™ (1.7)

122



APPENDIX A. SOME FACTS FROM OTHER LECTURES

The next step is to prove that
Az € Xo a(zr,-) =2" —a(za,-) € Xj. (1.8)

Defining 2 = x1 + x2, we thus obtain a solution of (1.6) and b(z,-) = y* € Y*. Moreover, z is in
fact the unique solution which solves these two equations. Finally, it remains to prove

AyeY b,y =" —alx, ) e X" (1.9)

This last step is slightly involved and is based on operator techniques. |

Proof of Theorem A.4. The proof is split into several steps:

1. step. We first prove (1.7): According to (1.4), there is an element € X with b(z,-) = y* € Y.
Since Xy is a closed subspace of the Hilbert space X, there holds X = Xq ® XOL. Thus, there are
71 € Xo and 75 € Xd- with Z = 71 + Z2. With the definition of X, there holds b(Zs,-) = y*.
If 29 € XOL also satisfies b(Z9,-) = y*, there holds zy — Ty € XOL N Xo = {0}. Altogether, this
concludes the proof of (1.7).

2. step. Second, we prove (1.8): We may apply the Lax-Milgram lemma to the operator A; €
L(Xy, X(}) defined by Ajz1 := a(z1,-). Therefore, there is a unique x; € Xy such that

a(ry,) = 2% — a(r,-) € X
3. step. We define z := x| + 2 and observe
a(z, ) —a* € (Xo)° == {z* € X*|Ww e Xy 2*(v) =0}.

4. step. We now prove (1.9): To that end, we consider the operators B; € L(X,Y™) and
By € L(Y, X*) defined by Bz := b(x,-) and Bay := b(+,y), respectively. We now prove that

Bj is injective and By = Bj o Iy is bijective onto (Xp)°.

According to (1.4), the operator Bj is surjective, and, in particular, the range of B is closed.
Consider the adjoint operator B € L(Y**, X*). Now, let y** € ker(Bj). For z € X, we have
y**(Bix) = (Biy™)(x) = 0, whence ker(B}) C (range(B1))° = {0} as range(B;) = Y*, i.e. Bf is

injective. By definition of the adjoint operator, we have

Biy™(z) =y (Biz) = (Biz)(y) = b(,y) = (Bay)(x)
for any y € Y and y** = Iy (y) with Iy : Y — Y** the Hahn-Banach embedding. As Y is reflexive,
Iy is an (isometric) isomorphism. Thus, By = Bj o Iy is injective and range(Bs) = range(B7). As
the range of Bj is closed, we may apply Banach’s closed range theorem to infer
range(Bs) = range(B]) = (ker By)° = (X0)°.

Altogether, By : Y — (X()° is an isomorphism, and there is a unique y € Y such that

b(-,y) =2" —a(x,-) € (Xo)° < X", (1.10)
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5. step. The constructed (z,y) € X x Y solves (1.5): The equality a(x,-) + b(-,y) = z* € X*
follows from (1.10). The side constraint follows from y* = b(x2,-) = b(x,-). We have therefore
proven the solvability of (1.5), and it remains to prove the uniqueness of solutions.

6. step. Let (7,7) € X x Y solve (1.5). We decompose & = 1 + T2 with 71 € X and 79 € X
Then, y* = b(z, ) = b(Z2, -) and therefore x = Ty according to step 1. As b(-,y) = 0 € X, we have
a(zy,-) = x* —a(xg,-) € X and thus x; = 77 from step 2. Finally, we obtain 2* — a(x,-) = b(-, ).
Since the left-hand side is in (X()°, we obtain y = y from step 4. |

Remark. In general, step 2 of the proof only needs that the operator Ay € L(X; X™) defined by
Az = a(x,-) is an isomorphism A; € Iso(Xp; X§). This is usually stated in the so-called LBB-
condition, cf. Exercise 3.

Moreover, the theorem holds if X only is a reflexive Banach space as was proven by Brezzi in 1974.
However, the proof is then much more involved since one may not use the orthogonal decomposition
X =Xo® X4 0

Ezxercise 3. Let a(-,-) be a continuous bilinear form on a reflexive Banach space X. Prove that
Ay € L(X; X*) defined by Ajz := a(x,-) is an isomorphism if and only if it satisfies the inf-sup
condition

a(v, w)

a:= inf sup ————— >0 (1.11)
veX\{0} wex\{o} Ilvllxllwllx

and the non-degeneracy condition
Vw € X\{0}3v € X\{0} a(v,w) #0. (1.12)

(The combination of both conditions is also called LBB-condition and named after Ladyshenskaja,
Babuska, and Brezzi.) O

A.2 Lebesgue Spaces

In this section, we recall the most fundamental result for the Lebesgue integral, the dominated
convergence theorem.

Theorem A.5 (Lebesgue Dominated Convergence Theorem). Let 2 be a measurable
subset of RY and (f,) a sequence in L'(Q) which converges to a function f : Q — R U {£oo}
pointwise almost everywhere in ). Provided there is an integrable function g € L*(Q) with |f,| < g
pointwise almost everywhere, there holds f € L'(Q) and convergence of the integrals

lim [ f,dx= / fdz, (1.13)
1.e. one may interchange integral and limit. |
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Ezercise 4. Let Q be a measurable set in R? and f € L'(Q). For fixed x € Q, define Q. :=
O\ B:(z). Then, there holds liH(l) Jo. fdx = [, fdx. O
e— €

In the following, we prove the Lebesgue differentiation theorem which implies that an LP-function
is uniquely defined by its integral means, cf. (1.15). We state the theorem for L} -functions, but
we stress the inclusion LP(Q) C LY () C L}, .(Q) for any 1 < p < oo, which follows from the
Hoélder inequality.

Theorem A.6 (Lebesgue Differentiation Theorem). Let Q C R? be an open set and
uw € L} (). Then, there holds

lim lu(z) —u(y)|dy =0 for almost every x € Q. (1.14)
e—0 Bg(m)

In particular, we have

u(z) = lim u(y)dy  for almost every x € . (1.15)
e—0 Be(x)

We remark that the points x € Q, for which (1.14) holds, are called Lebesgue points of w.

A.3 Convolution

For measurable functions u, v : R* — R on the entire space, we define the convolution

(uxv)(z):= / u(z — y)v(y)dy pointwise for = € RY, (1.16)
Rd

if the integral exists. The substitution z = x — y yields

(u*v)(z)= / u(z)v(x — 2)dz = (v*u)(x), (1.17)
Rd
i.e. convolution is a commutative operation. Moreover, convolution is associative

(u*v) xw)(z) = (u* (vw))(z) (1.18)

as follows from the same kind of direct calculation as the commutativity. Throughout this section,
the integration domain will be R? and is hence omitted. In particular, we abbreviate LP = LP (]Rd),
Co = Co(R?) (for continuous functions with compact support), etc. For 1 < p < oo, we denote
with p’ :==p/(p — 1) € [1,00] the conjugate index, i.e. 1/p+1/p’ = 1.

Theorem A.7 (Young Inequality). For 1 <p,q,r < oo with 1 é =1+ % and functions
u € LP and v € L9, there holds uxv € L" with |Juxv|/pr < ||uHLpHU|qu.

Proof. The case r = oo has to be treated separately: For ¢ = p/, there holds

jwro@)] = | [ute =) ds] < lolls( [ lute - ) ay) " = s ol
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according to the Holder inequality and the translation invariance of the Lebesgue integral. There-
fore, we may restrict to r < co. According to the Hahn-Banach theorem, we have to prove that

(w5 ux*v)| < ||lwl|||ullre||v]|re  for all w € L (1.19)

as L' is the dual space of L” for 1 <r < co. For w € L" define @(z) := w(—x) and observe

wxuxv(r) = /15(3: —y)u*xv(y) dy.

Thus,
(w5 u*v) :/{E(—y)u*v(y)dy:{b*u*v(()).
Define fi := |ul?/||[ulby, f2 = [v|7/|v]|%, f3 := |@|" /||@|",, and observe that f; € L' is non-
negative with norm || f;||,» = 1. Using ||w||,» = ||w|| ./, we have
[(w 5 uxv)| |w s u* v(0)] 1 1 1
= = S AR ), (1.20)
[ullzollvllzallwl e Nullzellollzallwll g

and it remains to show that the right-hand side is bounded by 1: To that end, we consider the
function g : [0,1]3 — R,

gA) == fx 2 //f —2) Qg(z)dzdy for A = (A1, A2, A3).

For scalars a; > 0, there holds

ata)? a§3 = exp (Z)\ log(a; )

and the exponential function is convex. We apply the convexity estimate pointwise for the integrand
to see, that g is a convex function. We now consider \ := (1/p,1/q,1/7") € R3. Note that

3 3
1-X>0 and Y (1-X)=3-) )=

Jj=1 j=1
We define ¢; := (1,1,1) — e;, where e; € R? is the standard unit vector. Note that

3

3
g(ej) =1 as well as Z(l - Xj)e; =(1,1,1) Z j)ej = A

j=1 7=1
From convexity of g, we infer

3
<> -Ae@E) =1,

J=1

which proves that the right-hand side of (1.20) is bounded by 1. |

126



APPENDIX A. SOME FACTS FROM OTHER LECTURES

Remark. We shall later see as an exercise that ¢ = p’ and thus r = oo does not only imply
u* v € L but also uniform continuity of u * v. O

Theorem A.8. Letl <p<oo,u€ LP, keNy, andv € C’(’f. Then, uxv € L1 for allp < g < o0
and ux v € CF with 9%(u x v) = u* 0%, where a € N¢ is a multi-index with |a| < k. Moreover,
w* v and its partial derivatives up to order k are uniformly continuous on RY.

Proof. 1. step. The claim uxv € L" for all p <r < oo follows from Young’s inequality as v € L?
for all 1 < ¢ < oo: Given 7 € [p,00], one may choose g € [1,00] such that 1 —1/¢ =1/p—1/r as
the right-hand side is non-negative. Now, 1/p+1/¢ =1+ 1/r, whence uxv € L".

2. step. Next, we prove that each function v € Cy is uniformly continuous on R, i.e.
Ve > 030 > OVz,y € RY (Jz —y| < 5= |v(z) —v(y)| <e).

Let R > 0 be large enough such that supp(v) C Br(0) and let € > 0. As v is uniformly continuous
on the compact set B3r(0), we may choose § > 0 such that

Vz,y € Bsr(0) (Jz—y| <= |v(z) —v(y)| <e).

Without loss of generality, we assume 6 < R. For z,y € R? with |z — y| < §, there holds either
|| < 2R and thus |y| < |z| + |z — y| < 3R, whence |v(z) —v(y)| < €, or |z| > 2R and thus
ly| > |z| — |x — y| > R, whence v(z) =0 = v(y).

3. step. For v € (), the convolution u * v is uniformly continuous, i.e.
3C > 0Ve > 035 > OVz, 29 € R? (| — xo| <6 = Juxv(z) —uxv(zo)| < Ce).

For x,xo € R?, the Holder inequality yields
jwro(e) —wroleo)| = | [ ul) (o~ 9) - viao 1) dy]

o (1.21)
/ /p

< lullr ([ lota =) = ol — )1 dg) "
For y ¢ Bsr(0), there holds |xg — y| > 2R > R, whence v(zg — y) = 0. Moreover, provided
|z — x| < R, there holds |z — y| > |xo — y| — |zo — 2| > R, whence v(z — y) = 0. Therefore, the
integrand on the right-hand side of (1.21) has compact support C Bag(xg). — For € > 0, choose
§ > 0 according to the uniform continuity of v on R% and assume that § < R. Provided |z —x¢| < 6,
we obtain |v(x —y) — v(zxg — y)| < € and therefore

jux v(z) = wx o(ao)| < |[ull 1o Ban(wo) 7' = Jull | Bar(ao) 7z,

i.e. u * v is uniformly continuous.

4. step. We prove the theorem for k = 1: According to the last step u x 0ju € C, and it remains
to prove that u * v is differentiable with 0;(u * v) = u* d;v. Consider the difference operator Ay,
defined by

w(x + hej) — w(z)

Apw(x) = o

for scalars h # 0.
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We then have to show
3C > 0Ve > 036 > OVh € R (|h] <0 = [Ap(u*v)(z) — ux djuv(z)| < Ce).
First, note that Apv € Cy for fixed h > 0. Let = € R be fixed. Then,
[Ap(uxv)(x) —ux0ju(z)| = |ux (Apv — Ojv)(z)|

< HuHm(/ |Apv(z —y) — Ojv(x — y)|p/ dy) l/p’. (1.22)

With the same arguments as in step 3, the support of the integrand on the right-hand side is
contained in the compact ball Bogp(z) for |h| < R. For fixed y € Bag(x), there holds

lim Apv(z —y) = 9ju(z —y).
Thus, for given £ > 0, there holds
Vy € Bar(0)36, > OVh € R (|h] < 6y = |Apv(z —y) — Oju(z —y)| < ¢).

Without loss of generality, we assume J, < min{éAhv,éajU}, where 04,09, > 0 are chosen
accordingly to the uniform continuity of Apv and Ajv, respectively. By compactness, there is a
finite set F' C Byg(x) such that Bag(x) € J{Bs,(y) |y € F}. Choose § := min {6, |y € F}. For
arbitrary y € Baog(x), there is an y € I with |y — y| < é5. Thus, for |h| < 4, there holds
|Anv(z —y) — djov(z —y)|

< [ Ano(@ — y) — Ano(a — §)] + [Buv(@ = §) — dyo(z — )| + B0(z — §) — dyo(a — )

< 3e,
where the first and the last term are estimated by the uniform continuity. Now, (1.22) becomes

|Ap(u#v)(x) — u* Opu(x)| < 3lulle| Bar(z)| 7 e.

5. step. The case of arbitrary £ € N now follows from induction. |

We finish this section with a slightly different formulation of the previous result, which can be
proven with similar techniques.

Lemma A.9. Let @ C R? be a bounded open set, f € L>(R), and g € L}, (R?). Then,
g* [ € CRY). Moreover, if g € C*(RY), there holds g * f € C*¥(R?) with 0%(g * f) = (0%g) * f.
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