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Chapter 0

Introduction

The aim of this lecture is to provide the necessary mathematical foundations for the master studies
Computational Science and Engineering.

The main focus is to introduce the fundamental concepts of vector calculus, line and surface inte-
grals, integral transformations, (partial) differential equations, calculus of variations and complex
analysis. Apart from the precise theoretical statements, the aim is to present possible (physical)
applications and examples of the theory.

These lecture notes are based on the assumption that the reader is familiar with concepts of

• analysis: real and complex numbers, functions, series and limits, continuity, differentiation
and integration in one variable;

• linear algebra: basic set theory, vectors (in Rn) and matrices, solution of linear systems of
equations, computation of eigenvalues.

Since this lecture is concerned with differentiation and integration in more variables, a short intro-
duction into the 1D-concepts are given to recall the basics and fix notations.

The lecture notes draw material from the books

• Mathematical Methods for Physics and Engineering (by Riley, Hobson and Bence)

• Higher Mathematics for Physics and Engineering (by Shima, Nakayama)

as well as from some basic mathematics lectures at TU Wien. The books mentioned above actually
contain way more information and many interesting examples and applications for the interested
reader.

This is version 2 of the lecture notes, which were originally written during the winter term 2020/21.
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Chapter 1

Vector, Banach and Hilbert spaces

1.1 Scalars

We call real or complex numbers α scalars. We use the notation K, to denote either the real
numbers R or the complex numbers C, when both choices are possible.
Moreover, we call functions f mapping into K scalar valued or scalar functions.

1.2 Vector spaces

In the following, we introduce the abstract concept of vector spaces.

Definition 1.1 (Vector space). A set V is called a vector space, if the following three
properties hold:

1. There is an operation + such that x+ y ∈ V for all x, y ∈ V and

x+ y = y + x.

2. There exists an identity vector in V (denoted by 0 and also sometimes called neutral element)
that satisfies

x+ 0 = 0 + x = x.

3. For every x ∈ V and scalar α ∈ K (either in R or C), we have αx ∈ V . Moreover, for all
x, y ∈ V we require

α(βx) = (αβ)x 1(x) = x

α(x+ y) = αx+ αy (α+ β)x = αx+ βx.

The elements of a vector space are called vectors. If scalars are taken from K = R we speak of
real vector spaces, if scalars are allowed to be complex, i.e., K = C we speak of complex vector
spaces.

We note that (see the following example) the Euclidean space Rn (often visualized with geometric

3



CHAPTER 1. VECTOR, BANACH AND HILBERT SPACES

arrows also called ”vectors“) is an example of a vector spaces. The concept of vector spaces is more
general as a set with an algebraic structure.

Example.

1. The space Rn of real (column) n-tuples

x =


x1

x2
...
xn



is a vector space, where the operation + is the componentwise addition and αx =

αx1
...

αxn


for real scalars α ∈ R.

2. In the same way is the space Cn of complex n-tuples a vector spaces, where the scalars α can
also be chosen from C.

3. The set of all real polynomials of fixed degree n ∈ N

Pn :=
{
anx

n + an−1x
n−1 + · · ·+ a0 : ai ∈ R ∀i = 0, . . . , n

}
is a real vector space. �

1.3 Banach and Hilbert spaces

In many applications (and theoretical results) it is required to have a quantitative measure of the
size of objects or the distance between two objects. In the space Rn this is usually done by using
the absolute value |x| :=

√
x2

1 + · · ·+ x2
n. In order to generalize this concept to other vector spaces,

we introduce the concept of norms to measure lengths.

Definition 1.2. A norm is a scalar-valued function ‖ · ‖ : V → R, which acts on a vector space
V , and satisfies

1. ‖αx‖ = |α| ‖x‖.

2. ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

3. ‖x‖ ≥ 0 for all x ∈ V and ‖x‖ = 0⇐⇒ x = 0.

A vector space V together with a norm ‖ · ‖ is called a normed vector space (V, ‖ · ‖).

Property 1 is called homogeneity, Property 2 is called triangle inequality and Property 3 is called
definiteness.

Norms allow the measurement of lengths, but not of angles, for which the concept of inner products,
which generalizes the scalar product x · y = x1y1 + · · ·+ xnyn in Rn, can be used.

4



CHAPTER 1. VECTOR, BANACH AND HILBERT SPACES

Definition 1.3. An inner-product (also called scalar-product) is a scalar-valued function (·, ·) :
V × V → K, which acts on tuples of vectors of a vector space V , and satisfies

1. (x, y) = (y, x)∗ = (y, x) (Here * and are two different notations for the complex
conjugation).

2. (αx+ βy, z) = α(x, z) + β(y, z) α, β ∈ K.

3. (x, x) ≥ 0 for all x ∈ V and (x, x) = 0⇐⇒ x = 0.

A vector space V together with an inner-product (·, ·) is called an inner-product space (V, (·, ·)).

Property 1. is called conjugate symmetry and for real vector spaces with scalars α, β ∈ R inner
products are by definition symmetric. Property 2. is called linearity and Property 3. is called
positive-definiteness.

An inner-product always induces a norm by defining

‖x‖ := (x, x)1/2.

However, not all norms are induced by an inner-product.

Example. On the space Rn, we already mentioned a norm induced by an inner-product, the
absolute value |·|, which is also called the Euclidean norm (or 2-norm)

‖x‖2 := |x| =
√
x2

1 + · · ·+ x2
n x ∈ Rn,

which is induced from the Euclidean scalar product

(x, y)2 := x1y1 + · · ·+ xnyn.

A norm that is not induced by a scalar product is the maximum-norm defined by

‖x‖∞ := max{|x1| , |x2| , . . . , |xn|}.

We also mention that on Rn all norms are equivalent, i.e., for two different norms ‖ · ‖a, ‖ · ‖b, we
have constants 0 < c ≤ C such that

c‖x‖a ≤ ‖x‖b ≤ C‖x‖a ∀x ∈ Rn.

In theoretical results the Euclidean norm ‖ · ‖2 is commonly used. However, in many applications
the maximum norm ‖ ·‖∞ is used, since e.g. engineers are more interested in the ”worst case” error
(so the maximal error) rather than a mean error. �

On inner product spaces we have (additionally to the ones of Definition 1.2) several important
geometric properties. In the following, let (V, (·, ·)) be an inner product space.

• Parallelogram law:
For all x, y ∈ V , we have

‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2).

5



CHAPTER 1. VECTOR, BANACH AND HILBERT SPACES

• Schwarz inequality:
For all x, y ∈ V , we have

|(x, y)| ≤ ‖x‖ · ‖y‖

and

|(x, y)| = ‖x‖ · ‖y‖ ⇐⇒ x = cy.

• Measuring of angles:
For all x, y ∈ V , we can define the angle α between the vectors x, y by

cosα =
(x, y)

‖x‖ · ‖y‖
,

which generalizes the formula in the Euclidean space by using the (general) inner product
and norm.

Schwarz inequality implies (x, y) ≤ ‖x‖‖y‖, which gives cos(α) ∈ [−1, 1], so the formula for
α is well-defined (up to the periodicity of the cosine).

• Orthogonality:
Let x, y ∈ V . We call x, y orthogonal, if

(x, y) = 0.

Note that using that in the above formula for the angle gives cos(α) = 0 or α = π
2 , which

coincides with the geometric interpretation of orthogonality as vectors which span an angle
of 90 degrees.

The concept of orthogonality is an important one in inner product spaces, as it allows us to establish
so called orthonormal bases that span the inner product space. We call a set of n ∈ N vectors
{x1, . . . , xn} orthonormal, if

(xi, xj) = δij ,

where δij is the Kronecker delta defined by δij = 0 if i 6= j and δij = 1 if i = j.
An example of a set of orthonormal vectors in the Euclidean space R3 is given by the unit vectors
ei, i = 1, 2, 3, give by e1 = (1, 0, 0)T , e2 = (0, 1, 0)T , e3 = (0, 0, 1)T .

Note that an orthonormal set is always linearly independent, which means that from

α1x1 + α2x2 + · · ·+ αnxn = 0

follows that α1 = α2 = · · · = αn = 0.

Example. The vectors

{(
1
0

)
,

(
2
0

)}
are not linearly independent, since

2

(
1
0

)
− 1

(
2
0

)
= 0,

6



CHAPTER 1. VECTOR, BANACH AND HILBERT SPACES

but α1 = 2 and α2 = 1 are not zero.

The vectors

{(
2
0

)
,

(
0
3

)}
are linearly independent, since

α1

(
2
0

)
+ α2

(
0
3

)
= 0

means that 2α1 = 0 (first component) and 3α2 = 0 (second component), so α1 = α2 = 0. �

Linear independency means that there is no ”redundant“ vector in the set {x1, . . . , xn} in the
sense that this vector can be computed from the other vectors by simple scalar multiplications and
additions.

Definition 1.4 (Basis of a finite dimensional vector space). A basis of the vector space
V is a set of linearly independent vectors {bi : i = 1, . . . , n} ⊂ V such that every x ∈ V can be
written as a linear combination of the basis vectors, i.e.,

x =
n∑
i=1

αibi.

The α1, . . . , αn are called the (unique) coordinates of the vector x with respect to the given basis
and n is called the dimension of the space V .
If the basis {bi : i = 1, . . . , n} is an orthonormal set, we call it an orthonormal basis.

Remark. With the help of the so-called Gram-Schmidt process, one can always construct an
orthonormal basis out of a given basis. The Gram-Schmidt process works as follows: Let {b1, . . . , bn}
be a set of linearly independent vectors of an inner-product space (V, (·, ·)). Then, one can construct
an orthonormal set {v1, . . . , vn} by the following algorithm:

v1 =
b1
‖b1‖

v2 =
w2

‖w2‖
with w2 = b2 − (v1, b2)v1

v3 =
w3

‖w3‖
with w3 = b3 − (v1, b3)v1 − (v2, b3)v2

...

vn =
wn
‖wn‖

with wn = bn −
n−1∑
i=1

(vi, bn)vi.
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CHAPTER 1. VECTOR, BANACH AND HILBERT SPACES

Example.

1. In Rn, the set of unit vectors {ei : i = 1, . . . , n} given by ei = (0, . . . , 0, 1, 0, . . . , 0)T are an
orthonormal basis. However, orthonormal bases are not unique. For example, in R2 both the

unit vectors e1 = (1, 0)T and e2 = (0, 1)T and the vectors b1 = 1√
5
(2, 1)T and b2 = 1√

5
(−1, 2)T

form orthonormal bases.

2. On the space Pn of polynomials of maximal degree n, a basis is given by the monomials
{1, x, . . . , xn}. Using the square-integral inner-product on (0, 1), i.e,

(p, q)L2 =

∫ 1

0
p(x)q(x)dx,

one can easily verify that the monomials are not orthogonal. Applying the Gram-Schmidt pro-
cess to the set {1, x, . . . , xn} produces a set of orthogonal polynomials, the so called Legendre
polynomials (exercise!). �

By definition, every set of n linearly independent vectors is a basis of a finite dimensional vector
space spanned by these vectors (here, spanned means the set of all linear combinations).

Not all vector spaces have a finite basis (i.e., there exists n ∈ N and n linearly independent vectors
that span the whole space). Those who do not, are called infinite-dimensional. In this lecture,
we are also concerned with countably infinite-dimensional spaces, for which we introduce
the concept of completeness. For finite dimensional spaces, the completeness of an orthonormal
set may be characterized by the fact that it is not contained in any larger orthonormal set. For
infinite-dimensional spaces, completeness is determined via the Cauchy-criterion1.

Definition 1.5 (Complete normed space (Banach space)). A normed space (V, ‖ · ‖) is
called complete, if every Cauchy sequence in the space is convergent in V .

Note that inner product spaces are also normed spaces, which gives rise to the following definition.

Definition 1.6 (Hilbert space). A complete inner product space (V, (·, ·)) is called a Hilbert
space.

In the following, we present some examples of infinite-dimensional Hilbert spaces and also present
an incomplete inner product space.

Example.

1. The space Rn (or Cn) with the Euclidean inner-product (·, ·)2 is a Hilbert space. In fact, any
finite-dimensional inner-product space is a Hilbert space.

2. The set of all square summable series (xn)n∈N with xn ∈ C, i.e.,∑
n∈N
|xn|2 <∞

1Reminder: A Cauchy sequence is a sequence (xm)m∈N of elements xm ∈ V such that for all ε > 0 there exists a
N0 ∈ N such that ‖xn − xm‖ < ε ∀m,n ≥ N0.

8



CHAPTER 1. VECTOR, BANACH AND HILBERT SPACES

is usually denoted by `2(N) and is a Hilbert space with the inner product

((xn)n∈N, (yn)n∈N)`2 :=
∑
n∈N

xnyn.

3. We also give an example of an incomplete inner product space V given by all real-valued
continuous functions on [0, 1] with the inner-product (·, ·)L2 . Defining the sequence

fn(x) =


1 if 0 ≤ x ≤ 1

2

1− 2n(x− 1
2) if 1

2 < x ≤ 1
2n + 1

2

0 if 1
2n + 1

2 < x ≤ 1 x

y

then one can easily check that (fn)n∈N is a Cauchy sequence, but it converges (pointwise) to
the function

f(x) =

{
1 if 0 ≤ x ≤ 1

2

0 if 1
2 < x ≤ 1 x

y

which is not continuous and hence not in V !

Similarly to Definition 1.4 we want to define a basis for general (infinite-dimensional) Hilbert spaces
(in fact, one can prove that every Hilbert space has an orthonormal basis). The crucial ingredient
here is the completeness of a given (infinite dimensional) set.

Definition 1.7. We call an infinite set {bi} in a Hilbert space V complete, if the only vector
in V that is orthogonal to all bi is the zero vector.

A complete orthonormal set {bi} in a Hilbert space (V, (·, ·)) is called a basis of V . For any x ∈ V ,
we have

‖x‖2 = (x, x) =

∞∑
i=1

|(bi, x)|2 .

This formula is also called Parseval identity.

Finally, we present some important properties and results for Hilbert spaces.

1. Pythagoras identity: Let x, y ∈ V be orthogonal (i.e., (x, y) = 0), then

‖x+ y‖2 = ‖x‖2 + ‖y‖2.

9
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2. Best approximation (closest point projection): Let S be a nonempty closed convex subset of
an Hilbert space V and x ∈ V be arbitrary. (S is convex ⇔ for all x, y ∈ S : every convex
combination tx + (1 − t)y ∈ S is in S for all t ∈ [0, 1]). Then, there exists a unique point
y ∈ S that minimizes the distance (norm) between x and all points in S, i.e.,

dist(x, S) := min{‖x− z‖ : z ∈ S} = ‖x− y‖.

If S is a complete sub space of V , then y is characterized by the property x − y ⊥ z for all
z ∈ S.

The name ”best approximation“ comes from the following idea: Take a finite dimensional
subspace Vn ⊂ V , then for a given x ∈ V there is xn ∈ Vn with minimal distance (”error“),
so you can approximate the space V by Vn. Since computers can only cope with finite
dimensional problems, this basic idea of general approximation techniques (e.g. for PDEs in
the next semester) is very useful.

3. Similarly as for a finite dimensional space, the inner product allows us to derive ”coordinates“
with respect to a given basis ei of the Hilbert space.

In R3 an orthogonal basis is given by the unit vectors e1 =

1
0
0

 , e2 =

0
1
0

 , e3 =

0
0
1

.

Then, for a given vector u ∈ R3, we can obtain its i-th coordinate ui by multiplication

ui = u · ei with the i-th unit vector, e.g., for u =

7
4
2

, we have

u2 = 4 =

7
4
2

 ·
0

1
0

 = 7 · 0 + 4 · 1 + 2 · 0.

Note that we have the representation u =
∑3

i=1 uiei. This idea directly translates to general
inner-product spaces and bases, since we can write

f =
∞∑
i=1

(f, bi)bi

and fi := (f, bi) is the i-th coordinate of f with respect to the basis bi and the inner-product
(·, ·).

10



Chapter 2

Differentiation and Integration

In this chapter, we recall differentiation and integration in one variable as well as generalize both
concepts to functions in multiple variables. Finally, we consider a different definition of integration,
so called Lebesgue integrals.

2.1 Differentiation in one variable

In this subsection, we consider scalar valued functions f : R→ R.

Definition 2.1. The derivative of f at a fixed point x0 ∈ R is defined as limit of the so called
difference quotient

f ′(x0) =
df(x)

dx

∣∣∣
x0

= lim
∆x→0

f(x0 + ∆x)− f(x0)

∆x
, (2.1)

where ∆x denotes a small perturbation of the input around x0. We call f differentiable at x0, if
the limit in (2.1) exists and we call a function differentiable, if it is differentiable at every point,
and write f ′ for the corresponding derivative (as a function).

Note that we allow ∆x to be positive or negative. In literature, oftentimes signs are fixed and the
limit is either taken from the left- or the right-hand side, and a function there is called differentiable
if the left- and right-limit both exist and are equal.

x

y

∆f

∆x

f

x+ ∆x

f(x)

x

f(x+ ∆x)

tangent

11



CHAPTER 2. DIFFERENTIATION AND INTEGRATION

Defining ∆f := f(x + ∆x) − f(x), we observe that close to x, the change ∆f the results from a
small change ∆x can be written as

∆f ≈ df(x)

dx
∆x.

Taking the limit, i.e. making the change ∆x infinitesimally small, which is denoted by dx, we
obtain the differential

df =
df(x)

dx
dx,

which relates the infinitesimally small changes of the function df to the infinitesimally small changes
in the argument dx (Note: this should be seen as notation).
If a function f : R → R is differentiable at x0, we can approximate it (closely to x0) by the linear
function g(x) = f(x0) + f ′(x0)(x− x0) (its tangent, see the drawing above). In fact, we can see

f(x0 + ∆x)− g(x0) = f(x0 + ∆x)− (f(x0) + f ′(x0)∆x) = ∆x

(
f(x0 + ∆x)− f(x0)

∆x
− f ′(x0)

)
︸ ︷︷ ︸

→0 for ∆x→0

,

so the approximation gets better the smaller ∆x gets (and the speed of convergence is at least ∆x).

In the same way, we can derive higher-order derivatives inductively by applying the limit of the
difference quotient to the derivative f ′, i.e.,

f ′′(x0) = lim
∆x→0

f ′(x0 + ∆x)− f ′(x0)

∆x
,

and we use the notation f ′ = f (1), f ′′ = f (2), . . . .

Example.

1. The function f(x) = x2 is differentiable in every point x ∈ R since

lim
∆x→0

(x+ ∆x)2 − x2

∆x
= lim

∆x→0

2x∆x+ (∆x)2

∆x
= lim

∆x→0
2x+ ∆x = 2x

and we have f ′(x) = 2x.

2. The function f(x) = |x| is not differentiable at x = 0 (on every other point it is differentiable),
since taking at first only ∆x > 0 (denoted by the limit going to 0+), we get

lim
∆x→0+

f(0 + ∆x)− f(0)

∆x
= lim

∆x→0+

|∆x|
∆x

= lim
∆x→0+

∆x

∆x
= 1.

However, taking only ∆x < 0 (denoted by the limit going to 0−) we obtain

lim
∆x→0−

f(0 + ∆x)− f(0)

∆x
= lim

∆x→0−

|∆x|
∆x

= lim
∆x→0−

−∆x

∆x
= −1.

Since the limits from these both directions are not equal, the function is not differentiable at
x = 0. �

Many dynamical processes in physics can be described by derivatives or equations containing deriva-
tives (so called differential equations). The most classical example is, when f(t) denotes the position
of a particle at time t. Then, the derivative df

dt describes the velocity of the particle and the second

derivative d2f
dt2

describes the acceleration of the particle.

12



CHAPTER 2. DIFFERENTIATION AND INTEGRATION

2.2 Integration in one variable

In this subsection, we are concerned with integration in one variable. The interpretation of the
integral in one variable

∫ b
a f(x)dx as area under the curve f should be familiar.

x

y

f

ba

∫ b
a f(x)dx

In the following, we give a formal definition of this heuristic statement, which results in the defi-
nition of the Riemann integral. For many applications the “classical” Riemann integral should be
applicable since the considered functions are continuous. However, in more involved cases, e.g. in
advanced subjects in mathematical physics, one may encounter highly irregular functions for which
we introduce the concept of Lebesgue integration later on.

Let I = [a, b] be a given interval, which we divide into small subintervals ∆xk = [xk, xk+1] such
that

a = x1 < x2 < · · · < xn+1 = b.

The finite set of points {xi : i = 1, . . . , n+ 1} is called a partition P of I. Then, we can define the
so called upper sum UP and lower sum LP of a function f by

UP (f) =
n∑
k=1

Mk(xk+1 − xk), Mk := sup
[xk,xk+1]

f

LP (f) =

n∑
k=1

mk(xk+1 − xk), mk := inf
[xk,xk+1]

f.

If f is bounded on I, we obviously have LP (f) ≤ UP (f). If we now make the partition more and
more fine, we can define the limit

U(f) = lim inf
n→∞

UP (f) = inf{UP (f) : P is a partition of I},

L(f) = lim sup
n→∞

LP (f) = sup{LP (f) : P is a partition of I},

where all possible choices of partitions P are taken into account.
If both the limits are equal, we call the limit the Riemann integral of f on I and write∫ b

a
f(x)dx = U(f) = L(f).

13
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x

f

•

•
•

•

a bx1 x2 x3

x

f

• • •

•

a bx1 x2 x3

One can prove that the Riemann integral exists (i.e, U(f) = L(f)), if either

1. f is continuous in I;

2. f has only a finite number of discontinuities in I.

Example.

1. We show that the integral
∫ 1

0 x dx exists with the definition of upper and lower sum. Let
0 < x1 < · · · < xn = 1 an uniformly spaced partition of [0, 1], i.e., xk = k/n. Then, since the
function f(x) = x is monotone increasing, the minimum on each interval [xi, xi+1] is obtained
on the left endpoint and the maximum is obtained on the right endpoint. We therefore
compute

LP (f) =
n∑
k=1

xk(xk+1 − xk) =
1

n

n∑
k=1

k

n
=
n(n+ 1)

2n2
−→ 1

2
,

UP (f) =
n∑
k=1

xk+1(xk+1 − xk) =
1

n

n∑
k=1

k + 1

n
=
n(n+ 2)

2n2
−→ 1

2
,

so in the limit n → ∞ (i.e. making the partition infinitesimally small), we obtain the value
of the integral

∫ 1
0 x dx = 1

2 .

2. Let I = [0, 1] and g(x) =

{
1 if x ∈ Q
0 if x ∈ R\Q

. Since any partition consists of intervals that

all include both rational and irrational numbers, we have

mk = 0 and Mk = 1

and therefore U(g) = 1 and L(g) = 0, so the Riemann integral does not exist! �

We stress that the formal definitions for differentiation and integration are rather clumsy to work
with. Thankfully, for many functions (such as polynomials, trigonometric functions, rational func-
tions, etc.), there are rules to compute the derivatives and integrals that always hold true (such as

(xn)′ = nxn−1 or
∫
xndx = xn+1

n+1 ) and should be known from previous lectures.

14
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We finish the section on 1D-integration with the so called fundamental theorem of calculus, which
states that integration and differentiation are (essentially - up to constants) inverse operations.

Theorem 2.2. Let f be a continuous function on the interval I = [a, b]. Let F be defined as

F (x) =

∫ x

a
f(s) ds ∀x ∈ I.

Then, F is continuous on I and differentiable on (a, b) with

F ′(x) = f(x) ∀x ∈ (a, b).

2.3 Differentiation in more variables

We now generalize the concept of derivatives to functions in more variables. For simplicity, we
start with the case of a function in two variables, i.e., f = f(x, y) : R2 → R. Analyzing formula
(2.1) shows that we need to be more precise in the definition of the perturbation ∆x. Taking
only perturbations in one variable and keeping the other variable fixed leads to so called partial
derivatives at the point (x0, y0) defined as

∂f

∂x
(x0, y0) = lim

∆x→0

f(x0 + ∆x, y0)− f(x0, y0)

∆x

and

∂f

∂y
(x0, y0) = lim

∆y→0

f(x0, y0 + ∆y)− f(x0, y0)

∆y
.

Oftentimes, the short notation ∂xf and ∂yf are used for the partial derivatives.

Definition 2.3. The vector consisting of the partial derivatives

∇f :=

(
∂f

∂x
,
∂f

∂y

)T
is called the gradient of f (as differential operator this is also called the nabla operator).

Similar to the case of one variable, second order and higher order derivatives can be defined induc-
tively, and we write

∂

∂x

(
∂f

∂x

)
=
∂2f

∂x2

∂

∂y

(
∂f

∂y

)
=
∂2f

∂y2

∂

∂x

(
∂f

∂y

)
=

∂2f

∂x∂y

∂

∂y

(
∂f

∂x

)
=

∂2f

∂y∂x
.

The following theorem, called Schwarz’s theorem, shows that the mixed second order derivatives
are equal.

Theorem 2.4. Let f be a two times differentiable function and all partial derivatives of second
order be continuous. Then,

∂

∂y

(
∂f

∂x

)
=

∂

∂x

(
∂f

∂y

)
.

15
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Example. We verify Schwarz theorem for the function f(x, y) = 2x3y2 + y3.
Differentiation in x and y gives

∂f

∂x
= 6x2y2

∂f

∂y
= 4x3y + 3y2

and hence,

∂

∂y

(
∂f

∂x

)
=

∂

∂y
(6x2y2) = 12x2y =

∂

∂x
(4x3y + 3y2) =

∂

∂x

(
∂f

∂y

)
.

Partial derivatives only describe the rate of change of f into one fixed direction (either in the x or
y direction). However in R2 there are infinitely many different directions leading to a point (see
the drawing below).

x

y

e1

e2

−e1 − e2
•

Definition 2.5. Fixing an arbitrary vector v ∈ R2 (also called direction), the directional
derivative in direction v of a function f : R2 → R is defined by

∂f

∂ν
= ∂νf = lim

h→0

f((x0, y0) + hν)− f(x0, y0)

h
.

We note that the value of the limit depends on the length |v|, so it is convenient to work with
unit vectors (i.e. |v| = 1). Comparing the definition of the directional derivative and the partial
derivatives, we can see that

∂f

∂e1
=
∂f

∂x
and

∂f

∂e2
=
∂f

∂y

with the Cartesian basis vectors e1, e2.

In higher dimensions, one can also ask the question similar to the approximation of a function by
its tangent: is it is also possible to approximate a function f(x, y) by a linear function, which leads
to the following definition.

16
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Definition 2.6. A function f : R2 → R is called (totally) differentiable in the point (x0, y0)T ,
if there exists a linear function

g(x, y) = f(x0, y0) + df ·
[(
x
y

)
−
(
x0

y0

)]
,

where df ∈ R2 is a vector (depending on x0, y0) that approximates f close to (x0, y0), i.e.,

lim
|z|→0

f((x0, y0) + z)− g((x0, y0) + z)

|z|
= 0.

If a function is totally differentiable, then

df = ∇f(x0, y0),

and the directional derivative can then also be written as

∂f

∂ν
= ∇f · ν = ν1

∂f

∂x
+ ν2

∂f

∂y
.

However, there are functions (see the following example), where every partial derivative exists, but
there exists no linear approximation to f ! This shows that total differentiability is a stronger concept
than partial differentiability in the sense that for total differentiability all possible directions need
to be taken into account (not only those along the coordinate axes).

Example. The function

f(x, y) =

{
xy

x2+y2
(x, y) 6= (0, 0)

0 (x, y) = (0, 0)

is differentiable everywhere aside from the point (0, 0). There, we compute the partial derivatives

∂f

∂x
(0, 0) = lim

∆x→0

f(0 + ∆x, 0)− f(0, 0)

∆x
= lim

∆x→0

0

∆x
= 0,

∂f

∂y
(0, 0) = lim

∆y→0

f(0, 0 + ∆y)− f(0, 0)

∆y
= lim

∆y→0

0

∆y
= 0,

so the partial derivatives exist. However, the directional derivative along the direction ν = (1, 1)T

does not exist, since

∂f

∂ν
(0, 0) = lim

h→0

f(0 + hν1, 0 + hν2)− f(0, 0)

h
= lim

∆x→0

h2

2h2

1

h
=∞.

In fact, this example fails, since f is not continuous at the origin along directions that are not
Cartesian unit vectors. However, there are other examples of continuous functions that have partial
derivatives but are not totally differentiable. �

The following theorem is very useful, since it presents a criterion, when a function is totally differ-
entiable by only studying the partial derivatives.

17
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Theorem 2.7. Let f : R2 → R and assume that all partial derivatives exist and are continuous
at a point (x0, y0)T . Then, f is totally differentiable at (x0, y0)T .

The above definitions and results can be directly transfered to the case of functions in n-variables,
f : Rn → R. In that case, the partial derivative with respect to the variable xi is defined as

∂f(x1, . . . , xn)

∂xi
= lim

∆xi→0

f(x1, . . . , xi + ∆xi, . . . , xn)− f(x1, . . . , xi, . . . , xn)

∆xi
.

2.4 Multiple integrals

We now look at integration in multiple variables.

2.4.1 Double integrals

Let D be a given region in R2 with the boundary C = ∂D.

x

y

D

C = ∂D

∆x

∆y

∆A

As in the 1D-case we divide D into N -subregions Dk with area ∆Ak for k = 1, . . . , N and let
(xk, yk) be a point in Dk. For a function f : R2 → R, we define the sum

S =
N∑
k=1

f(xk, yk)∆Ak.

Taking the limit N → ∞ (which means convergence of the areas ∆Ak → 0) gives a definition of
the double integral: If the limit exists, it is called the double integral of f on D and we denote it
by ∫

D
f(x, y) dA.

Here, dA stands for the element of area in the xy-plane. If we choose for example small axis-parallel
rectangles, we have ∆A = ∆x∆y and taking the limit ∆x,∆y → 0 motivates writing∫

D
f(x, y) dA =

∫ ∫
D
f(x, y) dxdy.

18
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One way to evaluate the above integral is first to sum up contributions in a horizontal direction
and then combine these contributions to make up the whole region D. This leads to

I =

∫ y=d

y=c

(∫ x=x2(y)

x=x1(y)
f(x, y) dx

)
dy,

where x1(y) and x2(y) describe the boundary of the region D. (In the image curves connecting
TSV and TUV). Similarly by switching the roles of x and y, we may write

I =

∫ x=b

x=a

(∫ y=y2(x)

y=y1(x)
f(x, y) dy

)
dx,

where y1(x) and y2(x) describe the boundary of the region D (in the image the curves STU and
SVU).

x

y

U

V

S

T
a b

c

d

Example. Let D be the triangle bounded by the lines x = 0, y = 0, x+y = 1. We want to evaluate

I =

∫
D
x2y dA.

x

y

1

1

x+ y = 1
D

We compute

I =

∫ 1

0

∫ 1−x

0
x2y dydx =

∫ 1

0

x2y2

2

∣∣∣1−x
0

dx =

∫ 1

0

x2(1− x)2

2
dx =

1

60
.

Similarly, switching the roles of x, y, we get

I =

∫ 1

0

∫ 1−y

0
x2y dxdy =

∫ 1

0

x3y

3

∣∣∣1−y
0

dy =

∫ 1

0

(1− y)3y

3
dy =

1

60
.
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2.4.2 Triple integrals

The same ideas for double integrals can also be applied for multiple integrals. Triple integrals are
commonly used for computations of volumes.
Taking a region D and subdividing it into small volumes ∆Vk, the limit of the Riemann sum

S =
N∑
k=1

f(xk, yk, zk)∆Vk

(if it exists) defines the triple integral∫
D
f(x, y, z) dV =

∫ ∫ ∫
D
f(x, y, z) dxdydz.

For the evaluation, we can use the same idea as for the case of the double integrals.

Example. We want to compute the volume of a tetrahedron bounded by the surfaces x = 0, y =
0, z = 0 and the plane x

a + y
b + z

c = 1.

y

z

x

R1

To obtain the volume, we integrate the function f(x, y, z) = 1 over the tetrahedron, which gives

V =

∫
R1

(∫ c(1−y/b−x/a)

0
1dz

)
dA =

∫ a

0

∫ b−bx/a

0

∫ c(1−y/b−x/a)

0
1 dzdydx

=

∫ a

0

∫ b−bx/a

0
c
(

1− y

b
− x

a

)
dydx =

abc

6
.

2.5 The Lebesgue integral

The Riemann integral is very useful for many practical applications in physics and engineering
as most of the time continuous functions are studied. However, e.g. in statistical physics, highly
irregular functions, such as the characteristic function of the rational numbers in a previous example
may appear, for which the Riemann integral does not exist. This example motivates the need for
a different definition of integration to give meaning to the integral of such functions.

The mathematical problem of the previous example is that the length of the set of rational numbers
is not well-defined. The main idea of the so called Lebesgue integral is to “generalize” the length
of an interval (or area, volume in higher dimensions).
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In order to do this, we define a so called measure (which essentially is a function acting on sets
that generalizes the length of the set).

Definition 2.8. A measure is a real valued function µ (that can also be ∞) that acts on sets,
i.e., µ = µ(X), where X is a set of points (e.g. an interval) that satisfies

1. There holds µ(X) ≥ 0 and, if X = ∅, we have µ(X) = 0.

2. The measure of two non-overlapping sets is equal to the sum of the measure of the sets, i.e.,

µ(X1 ∪X2) = µ(X1) + µ(X2), X1 ∩X2 = ∅.

We give some simple examples of measures in the following. An example of a measure in physics
is given by the spatial distribution of mass.

Example.

1. Point mass at 0: The function δ0(X) :=

{
1 if 0 ∈ X
0 otherwise

defines a measure.

2. The counting measure: µ(X) =

{
#X if X is finite

∞ otherwise
.

Here, #X denotes the number of elements in the finite set X.

3. Gaussian probability measure: The Gaussian measure of a set X ⊂ R is given by the integral

µ(X) =
1√
2π

∫
X

exp(−x2/2) dx.

�

The idea of the Lebesgue integral is rather than finding a partition of the x-axis (the input values of
the function), we take a partition of y-axis (the function values), see the drawing below. Therefore,
the essential task is finding a measure for sets of arguments of a function f that produce similar
values. In particular, if a set consists of too many points of discontinuity (of the given function),
we also need to give it a proper measure.

x

f(x)

f

a b

fmax = f4

fmin = f1

f2

f3
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As a simple example, we consider the interval I = [a, b] of length L = b − a. Now, let X be a set
consisting of a union of some points (this can be a union of intervals and single points) and write
X ′ = I \X for the complementary set (i.e, all points of I that are not in X).

a b
I

• X

• X ′

In the following, we want to introduce the so called Lebesgue measure of a set X ⊂ [a, b]. For this
we need to cover X by non-overlapping (semi-)open intervals (closed only at a or b) Λi ⊂ [a, b] such
that

X ⊂ Λ1 ∪ Λ2 ∪ . . . .

a b

• X

cover

Now, let `i be the length of Λi. Then, we have 0 ≤
∑

i `i ≤ L. The value of the sum
∑

i `i obviously
depends on the cover {Λi}. Taking the “smallest” cover, i.e., we infimize the sum, leads to the so
called outer measure of X and is denoted by

µout(X) = inf
covers

∑
i

`i.

For the complimentary set X ′, we can do the same and compute µout(X
′). Using this, we can define

the inner measure of X by

µin(X) = L− µout(X
′).

There always holds 0 ≤ µin(X) ≤ µout(X), and if there holds equality, we have the value of the
Lebesgue measure.

Definition 2.9. A set X is called Lebesgue measurable, if µin(X) = µout(X), and the value

µ(X) := µin(X) = µout(X)

is called the Lebesgue measure of X.

We note that points X = {x0} with x0 ∈ I are measurable since

µin({x0}) = 0 = µout({x0})

and intervals X = (c, d) have its length as Lebesgue measure µ(X) = d− c.

Now, we can define the Lebesgue integral. Let f be a bounded non-negative function, i.e., 0 ≤
fmin ≤ f(x) ≤ fmax. As explained in the drawing below, in comparison with the Riemann-integral,
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we – this time – partition the y-axis, i.e., the function values, rather than the x-axis. Taking values
{fk : k = 1, . . . , n} with f1 = fmin and fn = fmax, there exist sets Xi ⊂ [a, b] such that

fk ≤ f(x) < fk+1 ∀x ∈ Xk, 1 ≤ k ≤ n− 1

and a set Xn with f(x) = fn = fmax.

x

f(x)

f

a b

fmax = f4

fmin = f1

f2

f3

•
•

X4

X3

X2

X1

For each Xk, we use the Lebesgue measure to define the size of Xk and add up the products of the
function value with the measure to obtain the Lebesgue sum

n∑
k=1

fk · µ(Xk).

Now, if we infinitesimally refine the partition fk of the y-axis such that max |fk − fk+1| → 0, the
limit of the Lebesgue sum defines the Lebesgue integral.

Definition 2.10. Let f be a non-negative function and {fk} be an arbitrary partition of
[fmin, fmax]. Then, if the limit

lim
max|fk−fk+1|→0

n∑
k=1

fk · µ(Xk) =:

∫
X
fdµ

over all possible partitions exists, we call the function f Lebesgue integrable and the value of
the limit the Lebesgue integral

∫
X fdµ.
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Some important properties of Lebesgue integrals are:

1. If µ(X) = 0 then
∫
X f(x)dµ = 0 (by definition since all Lebesgue sums are zero).

2. If f is not non-negative, then we can define∫
X
fdµ :=

∫
X
f+dµ−

∫
X
f−dµ,

where f+(x) := max{f(x), 0} and f−(x) := −min{f(x), 0}, and both integrals on the right-
hand side contain non-negative functions.

3. Monotone convergence theorem: Let (fn)n∈N be a sequence of functions 0 ≤ fn ≤ fn+1 for
all n ≤ 1 and f(x) := limn∈N fn(x). Then,

lim
n∈N

∫
X
fn dµ =

∫
X

lim
n∈N

fn dµ =

∫
X
f dµ.

4. Dominated convergence theorem: Let (fn)n∈N be a sequence of functions and f(x) := limn∈N fn(x).
Assume that there exists a non-negative function g that is Lebesgue integrable such that
|fn(x)| ≤ g for all n ∈ N. Then,

lim
n∈N

∫
X
fn dµ =

∫
X

lim
n∈N

fn dµ =

∫
X
f dµ.

Hence, much weaker conditions are needed to interchange the limit and the integral compared to
Riemann integrals.

Remark. Since single points have Lebesgue measure 0, by 1. of the above properties, we have that
the value of the Lebesgue integral does not change, when one changes the function f at a single
point. Therefore, in the sense of Lebesgue integration, functions that only differ on countably many
points are equal, which in literature is denoted as the concept of equality almost everywhere.

Example.

1. If a function f is Riemann integrable on [a, b], it is also Lebesgue integrable and the value of
the integrals are the same.

2. We now can give meaning to the integral over the characteristic function of the rational
numbers of the previous subsection. Since every point has Lebesgue measure zero and µ(X1∪
X2) = µ(X1) + µ(X2), we get that every countable (infinite) set of points has measure 0,
which tells us that µ(Q) = 0.

The definition of the Lebesgue sum directly gives with X1 = [0, 1]\Q and Xn = Q and Xk = ∅
for any arbitrary partition of [fmin, fmax] = [0, 1] that

n∑
k=1

fk · µ(Xk) = 0 · µ(X1) + 1 · µ(Xn) = 0 · 1 + 1 · 0 = 0.

�

24



CHAPTER 2. DIFFERENTIATION AND INTEGRATION

Example. The set of square integrable functions (w.r.t. the Lebesgue-integral) on [a, b], i.e., all
functions satisfying

‖f‖2L2 :=

∫ b

a
|f(x)|2 dµ <∞

is denoted by L2([a, b]) and is a Hilbert space with the inner product

(f, g)L2 :=

∫ b

a
f(x)g(x)dµ.

This can be proven with the help of the monotone convergence theorem. �
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Chapter 3

Vector calculus

In the previous chapter, we introduced differentiation and integration of scalar valued functions.
In the following, we want to generalize the previous results to vector valued functions. Therefore,
we now focus on vector quantities and present several geometric tools.
Before we start, we recall some basic computational rules for vectors. We recall the scalar product
in R3 (previously denoted by (·, ·)2), which we will abbreviate with the notation · as

x · y =

x1

x2

x3

 ·
y1

y2

y3

 = x1y1 + x2y2 + x3y3.

Additionally, we introduce the cross product

x× y =

x1

x2

x3

×
y1

y2

y3

 =

x2y3 − x3y2

x3y1 − x1y3

x1y2 − x2y1

 .

There hold the computational rules

x× x = 0

x× y = −(y × x)

x× (y + z) = x× y + x× z
x · (y × z) = y · (z × x) = z · (x× y).

3.1 Differentiation and integration of vector fields

A vector valued function

f : Rn → Rm, f(x) =

 f1(x1, . . . , xn)
...

fm(x1, . . . , xn)


is called vector field and consists of m scalar valued coordinate functions fm. Vector field commonly
appear in physics, e.g., as force fields or velocity fields, when physical effects appear in multiple
coordinate directions.
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CHAPTER 3. VECTOR CALCULUS

In the same way as for scalar valued functions, we can define partial derivatives and the total
derivative of a vector field by working with the component functions. We illustrate the idea for
n = 1 and m = 3, so we take a function f : R → R3. As in the case for scalar functions, we can
define the derivative of f by

df

dx
= lim

∆x→0

f(x+ ∆x)− f(x)

∆x

and call the function differentiable if the limit exists. Here, f(x+ ∆x)− f(x) is a vector in R3 and
the difference and quotient are taken componentwise. Writing f(x) = f1(x)e1 + f2(x)e2 + f3(x)e3

with the Cartesian unit vectors ei, we see that

df

dx
=

3∑
i=1

dfi
dx
ei.

The following computational rules hold for the derivatives of vector valued functions in one variable.
Let φ(x) be a scalar function and f(x), g(x) be vector valued functions. Then, we have

d

dx
(φf) = φ

df

dx
+
dφ

dx
f

d

dx
(f · g) = f · dg

dx
+
df

dx
· g

d

dx
(f × g) = f × dg

dx
+
df

dx
× g.

Moreover, if f depends on φ(x), hence f(φ(x)), the classical chain rule gives

d

dx
[f(φ(x))] =

df

dφ

dφ

dx
.

Example.

1. The simplest application of the above theory is finding the velocity (and acceleration) of a
particle in space. Let t be a parameter (time) and

r(t) = x1(t)e1 + x2(t)e2 + x3(t)e3

be the location for a fixed t. Then, the velocity of the particle is given by

dr

dt
=
dx1

dt
e1 +

dx2

dt
e2 +

dx3

dt
e3.

2. A mass particle m at the point r (relative to 0) experiences a force F that creates some
movement at 0 given by T = r×F . The angular movement of m at 0 is given by L = r×mv,
where mv is the momentum. Then, the change of L is equivalent to T as

d

dt
L =

d

dt
(r ×mv) =

dr

dt
× (mv) + r × d(mv)

dt
.
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CHAPTER 3. VECTOR CALCULUS

T
F

mr

Newton’s second law now gives d(mv)
dt = F and using that dr

dt = v and that v × (mv) = 0, we
get

d

dt
L = v × (mv) + r × F = T.

�

The same concepts also apply to functions f : Rn → Rm in several variables, as we can define the
partial derivatives

∂f

∂xi
=

m∑
`=1

∂f`
∂xi

e`.

For scalar valued functions (i.e. m = 1) this is consistent with the definition of the gradient

∇f =
(
∂f
∂x1

, ∂f∂x2 , . . . ,
∂f
∂xn

)T
. The generalization of the gradient to the case m > 1 is called the

Jacobi matrix (or Jacobian) Df ∈ Rn×m given by

(Df)ij :=
∂fj
∂xi

,

hence for the case m = n = 3 the Jacobi matrix (sometimes also called Jf) is given by

Df =


∂f1
∂x1

∂f2
∂x1

∂f3
∂x1

∂f1
∂x2

∂f2
∂x2

∂f3
∂x2

∂f1
∂x3

∂f2
∂x3

∂f3
∂x3

 ,

so one can see that the i-th column of the Jacobi matrix is the gradient ∇fi of the component
functions of fi and the i-th row is the partial derivative ∂f

∂xi
.

Theses ideas can also be applied on differentials, then the infinitesimal change of the function f is
given by

df =

n∑
j=1

∂f

∂xj
dxj .

Integration of vector valued functions (in one variable) follows more or less by the same rules as
for scalar valued functions, we only have to keep in mind that the integrals and the constants that
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CHAPTER 3. VECTOR CALCULUS

might appear (seeing integration as the inverse action of differentiation) must be the same nature

as the vector field, i.e., for f : R→ R2 with f(x) = dF (x)
dx , we have∫

f(x)dx = F (x) + c with c ∈ R2

and ∫ b

a
f(x)dx = F (b)− F (a).

For other - more involved - problems concerning integration, we refer to the following subsections.

3.2 Vector operators

In the following, we introduce certain differential operators (mainly in R3) that are widely used in
physical sciences.

Remark. An operator is a function that acts on functions. An example is the (scalar) differential
operator d

dx that takes a function f : R → R as input and produces a function d
dxf : R → R.

Operators that involve differentiation are called differential operators.

Previously, we already introduced the gradient, which is recalled in the following definition.

Definition 3.1. The gradient, also called nabla operator, ∇ is given by

∇ :=
∑

ei
∂

∂xi
.

For scalar valued functions φ : R→ R3 this reads as

∇φ = (∂x1φ, ∂x2φ, ∂x3φ)T .

Moreover, we also introduced the directional derivative ∇φ · ν in direction ν, which represents the
change of the function in one given direction ν (and therefore is a scalar).

Definition 3.2. Let ψ : Rn → Rn be a given vector field. The divergence of ψ is given by

divψ = ∇ · ψ =
∂ψ1

∂x1
+
∂ψ2

∂x2
+ · · ·+ ∂ψn

∂xn

hence

div =

n∑
i=1

∂(·)i
∂xi

.

The divergence operator plays, for example, an important role in fluid dynamics as the velocity
field u and the density ρ of a fluid have the relation

∂ρ

∂t
+ div(ρu) = 0,
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CHAPTER 3. VECTOR CALCULUS

which corresponds to the conservation of mass and will be derived more precisely later on.

Now, let the vector field ψ be given as the gradient of a scalar function, i.e., ψ = ∇φ, then we have

div(ψ) = div(∇φ) =
∂2φ

∂x2
1

+
∂2φ

∂x2
2

+ · · ·+ ∂2φ

∂x2
n

.

The right-hand side contains a very famous operator.

Definition 3.3. The Laplace operator ∆ is given by

∆ :=

n∑
i=1

∂2

∂x2
i

.

For a scalar function φ : R3 → R this reads as

∆φ =
∂2φ

∂x2
1

+
∂2φ

∂x2
2

+
∂2φ

∂x2
3

and for vector valued functions we have the application of the Laplace operator to each (scalar)
component function.

It plays an important role in many equations governed by physical laws, such as diffusion processes,
heat transfer, motion of waves, etc.

Definition 3.4. The curl operator (sometimes also called rot) is given by

curl = ∇×

For a vector field ψ : R3 → R3 this reads as

curlψ = ∇× ψ =

∂x1∂x2
∂x3

×
ψ1

ψ2

ψ3

 =

(
∂ψ3

∂x2
− ∂ψ2

∂x3
,
∂ψ1

∂x3
− ∂ψ3

∂x1
,
∂ψ2

∂x1
− ∂ψ1

∂x2

)T
.

The curl operator appears for example in electromagnetics when studying the Maxwell equations
or in fluid dynamics, where it measures the angular velocity of a fluid.

Remark. In contrast to the gradient, divergence and Laplace operator, the curl operator is
previously only defined for vector fields in R3 since it uses the cross product. However, it is also
possible to define the curl operator in R2 for ψ : R2 → R2 by setting

curlψ =
∂ψ2

∂x1
− ∂ψ1

∂x2
,

which is a scalar function. �

Example.
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• Let φ(x, y, z) = xy2z3, then

∇φ = (y2z3, 2xyz3, 3xy2z2)T

and

∆φ = div(∇φ) = div
(
(y2z3, 2xyz3, 3xy2z2)T

)
= 2xz3 + 6xy2z

• Let ψ(x, y, z) = (x2y2, y2z2, x2y2)T , then

divψ = 2xy2 + 2yz2

and
curlψ = (2x2y − 2y2z,−2xy2,−2x2y).

�
For the presented operators many identities hold. Two important ones are

curl(∇ψ) = ∇×∇ψ = 0

div(curlψ) = 0.

The first one will appear again in the next section when evaluating path integrals.
Moreover, as all operators are differential operators, we have the standard product and chain rules.
For example, for scalar functions φ, ζ and a vector valued function ψ, we have

∇(φζ) = ∇φζ + φ∇ζ
div(φψ) = φ div(ψ) +∇φ · ψ.

3.3 Non-cartesian coordinate systems

The operators of the previous chapter are all defined with respect to the Cartesian coordinate
system. Here, we implicitly used the crucial property that the coordinate system is constant at
every point. However, in many physical applications a different coordinate system is used, such as
polar, cylindric or spherical coordinates.

Polar coordinates

We start with the 2D-case of polar coordinates. For every point x =

(
x1

x2

)
∈ R2 there exists a

unique magintude ρ (radius) and direction ϕ (angle) such that(
x1

x2

)
= ρ

(
cosϕ
sinϕ

)
= ρ cosϕ e1 + ρ sinϕ e2.
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x

y

ρ

ϕ

•

ρ cosϕ

ρ sinϕ

eρ
eϕ

The previous drawing shows that the point x can also be written with respect to the unit vectors
eρ, eϕ given by

eρ = cosϕ e1 + sinϕ e2

eϕ = − sinϕ e1 + cosϕ e2.

From these definitions one can see that Polar coordinates act differently than Cartesian coordinates:
When the point x changes its position, hence ϕ and ρ change, also the unit vectors change! This
has an impact when defining the vector operators of the previous section as we need to apply the
chain rule.
For example, the gradient in polar coordinates reads as

∇ρϕf(ρ, ϕ) =
∂f

∂ρ
eρ +

1

ρ

∂f

∂ϕ
eϕ,

which we will show in the following. Note that the derivative with respect to the angle includes a
scaling 1/ρ.

Example. Let g(x, y) = x2 + y2, then ∇g(x, y) = (2x, 2y)T . Now, defning ĝ(ρ, ϕ) = ρ2, we have
with x = ρ cosϕ, y = ρ sinϕ that

g(x, y) = x2 + y2 = ρ2((cosϕ)2 + (sinϕ)2) = ρ2 = ĝ(ρ, ϕ).

Using the formula for the gradient ∇ρϕ in polar coordinates, we have

∇ρϕĝ(ρ, ϕ) = 2ρeρ +
1

ρ
0eϕ = 2ρ

(
cosϕ
sinϕ

)
=

(
2x
2y

)
= ∇xyg(x, y).

�
The previous example shows that we actually want to find operators in polar coordinates that give
the same result as in the Cartesian system. To this end, we define the function

φ(ρ, ϕ) =

(
ρ cosϕ
ρ sinϕ

)
=

(
x
y

)
,

which maps polar coordinates to Cartesian coordinates. Let f(x, y) be a given function in Cartesian
coordinates, then define

f̂(ρ, ϕ) := f(ρ cosϕ, ρ sinϕ) = f(x, y),
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CHAPTER 3. VECTOR CALCULUS

which can also be written as f̂ = f ◦ φ. Now, the gradient ∇ρϕ in polar coordinates should satisfy

∇ρϕf̂(ρ, ϕ) = ∇f(x, y).

With the chain rule, we compute

∂f̂(ρ, ϕ)

∂ρ
=
∂(f(φ(ρ, ϕ))

∂ρ
=
∂f(x, y)

∂x

∂φ1

∂ρ
+
∂f(x, y)

∂y

∂φ2

∂ρ
= ∇f(x, y) · ∂φ

∂ρ

and doing the same for ∂ϕf̂ , we get with the Jacobi matrix Dφ of φ(
∂ρf̂

∂ϕf̂

)
= ∇f(x, y) ·DφT .

Now, we have

Dφ =

(
cosϕ sinϕ
−ρ sinϕ ρ cosϕ

)
and Dφ−1 =

1

ρ

(
ρ cosϕ − sinϕ
ρ sinϕ cosϕ

)
.

Multiplying from the right with (DφT )−1 = (Dφ−1)T gives(
∂ρf̂

∂ϕf̂

)
· (DφT )−1 = ∇f.

Evaluating the multiplication gives(
∂ρf̂ cosϕ− ∂ϕf̂ 1

ρ sinϕ

∂ρf̂ sinϕ+ ∂ϕf̂
1
ρ cosϕ

)
= ∂ρf̂ eρ +

1

ρ
∂ϕf̂ eϕ = ∇ρϕf̂ .

In the same manner, we can also transform the divergence, curl or Laplace operator or any differ-
ential operator.

Spherical polar coordinates

We continue with the 3D-coordinate system of spherical polar coordinates, which is commonly used
to describe rotationally symmetric objects around a point. In fact, points on earth are specified in
the geographical coordinate system (latitude, longitude, elevation), which is a spherical coordinate
system (e.g. latitude is measured from the equator (0 degrees) to the poles (±90 degrees)).

Similarly to the 2D-case, for every point in R3 there is a unique sphere in R3 centered at the origin
on which the point lies. As a sphere can be represented by a radius r and two angles θ, ϕ, we write
a point P as

P =

xy
z

 =

r sin θ cosϕ
r sin θ sinϕ
r cos θ

 .
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y

z

x

r
θ

ϕ

•P
er

eϕ

eθ

As before, we can define a (non-constant) unit coordinate system

er = sin θ cosϕ e1 + sin θ sinϕ e2 + cos θ e3

eθ = cos θ cosϕ e1 + cos θ sinϕ e2 − sin θ e3

eϕ = − sinϕ e1 + cosϕ e2.

With the chain rule, one can again compute the transformation of the vector operators with respect
to the spherical polar coordinates. E.g., the gradient transforms as

∇r,θ,ϕf =
∂f

∂r
er +

1

r

∂f

∂θ
eθ +

1

r sin θ

∂f

∂ϕ
eϕ.

Up to now, the above transformations (or change of coordinate system) were just motivated by a
natural setting for a phyical problem. In the next chapters, we see that these transformations also
help to define the surface/volume (of general integrals) of arbitrary (bounded) objects/areas.

Cylindrical coordinates

Another famous coordinate system in R3 are so called cylindrical coordinates, which are commonly
used to describe rotationally symmetric objects around an axis. The main idea hereby is that
for every point in R3, there is a unique cylinder on which the point lies. As a cylinder can be
represented by a radius r, an angle ϕ and an axis z, we can write every point asxy

z

 =

r cosϕ
r sinϕ
z

 .

y

z

x

r
ϕ

z

•P

ez
eϕ

er
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As before, we can define a (non-constant) unit coordinate system

er = cosϕ e1 + sinϕ e2

eϕ = − sinϕ e1 + cosϕ e2

ez = e3.

The computation of the gradient in cylindrical coordinates is left to the reader as an exercise.

3.4 The transformation theorem in higher dimensions

In the previous section, we analyzed the transformation of differential operators under coordinate
transformation. In this section, we are concerned with the same question for integrals. In fact, we
want to generalize the well-known method of substitution for integrals∫ φ(b)

φ(a)
f(x)dx =

∫ b

a
f(φ(t))φ′(t)dt with the substitution x = φ(t).

In case of multiple variables, this leads to the famous transformation theorem for integrals.

x

y

φ

r

ϕ

ρ ρ+ ∆ρ ρ ρ+ ∆ρ
∆ϕ

∆ϕ

The previous plot shows that in polar coordinates sectors are transformed to rectangles. How-
ever, when doing transformations the domains (“objects”) may get deformed and change their
area/volume, which has to be taken into account. Taking a small circular ring segment of size
∆ρ,∆ϕ, we can compute its area by

A =
∆ϕ

2

(
(ρ+ ∆ρ)2 − ρ2

)
=

∆ϕ

2
(2ρ∆ρ+ (∆ρ)2) ' ρ∆ϕ∆ρ

for small ∆ρ. Comparing that with the rectangle of size ∆ϕ∆ρ, we obtain an additional factor r in
the area, i.e., this factor describes the deformation of the area. With the chain rule, we could have
computed the factor also from the definition of the differential. In fact, this is - as in 1D - linked
with the derivatives of the transformation φ and comparing this with the Jacobian for the polar
coordinates in the previous section shows that this factor is the determinant of the Jacobian. This
motivates the following transformation theorem.

Theorem 3.5. Let U ⊂ Rn and φ : U → Rn be an injective function that is additionally
differentiable with continuous partial derivatives. Let f be a continuous function that is defined
on φ(U). Then, ∫

φ(U)
f(v)dv =

∫
U
f(φ(u)) |detDφ(u)| du.
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We finish this section with two examples for applications of the transformation theorem.

Example. We want to compute the area of the unit circle S = {(x, y) ∈ R2 : x2 + y2 ≤ 1}, i.e.,∫
S

1dxdy.

For that, we use the transformation theorem with the polar coordinates of the previous section for
the mapping φ, i.e.,

φ : R+ × [0, 2π]→ R2 : φ(r, ϕ) =

(
r cosϕ
r sinϕ

)
.

We compute

Dφ =

(
cosϕ sinϕ
−r sinϕ r cosϕ

)
−→ |detDφ| = r.

Then, we have S = φ(U) with U = [0, 1]× [0, 2π) and the transformation theorem gives∫
S

1dxdy =

∫
U

1 · r drdϕ =

∫ 2π

0

∫ 1

0
r drdϕ = π.

�
Example. We want to evaluate the integral

I =

∫ ∞
−∞

e−x
2
dx.

We note that substitution in this 1D-integral would not lead to a desired form. Therefore, we
actually use a different idea by evaluating I2 as a double integral

I2 =

∫ ∞
−∞

e−x
2
dx ·

∫ ∞
−∞

e−y
2
dy =

∫ ∞
−∞

∫ ∞
−∞

e−(x2+y2)dxdy.

Again, using polar coordinates, we have with the transformation theorem

I2 =

∫ ∞
−∞

∫ ∞
−∞

e−(x2+y2)dxdy =

∫ 2π

0

∫ ∞
0

e−r
2
r drdϕ

=

∫ 2π

0
dϕ

∫ ∞
0

e−r
2
r dr = 2π

∫ ∞
0

e−r
2
r dr = 2π

(
−1

2
e−r

2

) ∣∣∣∞
0

= π.

Taking the square root gives I =
√
π. �
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Chapter 4

Line and surface integrals

4.1 Curves

We already introduced the path of a particle by a given vector field in one of the above examples.
In general, such a path describes a curve in space.

Definition 4.1. A curve C in Rn (with n = 2, 3) is a set of points that can be described by a
continuous vector valued function r : R→ Rn, i.e.,

C = {r(t) : t ∈ [a, b]}.

The function r is also called a parametrization of the curve C, and the interval [a, b] is called
parameter interval. We call a curve closed, if r(a) = r(b).

Note that the crucial part of the definition is that we only allow one parameter t to describe the
set C. As usual, the parametrization can be written using the unit vectors as

r(t) = r1(t)e1 + · · ·+ rn(t)en.

If the parametrization is additionally differentiable, we call C a differentiable curve. In that case,
we can introduce the tangential vector

τ(t) :=
d

dt
r(t) = (r′1(t), . . . , r′n(t))T .

Example. A simple example of a curve in R2 is given by the unit-circle described by the set

C = {(x, y) ∈ R2 : x2 + y2 = 1}.
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x

y

τ

•C

A parametrization of the circle can be given by

r(t) =

(
cos(t)
sin(t)

)
t ∈ [0, 2π]

and the tangential vector can be computed as τ(t) =

(
− sin(t)
cos(t)

)
.

Another (more inconvenient) way to parametrize the curve C would be putting together

γ1 =

(
t+ 1√

1− (t+ 1)2

)
(upper part) for t ∈ [−2, 0] and γ2 =

(
1− t

−
√

1− (t− 1)2

)
(lower part)

for t ∈ (0, 2] as

r(t) =

{
γ1(t) t ∈ [−2, 0]

γ2(t) t ∈ (0, 2]

with parameter interval [−2, 2]. Note that this example shows you that parametrizations can also
be defined piecewise as long as they are continuous (in our case we have that since γ1(0) = γ2(0)
and both parts are continuous). �

As seen in the previous example, parametrizations are not unique. A curve may also be given in
parametric form r(s), where s is the arc-length along the curve measured from a specific point.

C

•

•
•

•

•

For this consider a (uniform) partition of the parameter interval a = t0 < t1 < · · · < tn−1 < tn = b
with h = ti+1 − ti = (b − a)/n and approximate the curve C by line segments connecting r(ti)
and r(ti+1). This leads to a polygonal approximation of the curve and making the partition more
fine (compare this with the definition of the Riemann integral), we actually obtain in the limit the
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length of the curve C. Formally, we can write

Ln =

n∑
i=1

|r(ti)− r(ti−1)| =
n∑
i=1

∣∣∣∣r(ti)− r(ti−1)

ti − ti−1

∣∣∣∣h
'

n∑
i=1

∣∣r′(τi)∣∣h,
where τi ∈ [ti−1, ti]. This actually is an approximation like the upper and lower sum in the definition
of the Riemann integral (more precisely, the value lies between upper and lower sum, but in the
limit if those coincide, we obtain the same value). Taking the limit as in the previous section gives
an integral, the so called arc-length of the curve

L :=

∫ b

a

∣∣r′(t)∣∣ dt,
which motivates the following definition.

Definition 4.2. Let C be a curve with parametrization r(t), t ∈ [a, b]. Then, the arc-length of
the curve connecting r(a) and r(τ) for τ ∈ [a, b] is given by

s(τ) :=

∫ τ

a

∣∣r′(t)∣∣ dt.
The element of arc-length is given as ds = |r′(t)| dt.

We stress that the arc-length of a curve is independent of the given parametrization.

The function t 7→ s(t) maps the interval [a, b] onto [0, L] and is strictly monotone and therefore
injective, so we can use it as a transformation or reparametrization, i.e., the curve C can also be
written as

C = {r̂(s) : s ∈ [0, L]} where r̂(s(t)) = r(t), t ∈ [a, b].

This is called arc-length parametrization.

With the chain rule, we can compute the tangential vector with respect to the arc-length parametriza-
tion by

dr̂(s)

ds
=
dr(s−1(t))

ds
=
dr(s−1(t))

ds−1

ds−1

ds
= r′(s−1(t))

1

s′(s−1(t))
= r′(s−1(t))

1

|r′(s−1(t))|
.

Therefore, we have that t(s) := dr̂(s)
ds is a unit vector, i.e., |t(s)| = 1. Since the vector t(s) depends

on s, we can also study its rate of change given by the derivative dt(s)
ds . The magnitude of this

vector, i.e., for a curve with two times differentiable arc-length parametrization

κ(s) :=

∣∣∣∣dt(s)ds

∣∣∣∣ =

∣∣∣∣d2r̂(s)

ds2

∣∣∣∣
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is called the curvature κ. In fact, with the chain rule, we can also compute (exercise!) the
curvature in the given parametrization r(t) as

κ(t) =
|r′(t)× r′′(t)|
|r′(t)|3

.

Furthermore, we call n(s) = 1
κ(s)

dt(s)
ds the principal normal and set b = t × n (in R3), which is

called the binormal to the curve. The vector n is indeed a normal vector in the sense that it is
perpendicular to the tangential vector, i.e., we have

n(s) · t(s) =
1

κ

dt(s)

ds
· t(s) = 0

by using differentiation of 1 = t(s) · t(s).
Finally, the torsion τ measures the local deviation of a curve from a line and is computed as the
rate of change of b in direction of the normal vector

τ(s) = −db(s)
ds
· n(s).

Example. The curvature of a straight line is zero, which can be easily seen from the formula

κ(t) = |r′(t)×r′′(t)|
|r′(t)| as r′′(t) = 0.

The curvature of a circle of radius a can be computed using the parametrization r(t) =

(
a cos t
a sin t

)
as

κ(t) =
|r′(t)× r′′(t)|
|r′(t)|3

=

∣∣−a2 sin2 t− a2 cos2 t
∣∣

a3
=

1

a
.

�

4.2 Line Integrals

In Chapter 2 we introduced integration in the 1D-setting. The Riemann-integral was interpreted as
the surface area below a function on a given interval [a, b] and the natural generalization to double
integrals (as integrals over areas) or triple integrals (as integrals over volumes) was presented.
However, in R2 or R3 one could ask whether it is possible to also define integral over lines and
surfaces, which is done in the following. We start with the case, where we want to integrate over a
curve.
Let C be a given curve joining the points P1 and P2. We revisit the idea presented when computing
the arc-length of a curve in the previous section.

x
t0 t1 t2 t3 t4

C

•

•
•

•

•
•
x4

•
x3

•
x2

•
x1
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In the same way as for the Riemann integral and the derivation of the arc-length, we divide C into
N small line elements ∆rj with j = 1, . . . , N . Now let φ be a given scalar function and let xj be
an arbitrary point on ∆rj . Then, we can write

IN =
n∑
i=1

φ(xj) |r(ti)− r(ti−1)| =
n∑
i=1

φ(xj) |∆rj | ,

which is a Riemann sum like approximation of the integral of φ over C. Taking the limit N →∞∫
C
φ ds = lim

N→∞

N∑
j=1

φ(xj) |∆rj | ,

where |∆rj | → 0 (as N → ∞), provides a definition of the line integral. Moreover, we note that
|∆rj | = |r′(τi)| (ti − ti−1) for τi ∈ [ti−1, ti], which motivates the following definition.

Definition 4.3 (Line integral of a scalar function). Let C be a curve with continuously
differentiable parametrization r(t) and φ a continuous scalar valued function. Then, the line
integral of φ over C is defined as the limit∫

C
φ ds = lim

N→∞

N∑
j=1

φ(xj) |∆rj | ,

where |∆rj | → 0 (as N →∞) and it can be computed as∫
C
φ ds =

∫ b

a
φ(r(t))

∣∣r′(t)∣∣ dt.
We note that – even though at first glance it looks otherwise – the line integral is independent of
the chosen parametrization of the curve C.

Example.

1. We want to evaluate the line integral ∫
C

(x− y)2 ds,

where C is the half circle of radius a > 0.

x

y

C

a
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A parametrization of C is given by

r(t) =

(
a cos t
a sin t

)

with t ∈ [0, π]. We have r′(t) =

(
−a sin t
a cos t

)
and therefore |r′(t)| =

√
a2 sin2 t+ a2 cos2 t = a.

The previous definition therefore gives∫
C

(x− y)2 ds =

∫ π

0
(a cos t− a sin t)2a dt = a3

∫ π

0
(1− sin(2t))dt = a3π.

2. We want to compute ∫
C

(x− y)2 ds,

where C is the line segment connecting x = −a and x = a.

x

y

a-a

This line segment can be parametrized by

r(t) =

(
t
0

)
for t ∈ [−a, a]. Then, |r′(t)| = 1, and we have∫

C
(x− y)2 ds =

∫ a

−a
t2 dt =

2

3
a3

�

We now turn our attention to the case of a vector valued function ψ, for which the line integral
can be derived in a similar way. Dividing C into N small line elements ∆rj with j = 1, . . . , N and
evaluating the vector field ψ at an arbitrary point xj ∈ [tj−1, tj ] gives the approximation

IN =

n∑
i=1

ψ(xj) · (r(ti)− r(ti−1)) =

n∑
i=1

ψ(xj) ·∆rj .

Note that here the dot product appears, since for vector valued function not the infinitesimal
distances but rather the infinitesimal vector displacements are needed.
Taking the limit N →∞ ∫

C
ψ · ds = lim

N→∞

N∑
j=1

ψ(xj) ·∆rj ,
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where |∆rj | → 0 (as N →∞), provides a definition of the line integral.

Definition 4.4 (Line integral of a vector field). Let C be a curve with a continuously
differentiable parametrization r(t) and ψ a continuous vector valued function. Then, the line
integral of ψ over C is defined as the limit∫

C
ψ · ds = lim

N→∞

N∑
j=1

ψ(xj) ·∆rj ,

where |∆rj | → 0 (as N →∞) and it can be computed as∫
C
ψ · ds =

∫ b

a
ψ(r(t)) · r′(t)dt.

We previously discussed that a vector field can be written by means of its scalar coordinate functions
ψ = ψ1e1 + · · ·+ ψnen (n = 2, 3 and ej are the Cartesian unit vectors). In this sense, we can also,
by linearity of the integral, write the line integral over a vector field as∫

C
ψ · ds =

∫
C
ψ1e1 · ds+ · · ·+

∫
C
ψnen · ds.

In literature, the summands are oftentimes written using a different notation, which we adopt for
the case n = 2: ∫

C
ψ1 dx :=

∫
C
ψ1e1 · ds∫

C
ψ2 dy :=

∫
C
ψ2e2 · ds.

Example.

1. Let ψ =

(
x+ y
y − x

)
. We want to evaluate

∫
Ci
ψ · ds with

• C1 : parabola y2 = x from (1, 1) to (4, 2);

• C2 : curve x = 2t2 + t+ 1, y = 1 + t2 from (1, 1) to (4, 2);

• C3 : the union of the line segments connecting (1, 1) to (4, 1) and (4, 1) to (4,2).

•
(1,1)

•
(4,1)

• (4,2)

C3,1

C3,2
C2

C1
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The curve C1 can be parametrized by r1(t) =

(
t2

t

)
with t ∈ [1, 2]. Therefore, we get

∫
C1

ψ · ds =

∫ 2

1
ψ(r1(t)) · r′1(t)dt =

∫ 2

1

(
t2 + t
t− t2

)
·
(

2t
1

)
dt

=

∫ 2

1
2t3 + t2 + t dt =

34

3
.

The curve C2 is given parametrized by r2(t) =

(
2t2 + t+ 1

1 + t2

)
with t ∈ [0, 1]. Therefore, we

get ∫
C2

ψ · ds =

∫ 1

0
ψ(r2(t)) · r′2(t)dt =

∫ 1

0

(
3t2 + t+ 2
−t2 − t

)
·
(

4t+ 1
2t

)
dt

=

∫ 1

0
10t3 + 5t2 + 9t+ 2dt =

32

3
.

The curve C3 is composed as the union of the curves C3,1 with parametrization r3,1(t) =

(
t
1

)
with t ∈ [1, 4] and the curve C3,2 with parametrization r3,2(t) =

(
4
t

)
with t ∈ [1, 2]. By

linearity, we have∫
C3

ψ · ds =

∫
C3,1

ψ · ds+

∫
C3,2

ψ · ds =

∫ 4

1
ψ(r3,1(t)) · r′3,1(t)dt+

∫ 2

1
ψ(r3,2(t)) · r′3,2(t)dt

=

∫ 4

1

(
t+ 1
1− t

)
·
(

1
0

)
dt +

∫ 2

1

(
4 + t
t− 4

)
·
(

0
1

)
dt

=

∫ 4

1
t+ 1 dt+

∫ 2

1
t− 4 dt =

21

2
− 5

2
= 8.

2. Let ψ =

(
y
x

)
. We want to evaluate

∫
Ci
ψ · ds with

• C1 : half-circle connecting (1, 0) to (−1, 0);

• C2 : straight line connecting (1, 0) to (−1, 0);

x

y

C1

1-1 C2
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The curve C1 can be parametrized by r1(t) =

(
cos t
sin t

)
with t ∈ [0, π]. Therefore, we get

∫
C1

ψ · ds =

∫ π

0
ψ(r1(t)) · r′1(t)dt =

∫ π

0

(
sin t
cos t

)
·
(
− sin t
cos t

)
dt

=

∫ π

0
cos2 t− sin2 t dt = 0.

The curve C2 can be parametrized by r2(t) =

(
1− t

0

)
with t ∈ [0, 2] (note that the orientation

is important). Therefore, we get∫
C2

ψ · ds =

∫ 2

0
ψ(r2(t)) · r′2(t)dt =

∫ 2

0

(
0

1− t

)
·
(
−1
0

)
dt

=

∫ 2

0
0 dt = 0.

There are several examples in physics, where line integrals need to be employed such as computing
the total work done by a force F , when it moves from a point A to a point B or the electrostatic
potential energy gained by moving a charge q along a path C in an electric field given by −q

∫
C E ·ds.

Another famous example is a loop of wire C carrying a current I in a magnetic field. Then, the
force F is given by F = I

∫
C ds×B.

4.3 Potential fields, Green’s theorem

The previous examples regarding the line integrals over vector fields provide an interesting insight:
In the first example, the path moving from a point A (therein (1,1)) to a point B (therein (4,2))
in R2 directly impacts the value of the line integral (this is in general always the case) as the line
integrals

∫
Ci
ψ · ds have different values for C1, C2, C3.

However, in the second example, the line integrals
∫
C1
ψ ·ds and

∫
C2
ψ ·ds over two different curves

connecting the points A = (1, 0) and B = (−1, 0) have the same value. In fact, one can show that
for the second example you can choose any curve connecting A to B and get the same value of the
line integral, so the value of the line integral is independent of the curve.

Definition 4.5. We call a line integral
∫
C ψ · ds over a vector field ψ, where C connects two

points A,B ∈ Rn path independent, if, for any other curve C1 connecting the points A,B, we
have ∫

C
ψ · ds =

∫
C1

ψ · ds.

Clearly, path independence is a property induced by the vector field ψ and vector fields ψ with that
property for all (simple) curves in an open set U ⊂ Rn are called conservative fields in U .

In the following, we want to classify a class of functions for which the path independence holds.
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Definition 4.6. A vector field ψ that can be written as ψ = ∇φ with a scalar function φ is
called a gradient field. The function φ is then called a scalar potential.

Example.

1. Every constant vector field ψ(x, y, z) =

c1

c2

c3

 is a gradient field with scalar potential

φ(x, y, z) = c1x+ c2y + c3z.

2. The vector field ψ(x, y) =

(
y
x

)
of the example in the previous subsection is a gradient field

with scalar potential φ(x, y) = xy.

3. In physics, examples of gradient fields are given by so called (central) force fields, e.g., given
by

ψ(x, y, z) =
1√

x2 + y2 + z2

xy
z

 .

A scalar potential is given by φ(x, y, z) =
√
x2 + y2 + z2.

�
We recall the fundamental theorem of calculus stating

∫ b
a f
′(t)dt = f(b) − f(a), which shows that

the given integral can be evaluated using the function f and the points a, b, but not all the values
between a and b.
In higher dimensions a similar situation is given, when ψ = ∇φ for a scalar function ψ since∫

C
ψ · ds =

∫
C
∇φ · ds =

∫ B

A
∇φ(r(t))r′(t)dt =

∫ b

a

d

dt
φ(r(t))dt = φ(r(b))− φ(r(a)),

where we used the chain rule. Since the (arbitrary) curve C has to connect the points A and B,
we have that r(b) = B and r(a) = A, so the right-hand side does only depend on φ(B)− φ(A) and
we have shown path independence as r does not appear anymore.

Theorem 4.7. The line integral over a gradient field is path independent.

In fact, there also holds the converse statement.

Theorem 4.8. Let ψ be a continuous vector field defined on a region Ω. Then, if ψ is
conservative in Ω, we have that ψ is a gradient field.

Now, we can ask the question whether we can provide an easy to check characterization of conser-
vative fields?

In order to answer that question, we need to make additional assumption on the region Ω (subset
in Rn) enclosed by a closed curve C (i.e. a curve with r(a) = r(b)). A crucial quantity of the
regions is the so called connectedness.
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Definition 4.9. A subset Ω ⊂ Rn is called simply connected, if every simple closed curve
inside Ω can be continuously shrunk to a point inside Ω.

If Ω is not simply connected but can be decomposed into two simply connected sets, we call Ω
doubly connected.

Similarly, if Ω can be decomposed into finitely many connected sets, we call Ω multiply con-
nected.

By the previous definition, regions containing holes are not simply connected.

We start with a relation between the line integral over a closed curve C and the integral over the
region Ω enclosed by it, which is the statement of Green’s theorem in the following.

Theorem 4.10 (Green’s theorem in the plane). Let C be a closed curve that encloses
a simply connected region Ω. Let P,Q be functions with continuous partial derivatives inside the
region Ω. Then, we have∫

C
Pdx+Qdy =

∫
C

(
P
Q

)
· ds =

∫ ∫
Ω

∂Q

∂x
− ∂P

∂y
dxdy.

So, the line integral over C can be evaluated using an integral over the region R (double integral)
and vice versa.

Proof. We actually ‘prove’ the theorem for the region Ω given in the following.

x

y

U

V

S

T

a b

c

d

Let y = y1(x) and y = y2(x) be the curves connecting STU and SV U respectively. We then
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compute using the fundamental theorem of calculus∫ ∫
Ω

∂P

∂y
dxdy =

∫ b

a

∫ y2(x)

y1(x)

∂P

∂y
dxdy =

∫ b

a
P (x, y)

∣∣∣y2(x)

y1(x)
dx =

∫ b

a
P (x, y2(x))− P (x, y1(x))dx

= −
∫ b

a
P (x, y1(x))dx−

∫ a

b
P (x, y2(x))dx = −

∫
C
Pdx

where the last equality follows since y2 has the opposite direction. In the same way, we can show
that∫ ∫

Ω

∂Q

∂x
dxdy =

∫ d

c

∫ x2(y)

x1(y)

∂Q

∂x
dxdy =

∫ d

c
Q(x, y)

∣∣∣x2(y)

x1(y)
dy =

∫ d

c
Q(x2(y), y)−Q(x1(y), y)dy

=

∫ c

d
Q(x1(y), y)dy +

∫ d

c
Q(x2(y), y)dx =

∫
C
Qdy,

which proves Green’s theorem. �

Example. In the exercise part of the lecture, we computed the area of the ellipse x2

a2
+ y2

b2
= 1 by

using scaled polar coordinates x = a cosϕ, y = b sinϕ and evaluating
∫ ∫

Ω 1dxdy.

Here, we use Green’s theorem to obtain the same result. Taking P (x, y) = −y gives ∂P
∂y = −1 and

Q(x, y) = x gives ∂Q
∂x = 1. Therefore, we have

A =

∫ ∫
Ω

1dxdy =
1

2

∫ ∫
Ω

1 + 1dxdy =
1

2

∫ ∫
Ω

∂Q

∂x
− ∂P

∂y
dxdy

Green
=

1

2

∫
C
Qdx+ Pdy =

1

2

∫
C
xdx− ydy =

1

2

∫ 2π

0
ab(cos2 ϕ+ sin2 ϕ)dϕ = πab.

�
Green’s theorem can also be applied to multiple connected regions by applying Green’s theorem on
distinct boundaries (curves), whose orientation is such that the region Ω is always on the left (see
the following picture). Note that the additional line segments do not appear in the line integrals
since they have different orientations.

Green’s theorem can now be used to analyze path independence of a line integral. Let C1 and C2

be two arbitrary curves connecting the points A and B.
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•
A

•B
C1

C2

Path independence of the line integral
∫
C1
ψ ·ds with ψ = (P,Q)T connecting the points A,B means

that
∫
Ci
Pdx+Qdy is the same for C1 and C2 (and any other curve connecting A and B).

If we consider the closed curve formed by C := C1 ∪ (−C2), then Green’s theorem shows that a
sufficient condition for path independence is that

∂P

∂y
=
∂Q

∂x

since ∫
C1

Pdx+Qdy −
∫
C2

Pdx+Qdy =

∫
C
Pdx+Qdy

Green
=

∫
Ω

∂Q

∂x
− ∂P

∂y
dxdy = 0.

One can, in fact, also show that this is a necessary condition. In fact, we already know that path

independence implies that ψ =

(
P
Q

)
is a gradient field, which means that there exists a function

φ with ∂φ
∂x = P and ∂φ

∂y = Q. Schwarz theorem then gives

∂P

∂y
=

∂2φ

∂y∂x
=

∂2φ

∂x∂y
=
∂Q

∂x
,

which is the condition stated above.

Theorem 4.11. Let U be a simply connected region and ψ : U → R2 be a vector field with
continuous partial derivatives. Then, the following statements are equivalent

1. The line integral
∫
C ψ · ds connecting two points A,B in U is independent of the chosen

path. Consequently, the line integral
∮
C ψ · ds (this is the usual notation for line integrals

over closed curves) over closed curves C inside U is zero.

2. There exists a scalar potential φ with ∇φ = ψ.

3.
∂ψ1

∂y
=
∂ψ2

∂x
.

Example.

• Evaluate
∫
C ψ · ds with ψ =

(
exy + cosx sin y

ex + sinx cos y + 2y

)
over the ellipse 4x2 + y2 = 1.

Clearly, one can parametrize the ellipse and compute the line integral using the previous
formula. However, it is much simpler to check in advance, whether we have a conservative
field using the third statement of the above theorem. We compute

∂ψ1

∂y
= ex + cosx cos y =

∂ψ2

∂x
,
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so we indeed have a gradient field. Since the ellipse is closed, we directly obtain from the
above theorem that ∫

C
ψ · ds = 0

without directly computing the integral.

• Evaluate
∫
C ψ · ds for ψ =

(
y
x

)
over the curve starting at the origin, moving along the

parabola y2 = x to the point (4, 2), then moving in a straight line to the point (4, 0), then
moving back along a half circle of radius 4 to the point (−4, 0) and finally, moving along a
straight line to the point (−1,−1).

One could of course parametrize the curves described above piece by piece and add the line
integrals, or one could apply the previous theorem. The vector field ψ is a gradient field,
since ∂ψ1

∂y = 1 = ∂ψ2

∂x and we know that the line integral is path independent. Therefore, we

take the straight line C1 connecting (0, 0) and (−1,−1) parametrized by

(
−t
−t

)
with t ∈ [0, 1]

and obtain ∫
C
ψ · ds =

∫
C1

ψ · ds =

∫ 1

0

(
−t
−t

)
·
(
−1
−1

)
dt =

∫ 1

0
2tdt = 1.

�

Scalar potentials can be computed by integration in the following way: Let ψ be given and suppose
∂ψ1

∂y
=
∂ψ2

∂x
. We want to have a function φ with ∇φ = ψ. Integration with respect to x gives

φ =

∫
∂φ

∂x
dx+ g(y) =

∫
ψ1dx+ g(y)

with an unknown function g(y) that can be determined from differentiation with respect to y:

ψ2 =
∂φ

∂y
= ∂y

(∫
ψ1dx

)
+ g′(y).

We note that scalar potentials are only unique up to a constant, since ∇c = 0.

Example. We want to compute the scalar potential for ψ =

(
exy + cosx sin y

ex + sinx cos y + 2y

)
. Integration

of ψ1 with respect to x gives

φ =

∫
exy + cosx sin ydx+ g(y) = exy + sinx sin y + g(y).

Differentiation of this equation with respect to y gives

∂φ

∂y
= ex + sinx cos y + g′(y) = ψ2 = ex + sinx cos y + 2y
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and consequently g′(y) = 2y or g(y) = y2. Therefore, a scalar potential is given by

φ = exy + sinx sin y + y2.

�

For vector fields ψ : U → R3 a similar theorem holds, where the condition in 3. has to be replaced
by ∇× ψ = 0.

Similarly to scalar potentials, one can also find a potential for vector fields ψ with divψ = 0.
Then, there exists a vector field θ with ∇ × θ = ψ. Whereas φ was unique up to a constant (as
∇φ = ∇(φ + c) for c ∈ R), we have that θ is uniquely defined up to gradients, since ∇×∇g = 0,
we have

∇× θ = ∇× (θ +∇g) = ψ.

Such vector potentials play an important role in electromagnetics, which we will see in later chapters.

4.4 Surfaces

Similarly to a curve, we can also describe a surface S by a vector valued function in R3.

Definition 4.12. A surface S in R3 is a set of points that can be described by a continuous
vector valued function r(u, v) : R2 → R3, i.e.,

S = {r(u, v) : (u, v) ∈ G}.

The function r is also called a parametrization of the surface C, and the set G ⊂ R2 is is called
parameter field.

Note that the crucial part of the definition is that we only allow two parameters u, v to describe
the set S. In Cartesian coordinates a surface can be written as

r(u, v) = r1(u, v)e1 + r2(u, v)e2 + r3(u, v)e3.

Example. The mantle of a cylinder Z = {(x, y, z) ∈ R3 : x2 + y2 ≤ 1, 0 ≤ z ≤ 1} is a surface S
that can be parametrized using cylindrical coordinates.

y

z

x

51



CHAPTER 4. LINE AND SURFACE INTEGRALS

The parametrization

r(u, v) =

cosu
sinu
v

 u ∈ [0, 2π], v ∈ [0, 1]

with parameter field G = [0, 2π]× [0, 1] parametrizes the surface S.

In fact, also the top and bottom of the cylinder are surfaces that can be parametrized using polar
coordinates as

r1(u, v) =

v cosu
v sinu

0

 u ∈ [0, 2π], v ∈ [0, 1]

r2(u, v) =

v cosu
v sinu

1

 u ∈ [0, 2π], v ∈ [0, 1].

�
Now, let c(λ) be any curve on a surface S. Using the definition of the surface, a parametric
representation is given by substitution, i.e,

c(λ) = r(u(λ), v(λ)).

Here, the chain rule gives

dc

dλ
=
∂r

∂u

∂u

∂λ
+
∂r

∂v

∂v

∂λ
.

When either u(λ) or v(λ) is held constant and pass through a point P (see picture) these are called
coordinate curves.

P
∂vr

∂ur

It follows that dc
dλ = ∂r

∂v
dv
dλ if u = const or dc

dλ = ∂r
∂u

du
dλ if v = const. Hence, the tangent vector of

c is in the same direction as either ∂r
∂v or ∂r

∂u . If the surface is smooth, these vectors are linearly
independent and span the tangent space at the point P . A vector that is normal to the surface
(which corresponds with being normal to the tangent plane at the point P ) is given by

n =
∂r

∂u
× ∂r

∂v
.
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P
∂vr

∂ur
n

In the neighborhood of P an infinitesimal vector displacement dr is written as

dr =
∂r

∂u
du+

∂r

∂v
dv.

Hence, the element of area given by the infinitesimally small parallelogram can be written as

dS =

∣∣∣∣∂r∂u × ∂r

∂v

∣∣∣∣ dudv = |n| dudv.

Now, let G be the region in the uv - plane that corresponds to the range of the parameter values
of S, then the total area of the surface is given by

A =

∫
G
|n| dudv.

As in the case of curves, we distinguish between open and closed surfaces. We call a bounded
surface closed, if it has no boundary, otherwise we denote the boundary of the surface by ∂S. A
bounded closed surfaces then encloses a bounded region Ω ⊂ R3 with positive volume.

∂S

For curves defining an orientation is straight forward. However, for surfaces the situation becomes
unclear. We call a smooth surface orientable, if the set of normal vectors depends continuously
on the position. In fact, most commonly used surfaces are orientable (such as spheres or cylinders),
but there are some examples that are not orientable, most famously the Möbius strip or the Klein
bottle.
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nout
nin

nout

nin

In the following, we only consider orientable surfaces, such that there is a clear concise choice of a
normal vector.

4.5 Surface Integrals

Formally, surface integrals can be defined in the same way as curve integrals by approximating the
surface S into small flat areas ∆Sj for j = 1, . . . , N . Let φ be a scalar function. With arbitrary
points xj ∈ ∆Sj , we can define the sum

IN =
N∑
j=1

φ(xj) |∆Sj |

and taking the limit N →∞ assuming |∆Sj | → 0, we can define the surface integral.
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Definition 4.13 (Surface integral of a scalar function). Let S be a surface with continuous
partial differentiable parametrization r and φ be a continuous scalar function. Then, the surface
integral of φ over S is defined as the limit∫

S
φ dS = lim

N→∞

N∑
j=1

φ(xj) |∆Sj | ,

where |∆Sj | → 0 (as N →∞) and it can be computed as∫
S
φ dS =

∫
G
φ |n| dA.

In the same way, we can define the surface integral over a vector field.

Definition 4.14 (Surface integral of a vector field). Let S be a surface with continuous
partial differentiable parametrization r and ψ be a continuous vector field. Then, the surface
integral of ψ over S is defined as the limit∫

S
ψ dS = lim

N→∞

N∑
j=1

ψ(xj) · nj |∆Sj | ,

where nj is the outer normal vector to Sj and |∆Sj | → 0 (as N →∞). The surface integral can
be computed as ∫

S
ψ dS =

∫
G
ψ · ndA.

Note that the orientation of the surface, hence the direction of the normal vector is important and
changing the orientation results into a sign change in the surface integral. If the boundary of the
surface is given by a curve with a positive orientation (i.e. counter clockwise), the direction of the
normal vector is then given by the right hand rule:

If the fingers are curled along the orientation of the boundary curve, then the thumb of the right
hand points in the direction of the normal vector.

For closed surfaces, we choose n as the outward normal, i.e., the normal pointing away from the
enclosed region of the surface.

Example. We want to evaluate
∫
S ψ · dS with ψ =

x0
0

 and S is the surface of the hemisphere

x2 + y2 + z2 = a2, z ≥ 0.

A parametrization of S can be obtained with polar coordinates as x = ρ cosϕ, y = ρ sinϕ. Then
the equation x2 + y2 + z2 = a2 transform to ρ2 + z2 = a2 or z =

√
a2 − ρ2. This gives the
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parametrization

r(ρ, ϕ) =

 ρ cosϕ
ρ sinϕ√
a2 − ρ2

 with ρ ∈ [0, a], ϕ ∈ [0, 2π].

We compute the normal vector as

n =
∂r

∂ρ
× ∂r

∂ϕ
=

 cosϕ
sinϕ
−ρ√
a2−ρ2

×
−ρ sinϕ
ρ cosϕ

0

 =


ρ2 cosϕ√
a2−ρ2

ρ2 sinϕ√
a2−ρ2

ρ

 .

Inserting this in the formula for the computation of the surface integral gives

∫
S
ψ dS =

∫
G
ψ · ndA =

∫ a

0

∫ 2π

0

ρ cosϕ
0
0

 ·


ρ2 cosϕ√
a2−ρ2

ρ2 sinϕ√
a2−ρ2

ρ

 dρdϕ

=

∫ a

0

∫ 2π

0

ρ3 cos2 ϕ√
a2 − ρ2

dρdϕ =

∫ 2π

0
cos2 ϕ dϕ

∫ a

0

ρ3√
a2 − ρ2

dρ =
2πa3

3

and we have computed the surface integral. �

Many surfaces are given in explicit form z = f(x, y) and can therefore easily be parametrized by

r(x, y) =

 x
y

f(x, y)

 for (x, y) ∈ G. Computing the normal vector gives

n =
∂r

∂x
× ∂r

∂y
=

 1
0
∂xf

×
 0

1
∂yf

 =

−∂xf−∂yf
1


and the formulas for the surface integrals reduce to∫

S
φ dS =

∫
G
φ(x, y, f(x, y))

√
∂xf2 + ∂yf2 + 1 dA

∫
S
ψ · dS =

∫
G
ψ(x, y, f(x, y)) ·

−∂xf−∂yf
1

 dA.

Example. We use this method to evaluate
∫
S ψ · dS with ψ =

x0
0

 and S is the surface of the

hemisphere x2 + y2 + z2 = a2, z ≥ 0.
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In explicit form the surface is given by z =
√
a2 − x2 − y2 and (x, y) ∈ G, where G is the circle of

radius a, i.e., G = {(x, y) ∈ R2 : x2 + y2 ≤ a2}. Using the above formula, we compute using polar
coordinates to describe G

∫
S
ψ · dS =

∫
G

x0
0

 ·


x√
a2−x2−y2

y√
a2−x2−y2

1

 dA =

∫
G

x2√
a2 − x2 − y2

dA

=

∫ a

0

∫ 2π

0

ρ2 cos2 ϕ√
a2 − ρ2

ρ dρdϕ =

∫ 2π

0
cos2 ϕ dϕ

∫ a

0

ρ3√
a2 − ρ2

dρ =
2πa3

3
,

and we obtain the same value as in the example above. �

4.6 The theorems of Gauß and Stokes

In the previous chapter, we defined the vector operators ∇,div, curl. As discussed there, the
definitions depended on the corresponding coordinate system.
With the surface integrals defined in the previous section, we can provide an equivalent (without
proof here) definition that is independent of the coordinate system by

∇φ(x) = lim
|V |→0

1

|V |

∫
S=∂V

φ dS.

Here, V denotes a small set enclosed by the closed curve S = ∂V around the point x and |V |
denotes the volume of V . In the same way, one can define

divψ(x) = lim
|V |→0

1

|V |

∫
S=∂V

ψ · dS,

curlψ(x) · n = lim
|A|→0

1

|A|

∫
C
ψ · ds

where C is a curve bounding a small area A.

We use these definitions to derive the famous integral theorems of Gauß and Stokes. We start with
Gauß’ theorem, which is also called the divergence theorem. Decomposing a given volume V into
lots of small volumes Vi, we can write using the above definition of the divergence

divψ |Vi| '
∫
∂Vi

ψ · dS.

Now, we sum up over all small volumes Vi. On the right-hand side, this would produce contributions
of all boundary parts of the Vi, so also those parts that are inside the volume V . However, such
parts appear twice (see the drawing below) with different orientations of the normal vectors, so
they add up to zero.

V1

V2

n1
n2
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Therefore, taking the limit |Vi| → 0, we arrive at∫
V

divψ dV =

∫
∂V
ψ · dS,

which is the divergence theorem stated in the following.

Theorem 4.15 (Gauß divergence theorem). Let V ⊂ Rn be a bounded region and ∂V its
boundary. Let ψ be a continuously differentiable vector field defined on V . Then,∫

V
divψ dV =

∫
∂V
ψ · dS.

Remark.

• The classical divergence theorem is formulated for regions V ⊂ R3, where the above integra-
tion over V is a triple integral ∫ ∫ ∫

V
divψ dV

in the volume and the integration over ∂V is a surface integral as introduced in the previous
section.

However, the divergence theorem stated in the previous theorem is also valid for n = 1, 2 (or
n > 3 if a suitable integration over the boundary is defined).

• For n = 1, we have that ψ reduces to a scalar function and V is an interval [a, b]. Then, we
have ∫

V
divψ dV =

∫ b

a
ψ′dx.

The boundary of the interval is given by the points a (with outward “normal vector” -1) and
b (with outward “normal vector” 1), so the “’surface” integral reduces to∫

∂V
ψ · dS = ψ(b) · 1 + ψ(a) · (−1)

and the divergence theorem reduces to the fundamental theorem of calculus.

• For n = 2, the integral on the left in the divergence theorem is an area integral and the integral
on the right is a line integral over a curve parametrized by a function r(t) with parameter
interval [a, b]. However, the element of surface dS (in 2D) and arc-length ds (in 2D) are not
defined in the same way. In fact, the calculation of the line integrals use the tangent vector
τ(t) = r′(t), whereas the calculation of surface integrals takes the normal vector. The normal

vector can be computed as n(t) =

(
r′2(t)
−r′1(t)

)
and the integral on the right-hand side in the

divergence theorem is given by∫
∂V
ψ · dS =

∫ b

a
ψ(r(t)) ·

(
r′2(t)
−r′1(t)

)
dt =

∫ b

a
ψ1(r(t))r′2(t)− ψ2(r(t))r′1(t)dt.
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If we introduce the new vector field

(
P
Q

)
:=

(
−ψ2

ψ1

)
, we actually observe that the integral

on the right hand side is the classical line integral of

(
P
Q

)
, i.e.,

∫ b

a
ψ1(r(t))r′2(t)− ψ2(r(t))r′1(t)dt =

∫
C

(
P
Q

)
ds.

Looking again at the left hand side in the divergence theorem, we have by definition of

(
P
Q

)
that ∫

V
divψ dV =

∫
V

∂ψ1

∂x
+
∂ψ2

∂y
dxdy =

∫
V

∂Q

∂x
− ∂P

∂y
dxdy

and comparing the two formulas, we have, in fact, reproduced Green’s theorem∫
C

(
P
Q

)
ds =

∫
V

∂Q

∂x
− ∂P

∂y
dxdy.

Thus, the divergence theorem can be seen as a direct generalization of the fundamental theorem of
calculus as well as of Green’s theorem. �

The divergence theorem has a very famous interpretation in physics: The sum of all sources (this
is given by the divergence of the vector field) in a region is the same as the flux out of the region.

Consequently, an application is given in the derivation of the equation of conservation of mass of a
fluid. Conservation of mass is just the statement made above, i.e., for any volume V in the fluid,
the increase or decrease of mass M over time in the fluid must equal the rate at which fluid is
entering or leaving the volume. Denoting by ρ the density of the fluid and v the velocity field
(vector field!), we have

∂M

∂t
= −

∫
∂V
ρv · dS.

Now, the mass in V can be written as M =
∫
V ρ dV . Interchanging integral and derivative in above

equation together with the divergence theorem produces

0 =
∂

∂t

∫
V
ρ dV +

∫
∂V
ρv · dS =

∫
V

∂

∂t
ρ dV +

∫
∂V
ρv · dS

Gauß
=

∫
V

∂

∂t
ρ dV +

∫
V

div(ρv) dV =

∫
V

∂

∂t
ρ+ div(ρv) dV.

Since the volume V was arbitrary, the integrand has to vanish, which means

∂

∂t
ρ+ div(ρv) = 0,

and we have derived the so called equation of conservation of mass.
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Example. The divergence theorem can be used to compute the volume of a region V by evaluating
a surface integral since

∫
V

div

xy
z

 dV = 3

∫
V

1 dV = 3 |V | =
∫
∂V

xy
z

 · dS.
�

Example. We want to evaluate the surface integral
∫
S ψ · dS, where ψ =

 y − x
x2z
z + x2

 and S is the

open surface of the hemisphere x2 + y2 + z2 = a2, z ≥ 0.
We could directly compute the surface integral by computing the normal vector to the surface.
However, it is much easier to use the divergence theorem. Denoting the bottom of the hemisphere
by S1, which is given as S1 = {(x, y, z) ∈ R2 : x2 + y2 ≤ a2, z = 0}.

S1

S

Then, S1 ∪ S encloses the half upper half-ball V and we obtain with the theorem of Gauß that∫
V

divψ dV =

∫
∂V
ψ · dS =

∫
S
ψ · dS +

∫
S1

ψ · dS.

The first integral on the left-hand side is what we are looking for, and since divψ = −1+0+1 = 0,
we obtain ∫

S
ψ · dS = −

∫
S1

ψ · dS.

S1 can be parametrized using polar coordinates r(u, v) =

u cos v
u sin v

0

 with u ∈ [0, a] and v ∈ [0, 2π]

and the corresponding outer normal vector is given as n =

 0
0
−u

. We compute

−
∫
S1

ψ · dS =

∫ a

0

∫ 2π

0

u sin v − u cos v
0

u2 cos2 v

 ·
 0

0
−u

 dvdu =

∫ a

0

∫ 2π

0
−u3 cos2 v dvdu = −πa

4

4
.

�
The divergence theorem implies some very important generalizations to known rules of integration
in 1D such as integration by parts.
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Corollary 4.16 (Integration by parts formula). Let V be a bounded region with boundary
∂V . Let φ be a scalar function and ψ be a vector field defined on V . Assume that φ and ψ have
continuous partial derivatives. Then, we have∫

V
φ divψ dV =

∫
∂V
φψ · dS −

∫
V
∇φ · ψ dV.

Proof. We apply the divergence theorem to the product φψ to obtain∫
V

div(φψ) dV =

∫
∂V
φψ · dS.

On the other hand, we have with the product rule that div(φψ) = φ div(ψ) +∇φ · ψ, which gives∫
V

div(φψ) dV =

∫
V
φ divψ dV +

∫
V
∇φ · ψ dV

and together these two equations imply the integration by parts formula. �

An application of the integration by parts formula produces the so called Green identities.

Corollary 4.17 (Green’s identities). Let V be a bounded region with boundary ∂V . Let φ, f
be two times continuously differentiable scalar functions in V . We have∫

V
φ∆f dV =

∫
∂V
φ∇f · dS −

∫
V
∇φ · ∇f dV,

which is known as Green’s first identity. Moreover, we have∫
V
φ∆f −∆φf dV =

∫
∂V

(φ∇f −∇φf) · dS,

which is known as Green’s second identity.

Proof. We write ∆f = div(∇f) and apply the integration by parts formula with scalar function
φ and vector field ∇f . This gives∫

V
φ∆f dV =

∫
V
φ div(∇f) dV =

∫
∂V
φ∇f · dS −

∫
V
∇φ · ∇f dV,

which is the first identity.
Reversing the roles of φ, f gives∫

V
∆φf dV =

∫
∂V
∇φf · dS −

∫
V
∇φ · ∇f dV.

Subtracting both equations leads to a cancellation of the term
∫
V ∇φ ·∇f dV and shows the second

identity. �
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Green’s identities will become very useful later on, when we analyze partial differential equations.

Now, we derive another famous integral theorem, Stokes theorem, which can be seen as the “curl
analogue” to the divergence theorem. In the same way as for the divergence theorem, we now
decompose an open surface S into many small areas Si with boundaries Ci = ∂Si and corresponding
normals ni. The equivalent definition of the curl operator implies that

curlψ · ni |Si| '
∫
Ci

ψ · ds.

In a similar way as in the divergence theorem, we obtain by summing over all Si and noticing that
the interior parts of the boundaries cancel out, we obtain∫

S
curlψ · dS =

∫
∂S
ψ · ds,

which is Stokes theorem stated in the following.

Theorem 4.18 (Stokes theorem). Let S ⊂ R3 be an open surface with boundary ∂S. Let ψ
be a continuously differentiable vector field. Then,∫

S
curlψ · dS =

∫
∂S
ψ · ds.

Remark. In contrast to Gauß theorem, we have that Stokes theorem is more closely tied to the
case n = 3, since it contains the curl-operator, which is defined by using the cross product.

However, we also obtained a 2D-curl in the previous chapter as a scalar function curl

(
ψ1

ψ2

)
=

∂ψ2

∂x −
∂ψ1

∂y and Stokes theorem in 2D would be the exact statement of Green’s theorem. �

Example. Let ψ =

 y
−x
z

. We want to verify Stokes theorem on the hemisphere x2 +y2 +z2 = a2,

z ≥ 0.

We start with the surface integral on the left hand side. Using curlψ =

 0
0
−2

 and the normal

vector n = 1
a

xy
z

. Therefore, we have

∫
S

curlψ · dS =

∫ 2π

0

∫ π/2

0

 0
0
−2

 ·
sin θ cosϕ

sin θ sinϕ
cos θ

 a2 sin θ dθdϕ

= a2

∫ 2π

0

∫ π/2

0
−2 cos θ sin θ dθdϕ = −2πa2.
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On the other hand, the boundary ∂S is given by the circle in the xy-plane, parametrized by

r(t) =

a cos t
a sin t

0

 for t ∈ [0, 2π]. Therefore, we obtain

∫
∂S
ψ · ds =

∫ 2π

0

 a sin t
−a cos t

0

 ·
−a sin t
a cos t

0

 dt = −a2

∫ 2π

0
sin2 t+ cos2 t dt = −2πa2.

Example. A famous application of Stokes theorem is the derivation of Maxwell’s equations in the
case of a steady current , i.e.,

curlB − µ0J = 0,

where B is the magnetic field density, J is the current density and µ0 is the magnetic constant.

B

B

J

Ampere’s law (relating the magnetic field on the boundary with its inducing current) states that∫
C
B · ds = µ0

∫
S
J · dS.

Using Stokes theorem for the integral on the left hand side gives∫
S

(curlB − µ0J) · dS = 0.

Since S was arbitrary, this implies the equation curlB − µ0J = 0. Similarly, one can use Stokes
theorem on Faraday’s law (relating the change of a magnetic field over time to the change of the
electric field in space) to derive

curlE = −∂B
∂t
,

hence Maxwell’s equations. �
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Chapter 5

Integral transformations

In this section, we introduce two widely used integral transformations, the Fourier and Laplace
transformation, which can be used to decompose a function into its frequency parts.

5.1 Fourier series

Before we introduce the Fourier transformation, we discuss a similar topic, Fourier series.
The goal hereby is to write a given function f as a series (infinite sum) of certain sine and cosine
functions with different frequencies. In the exercise part of the lecture, we introduced a different
kind of series expansion, so called Taylor series, where a function was written as a sum of poly-
nomials. In contrast to Taylor expansion, Fourier series use trigonometric functions and therefore
can easily be integrated or differentiated.

We call a sum

TN (x) :=
a0

2
+

N∑
k=1

[ak cos(kx) + bk sin(kx)]

a trigonometric polynomial of degree N and the limit N →∞ a trigonometric series.

In order to be able to expand a function f into a trigonometric series, it has to fulfill some require-
ments, the so called Dirichlet conditions for Fourier series, given by

1. f is periodic,

2. f is single valued and continuous except at a finite number of discontinuities,

3. f has a finite number of maxima and minima in one period,

4. The integral over |f | must be finite.

The trigonometric series representation of a function goes back to the ideas and definition of the
Hilbert space L2(I) in Chapter 2, where I = [x0, x0 + L] is an interval of length L and x0 is an
arbitrary starting point. In fact, the previous definition of a trigonometric series is tailored to
2π-periodic functions (by the 2π-periodicity of sine and cosine). However, by making the variable
transformation x 7→ 2π

L x, we can obtain expansions for arbitrary period lengths L.
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With the L2-inner product (f, g)L2(I) =
∫
fgdx, an orthogonal basis of L2(I) is given by the sine

and cosine functions of different frequencies∫
I

sin
(2πj

L
x
)

cos
(2π`

L
x
)
dx = 0 ∀j, `

∫
I

sin
(2πj

L
x
)

sin
(2π`

L
x
)
dx =


0 j = ` = 0
L
2 j = ` > 0

0 j 6= `

∫
I

cos
(2πj

L
x
)

cos
(2π`

L
x
)
dx =


L j = ` = 0
L
2 j = ` > 0

0 j 6= `

.

In Chapter 2, we mentioned that, with an orthonormal basis {ei}, a function f can be written as

f =
∞∑
i=1

(f, ei)ei,

provided the series on the left-hand side converges. Therefore, the coefficients in the series expansion
can be obtained by evaluating the scalar products (f, ei). Now, taking for {ei} the sine and cosine
functions from above (and normalizing those by division of L/2 or L respectively), we directly
obtain the formulas in the following definition.

Definition 5.1. Let I = [x0, x0 + L] and f be a given function defined on I that satisfies the
Dirichlet conditions and has a period of length L. We call the expansion into a trigonometric
series

f(x) =
a0

2
+

∞∑
j=1

[
aj cos

(2πj

L
x
)

+ bj sin
(2πj

L
x
)]

a Fourier series, if

a0 =
2

L

∫
I
f(x)dx

aj =
2

L

∫
I
f(x) cos

(2πj

L
x
)
dx

bj =
2

L

∫
I
f(x) sin

(2πj

L
x
)
dx.

The coefficients a0, aj , bj are called the Fourier coefficients of f .

The evaluation of the integrals above usually requires integration by parts and can be lengthy.
However, one can shorten some of the calculations for special cases of f . Since the sine functions
are odd (i.e. f(x) = −f(−x)) and the cosine functions are even (i.e. f(x) = f(−x)), this can be
exploited if the input function is also either even or odd and I is a symmetric interval around 0.
Since the integral over an even function over a symmetric interval is zero, we have that bj = 0 for
all j, if f is even. In the same way, we have aj = 0 for all j, if f is odd.
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Example. Express the square-wave function given as the periodic extension of

f(t) =

{
−1 − τ

2 ≤ t < 0

1 0 ≤ t < τ
2

as a Fourier series.
By definition of f , we have that f is an odd function and therefore aj = 0 for all j. It remains to
compute the Fourier coefficients bj . With the interval I = [−τ/2, τ/2] and a period of length τ , we
have

bj =
2

τ

∫ τ/2

−τ/2
f(t) sin

(2πj

τ
t
)
dt =

4

τ

∫ τ/2

0
sin
(2πj

τ
t
)
dt =

2

πj

(
1− (−1)j

)
,

where we used that the product f and the sine function is even (and therefore the integral over
the negative part of the interval is the same as the integral over the positive part). Thus, bj = 0
of j ∈ N is an even number and bj = 4

πj if j ∈ N is an odd number. Therefore, we have the
Fourier-series

f(t) =
4

π

(
sin(ωt) +

1

3
sin(3ωt) +

1

5
sin(5ωt) + . . .

)
,

where ω = 2π
τ . �
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As mentioned previously and confirmed by the previous example, the derivation of a Fourier series
works well also for functions with discontinuities, where the value at the discontinuity is an average
of the jump values, as stated in the following theorem.

Theorem 5.2 (Dirichlet’s theorem). Let f satisfy the Dirichlet conditions. Then, the
Fourier series of f converges to

• f(x), if f is continuous at x;

• f(x+)+f(x−)
2 , where f(x+) = limh→0,h≥0 f(x + h) and f(x−) = limh→0,h≥0 f(x − h) are the

values on the right and left of the discontinuity at x.

The Fourier series is always a continuous function.

Close to the discontinuity, the trigonometric polynomials with Fourier coefficients will produce an
overshoot (compare pictures above), which is known as Gibbs’ phenomenon. Increasing the number
of terms in the expansion does not reduce the overshoot, it just moves it closer to the discontinuity.

As seen in the previous example, Fourier series can also be computed for non-periodic functions
defined on an interval I by periodic extension of the function outside of I. This extension may also
be chosen in a clever way, such that one obtained an even or odd function.

Example. We want to find the Fourier series for the function f(x) = x2 in 0 ≤ x ≤ 2.

The given function is not periodic, but can be periodically extended. A clever way to do that is
to first extend the function to the interval [−2, 0]. Then, one has an even function on the interval
[−2, 2] that can be periodically extended to R (see the drawing below) by setting f(x+ 4k) = f(x)
for all k ∈ N.

x

y

Since the extended function is even, we have bj = 0 for all j. For the coefficients aj , we compute

aj =
2

4

∫ 2

−2
x2 cos

(2πj

4
x
)
dx =

∫ 2

0
x2 cos

(2πj

4
x
)
dx =

16

π2j2
(−1)j

and for j = 0

aj =
2

4

∫ 2

−2
x2 dx =

8

3
.
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Therefore, we have the Fourier series

x2 =
4

3
+ 16

∞∑
j=1

(−1)j

π2j2
cos
(πj

2
x
)

for 0 ≤ x ≤ 2.

�

We finish this subsection by rewriting the Fourier series by use of complex numbers. Euler’s formula
gives

eikx = cos(kx) + i sin(kx),

where i is the imaginary unit. Then, a Fourier series can also be expressed by means of complex
exponentials as

f(x) =
∞∑

k=−∞
ck exp

(2πik

L
x
)

with

ck =
1

L

∫ x0+L

x0

f(x) exp
(
− 2πik

L
x
)
dx.

We note that the coefficients ck are related to the real Fourier coefficients by

ck =
1

2
(ak − ibk)

c−k =
1

2
(ak + ibk).

Example. We want to compute the complex Fourier series of f(x) = x in I = [−2, 2]. The above
definition gives using integration by parts

ck =
1

4

∫ 2

−2
x exp

(
− πik

2
x
)
dx

= − x

2πik
exp

(
− πik

2
x
)∣∣∣2
−2

+
1

2πik

∫ 2

−2
exp

(
− πik

2
x
)
dx

= − 1

πik
(exp(−πik) + exp(πik)) +

1

π2k2
exp

(
− πik

2
x
)∣∣∣2
−2

=
2i

πk
(−1)k.

For k = 0 above formula is undefined, but setting k = 0 in the definition of ck gives

c0 =

∫ 2

−2
x dx = 0,

and we obtain the complex Fourier series

x =

∞∑
k=−∞,k 6=0

2i(−1)k

πk
exp

(πik
2
x
)
.

�
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5.2 The Fourier transformation

Roughly speaking, the Fourier transformation can be seen as a generalization of Fourier series for
functions that are defined on R and do not have any particular periodicity.

For the existence of a Fourier transformation of a function f(t) (note that we explicitly use t
as a variable, since most applications deal with time dependent signals), we hereby only require∫∞
−∞ |f(t)| dt <∞.

For the derivation of the Fourier transformation, we start with the complex Fourier series on an
interval [−T/2, T/2] of length T given by

f(t) =
∞∑

k=−∞
ck exp

(
iωkt

)
with ωk = 2πk

T and the Fourier coefficients

ck =
1

T

∫ T/2

−T/2
f(y) exp

(
− 2πik

T
y
)
dy =

∆ω

2π

∫ T/2

−T/2
f(y) e−iωkydy

with ∆ω = 2π
T .

ω

g(ω)eitω

•

•

•

•

ω−2 ω2ω−1 ω1

∆ω

Now, we can understand cke
iωkt as an evaluation of the function ∆ω

2π g(ω)eitω with

g(ω) =

∫ T/2

−T/2
f(u)e−iωudu

at the point ωk and ωk is the right endpoint of the interval [2π(k − 1)/T, 2πkT ] of length ∆ω.
The union of all this intervals is R and we, in fact, can understand

∑∞
k=−∞

∆ω
2π g(ωk)e

iωkt as a
Riemann-sum and taking the limit T →∞ (note that T is the length of the period in the Fourier
series) gives ∆ω → 0 as well as

f(t) = lim
T→∞

∞∑
k=−∞

∆ω

2π
g(ωk)e

iωkt =
1

2π

∫ ∞
−∞

g(ω)eiωtdω

=
1

2π

∫ ∞
−∞

(∫ ∞
−∞

f(u)e−iωudu

)
eiωtdω,
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which is known as Fourier’s inversion formula and motivates the following definitions.

Definition 5.3. Let f be a scalar function satisfying
∫∞
−∞ |f(t)| dt <∞.

The Fourier transformation of f is defined as the function

F [f(t)](ω) := f̂(ω) :=
1√
2π

∫ ∞
−∞

f(t)e−iωtdt.

In the same way, the inverse Fourier transformation is given by

f(t) =
1√
2π

∫ ∞
−∞

f̂(ω)eiωtdω.

We note that the constants 1√
2π

in front of both integrals was chosen here in the way that both

formulas have the same constant. However, different choices are possible as well, as long as the
product of both constants is 1

2π and oftentimes in literature the Fourier transformation is defined
with the prefactor 1

2π and the inverse Fourier transformation with the prefactor 1.

Example. We want to compute the Fourier transformation of the signal

f(t) =

{
0 t < 0

Ae−λt t ≥ 0

for λ > 0.

t

f(t)

A

We have
∫∞
−∞ |f(t)| dt <∞ and get the Fourier transformation

f̂(ω) =
1√
2π

∫ 0

−∞
0e−iωtdt+

A√
2π

∫ ∞
0

e−λte−iωtdt = 0− A√
2π

e−(λ+iω)t

λ+ iω

∣∣∣∞
0

=
A√

2π(λ+ iω)
.

�

In the following, we consider two important examples from physical applications, the Gaussian
normal distribution and the Dirac δ-distribution.
Many applications measure random effects, e.g., think about the uncertainty principle in quantum
mechanics, that follow a Gaussian distribution given by

f(t) =
1

σ
√

2π
e−t

2/(2σ2),
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where σ2 is the variance. Then, the Fourier transformation of f is given by

f̂(ω) =
1√
2π
e−ω

2σ2/2.

Hence, the Fourier transform is again a Gaussian distribution with variance σ̂2 = 1
σ2 .

In physical terms, this can be stated as: the narrower, e.g., an electrical impulse, in time is, the
greater the spread of frequencies it contains is.

f(t) f̂(ω)

The second important application is given by the Dirac δ-distribution, which can be seen as a very
sharp narrow pulse (in space, time, density, current, . . . ). In fact, in physics the Dirac δ appears
whenever one models the density of a point mass.

Definition 5.4. The Dirac δ-distribution is defined by the properties δ(t) = 0 for all t 6= 0
and

f(t) =

∫ ∞
−∞

f(x)δ(x− t)dx

for any function f (that is infinitely times differentiable, only non-zero on a bounded interval).

Note that taking f ≡ 1 this implies
∫∞
−∞ δ(x)dx = 1, so the δ-distribution is zero everywhere but

at 0, but has to be infinite there, i.e., it is not a function in the classical sense. Using the Fourier
transformation, we may obtain an idea how to interpret it.
The Fourier inversion formula gives

f(t) =
1

2π

∫ ∞
−∞

(∫ ∞
−∞

f(u)e−iωudu

)
eiωtdω

=
1

2π

∫ ∞
−∞

∫ ∞
−∞

f(u)eiω(t−u)dω du

=

∫ ∞
−∞

f(u)

(
1

2π

∫ ∞
−∞

eiω(t−u)dω

)
du.

Comparing this with the equation in the definition of the δ-distribution, we have

δ(t− u) =
1

2π

∫ ∞
−∞

eiω(t−u)dω.

Therefore, the δ-distribution results from the superposition of a complete spectrum of harmonic
waves, where all frequencies have the same amplitude and they are in phase at t = u. This suggests
that the δ distribution can also be represented as the limit of the transformation of a uniform

distribution on [−Ω,Ω], i.e., the step function f̂Ω(ω) =

{
1 x ∈ [−Ω,Ω]

0 x ∈ R\[−Ω,Ω]
.

71



CHAPTER 5. INTEGRAL TRANSFORMATIONS

ω

1

−Ω Ω

f̂Ω(ω)

t

f5(t)

t

f10(t)

t

f20(t)

Applying the inverse Fourier transformation gives

fΩ(t) =
1√
2π

∫ Ω

−Ω
1eiωtdω =

2Ω√
2π

sin(Ωt)

Ωt

Now, as Ω → ∞, we have that - as expected - the peak at t = 0 becomes unbounded, and by
the above computed representation with the Fourier inversion Formula, we could also define the
δ-distribution by

δ(t) := lim
Ω→∞

(
sin(Ωt)

πt

)
.

5.2.1 Properties of the Fourier transformation

The Fourier transformation has the properties:

1. Differentiation turns into multiplication with ω: F [f ′(t)](ω) = iωF(f)(ω);

2. Integration turns into division with ω: F
[∫ t

0 f(y)dy
]

(ω) = 1
iωF [f ](ω) + 2πδ(ω);

3. Scaling: F [f(at)](ω) = 1
aF [f(t)]

(
ω
a

)
;

4. Translation turns into multiplication with an exponential: F [f(t+ a)](ω) = eiaωF [f(t)](ω).

Exemplary, we prove the first property. The assumption
∫∞
−∞ |f(t)| dt <∞ implies limt→±∞ f(t) =

0. Therefore, using integration by parts, we have

F [f ′(t)](ω) =
1√
2π

∫ ∞
−∞

f ′(t)e−iωtdt

=
1√
2π
f(t)e−iωt

∣∣∣∞
−∞

+
1√
2π

∫ ∞
−∞

iωf(t)e−iωtdt

= iωF(f)(ω).
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Similarly to Fourier series, the computation of the Fourier transformation can be simplified for
even or odd functions f . If f is odd, the Fourier transformation can be reduced to computing the
Fourier sine transformation

f̂s(ω) =

√
2

π

∫ ∞
0

f(t) sin(ωt)dt.

For even functions f one would obtain the Fourier cosine transformation

f̂c(ω) =

√
2

π

∫ ∞
0

f(t) cos(ωt)dt.

The following theorem, which is called Plancherel identity (or sometimes also called Parseval’s
identity), links the squared integral of a function to the squared integral of its Fourier transformation
and is very useful tool e.g. in error analysis.

Theorem 5.5. Let f be such that
∫∞
−∞ |f(t)| dt <∞ and additionally assume

∫∞
−∞ |f(t)|2 dt <∞.

Then, ∫ ∞
−∞
|f(t)|2 dt =

∫ ∞
−∞

∣∣∣f̂(ω)
∣∣∣2 dω.

We note that the Fourier transformation is not restricted to the case of functions in one variable as
its derivation can be naturally generalized to functions in more variables. E.g., in three dimensions
the Fourier transform is given by

f̂(ωx, ωy, ωz) =
1

(2π)3/2

∫ ∫ ∫
f(x, y, z)e−iωxxe−iωyye−iωzzdx dy dz.

5.2.2 Convolution and deconvolution

The convolution of signals or functions is a very important tool to describe the output of linear
systems, e.g., in electrical engineering.

Going back to the example of the square wave function, we have obtained the Fourier series as a
sum of sine functions with different, increasing frequencies. A very useful tool in the analysis of
signals is given by filters that allow only certain frequencies to pass through the filter and damp
the other frequencies. The most common filters are a low pass filter (that allows low frequencies to
pass through) and a high pass filter (that allows high frequencies to pass through).

t

f(t)

low pass

g(y)

z

h(z)
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We assume that we have a low pass filter, that is described by a function g(y). Then, the convolution
is the operation that relates the output h with the input f and g and is given by the following
definition.

Definition 5.6. Let f and g be scalar functions. The convolution of f and g is a scalar
function h also written as f ? g defined as

h(z) = f ? g(z) =

∫ ∞
−∞

f(x)g(z − x)dx

The convolution has the following properties:

• commutative: f ? g = g ? f ;

• associative: f ? (g ? h) = (f ? g) ? h;

• linear: (f + g) ? h = f ? h+ g ? h;

• δ-distribution is the “neutral element”: f ? δ = f .

Example. We want to compute the convolution of f(x) = δ(x+ a) + δ(x− a) with g(y), where

g(y) =

{
1 |y| ≤ b
0 else.

We compute

h(z) =

∫ ∞
−∞

(δ(x+ a) + δ(x− a))g(z − x)dx = g(z + a) + g(z − a).

a

f(x)

b

g(y)

a-a

h(z)

�
We now compute the Fourier transformation of the convolution h = f ? g

ĥ(ω) =
1√
2π

∫ ∞
−∞

∫ ∞
−∞

f(x)g(z − x)dx e−iωzdz

=
1√
2π

∫ ∞
−∞

∫ ∞
−∞

f(x)g(z − x)e−iωzdz dx

=
1√
2π

∫ ∞
−∞

f(x)

∫ ∞
−∞

g(z − x)e−iωzdz dx.
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Now, making the transformation u = z − x, we get

ĥ(ω) =
1√
2π

∫ ∞
−∞

f(x)

∫ ∞
−∞

g(u)e−iω(u+x)du dx

=
1√
2π

∫ ∞
−∞

f(x)e−iωxdx

∫ ∞
−∞

g(u)e−iωudu

=
√

2π f̂(ω) ĝ(ω).

Therefore, up to the prefactor
√

2π the Fourier transformation turns convolution into multiplica-
tions and the other way round

F [f ? g](ω) =
√

2πF [f ](ω) · F [g](ω),

F [f · g](ω) =
1√
2π

(F [f ] ? F [g])(ω).

The inverse operation to convolution is called deconvolution and allows to reconstruct the function
f , when the output h and the filter g are known. In fact, using the Fourier transformation this can
be computed as

ĥ(ω) =
√

2π f̂(ω) ĝ(ω) =⇒ f̂(ω) =
1√
2π

ĥ(ω)

ĝ(ω)
=⇒ f(t) =

1√
2π
F−1

(
ĥ(ω)

ĝ(ω)

)
.

However, in practice, an exact reconstruction of f is hardly ever possible, since h oftentimes is
given by measurements, which always include some kind of measurement error.

5.3 The Laplace transformation

In this section, we present a transformation with similar properties as the Fourier transformation,
which can be applied for certain functions that do not meet the requirement

∫∞
−∞ |f(t)| dt < ∞

for the existence of the Fourier transformation such as the function f(t) = t. Additionally, we are
only interested in functions on t > 0, which is motivated by the initial value problems in the next
chapter, and we arrive at the so called Laplace transformation.

Definition 5.7. Let f be a scalar function. Then, the Laplace transformation of f is defined
as the function

L[f(t)](s) = f(s) =

∫ ∞
0

f(t)e−stdt,

provided the integral on the right-hand side exists.

Here, we assume that s is real, but an extension to complex numbers is possible.

We note that the integral above is an improper integral (which we defined in the exercise part of
the lecture) as the limit ∫ ∞

0
f(t)e−stdt = lim

R→∞

∫ R

0
f(t)e−stdt.
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A sufficient condition for the existence of the limit is that the function f is of exponential order
s0 ∈ R, which means that there are constants T ≥ 0 and C > 0 such that

|f(t)| ≤ Ces1t for all s1 > s0 and t ≥ T.

This means that f grows at most exponentially. E.g., the function x2 is of exponential order with
s0 = 0. For functions of exponential order s0, the integral can be estimated by (for simplicity we
set T = 0) ∫ ∞

0
f(t)e−stdt ≤

∫ ∞
0
|f(t)| e−stdt ≤ C

∫ ∞
0

es1te−stdt =
C

s− s1
s1 > s0.

As s1 > s0 was arbitrary, this shows that the integral (only) exists for all s with s > s0. Therefore,
the Laplace transformation might only exist from a certain point s0 onwards (which is determined
by the given function).

Example. We compute the Laplace transformation for some simple functions.

1. Let f(t) = 1. Then,

L[1](s) =

∫ ∞
0

e−stdt =
1

s
s > 0.

2. Let f(t) = eat for a ∈ R. Then,

L[eat](s) =

∫ ∞
0

eate−stdt =

∫ ∞
0

e(a−s)tdt =
1

s− a
s > a.

3. Let f(t) = tn for n ∈ N. Then, with integration by parts, we obtain

L[tn](s) =

∫ ∞
0

tne−stdt = − t
ne−st

s

∣∣∣∞
0

+
n

s

∫ ∞
0

tn−1e−stdt

= 0 +
n

s
L[tn−1](s) s > 0,

where the boundary term only disappears for s > 0. Thus, we have derived a recursion
formula. With n = 0 (t0 = 1) being covered by the first example, we can successively insert
this in the recursion formula and obtain

L[t](s) =
1

s
L[1](s) =

1

s2

L[t2](s) =
2

s
L[t](s) =

2

s3

...

L[tn](s) =
n

s
L[tn−1](s) =

n!

sn+1
s > 0.

�
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One of the main uses of the Laplace transformation - as we will also see in the next chapter - is
the solution of differential equations. This is due to the following formula, which is similar to the
property of the Fourier transformation applied to derivatives

L[f ′](s) =

∫ ∞
0

f ′(t)e−stdt = f(t)e−st
∣∣∣∞
0

+ s

∫ ∞
0

f(t)e−stdt

= −f(0) + sL[f ](s), s > 0.

We sum up this together with other important properties of the Laplace transformation
(which are similar to those of the Fourier transformation):

1. Linearity: Let a, b ∈ R and f, g be scalar functions whose Laplace transformations exist.
Then,

L[af + bg](s) = aL[f ](s) + bL[g](s).

2. Higher order derivatives: applying the above argument for the first order derivative gives

L
[
dnf

dtn

]
(s) = snL[f ](s)− sn−1f(0)− sn−2f ′(0)− · · · − dn−1f

dtn−1
(0)

for n ∈ N.

3. Conversely, multiplication with a polynomial becomes differentiation

L [tnf(t)] (s) = (−1)n
dn

dsn
L [f ] (s).

4. Integration becomes division

L
[∫ t

0
f(u)du

]
(s) =

1

s
L [f(t)] (s).

5. Multiplication with an exponential becomes translation

L
[
eatf(t)

]
(s) =

∫ ∞
0

eate−stdt = L [f(t)] (s− a).

6. Scaling: Let a ∈ R. Then,

L [f(at)] (s) =
1

a
L [f(t)] (s/a)

7. Convolution becomes multiplication

L [f ? g] (s) = L [f ] (s) · L [g] (s).
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Example. We want to compute the Laplace transformation of f(t) = t sin t. While this can be
done directly using integration by parts, a much simpler way is to use the properties stated above.
As multiplication with t turns into differentiation, we have

L[t sin t] = − d

ds
L[sin(t)](s) = − d

ds

1

s2 + 1
=

2s

(s2 + 1)2
,

where the Laplace transformation of the sine function can be directly computed or seen in the table
below. �

While the inverse Fourier transformation is essentially the same operation as the Fourier transfor-
mation and is therefore explicitly given, the inverse operation for the Laplace transformation is
considerably harder to obtain. A general derivation would require some deeper tools from complex
function theory. However, for some simple functions the inverse Laplace transformation is known
and we present them in the following table, which can be used for future computations.

f(t) L(f)(s) s > s0

c c
s 0

tn n!
sn+1 0

sin(bt) b
s2+b2

0

cos(bt) s
s2+b2

0

eat 1
s−a a

tneat n!
(s−a)n+1 a

eat sin(bt) b
(s−a)2+b2

a

eat cos(bt) s−a
(s−a)2+b2

a
√
t 1

2

√
π
s3

0

1√
t

√
π
s 0

δ(t− t0) e−t0s 0

H(t− t0) =

{
1 t ≥ t0
0 t < t0

e−t0s

s 0

sinh(bt) b
s2−b2 |b|

cosh(bt) s
s2−b2 |b|

With this dictionary and the linearity of the Laplace transformation (and its inverse), we actually
can compute the inverse transformation for a lot of commonly appearing functions.

Example. We want to compute f(t), where the Laplace transformation is given by

L[f ](s) =
s+ 3

s(s+ 1)
.
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With a partial fraction decomposition, we can write

s+ 3

s(s+ 1)
=

3

s
− 2

s+ 1
,

and the linearity of the inverse Laplace transformation then gives

f(t) = L−1
[
L[f ]

]
(t) = 3L−1

[1

s

]
(t)− 2L−1

[ 1

s+ 1

]
(t)

= 3− 2e−t s > 0,

where we used the above table for the inverse transformations of the simple functions. �
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Chapter 6

Differential equations

In this chapter, we are concerned with differential equations, i.e., equations that contain a function
and/or derivatives of that function. We distinguish between differential equations of functions in
one variable, which we call ordinary differential equations, and differential equations of functions
in multiple variables, which we call partial differential equations.
Differential equations have many fields of application, lots of physical laws, chemical processes or
population dynamics in biology can be formulated as differential equations.

6.1 Ordinary differential equations

We start with the case of functions in one variable, i.e., u : R → R. In the most general form, an
ordinary differential equation (short: ODE), is given as the equation

F (x, u(x), u′(x), . . . , u(n)(x)) = 0.

The order of an ODE is given as the largest natural number n ∈ N, for which the derivative u(n)

appears in the equation.
A function u that satisfies the ODE at every point x is called a solution of the ODE.

Example.

1. The equation
u′(x) + u(x) = 0

is an ODE of first order. A solution is given by u(x) = e−x, and, in fact, ce−x for every c ∈ R
also solves the equation.

2. The equation
(u′′(x))2 + u(x)2 = 0

is an ODE of second order that has only the solution u(x) = 0.

3. The equation
(u′(x))2 = −1

is a first order ODE an has no real valued solution.
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4. The equation
u(3)(x) = x

is an ODE of order 3 and can be solved by integrating 3-times. This gives u(x) = 1
24x

4 +
ax2 + bx+ c as the general solution, where a, b, c are arbitrary constants of integration. �

The previous examples shows that, in general, solutions to ODEs do not have to exist and do not
have to be unique. So, for a general theory about ODEs, some additional assumptions need to be
made.

6.1.1 First order ODEs

We start with the case of first order ODE, which in literature are written in either one of two
equivalent forms

u′(x) = F (x, u) or A(x, u) dx+B(x, u) du = 0,

where F (x, u) = −A(x, u)/B(x, u).

Example. Let T (t) be the temperature of an object that is, e.g., surrounded by water with
constant temperature Tw. Then, Newton’s law of cooling in thermodynamics states that the change
of temperature in the object is proportional to the temperature difference to the surrounding, i.e.,

T ′(t) = −k(T (t)− Tw),

where k > 0 is a material dependent constant that describes the heat transfer intensity. �

In the following, we present some special cases of first order ODEs.

Separable first order ODEs

Separable ODEs are a special case of first order ODEs that can be written as

u′(x) = f(x)g(u),

so the variables x and u on the right-hand side can be multiplicatively separated. Division with
g(u), integrating the equation in x and using the transformation theorem, we obtain∫

1

g(u)
du =

∫
1

g(u(x))
u′(x)dx =

∫
f(x) dx.

Now, if both integrals on the left-hand side and right-hand side can be computed, we obtain an
equation for the solution u.

Example. The ODE
u′(x) = x+ xu

is separable with f(x) = x and g(u) = 1 + u. Using the formula from above, we obtain∫
1

u+ 1
du =

∫
xdx

and computing the integrals gives the equation

ln(1 + u) =
x2

2
+ C =⇒ u(x) = ex

2/2+c − 1 = Cex
2/2 − 1,

with an arbitrary constant C ∈ R.
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Exact equations

We call an ODE

A(x, u)dx+B(x, u)du = 0 or u′(x) = −A(x, u)

B(x, u)

exact, if there is a function H(x, u) such that ∂H
∂x = A and ∂H

∂u = B. In other words, this means

that the vectorfield

(
A
B

)
is a gradient field and H is its scalar potential. We recall that one can

check whether

(
A
B

)
is a gradient field and correspondingly whether the above ODE is exact, if

∂A

∂u
=
∂B

∂x
.

Solving the ODE is then done by computing the scalar potential H(x, u), since

d

dx
H(x, u(x)) =

∂H

∂x
+
∂H

∂u
u′(x) = A(x, u) +B(x, u)u′(x) = 0

gives H(x, u(x)) = c and from that equation, one can express u(x).

Example. We want to solve the ODE

xu′(x) + u+ 3x = 0.

We have A(x, u) = u+ 3x and B(x, u) = x. Since

∂A

∂u
= 1 =

∂B

∂x

we have an exact ODE and we can compute the scalar potential H as described in the previous
section by integration

H(x, u) =

∫
A(x, u)dx+ g(u) =

3

2
x2 + xu+ g(u)

and differentiation to fix the function g(u)

x = B(x, u) =
∂H

∂u
= x+ g′(u),

which implies that g′(u) = 0 and g(u) = c1. Now, from the equation H(x, u) = c2, we see that the
solution to the ODE has to satisfy

3

2
x2 + xu+ c1 = c2

or u(x) = 1
x(c− 3

2x
2) with c = c2 − c1. �

82



CHAPTER 6. DIFFERENTIAL EQUATIONS

Inexact equations, integrating factors

As we know from the previous chapter, not all vector fields are gradient fields and consequently,
we have that not all ODEs are exact. An inexact first order ODE is characterized by

∂A

∂u
6= ∂B

∂x
.

However, in some cases, it is possible to still solve such equations by introducing so called inte-
grating factors. The idea is to multiply the ODE with a function µ(x, u), i.e., one tries to solve
the equation µ(x, u)A(x, u)dx+ µ(x, u)B(x, u)du = 0, where µ is such that

∂(µA)

∂u
=
∂(µB)

∂x
.

Thus, the new ODE is exact. In general, if µ is an arbitrary function of both variables, there is no
way to compute it. If, however, µ does only depend on one variable, i.e., µ = µ(x) or µ = µ(u) (or
other cases like µ = µ(x+ y) or µ = µ(xy)) one has a chance.
For example, if µ = µ(x) the condition for an exact ODE reduces to

µ
∂A

∂u
= µ

∂B

∂x
+B

∂µ

∂x
,

which is a separable ODE in µ that can be solved as explained above and we arrive at the integrating
factor

µ = exp

(∫
f(x)dx

)
with f =

1

B

(
∂A

∂u
− ∂B

∂x

)
.

Similarly, if µ = µ(u), we have

µ = exp

(∫
g(u)du

)
with g =

1

A

(
∂B

∂x
− ∂A

∂u

)
.

Thus, in order to obtain an integrating factor an ansatz has to be made (by clever guessing) and
checked by trying to compute µ.

Example. We want to solve the ODE

(4x+ 3u2) dx+ 2xu du = 0 or u′(x) = −4x+ 3u2

2xu
.

We have A(x, u) = 4x+ 3u2 and B(x, u) = 2xu. The equation is inexact, since

∂A

∂u
= 6u 6= 2u =

∂B

∂x
.

But, since

f =
1

B

(
∂A

∂u
− ∂B

∂x

)
=

1

2xu
(6u− 2u) =

2

x

is only a function of x, we have that µ = µ(x) and by the above formula we obtain

µ(x) = e2
∫

1
x
dx = e2 lnx = x2.

Multiplying the ODE with µ gives the equivalent ODE

(4x3 + 3x2u2)dx+ 2x3udu = 0,

for which we can compute a scalar potential as H(x, u) = x4 + u2x3. Finally, u can be expressed
from the equation H(x, u) = c.
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6.1.2 Higher order ODEs

The solution of higher order ODEs is much harder and solution formulas are only known for very
special cases.

In the following, we focus on linear ODEs, which means that the function F (x, u(x), u′(x), . . . )
depends only linearly on u(x) and all derivatives of u. A linear ODE of order n can be written as

an(x)u(n)(x) + an−1(x)u(n−1)(x) + · · ·+ a1(x)u′(x) + a0(x)u(x) = f(x).

If f(x) = 0, we call the linear ODE homogeneous.

Theorem 6.1. Let the coefficient functions a0, . . . , an be continuous on an interval I ⊂ R. Then,
we have that the solutions to the corresponding homogeneous linear ODE form an n-dimensional
vector space.

This theorem implies that the general solution to the ODE can be written by linear combination
of n functions bi that are linearly independent and all solve the ODE, i.e.,

u(x) =
n∑
i=1

cibi(x).

In order to fix the constants ci and obtain a unique solution, n values of u (or derivatives of u)
have to be prescribed. If only values at 0 (or in general a starting point t0) are prescribed, i.e.,

u(0) = u0

u′(0) = u1

...

u(n−1)(0) = un−1

we speak of so called initial value problems. If one is interested on the solution on a bounded
interval I = [0, T ], another way to determine the constants ci would be to prescribe both values of
u (or derivatives of u) at x = 0 and x = T . In that case, we have a so called boundary value
problem.

Equations with constant coefficients

In the following, we assume that all coefficients a0, . . . , an ∈ R are constant, i.e., they do not depend
on the variable x. Then, the homogeneous ODE

anu
(n)(x) + an−1u

(n−1)(x) + · · ·+ a1u
′(x) + a0u(x) = 0

can be solved by making the ansatz u(x) = ceλx. Plugging this into the equation gives(
anλ

n + an−1λ
n−1 + · · ·+ a1λ+ a0

)
ceλx = 0,

which is fulfilled (in a non trivial way) if and only if the equation

anλ
n + an−1λ

n−1 + · · ·+ a1λ+ a0 = 0

holds. This equation is also called the characteristic equation for the ODE.
As we now have a polynomial of degree n in λ, we know by the fundamental theorem of algebra
that there exists n solutions λ1, . . . , λn to this equation. Here, the following cases can occur:
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1. All solutions are real and distinct. Then, we have n linearly independent functions eλjx,
which by the previous theorem, span the whole solution space, i.e., we can write

u(x) =

n∑
j=1

cje
λjx

with coefficients cj ∈ R for all j = 1, . . . , n.

2. All solutions are distinct but some are complex. Then, again, by the fundamental theorem
of algebra, we know that if λj = α + iβ solves the equation, we also have that λj = α − iβ
solves the equation. In this case, we would obtain complex valued solutions eλjx and eλjx.
However, using Euler’s formula, they can be linearly combined as

c1e
(α+iβ)x + c2e

(α−iβ)x = eαx(d1 cos(βx) + d2 sin(βx))

and replacing eλjx and eλjx in the basis by the linearly independent functions eαx cos(βx)
and eαx sin(βx) gives a real valued basis.

3. Not all solution are distinct (e.g. (λ− 1)2 = 0 gives a double root 1). If λj is a root of order
k > 1, then we obtain k linearly independent solutions as

eλjx, xeλjx, . . . , xk−1eλjx

(this can be checked by factorizing the polynomial in the characteristic equation, which pro-
vides a factorization of the ODE and then inserting the functions). Doing this for every root
that appears multiple times, then gives n-linearly independent functions that span the basis
of the solution vector space.

Example.

1. The ODE
u(3)(x) + 2u′′(x) + u′(x) + 2u(x) = 0

has the characteristic equation λ3 + 2λ2 + λ+ 2 = 0 with roots λ1 = −2, λ2 = i, λ3 = −i. As
all roots are different, the solution space is spanned by e−2x, eix and e−ix or - as described
above - spanned by the real functions e−2x, sin(x) and cos(x) and the general solution is given
as

u(x) = c1e
−2x + c2 sin(x) + c3 cos(x).

2. The ODE
u′′(x)− 2u′(x) + u(x) = 0

has the characteristic equation λ2 − 2λ + λ = 0 with roots λ1 = λ2 = 1. Therefore, the
solution space is spanned by the basis functions ex and xex and the general solution has the
form

u(x) = c1e
x + c2xe

x.

�
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Now, we turn our attention to inhomogeneous linear ODEs with constant coefficients

anu
(n)(x) + an−1u

(n−1)(x) + · · ·+ a1u
′(x) + a0u(x) = f(x).

For all linear ODEs (also for those with non constant coefficients), we have the so called superpo-
sition principle, which states that a solution to the inhomogeneous ODE can be written as

u(x) = uh(x) + up(x),

where uh(x) is the general solution of the homogeneous system (i.e. with f = 0), which can be
computed as explained above, and up(x) is one particular solution to the inhomogeneous equation.

Now, the question remains how to determine this particular solution. A general formula for that
(that also holds for systems with non-constant coefficients) is given at the end of this section, but
evaluating that formula can be tedious. Most of the times it s better to make a clever ansatz for the
particular solution. The idea hereby is that, if f consists of polynomials, trigonometric functions
or exponentials, the particular solution up may have the same structure:

1. If f(x) =
∑N

`=0 α`x
`, then a possible ansatz is

up(x) =
N∑
`=0

β`x
`

and plugging that into the equation and comparing coefficients may give the particular solu-
tion.

2. If f(x) = αerx, then a possible ansatz is

up(x) = βerx

and plugging that into the equation one may be able to compute the coefficient β.

3. If f(x) = α1 sin(rx) +α2 cos(rx) (note that one of the coefficients α1, α2 can be zero, but still
in this case the full ansatz below has to be made), then a possible ansatz is

up(x) = β1 sin(rx) + β2 cos(rx)

and plugging that into the equation one may be able to compute the coefficients β1, β2 by
comparing coefficients.

4. If f is a sum of some of the functions above, one can split f = f1 + · · ·+ fm, where all fj are
of one of the cases above, one can compute particular solutions up,j for the right-hand side
fj and then sum them up to

up = up,1 + · · ·+ up,m.

We note that the previous statements are formulated in a way that the ansatz might work. In
fact, all the presented formulas only fail, if the ansatz made is a function that is already in the
homogeneous solution vector space. In that case, one has to multiply the ansatz with xk, where
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k is the smallest integer such that the ansatz function is not in the solution vector space of the
homogeneous problem.

Example. We want to solve the ODE

u′′(x)− 2u′(x) + u(x) = ex.

We have previously already solved the homogeneous equation and obtained the general solution

uh(x) = c1e
x + c2xe

x.

By the above statement on the structure of the particular solution, we would want to make the
ansatz up(x) = βex. However, this function is already in the solution space of the homogeneous
problem and the same holds for βxex. The correct ansatz for the particular solution is therefore

up(x) = βx2ex

and inserting that ansatz in the equation using

u′p = β(2xex + x2ex), u′′p = β(2ex + 4xex + x2ex)

gives
β(2ex + 4xex + x2ex)− β(4xex + 2x2ex) + βx2ex = ex

or β2ex = ex, which implies β = 1
2 and

up(x) =
1

2
x2ex.

Therefore, we have the general solution

u(x) = uh(x) + up(x) = c1e
x + c2xe

x +
1

2
x2ex.

If one would prescribe the initial conditions u(0) = 1 and u′(0) = 0, the constants c1, c2 can be
computed from

u(0) = c1 = 1

u′(0) = c1 + c2 = 0

as c1 = 1 and c2 = −1 and we have the unique solution that satisfies the initial value problem. �

Systems of ordinary differential equations

We note that the results of this section also apply to systems of ODEs, which are given as

u′(x) = f(x, u(x)),

where u : R→ Rn and f : R× Rn → Rn are vector valued functions.
In fact, ODEs of higher order u(n)(x) = F (x, u(x), . . . , u(n−1)(x)) can be expressed as first order
systems by setting

v1 := u, v2 := u′, . . . , vn := u(n−1),
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which leads to the system of ODEs

v′1 = v2

v′2 = v3

...

v′n−1 = vn

v′n = F (x, v1, . . . , vn).

In general, linear systems can be written in matrix notation

u′(x) = A(x)u(x)

with a matrix-valued function A : R → Rn×n. If A is a continuous function, Theorem 6.1 holds
verbatim.

If the matrix valued function A(x) does not depend on x, we have a linear system with constant
coefficients. For such systems (with A constant!!) a basis of the solution space can be computed
by eλjwj , where λj are the eigenvalues and wj are the corresponding eigenvectors. If there are
multiple eigenvalues to the same eigenvector, one has to compute eigenvectors of second order
(which coincides with the computation of the Jordan normal form in linear algebra).

We finish this section with a general formula for the computation of particular solutions for systems

u′(x) = a(x)u(x) + g(x),

the so called variation of constants formula introduced in the following.

Let U(x) be the matrix valued function U : R → Rn×n, where the columns consist of (vector
valued!) basis functions of the solution space for the homogeneous problem. We note that for an

ODE of order n reformulated as a system, the columns are (bj , b
′
j , . . . , b

(n−1)
j )T , where the bj are

scalar basis functions of the solution space. U is also called fundamental matrix. Then, the
general solution can be written as

u(x) = U(x) · c,

where c ∈ Rn and the product is a matrix vector product.

The general idea behind the variation of constant formula is that a particular solution should have
a similar structure, i.e., look like

up(x) = U(x) · c(x),

now with a vector valued function c(x) instead of the constant vector. Plugging this formula into
the equation then gives the variation of constants formula

up(x) = U(x)

∫
U−1(y)g(y)dy.
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For first order linear equations (i.e. u, a, g are scalar functions), this formula reduces to

up(x) = eA(x)

∫
e−A(y)g(y)dy,

where A(x) =
∫
a(x)dx.

Example. We want to solve the inhomogeneous ODE

u′′(x) + u′(x) = e−x

with the variation of constants formula. Using the characteristic equation λ2 + λ = 0, we obtain
the general solution c1 + c2e

−x of the homogeneous equation. Now, we rewrite the ODE into a first
order system by introducing v1 := u and v2 := u′. Then,

v′1 = v2

v′2 = −v2 + e−x

or in matrix notation (
v1

v2

)′
=

(
0 1
0 −1

)
·
(
v1

v2

)
+

(
0
e−x

)
.

Now, the matrix U(x) is given by

U(x) =

(
1 e−x

0 −e−x
)

=⇒ U(x)−1 =
1

−e−x

(
−e−x −e−x

0 1

)
=

(
1 1
0 −ex

)
and employing the variation of constant formula leads to

vp(x) = U(x)

∫
U−1(y)g(y)dy =

(
1 e−x

0 −e−x
)
·
∫ (

1 1
0 −ey

)
·
(

0
e−y

)
dy

=

(
1 e−x

0 −e−x
)
·
∫ (

e−y

−1

)
dy =

(
1 e−x

0 −e−x
)
·
(
−e−x
−x

)
=

(
−e−x − xe−x

xe−x

)
.

So, the general solution to the system is given by(
v1

v2

)
= c1

(
1
0

)
+ c2

(
e−x

−e−x
)

+

(
−e−x − xe−x

xe−x

)
and with v1 = u, we obtain the solution of the ODE as

u(x) = c1 + c2e
−x − e−x − xe−x.

�
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6.1.3 Existence and uniqueness of solutions

We have seen in the previous subsection that some ODEs have unique solutions, but others do not
have solutions. In the following, we present two theorems that show existence (and uniqueness) of
a large class of ODEs.

The following theorem, known as Peano’s theorem, shows that continuity of the right-hand side of
a system of ODEs guarantees existence of solutions.

Theorem 6.2 (Peano). Let f = f(x, u) be a continuous (vector valued) function. Then, the
initial value problem

u′(x) = f(x, u)

u(0) = u0

has a solution defined on an interval I and u is continuously differentiable.

Example. The initial value problem

u′(x) =
√
u(x)

u(0) = 0

has a solution by the previous theorem, since
√
u is a continuous function in u. Clearly, the trivial

solution u = 0 solves the initial value problem. However, the function u(x) = x2

4 solves the initial
value problem too. �

The previous example shows that in order to obtain uniqueness of the solution, additional assump-
tions need to be made.

Definition 6.3 (Local Lipschitz condition). A (possibly vector valued) function f(x, u)
satisfies a (local) Lipschitz condition on a region R, if we have

|f(x, u(x))− f(x, v(x))| ≤ LR |u(x)− v(x)|

for all (x, u), (x, v) ∈ R. Here, the constant LR is called the Lipschitz constant.

If for every point (x, u) ∈ R × Rn there exists a region R with (x, u) ∈ R and the continuous
function f satisfies a Lipschitz condition on R, we call f locally Lipschitz continuous.

Example.

1. The function f(x, u) =
√
u from the previous example is not Lipschitz continuous, since we

observe

|f(x, u)− f(x, v)| =
∣∣√u−√v∣∣ =

∣∣∣∣ u− v√
u+
√
v

∣∣∣∣ =
1√

u+
√
v
|u− v| .

For u = 0, there is no region containing (x, 0) such that 1√
v

is bounded for all (x, v) ∈ R.
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2. Let f(x, u) = a(x)u(x) with a continuous matrix valued function a. Then, we have

|f(x, u)− f(x, v)| = |a(x)u(x)− a(x)v(x)| = |a(x)| |u(x)− v(x)| .

Now, every continuous function on a bounded region is bounded, i.e., for every (x, u) there is
a region R such that |a(x)| ≤ LR, and we have shown Lipschitz continuity for linear ODEs.

3. Every continuously differentiable function is Lipschitz continuous. �

The following theorem is called the theorem of Picard-Lindelöf and provides existence and unique-
ness under mild assumptions on the ODE.

Theorem 6.4 (Picard-Lindelöf). Let f = f(x, u) be continuous and let f be locally Lipschitz
continuous. Then, the initial value problem

u′(x) = f(x, u)

u(0) = u0

has a unique solution defined on an interval I and u is continuously differentiable.

A consequence of the previous theorem and the preceding example is that initial value problems
for linear ODEs with continuous right-hand side always have a unique solution.

6.1.4 Laplace transformation method

The Laplace transformation L, introduced in the previous chapter, can also be used to solve ODEs.
We have already established the property that the Laplace transform turns derivatives into multi-
plications, i.e.,

L
[
dnu

dtn

]
(s) = snL[u](s)− sn−1u(0)− sn−2u′(0)− · · · − u(n−1)(0)

for n ∈ N.
Therefore, applying the Laplace transformation onto an ODE with constant coefficients turns the
ODE into an algebraic equation to determine the Laplace transformation of the solution. As alge-
braic equations are oftentimes simpler to solve, we can obtain a solution of the ODE by computing
the inverse Laplace transformation of the solution of the algebraic equation.

Example. We want to solve the initial value problem

u′′(x)− 3u′(x) + 2u(x) = 2e−x

u(0) = 2

u′(0) = 1.

Applying the Laplace transformation to the equation gives

s2L[u](s)− s u(0)︸︷︷︸
2

−u′(0)︸ ︷︷ ︸ 1− 3(sL[u](s)− u(0)︸︷︷︸
2

) + 2L[u](s) = L[2e−x](s) =
2

s+ 1
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or the equation

(s2 − 3s+ 2)L[u](s)− 2s+ 5 =
2

s+ 1

which can be solved to obtain the Laplace transformation of u as

L[u](s) =
1

s2 − 3s+ 2

(
2

s+ 1
+ 2s− 5

)
=

2s2 − 3s− 3

(s+ 1)(s− 1)(s− 2)

=
1

3(s+ 1)
+

2

s− 1
− 1

3(s− 2)
.

Now, using linearity and the table of Laplace transforms to determine the inverse transformation,
we arrive at

u(x) = L−1

[
1

3(s+ 1)
+

2

s− 1
− 1

3(s− 2)

]
(x) =

1

3
e−x + 2ex − 1

3
e−2x.

�

6.2 Partial differential equations

Partial differential equations (PDEs) are a generalization of ordinary differential equations (ODEs)
in the sense that a PDE is an equation describing the relation between a function and its derivatives,
but several input arguments are allowed. Therefore, a PDE includes also partial derivatives (which
explains the name PDE).
In general, we are looking at equations

F (u,∇u,∇2u, . . . ) = f(x).

In the same way as for ODEs, we call a PDE linear, if the function F only depends linearly on
u and all partial derivatives of u. If f = 0 the PDE is called homogeneous, and the highest
appearing derivative defines the order of the equation.

Example. In Chapter 4, we already mentioned a PDE, when using the divergence theorem to
derive the equation for conservation of mass, which was given as

∂tρ+ div(ρv) = 0,

where ρ was the density of the fluid and v the velocity field for the fluid. This is a linear, homoge-
neous PDE of first order. For constant velocity fields v and in one space dimension, the equation
simplifies to

∂tρ+ v∂xρ = 0,

which is also called the transport equation. �

Studying general PDEs is very hard, but lots of physical problems are described with PDEs of
second order, which means that only derivatives up to second order appear. For those, some
classifications and results are known and presented in the following.
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6.2.1 Elliptic, hyperbolic and parabolic PDEs

In this section, we consider only linear PDEs of second order, i.e., the highest appearing partial
derivatives are of order 2, and F depends only linearly on u and its derivatives. To that end, let
u : Rn → R and define

n∑
i,j

aij(x)
∂2u

∂xi∂xj
+

n∑
i=1

bi(x)
∂u

∂xi
+ c(x)u(x) = f(x).

Here, the right-hand side f , the (symmetric) matrix valued function A(x) = (aij(x))ni,j=1, the vector
valued function b(x) = (bi)

n
i=1 and the (scalar) coefficient function c(x) are given.

The classification of the PDE will only depend on the symmetric matrix A(x) = (aij(x))ij , or more
precisely on the eigenvalues of A. We call the PDE

• elliptic at the point x, if all eigenvalues of A(x) fulfill λi > 0 for all i = 1, . . . , n or all
eigenvalues fulfill λi < 0 for all i = 1, . . . , n, i.e., all eigenvalues should have the same sign.

• parabolic at x, if there exists a zero eigenvalue λj = 0 of A(x) and all other eigenvalues have
the same sign.

• hyperbolic at x, if one eigenvalue of A(x) has a different sign than the others. I.e., there is
a λj > 0 and all other eigenvalues satisfy λk < 0 for k 6= j (or the other way round).

For simplicity, we assume in the following that A(x) = A is a constant, symmetric matrix and we
consider the case n = 2. Then, we have

2∑
i,j

aij
∂u2

∂xi∂xj
= a11uxx + 2a12uxy + a22uyy,

where we used the short notations uxx = ∂2
xu, uxy = ∂x∂yu, uyy = ∂2

yu. Then, the above classifica-
tion of the PDE can be simplified to

• elliptic, if a2
12 − a11a22 < 0;

• parabolic, if a2
12 − a11a22 = 0;

• hyperbolic, if a2
12 − a11a22 > 0.

The classification of the second order PDEs is useful since, for each category separately, a gen-
eral solution theory and numerical approximation techniques can be made. In the following, we
introduce the most famous PDEs of each category.

6.2.2 The heat equation (parabolic)

Let Ω ⊂ Rd be a given region. We seek the temperature distribution T (x, t) for each point x ∈ Ω
and time t > 0.
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For the derivation of the equations consider a small (arbitrary) “control” volume ω ⊂ Ω. The
conservation of energy implies the conservation of temperature, so we get the balance equation

Change of temperature in ω = produced temperature in ω - temperature loss through ∂ω

•
ω

The total thermal energy in ω is given by∫
ω
C(x)T (x, t) dx,

where the function C is called the specific heat. The left side in the balance equation above then
becomes

d

dt

∫
ω
C(x)T (x, t) dx =

∫
ω
C(x)

∂

∂t
T (x, t) dx.

Let f(x, t) be a given external heat source, then the produced heat in ω is∫
ω
f(x, t) dx.

Finally, the heat flow through ∂ω is proportional to the normal gradient of T (including some
material parameters) and given by the surface integral

−
∫
∂ω
κ∇T (x, t) · dS,

where κ is the thermal conductivity. With the divergence theorem, we get

−
∫
∂ω
κ∇T (x, t) · dS =

∫
ω

div(κ∇T (x, t))dx,

and the balance equation reads as∫
ω
C∂tT (x, t)dx =

∫
ω
f(x, t) + div(κ∇T (x, t))dx.

As this equation is valid for all ω, the equation without the integrals has to hold, i.e.,

C∂tT = div(κ∇T ) + f.
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For homogeneous materials, the material parameters C, κ are constants and with the thermal
diffusivity α = κ

C and g = f
C , we arrive at

∂tT = α∆T + g ∀x ∈ Ω, t > 0,

which is the so called heat equation.

Since the matrix A = (aij)ij is constant and given by a11 = 0, ajj = 1 for all j = 2, . . . , n and
aij = 0 if i 6= j, we have that one eigenvalue is 0 and all other eigenvalues are positive. Therefore,
the above classification shows that we are dealing with a parabolic equation.

In the same way as for ODEs, solutions to PDEs are in general not unique and additional conditions
(initial or boundary conditions) need to be applied. The initial condition at t = 0 looks like

T (x, 0) = T0(x) ∀x ∈ Ω.

Moreover, the interaction with the surrounding media of Ω is usually defined with boundary con-
ditions on ∂Ω. The specific choice of the boundary condition depends on the physical model.
Common types of boundary conditions are

1. Dirichlet-conditions: Prescribe the values at the boundary, e.g.,

T (x, t) = TD(x) x ∈ ∂Ω,

with a given function TD. Oftentimes, TD is a constant, e.g., TD = 0.

2. Neumann-conditions: Prescribe the normal flux at the boundary, e.g.,

−κ∇T · n = TN x ∈ ∂Ω,

with a given function TN . Oftentimes, TN is a constant, e.g., TN = 0.

3. Robin-conditions: Mix the conditions from above, e.g.,

−κ∇T · n− αT = TR x ∈ ∂Ω,

with a given function TR. A more intuitive interpretation is given by setting TR = αT1, where
T1 is a given outside temperature. Then, we have

−κ∇T · n = α(T − T1)

and the normal flux is proportional to the temperature difference (compare that to Newton’s
law of cooling).
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Separation of variables

We consider the following one dimensional setting on Ω = [0, L].

ΩICE ICE
Isolation

Isolation

Then, the heat equation initial/boundary value problem reads as

Tt = αTxx in Ω

T (x, t) = 0 on ∂Ω

T (x, 0) = T0(x).

In the following, we want to solve this problem by making the ansatz (also called Fourier’s guess)
that the solution can be separated into a function depending only on x and a function depending
only on t, i.e.,

T (x, t) = u(x)v(t).

Plugging this into the equation gives u(x)vt(t) = αuxx(x)v(t) and after division with αuv, we arrive
at

uxx(x)

u(x)
=

vt(t)

αv(t)
= const =: −λ,

where the last equality holds since functions in different variables can only be equal, if they are
constant. From this equation, we deduce the ODEs

v′(t) = −αλv(t) =⇒ v(t) = c1e
−αλt

and

u′′(x) = −λu(x),

which is a second order ODE whose solution depends on the sign of λ and the given boundary
conditions. Imposing the conditions

u(0) = u(L) = 0

implies the boundary conditions for T . We note that problems of this form are called eigenvalue
problems. Since the characteristic equation has the zeros

√
−λ and −

√
−λ (which are complex,

if λ is positive), we have three cases for the solutions

1. λ = 0: Then, the equation becomes u′′(x) = 0 with the general solution u(x) = c2x+ c3 and
inserting the boundary conditions leads to c2 = c3 = 0, i.e., the trivial solution u = 0.

2. λ < 0: Then, we have real roots and the general solution u(x) = c2e
√
−λx + c3e

−
√
−λx and,

again, inserting the boundary conditions show that the only possible solution is the trivial
solution u = 0.
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3. λ > 0: In this case, we have that i
√
λ and −i

√
λ are the conjugate complex roots and the

general (real valued) solution is given by

u(x) = c2 sin(
√
λx) + c3 cos(

√
λx)

Inserting the boundary condition u(0) = 0 implies c3 = 0. However, inserting the condition
u(L) = 0 then gives

u(L) = c2 sin(
√
λL) = 0,

which either is fulfilled, if u is the trivial solution u ≡ 0 or

sin(
√
λL) = 0 =⇒

√
λ =

nπ

L
.

In this case, the general solution is given by u(x) = c2 sin
(
nπ
L x
)
.

We note that inserting the trivial solution u(x) = 0 into the ansatz gives T (t, x) = 0, which can
only be a solution provided T0(x) = 0. Otherwise, we are not interested in the trivial solution, and
therefore only the solution of case 3. remains. Inserting this into the ansatz gives

Tn(x, t) = e−α(nπL )
2
t sin

(nπ
L
x
)

n ∈ N.

Since the heat equation is linear, we obtain the general solution by taking a (infinite) linear com-
bination of the solutions Tn as

T (x, t) =
∞∑
n=1

bne
−α(nπL )

2
t sin

(nπ
L
x
)
.

Finally, the coefficients bn can be computed using the initial condition T (x, 0) = T0, which gives

T (x, 0) =

∞∑
n=1

bn sin
(nπ
L
x
)

= T0(x).

Comparing this with the Fourier series of the previous chapter shows that the coefficients bn are
just the Fourier coefficients (noting that T (x, 0) is periodic and odd on [−L,L])

bn =
2

L

∫ L

0
T0(x) sin

(nπ
L
x
)
dx.

We note that from the solution formula, we deduce T (x, t) → 0 for t → ∞, as no external heat
source is employed. Moreover, we see that for t→ −∞ the solution blows up, i.e., going backwards
in time is unstable.
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Now, we change the setting by changing the boundary conditions.

ΩIso Iso
Isolation

Isolation

The drawn setting corresponds to the case of Neumann boundary conditions, which gives the
problem

Tt = αTxx in Ω

∇T (x, t) · n = 0 on ∂Ω

T (x, 0) = T0(x).

Here, the same ansatz T (x, t) = u(x)v(t) can be made, which leads to the same ODEs

uxx(x)

u(x)
=
vt(t)

v(t)
= const =: −λ,

just with the boundary conditions
u′(0) = u′(L) = 0.

The function v(t) = c1e
−αλt is therefore unchanged, and it remains to solve the ODE u′′(x) =

−λu(x) with the different boundary conditions. We check the three cases for the eigenvalue problem:

1. λ = 0: Then, the equation becomes u′′(x) = 0 with the general solution u(x) = c2x + c3

and inserting the boundary conditions leads to u′(0) = c2 = u′(L), i.e., the general solution
u = c3.

2. λ < 0: Then, we have real roots and the general solution u(x) = c2e
√
−λx + c3e

−
√
−λx and,

again, inserting the boundary conditions show that the only possible solution is the trivial
solution u = 0.

3. λ > 0: In this case, we have that i
√
λ and −i

√
λ are the conjugate complex roots and the

general (real valued) solution is given by

u(x) = c2 sin(
√
λx) + c3 cos(

√
λx)

Inserting the boundary condition u′(0) = 0 implies c2 = 0. However, inserting the condition
u′(L) = 0 then gives

u′(L) = −
√
λc3 sin(

√
λL) = 0,

which either is fulfilled, if u is the trivial solution u ≡ 0 or

sin(
√
λL) = 0 =⇒

√
λ =

nπ

L
.

In this case, the general solution is given by u(x) = c3 cos
(
nπ
L x
)
.
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Therefore, we obtain non-trivial cases for λ = 0 and λ = n2π2

L2 and summation over all solutions
gives

T (x, t) =
a0

2
+
∞∑
n=1

ane
−αn

2π2

L2 t cos
(nπ
L
x
)
.

with constants a0, an that are the Fourier coefficients of the initial condition T0 and given by

an =
2

L

∫ L

0
T0(x) cos

(nπ
L
x
)
dx.

We note that from the solution formula, we deduce T (x, t) → a0
2 for t → ∞, i.e., the temperature

converges to the mean value of the initial function T0. This is concise with the physical intuition,
since there is isolation around Ω, so no heat is lost.

A similar technique can also be employed for Robin boundary conditions.

Non homogeneous boundary conditions

Previously, we only considered homogeneous boundary conditions, which was essential for the
representation of the solution by a sum of particular solutions.
In the following, we consider inhomogeneous boundary conditions for the heat equation

Tt = αTxx

T (0, t) = A T (L, t) = B

T (x, 0) = T0(x),

which we solve with the following technique that is called homogenization.

1. We solve the stationary (i.e. not dependent on time) heat equation with the given boundary
conditions to obtain the equilibrium temperature TE

TExx = 0

TE(0) = A

TE(L) = B.

This is an ODE of second order, which has the unique solution TE(x) = A+ B−A
L x.

2. Denoting the difference between the solution T (x, t) and the equilibrium temperature by

U(x, t) = T (x, t)− TE(x),

plugging this into the PDE and using the linearity of the PDE shows that U(x, t) solves the
PDE

Ut = αUxx

U(0, t) = 0 U(L, t) = 0

U(x, 0) = T0(x)− TE(x).

Thus, we have a heat equation with homogeneous boundary conditions, which can be solved
with separation of variables as above. With the computed solutions U(x, t) and TE(x), we
get the sought solution T (x, t) = U(x, t) + TE(x).

99



CHAPTER 6. DIFFERENTIAL EQUATIONS

6.2.3 The wave equation

Let Ω = [0, L]. In the following, we derive an equation for the displacement of a vibrating string
that is fixed at 0 and L.
We assume the following simplifications:

• The wave is plane and transversal (i.e., horizontal to the clamped string).

• The material of the string is homogeneous, i.e., it has constant density.

• The displacement (or deformation) u(x, t) is small.

x

y

•θ u(x, t) L

0
•

If the string is moved, it creates a resistance. This force is called tension and denoted by T (x, t).
Now, we take a sub-part of the string [a, b]. The components of T that appear on [a, b] are
T (b, t) sin(θ(b, t)) and −T (a, t) sin(θ(a, t)), where θ(x, t) denotes the angle between the string and
the x-axis. The force is minimal if θ = 0 and maximal if θ = π/2. The sum of the forces at a and
b now give

tension force = T (b, t) sin(θ(b, t))− T (a, t) sin(θ(a, t)) =

∫ b

a

∂

∂x
(T sin θ)dx.

Newton’s law provides that the force is equal to the product of mass ρ(b−a) (where ρ is the density)
with the acceleration (second derivative), hence,

mass× acceleration = ρ(b− a)
1

b− a

∫ b

a

∂2u(x, t)

∂t2
dx.

Here, the acceleration is actually taken as the mean value of the acceleration on [a, b], which can
be motivated by looking at the movement of the center of mass of [a, b]. Consequently, Newton’s
law now gives ∫ b

a
ρ utt − (T sin θ)xdx = 0

and since a, b are arbitrary, this implies ρutt = (T sin θ)x for x ∈ (0, L) and t > 0.
Since tan θ = ux, we can write using sin2 θ + cos2 θ = 1

sin θ =
sin θ√

sin2 θ + cos2 θ
=

sin θ

cos θ
√

1 + tan2 θ
=

tan θ√
1 + tan2 θ

=
ux√

1 + u2
x

.
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Plugging this into the equation derived above gives

ρutt =

(
Tux√
1 + u2

x

)
x

.

Now, we use the assumption that the displacement is small to simplify the equation. If u = 0m
we have the initial tension T = T0, hence if u and ux are small, i.e., |u| << 1, |ux| << 1, we can
replace T by T0 and 1 + u2

x by 1.
This leads to the classical form of the wave equation

utt = c2uxx x ∈ (0, L), t > 0,

where c2 = T0/ρ is called the wave speed.

For a unique solution, as for the heat equation, initial and boundary conditions need to be specified.
As we have an equation with second order derivatives both in time and space, we actually need
two boundary conditions and two initial conditions. Taking homogeneous Dirichlet conditions (as
we are modeling a clamped string), this reads as

u(0, t) = 0, u(L, t) = 0

u(x, 0) = u0(x) ut(x, 0) = u1(x).

As we have a11 = 1 and a22 = −1 (or in higher dimensions ajj = −1 for all j > 1) and aij = 0
for all i 6= j, the classification at the beginning of this section shows that we are dealing with a
hyperbolic equation.

D’Alembert’s solution

In the exercise part, we already have found solutions to the wave equation utt = uxx by using a
variable transformation. For the case of general wave speeds c, with the transformations

r = x+ ct s = x− ct,

we compute using the chain rule

∂

∂r
=

∂

∂x

∂x

∂r
+
∂

∂t

∂t

∂r
=

1

2c

(
∂

∂t
+ c

∂

∂x

)
∂

∂s
=

∂

∂x

∂x

∂s
+
∂

∂t

∂t

∂s
= − 1

2c

(
∂

∂t
− c ∂

∂x

)
.

This directly implies that

0 = utt − c2uxx =

(
∂

∂t
+ c

∂

∂x

)(
∂

∂t
− c ∂

∂x

)
u = −4c2 ∂

2u

∂r∂s
(r, s).

Consequently, we see that (by integration in r and s) that the solution has to have the form

u(r, s) = F (s) +G(r) =⇒ u(x, t) = F (x− ct) +G(x+ ct)
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with arbitrary functions F and G that can be determined by the initial and boundary conditions.
The initial conditions u(x, 0) = u0(x) and ut(x, 0) = u1(x) then lead to

F (x) +G(x) = u0(x)

−cF ′(x) + cG′(x) = u1(x) =⇒ −cF (x) + cG(x) =

∫ x

0
u1(ζ)dζ +A.

Therefore, we have two linear equations for the two unknowns F,G and solving these gives

F (x) =
1

2c

(
cu0(x)−

∫ x

0
u1(ζ)dζ −A

)
G(x) =

1

2c

(
cu0(x) +

∫ x

0
u1(ζ)dζ +A

)
.

Consequently, the solution to the wave equation reads as

u(x, t) =
1

2
(u0(x− ct) + u0(x+ ct)) +

1

2c

∫ x+ct

x−ct
u1(ζ)dζ.

If u1 = 0, then the solution reduces to a wave u0(x − ct) that travels with speed c and a wave
u0(x+ ct) that travels with speed −c.

The lines x− ct = x0 and x+ ct = x0 are called the characteristics of the equation that start at the
point (x0, 0) and along these lines the information is propagated by the equation. In fact, we see
that the solution u(x, t) only depends on the initial data that is moved along the characteristics.
The function value u(x0, 0) influences the values u(x, t) in a region bounded by the characteristics
that emanate from (x0, 0), which is called the region of influence (blue below). Conversely, the
function value u(x, t) only depends on initial values in [x− ct, x+ ct], which is bounds the domain
of dependence (cyan below).

x

t

x0

(x, t)

x− ct x+ ct

Dod

RoI

We note that the solution of the wave equation exists for all points in time (also negative times) in
contrast to parabolic equations.
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Example. Let u0(x) =

{
1 |x| < 1

0 |x| > 1
, u1 = 0 and c = 1.

Then, the solution is given by

u(x, t) =
1

2
(u0(x− t) + u0(x+ t))

We want to find the solution at t = 1/2, 1, 2.
For t = 1/2, we first look at the characteristics xr − 1/2 = 1 (here 1 is taken since it is the right
point, where u0 jumps) and xR + 1/2 = 1, which give xr = 3/2 and xR = 1/2. Doing the same for
the characteristics x` − 1/2 = −1 (here -1 is taken since it is the left point, where u0 jumps) and
xL + 1/2 = −1 gives x` = −1/2 and xL = −3/2.

x

t

−1 1

1

t=1/2•
xL

•
x`

•
xR

•
xr

This shows that

u(x, 1/2) =
1

2
x ∈ [xL, x`]

u(x, 1/2) = 1 x ∈ [x`, xR]

u(x, 1/2) =
1

2
x ∈ [xR, xr]

x

u0(x)

−1 1

1

x

u(x, 1/2)

−3/2 3/2−1/2 1/2

1

For t = 1 the same can be done and we compute xr = 2, xR = 0 as well as x` = 0 and xL = −2
and the solution is

u(x, 1) =
1

2
x ∈ [xL, xr]

Finally, for t = 2, we have xr = 3, xR = −1 as well as x` = 1 and xL = −3 and the solution is

u(x, 1/2) =
1

2
x ∈ [xL, xR]

u(x, 1/2) = 0 x ∈ [xR, x`]

u(x, 1/2) =
1

2
x ∈ [x`, xr].
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x

u(x, 1)

−2 2

1

x

u(x, 2)

−3 3−1 1

1

From these plots, one can clearly see the nature of d’Alembert’s solution as traveling waves. �

Separation of variables

In the same way as for the heat equation, we can also employ the technique of separation of variables
to the heat equation. Writing u(x, t) = X(x)T (t) and inserting that into the PDE

utt = c2uxx in Ω, t > 0

u(x, t) = 0 on ∂Ω

u(x, 0) = u0(x)

ut(x, 0) = u1(x)

gives

Ttt(t)

c2T (t)
=
Xxx(x)

X(x)
= −λ.

Thus, we have two second order ODEs, and the eigenvalue problem (in x) can be solved as for the
heat equation by distinguishing the cases λ > 0, λ = 0 and λ < 0 (exercise!). This gives the non
trivial solutions

Xn(x) = cn sin
(nπx
L

)
and

Tn(t) = an sin

(
nπct

L

)
+ bn cos

(
nπct

L

)
and the solution to the wave equation has the series expansion

u(x, t) =
∞∑
n=1

An sin

(
nπct

L

)
sin
(nπx
L

)
+Bn cos

(
nπct

L

)
sin
(nπx
L

)
Inserting the initial conditions then allows the computation of An and Bn (exercise!).

Remark. It can be shown that separation of variables and d’Alembert’s procedure produce the
same solution.
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6.2.4 The Poisson equation

We consider the steady state (i.e. ut = utt = 0) of the heat and the wave equation. In n-space
dimensions, this gives

∆u =
∂2u

∂x2
1

+ · · ·+ ∂2u

∂x2
n

= f,

where f is a given external force. If f = 0, the above equation is called Laplace equation,
otherwise it is called the Poisson equation. Studying the Poisson equation in Rn shows that we
have aii = 1 for all i = 1, . . . , n and aij = 0, if i 6= j, so by the above classification, we are dealing
with an elliptic PDE.
In order to obtain a unique solution, here, only boundary conditions on ∂Ω (like Dirichlet, Neumann
or Robin boundary conditions) need to be employed.

We stress that the method of separation of variables can also be applied to solve the Laplace
equation, which again leads to solving eigenvalue problems as in the previous subsections.
In the following, we are more interested in solving the inhomogeneous equation. Before we formulate
the uniqueness theorem, we state an interesting result for solutions of Laplace’s equation, the so
called maximum/minimum principle.

Theorem 6.5. Let u solve ∆u = 0 in Ω. Then, the maximum and minimum of the solution is
obtained on ∂Ω.

Now, we take two solutions u1, u2 of the Poisson equation with inhomogeneous boundary conditions

∆ui = f in Ω

ui = g on ∂Ω.

Then, the difference u := u1 − u2 solves the homogeneous problem

∆u = 0 in Ω

u = 0 on ∂Ω

and by the previous theorem, we know that u has its maximum and minimum at ∂Ω. As u = 0 on
∂Ω, we obtain

0 ≤ u = u1 − u2 ≤ 0 =⇒ u1 = u2.

Therefore, we have shown the uniqueness of solutions to the Poisson equation with Dirichlet bound-
ary conditions (but not the existence of solutions!).
Now, the question remains how to solve the inhomogeneous problem, which is discussed in the
following.

Method of Green’s functions

Previously, we introduced the Dirac δ-distribution in one dimension. Similarly, one can define the
δ-distribution in higher dimension, e.g., in n = 2 by δ(x, y) = 0, if (x, y) 6= 0 and

f(a, b) =

∫
R2

f(x, y)δ(x− a, y − b)dA
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for arbitrary (smooth) functions f .

We consider the Poisson equation on a region Ω ⊂ R2 in two dimensions with inhomogeneous
Dirichlet boundary conditions

∆u = f in Ω

u = uD on ∂Ω.

The idea of the following procedure is to find a function G that satisfies the Poisson equation
with homogeneous boundary conditions and right-hand side f = δ. More precisely, we fix a point
(x, y) ∈ Ω and another point (ζ, η) ∈ R2. Then, the function G solves

∆G(ζ, η) = δ(ζ − x, η − y) in Ω

G = 0 on ∂Ω.

Now, the definition of the δ-distribution gives

u(x, y) =

∫
R2

u(ζ, η)δ(ζ − x, η − y)dζdη =

∫
Ω
u(ζ, η)∆G(ζ, η)dζdη,

where we used the equation for G on Ω and δ = 0 on Rd\Ω. Recall Green’s identity∫
Ω
u∆G−G∆udA =

∫
∂Ω

(u∇G−G∇u) · dS.

Now, applying this together with the fact that G = 0 on ∂Ω to the above formula gives

u(x, y) =

∫
Ω
u(ζ, η)∆G(ζ, η)dζdη

=

∫
Ω

∆u(ζ, η)G(ζ, η)dζdη +

∫
∂Ω
u∇G · dS

=

∫
Ω
fG dA+

∫
∂Ω
uD∇G · dS.

Thus, we have found a solution formula for u that only includes G and the given functions f and
uD. At first glance, finding G seems equally hard to finding u. However, G does only depend on Ω,
but not on f, uD (in contrast to u), and in the following, we actually compute the Green’s function.

Computing the Green’s function

We start with the simple case, where we suppose that we have a solution to the Laplace equation
that is rotational symmetric, i.e., Φ = Φ(r). With r =

√
(x− ζ)2 + (y − η)2, we can write the

2D-δ-distribution as δ(ζ − x, η − y) = δ(r). Thus, we want to solve (where we use the Laplace
operator in polar coordinates)

∆Φ = Φrr +
1

r
Φr = δ(r).

For r > 0, we have δ(r) = 0, and therefore the equation Φrr + 1
rΦr = 0, which can be solved by

integration and separation as
Φ(r) = A ln(r) +B.
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For simplicity, we set B = 0 and in order to fix the constant A, we integrate over the ball Bε(x, y)
centered at (x, y) of radius ε

1 =

∫
R2\Bε(x,y)

δ(r)dA+

∫
Bε(x,y)

δ(r)dA =

∫
Bε(x,y)

∆Φ dA =

∫
∂Bε(x,y)

∇Φ · dS

=

∫
∂Bε(x,y)

A

r
· dS =

∫
∂Bε(x,y)

A

ε
· dS = A2π.

Therefore, we obtained the function

Φ(r) =
1

2π
ln(r),

which is called the fundamental solution of the Poisson equation in 2D. However, up until now,
we did not take the region Ω and associated boundary conditions (at ∂Ω) into account. The Green’s
function is now given as

G(x, y; ζ, η) =
1

2π
ln(r) + h,

where h solves

∆h = 0 in Ω

h = − 1

2π
ln(r) on ∂Ω.

Moreover, h should be two times continuously differentiable, and we have reduced the problem of
finding the Green’s function to computing h (which depends only on Ω).
We provide some examples for the Green’s function

1. For Ω = R2 there are no boundary conditions, and therefore, we have h = 0, and consequently

G(r) =
1

2π
ln(r).

2. We consider the half space Ω = {(x, y) : y ≥ 0}. We compute the Green’s function by
a technique called mirroring. For that, we introduce for the point (x, y) the mirror point
(x,−y). Let r be the distance from (ζ, η) to (x, y) and r′ be the distance from (ζ, η) to
(x,−y). Then, we add h(x, y) = − 1

2π ln(r′) to G. As at the boundary y = 0, we have G = h,
we obtained a function that vanishes at the boundary. Moreover, h is regular, since (x,−y)
is not in Ω and by the preceding discussion, we have ∆h = 0. Therefore, we have

G =
1

4π
ln

(
(ζ − x)2 + (η − y)2

(ζ − x)2 + (η + y)2

)
.

Note that G→ −∞ as (ζ, η)→ (x, y) and G < 0. These are general properties of the Green’s
function.

3. For Ω = R3, a similar discussion as above gives the Green’s function

G(r) = − 1

4π

1

r
.
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6.2.5 More fundamental solutions

Heat equation

We go back to the 1D-heat equation, i.e., we seek u(x, t) that solves

ut = uxx

u(x, 0) = u0(x)

on the whole space Ω = R (thus, no boundary conditions need to be employed). In this case, we
can use the Fourier-transformation (in x) on the equation and by the computational rules of the
Fourier transformation, we turn the x-derivatives into multiplications

0 = F [ut − uxx](ω) = ∂tF [u](ω) + |ω|2F [u](ω).

Thus, we have derived the ODE v′(ω) = |ω|2 v(ω) for the Fourier transformation F [u](ω) that has
the solution

F [u](ω, t) = C(ω)e−|ω|
2t,

and the constant C(ω) can be computed as the Fourier transformation of the given initial data
C(ω) = F [u0](ω). Now, using the Fourier inversion formula, we get

u(x, t) =
1√
2π

∫
R
F [u0](ω)e−|ω|

2teiωxdω.

We want to simplify this formula by using the Fourier convolution formula. For that, we define
w = F−1[e−|ω|

2t]. Then, since the Fourier transform turns convolutions into multiplications (and
the inverse transform does the opposite), we obtain

u(x, t) =
1√
2π

∫
R
F [u0](ω)F [w](ω)eiωxdω =

1√
2π

∫
R
F [u0 ? w](ω)eiωxdω

= F−1[F [u0 ? w]](x, t) = u0 ? w(x, t).

Now, we compute w by making the variable transformation y =
√

2tω

w(x, t) =
1√
2π

∫
R
e−|ω|

2teiωxdω =
1√

2π
√

2t

∫
R
e−y

2/2eiyx/
√

2tdy

=
1√
4πt

e−x
2/4t,

where the last equality follows from F [e−x
2/2] = e−ω

2/2. The function w is the fundamental
solution of the heat equation. Plugging the formula of w into the above identity gives the
solution formula for the heat equation on R in 1D

u(x, t) =
1√
4πt

∫
R
e−(x−y)2/4tu0(y)dy.
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Wave equation

We go back to the 1D-wave equation, i.e., we seek u(x, t) that solves

utt = c2uxx

u(x, 0) = u0(x)

ut(x, 0) = u1(x).

Similarly as in the derivation of d’Alembert’s solution, one can show that the fundamental solu-
tion of the wave equation is given by

Φ(x, t) =
H(ct− |x|)

2c
,

where H is the so called Heaviside-function given as H(x) =

{
1 if x > 0

0 if x ≤ 0
.

We note that, in general, if a fundamental solution Φ is available for the differential equation Lu = 0
(here L is a differential operator, e.g., L = ∆), then the inhomogeneous problem Lu = f has the
solution

u = Φ ? f =

∫
Rn

Φ(x− y)f(y)dy.

6.2.6 Notion of solution

For PDEs there are different ideas and definitions of solutions. We previously were only looking
at functions u that solve the differential equation at every point and are m-times continuously
differentiable (where m is the order of the PDE). Such solutions are called classical solutions.
For example, a classical solution to Poisson’s equation

−∆u = f in Ω

u = 0 on ∂Ω

is a function that satisfies ∆u(x) = f(x) for every point x ∈ Ω and is two times continuously
differentiable.

Thus, we require a lot of differentiability (also called smoothness) of solutions. This may be
problematic, if the right-hand side is not a continuous function, since by the equation, we have
∆u = f , so, there is a second derivative of u that is not continuous, and no classical solution exists.

In order to still be able to solve the equation, the notion of solution has to be weakened. A way to
do this is presented as follows: We multiply the equation with a function v that also satisfies v = 0
on ∂Ω and integrate over Ω

−∆u = f =⇒ −∆uv = fv =⇒
∫

Ω
−∆uv dV =

∫
Ω
fv dV.
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Now, integrating by parts using the divergence theorem gives

−
∫

Ω
∆uv dV = −

∫
Ω

div(∇u)v dV = −
∫
∂Ω
∇uv · dS +

∫
Ω
∇u · ∇v dV

=

∫
Ω
∇u · ∇v dV,

where the last equality follows from v ≡ 0 on ∂Ω. Now inserting this into the equation above gives∫
Ω
∇u · ∇v dV =

∫
Ω
fv dV.

Now, we call functions u that satisfy the equation for all v that are differentiable once and satisfy
v = 0 on ∂Ω weak solutions to the Poisson equation, and above equation is called the weak
formulation of the PDE.

The advantage of the weak formulation is that, for it to be well-defined, one only needs that u is one
time differentiable. Weak formulations are also called variational formulation, which is motivated
in the following section.

6.2.7 Other famous PDEs

In this subsection, we give a short description of three famous PDEs in physics.

The Schrödinger equation

The complex-valued Schrödinger equation describes the time evolution of the state function of
a quantum mechanical system and is one of the basic equations of quantum mechanics. It reads as

i~ut = −H(u).

Here, ~ is the reduced Planck constant and H is the Hamilton operator for the system. The most
famous example for H leads to the non-relativistic Schrödinger equation for the wave function of a
single point particle in a potential V

i~ut = − ~
2m

∆u+ V (x, t)u,

where m is the particle mass.
Although it looks very similar to the heat equation, it is not a parabolic equation (due to the
complex prefactor). In fact, its solutions can behave like waves (although it is not a hyperbolic
equation either).

The Navier-Stokes equations

The Navier-Stokes equations are used to model the dynamics of a viscous fluid. Let u be the
velocity of the fluid and ν the kinematic viscosity (constant). Assume that the fluid is homogeneous
(constant density) and incompressible. Then, the equations

ut + (u · ∇)u− ν∆u = f

div u = 0,
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where u is vector-valued, are called the incompressible Navier-Stokes equations. Here, we are
dealing with a non-linear PDE of second order.
Solution theory for the Navier-Stokes equations in 3D is one of the most famous open problems in
mathematics (in 2D one can fairly easily show that the equations have a unique solution).

The Navier-Stokes equations are used in many application, such as modeling the flow in a pipe,
blood in a vessel or ocean currents. Additionally, they are right now the state of the art in weather
simulations, used to simulate the air flow around an object (like a wing in planes or race cars) or
even used in video games to realistically simulate water flow.

Maxwell’s equations

In Chapter 4, we have already derived two equations linking the magnetic field intensity B to the
current density J as

curlB = J

(scaling such that µ0 = 1) as well as linking the electric field intensity E to the magnetic field
intensity by

curlE = −∂tB.

Gauß’ law for magnetic and electric fields additionally implies

divB = 0

divE = ρ/ε,

where ε is called the permittivity and ρ is the charge density. Finally, the material laws

B = µH, J = σE,

with the parameters µ being the permeability and σ being the electric conductivity and H being
the magnetic field intensity, allow the reduction of variables to the system of PDEs

curlE = −µ∂tH
curlH = σE

Taking the curlµ−1 of the first equation and the partial derivative ∂t of the second equation and
combining both gives a linear second order PDE

curlµ−1 curlE = −σ∂tE,

where the only unknown is the electric field intensity E (a 3D-vectorfield), and which is oftentimes
referred to as Maxwell’s equations.

Oftentimes, one models time harmonic problems, i.e., the dependence in time is of the form E(x, t) =
eiωtE(x) and plugging that into the equation gives the time harmonic Maxwell equations

curlµ−1 curlE + κE = 0,

with κ = iωσ.
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Chapter 7

Calculus of variations

7.1 Calculus of Variations

Variational problems are optimization problems, thus, the task is to find maxima and minima, but
in contrast to the previous cases of functions, we are now interested in minimizing/maximizing so
called functionals. In general, functionals are mappings that act on functions and map into R (or
C).

Example.

1. Let a surface

 x
y

u(x, y)

 in R3 with (x, y) ∈ Ω ⊂ R2 be given. Then, by the discussion of

Chapter 4.4, we have that the surface area is given by

A(u) =

∫
Ω
|n| dxdy =

∫
Ω

√
1 + |∇u|2 dxdy.

Thus, A(u) takes a function and mapps it onto a number (the corresponding surface area).
Now, one could ask the question, which surfaces minimize the surface area under the constraint
that u = g on ∂Ω. This is a variational problem and solutions to it are called minimal
surfaces.

2. A very famous problem is the so called Brachistochrone-problem: The goal is to find a
curve u(x) describing the movement of a mass m without friction in a constant gravitational
force field between two points P1 and P2. Hereby, the curve u(x) should be such that the
time getting from the P1 to P2 is minimal (which explains the name brachystos = shortest,
chronos = time).
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x

P1

P2

•m

For simplicity, we assume that P1 is the origin write P2 = (x0, u0). Let s be the traveled
distance along the path u (arclength!!) and v = ds

dt the velocity of the mass. Conservation of
energy (potential energy and kinetic energy) then gives

1

2
mv2 = mgu =⇒ v =

√
2gu

We recall that the element of arclength is given by ds =
√

1 + u′(x)2dx and denote the
traveled total arclength by L.

Using v(t) = ds
dt and consequently 1

v(s) = ds
dt , the total time traveled T is given as

T =

∫ T

0
dt =

∫ L

0

1

v(s)
ds =

∫ x0

0

1√
2gu(x)

√
1 + u′(x)2 dx.

Therefore, the corresponding variational problem is finding the minimum of the functional

F(u) :=

∫ x0

0

√
1 + u′(x)2

2gu(x)
dx

for functions u satisfying the constraints u(0) = 0 and u(x0) = u0. We will solve this problem
later on. �

7.2 The Euler-Lagrange equations

From now on, we only consider functionals in integral form, i.e., given as

I(u) =

∫ b

a
F (x, u, u′) dx.

Here, the function F and the interval [a, b] are fixed by the considered application, e.g., by physical
laws.
The question is now finding the stationary points of I(·). In order to do that, we assume that the
function u(x) is this stationary point and we consider a small perturbation of u, i.e.,

u(x) ' u(x) + αη(x),
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where α is a small parameter and η a (smooth) function that reproduces some properties of u (such
as boundary conditions). Fixing η(x) (and having already fixed u(x)), we can reduce the functional
to a function of α by defining

Ĩ(α) = I(u+ αη).

Now, a stationary point of Ĩ is easily computed by differentiation with respect to α. Consequently,
for u(x) to be a stationary point of I, we need to have

0 =
dĨ

dα

∣∣∣
α=0

=
d

dα
I(u+ αη)

∣∣∣
α=0

=
d

dα

∫ b

a
F (u+ αη, u′ + αη′, x) dx

∣∣∣
α=0

=

∫ b

a
∂uF (x, u, u′)η + ∂u′F (x, u, u′)η′ dx ∀η.

The quantity

δI(u, η) =

∫ b

a

∂

∂u
F (x, u, u′)η +

∂

∂u′
F (x, u, u′)η′ dx

is called the first-order variation of I (as it measures the change done by the perturbation/variation
of u in direction η). By the calculation above, we see that stationary points of I are characterized
by the equation

δI(u, η) = 0 ∀η.

Integration by parts in the second term of the first-order variation gives

0 = δI(u, η) =

∫ b

a

(
∂

∂u
F (x, u, u′)− d

dx

∂

∂u′
F (x, u, u′)

)
η dx− η ∂F

∂u′

∣∣∣b
a
.

For simplicity, we now assume that the perturbations η vanish at the endpoints, i.e., η(a) = η(b) = 0,
then the last term is zero, and stationary points satisfy

0 = δI(u, η) =

∫ b

a

(
∂

∂u
F (x, u, u′)− d

dx

∂

∂u′
F (x, u, u′)

)
η dx ∀η.

As this equation holds for all η (that vanish at the boundaries), the integrand has to be zero, which
gives rise to the following definition.
Definition 7.1. The second order partial differential equation

∂F

∂u
=

d

dx

∂F

∂u′
,

is called the Euler-Lagrange equation corresponding to the functional I(u) =
∫
F (x, u, u′) dx.

Remark. Solving the Euler-Lagrange equations gives stationary points of the functional I(u). In
the same way as when finding minima or maxima, this method does not provide any information
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about whether the computed stationary point maximizes or minimizes the functional or does nei-
ther. For that, one can either insert the stationary point into the functional and check whether a
neighborhood of the stationary point contains bigger/smaller values or one can compute second-
order variations similarly to above (which we won’t do here). �

Additionally, solving the Euler-Lagrange equations can be hard, as they are PDEs. In the following,
we present some special cases.

7.2.1 F does not contain u explicitly

This means that
∂F

∂u
= 0

and hence, the Euler-Lagrange equations give together with integration with respect to x

0 =
d

dx

∂F

∂u′
=⇒ ∂F

∂u′
= const.

Example. The minimal surface problem from the beginning of the section is of this form (albeit
in higher dimensions).
Here, we consider the slightly simpler problem of a minimal path, i.e., we seek a curve (x, u(x))
connecting the points A = (a, u(a)) and B = (b, u(b)) with minimal arclength. Therefore, we want
to minimize the functional

L(u) :=

∫ b

a

√
1 + u′(x)2 dx.

The Euler-Lagrange equation gives

const =: κ =
∂F

∂u′
=

u′√
1 + u′(x)2

.

Rearranging this equation gives the ODE

u′ =
κ√

1− κ2

with the solution

u(x) =
κ√

1− κ2
x+ c,

which is – as it should be – a straight line, and the constants κ and c can be computed using the
conditions on the endpoints A,B, which gives the function u(x) = u(b)−u(a)

b−a (x−a)+u(a). Inserting
this into the functional L gives

L(u) :=

∫ b

a

√
1 +

(
u(b)− u(a)

b− a

)2

dx =
√

(u(b)− u(a))2 + (b− a)2,

which one would also obtain from Pythagoras law. �
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7.2.2 F does not contain x explicitly

We start with the product rule that implies

d

dx

(
u′
∂F

∂u′

)
− u′′ ∂F

∂u′
= u′

d

dx

∂F

∂u′
.

Consequently, multiplying the Euler-Lagrange equations with u′ gives

u′
∂F

∂u
= u′

d

dx

∂F

∂u′
=

d

dx

(
u′
∂F

∂u′

)
− u′′ ∂F

∂u′

or

d

dx

(
u′
∂F

∂u′

)
= u′

∂F

∂u
+ u′′

∂F

∂u′
.

Now, by assumption F does not depend on x explicitly, which means ∂F
∂x = 0, and therefore, the

right-hand side in the equation above is the total derivative dF
dx . Consequently, integration gives

u′
∂F

∂u′
+ κ = F,

where κ is the integration constant. Therefore, again, the Euler-Lagrange equation reduces to a
first-order ODE.

Example. The task is to find the closed curve of fixed length ` that encloses the largest possible
area.

We can assume (without loss of generality) that the sought curve passes through the origin and
is convex (otherwise one can easily enlarge the area as visualized by the dotted lines below) and
symmetric with respect to the x-axis.

x

y

A

We denote the arclength along the curve measured from the origin by s. Our additional assumptions
lead to the conditions u(0) = u(`/2) = 0. The total area below the curve u is just the integral of
u. In terms of the arclength parametrization this turns into

A(u) = 2

∫ `/2

0
u(s)

√
1− u′(s)2 ds.
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Here, the integrand does not explicitly depend on s, so we can use the derived Euler-Lagrange
equation from above, which reads

κ = F − u′ ∂F
∂u′

= u
√

1− u′2 − uu′2√
1− u′2

.

Expressing u′ from this equation gives

κu′ = ±
√
κ2 − u2,

which, together with u(0) = 0 has the solution

u(s) = κ sin
( s
κ

)
.

The second condition u(`/2) = 0 now gives κ = `/(2π), which leads to

u(s) =
`

2π
sin

(
2πs

`

)
and du = cos

(
2πs

`

)
ds.

It remains to go back to Cartesian coordinates. Together with ds2 = dx2 + du2 and x(0) = 0 we
get dx = ± sin

(
2πs
`

)
ds and integration now gives an expression of x in terms of s as

x− `

2π
= − `

2π
cos

(
2πs

`

)
.

Finally, we observe that this is indeed the expected result since x, u lie on the circle with radius `
2π

given by (
x− `

2π

)2

+ u2 =
`2

4π2
.

�

7.3 Some extensions

The theory of Euler-Lagrange equations is not limited to the case of one variable and scalar func-
tions. Possible extensions are:

7.3.1 Functions in several variables

Here, we seek a function u(x1, . . . , xn) that minimizes a functional in integral form

I(u) =

∫
· · ·
∫
F

(
x1, . . . , xn, u,

∂u

∂x1
, . . . ,

∂u

∂xn

)
dx1 . . . dxn

with the integrand F
(
x1, . . . , xn, u,

∂u
∂x1

, . . . , ∂u∂xn

)
depending on all variables and partial derivatives.

Here, the Euler-Lagrange equation takes the form

∂F

∂u
=

n∑
i=1

d

dxi

∂F

∂uxi
,

where uxi abbreviates ∂u
∂xi

.
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Example.

1. For the minimal surface problem stated at the beginning of this chapter, the Euler-Lagrange
equation is given by

div
∇u√

1 + |∇u|2
= 0 in Ω

u = g on ∂Ω.

A three dimensional example of a minimal surface (the first non trivial one discovered by
Leonhard Euler in 1744) is the so called catenoid, which minimizes the surface area between
two circular rings.

2. The potential energy of the (small) displacement u(x, y) of a membrane above the region Ω
can be expressed by the Dirichlet integral

I(u) =

∫ ∫
Ω
|∇u|2 + f(x, y)u dxdy,

where f is an external force and boundary values u = g at ∂Ω are prescribed. Then, by the
previous discussion, we can compute the Euler-Lagrange equations as

−∆u+ f = 0 in Ω,

i.e., the Euler-Lagrange equation is the Poisson equation. �

7.3.2 Vector valued functions

Here, we seek a function u : R→ Rn with coordinate functions ui(x) that minimizes the functional

I(u) =

∫ b

a
F
(
x, u1, u

′
1, . . . , un, u

′
n

)
dx

with the integrand F (x, u1, u
′
1, . . . , un, u

′
n) on the component functions and their first order deriva-

tive.
Here, the Euler-Lagrange equations are a system of PDEs given by

∂F

∂ui
=

d

dx

∂F

∂u′i
i = 1, . . . , n.
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7.3.3 Higher order derivatives

Here, we seek a function u(x) that minimizes the functional in integral form

I(u) =

∫ b

a
F
(
x, u, u′, . . . , u(n)

)
dx

with the integrand F
(
x, u, u′, . . . , u(n)

)
depending also on higher derivatives of u.

Here, the Euler-Lagrange equations can be derived in the same way as for the first-order case by
repeated integration by parts. Assuming that u = u′ = . . . u(n−1) = 0 at both endpoints (otherwise
additional constraints appear), this gives the Euler-Lagrange equations

∂F

∂u
=

d

dx

(
∂F

∂u′

)
− d2

dx2

(
∂F

∂u′′

)
+ · · · − (−1)n

dn

dxn

(
∂F

∂u(n)

)
.

7.3.4 Variable endpoints

Here, we again we consider the functional

I(u) =

∫ b

a
F (x, u, u′) dx,

but we only fix the value at a and let u(b) be arbitrary. As in the derivation of the Euler-Lagrange
equations, we obtain

0 = δI(u, η) =

∫ b

a

(
∂

∂u
F (x, u, u′)− d

dx

∂

∂u′
F (x, u, u′)

)
η dx− η ∂F

∂u′

∣∣∣b
a

∀η.

Since we fixed the value at the starting point, we require η(a) = 0. The above equation holds for
all such η. If we additionally require η(b) = 0, we obtain the same Euler-Lagrange equation as
before. Therefore, for η that do not vanish at b, the above equation reduces to

0 = η(b)
∂F

∂u′

∣∣∣
b

=⇒ 0 =
∂F

∂u′

∣∣∣
b
,

and we have derived an additional condition.

We note that, if we allow both endpoints to vary, ∂F
∂u′ has to vanish on both endpoints.

Example. We consider a variant of the Brachistochrone example, where we allow the endpoint
P2 to vary anywhere on the vertical line x = x0. We recall that the problem is to minimize the
functional

F(u) :=

∫ x0

0

√
1 + u′(x)2

2gu(x)
dx.

Since F =
√

1+u′(x)2

2gu(x) does not depend on x explicitly, the previous discussion shows that the

Euler-Lagrange equation is given by

u′
∂F

∂u′
+ κ = F,
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which is the equation √
u(1 + u′2) = κ.

Solving for u′ gives the ODE

u′(x) =

√
κ2 − u(x)

u(x)

Using separation of variables and the variable transformation u = κ2 sin2 t, we obtain

x+ C =

∫ √
u

κ2 − u
du = 2κ2

∫
sin2 t dt.

Now, with the formula 2 sin2 t = 1− cos(2t), we compute

x+ C = κ2

∫
1− cos(2t) dt = κ2(t− 1

2
sin(2t)).

Consequently, we have the parametrization of the solution curve as

x(t) = κ2

(
t− 1

2
sin(2t)

)
+ C

u(t) =
κ2

2
(1− cos(2t)) .

It remains to fix the constants C and κ. Using that the curve passes through (0, 0) (at t = 0), we
obtain C = 0. From the discussion on the Euler-Lagrange equation with variable endpoints, we
obtain the constraint

0 =
∂F

∂u′

∣∣∣
x=x0

=
u′√

u(1 + u′)2

∣∣∣
x=x0

=⇒ u′(x0) = 0.

Therefore, the tangent to the curve at P2 must be parallel to the x-axis, which implies that
π
2κ

2 = x0. �

7.4 Constrained variations

For optimization problems for functions with constraints, we introduced the technique of Lagrange
multipliers in the exercise part. Here, we employ a similar technique to optimize functionals under
side constraints. We again look at the functional

I(u) =

∫ b

a
F (x, u, u′) dx

subject to the additional constraint

J(u) =

∫ b

a
G(x, u, u′) dx = const.
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As in the method of Lagrange multipliers, let λ ∈ R and define the new functional

L(u) := I(u) + λJ(u) =

∫ b

a
F (x, u, u′) + λG(x, u, u′)dx.

Stationary points of this functional can again be computed by solving the Euler-Lagrange equation.
Here, we just replace the function F by F + λG, which gives the Euler-Lagrange equations

∂F

∂u
− d

dx

∂F

∂u′
+ λ

(
∂G

∂u
− d

dx

∂G

∂u′

)
= 0.

From this equation and the constraint J = const one can compute the solution u.

We note that this method can easily be generalized to more constraints by setting

L(u) := I(u) +
n∑
j=1

λiJi(u),

where Ji = const denote the constraints.

Example. The goal is to compute the shape of a uniform rope that is suspended by its ends from
two points at equal heights.

x

y

a−a

Let 2L > 0 be the length of the rope and the rope be suspended at x = ±a and y = 0. Denote
by ρ the uniform density of the rope. In order to solve the problem, we have to find a stationary
point to the gravitational potential energy of the rope given by

I(u) = −ρg
∫
u ds = −ρg

∫ a

−a
u(x)

√
1 + u′(x)2dx

under the constraint that

J(u) =

∫
ds =

∫ a

−a

√
1 + u′(x)2 dx = 2L.

For simplicity, change the negative sign in I(u) (which is allowed since we can take −λ instead of
λ in the following) and compute a stationary point of the functional

L(u) = −(I(u)− λJ(u)) =

∫ a

−a
(ρgu(x) + λ)

√
1 + u′(x)2 dx.

121



CHAPTER 7. CALCULUS OF VARIATIONS

Now, the integrand does not contain x explicitly, and consequently, we obtain the Euler-Lagrange
equation

(ρgu+ λ)(1 + u′2)1/2 − (ρgu+ λ)(1 + u′2)−1/2u′2 = κ.

Rearranging terms, we arrive at the nonlinear ODE

u′(x)2 =

(
ρgu(x) + λ

κ

)2

− 1.

With separation of variables and the substitution ρgu+λ = κ cosh(z) (which gives du = κ
ρg sinh(z)),

we get

x+ C =

∫
1(

ρgu+λ
κ

)2
− 1

du =

∫
1√

cosh2(z)− 1

κ

ρg
sinh(z) dz =

∫
κ

ρg
dz = z

κ

ρg
.

Reverting the substitution gives the formula for the solution

κ

ρg
cosh−1

(
ρgu+ λ

κ

)
= x+ C,

and we now have three unknowns, λ, κ, C and three constraints u(±a) = 0 and J = 2L. From the
first two constraints, we get

cosh

(
ρg(a+ C)

κ

)
=
λ

κ
= cosh

(
ρg(−a+ C)

κ

)
.

Since a 6= 0, the symmetry of the hyperbolic cosine implies C = 0, and we have λ = κ cosh
(ρga
κ

)
.

Inserting that together with u′ = sinh
(ρgx
κ

)
into the side constraint gives

2L =

∫ a

−a

√
1 + u′(x)2 dx =

∫ a

−a

√
1 + sinh

(ρgx
κ

)2
dx =

∫ a

−a
cosh

(ρgx
κ

)
dx

=
2κ

ρg
sinh

(ρga
κ

)
,

which is an equation that can be solved for κ and the stationary point is given by

u(x) =
κ

ρg

[
cosh

(ρgx
κ

)
− cosh

(ρga
κ

)]
.

�
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Chapter 8

Complex analysis

8.1 Complex analysis

In this chapter, we are concerned with complex valued functions f : C→ C.
With the imaginary unit i satisfying i2 = −1, a complex number can be written as

z = x+ iy,

where x is called the real part and y is called the imaginary part. Therefore, each complex number
can also be interpreted as a vector (x, y) ∈ R2. In the same way, we can write a complex valued
function f as

f(z) = u(x, y) + iv(x, y),

where the real and the imaginary part u, v : R2 → R2 are real-valued functions and sometimes
denoted by u = Re f and v = Im f .
In the following, we want to introduce the meaning of complex differentiation. In order to do so,
we stress that limits z → z0 are understood as in the case of R2 in Chapter 2, i.e., any direction
has to be taken into account.

x = Re z

y = Im z

•
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Definition 8.1. A complex function f : C→ C is called complex differentiable at the point
z0, if the limit

f ′(z0) = lim
∆z→0

f(z0 + ∆z)− f(z0)

∆z

exists and is unique, regardless of the direction from which ∆z approaches 0.

If a function is complex differentiable in every point of a region D, it is called analytic or
holomorphic.

If a function is complex differentiable in a region D except at a finite number of points, we call
these points singularities and the function analytic except on the singularities.

Example.

1. The function f(z) = zn is analytic in C, since

lim
∆z→0

(z0 + ∆z)n − zn0
∆z

= lim
∆z→0

(
nzn−1

0 +
n(n− 1)

2
zn−2

0 ∆z + · · ·+ (∆z)n−1

)
= nzn−1

0 ,

which shows that the limit exists and is unique at every point z0 ∈ C. Consequently, all
complex polynomials are complex differentiable everywhere.

2. The function f(z) = z (which denotes the complex conjugation) is not differentiable, since
we get

lim
∆z→0

(z0 + ∆z)− z0

∆z
= lim

∆z→0

∆z

∆z
.

Now if ∆z → 0 parallel to the real axis, we have ∆z = ∆z and the value of the limit is 1. On
the other hand, if ∆z → 0 parallel to the imaginary axis, we have that ∆z = −∆z, and the
limit is −1. Consequently, the function is not complex differentiable.

8.1.1 The Cauchy-Riemann equations

In the following, we provide a criterion that is fairly easy to check to determine whether a function
is complex differentiable or not.
We start by writing f(z) = u(x, y) + iv(x, y) and abbreviate ∆u = u(x0 + ∆x, y0 + ∆y)−u(x0, y0).
If f is differentiable at z0, the limit

f ′(z0) = lim
∆z→0

∆u+ i∆v

∆z
= lim

∆z→0

(
∆u

∆z
+ i

∆v

∆z

)
has to exist and be independent of ∆z → 0. Now, taking ∆z → 0 parallel to the real axis, we have
∆z = ∆x, ∆y = 0 and consequently

f ′(z0) = lim
∆z→0

(
∆u

∆x
+ i

∆v

∆x

)
=
∂u

∂x
+ i

∂v

∂x
.
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On the other hand, taking ∆z → 0 parallel to the imaginary axis, we have ∆x = 0, and ∆z = i∆y
and consequently

f ′(z0) = lim
∆z→0

(
∆v

∆y
− i∆u

∆y

)
=
∂v

∂y
− i∂u

∂y
.

Now, for f to be differentiable, both relations need to be the same and comparing real and imaginary
parts, we motivate the following definition.

Definition 8.2. The partial differential equations

∂u

∂x
=
∂v

∂y

∂u

∂y
= −∂v

∂x

are called the Cauchy-Riemann equations corresponding to the complex function f(x+ iy) =
u(x, y) + iv(x, y).

Due to the previous discussion, the Cauchy-Riemann equations are a necessary condition for com-
plex differentiation. By themselves they cannot be a sufficient condition, as only two directions are
taken into account. However, the following theorem also states a sufficient condition.

Theorem 8.3. A function f is complex differentiable at z0, if and only if

1. The functions u, v are continuously partially differentiable at z0, and

2. the partial derivatives satisfy the Cauchy-Riemann equations at z0.

Example.

1. We go back to the example of the function f(z) = z = x− iy. Here, we have that u(x, y) = x
and v(x, y) = −y. Thus, the Cauchy-Riemann equations are violated, since

∂u

∂x
= 1 6= −1 =

∂v

∂y
.

2. We consider the function f(z) = 1
z . Writing z = x+ iy, we compute

f(z) =
1

z
=

x− iy
x2 + y2

=⇒ u(x, y) =
x

x2 + y2
, v(x, y) = − y

x2 + y2
.

Checking the Cauchy-Riemann equations gives

∂u

∂x
=

y2 − x2

(x2 + y2)2
=
∂v

∂y

∂u

∂y
=
−2xy

x2 + y2
= −∂v

∂x
.

However, at z = 0 the function is not continuous (and consequently the functions u, v can
not be continuously partially differentiable there). Thus, the function is analytic everywhere
but at z = 0.
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8.1.2 Complex integration and Cauchy’s integral formula

We have essentially already introduced everything necessary for the integration of complex func-
tions. In fact, the integral ∫ β

α
f(z)dz

between two points α, β ∈ C should be understood as a path integral (as C corresponds with R2),
i.e., as there are infinitely many possibilities to connect α, β in the complex plane, one needs to to
specify the path C connecting the points. Consequently, with a parametrization γ : [a, b] → C we
write ∫

C
f(z)dz :=

∫ b

a
f(γ(t))γ′(t) dt

for the path integral and use the notation
∮
C f(z) dz for closed curves. In the following, we always

assume that the closed curve C only circles once around each point inside of the curve C.

The following theorem is the most important result regarding integration of complex functions and
is called Cauchy’s integral theorem. In fact, the theorem is closely connected to the discussion
of path independence of line integrals of Chapter 4 and provides a condition on this for complex
functions.

Theorem 8.4 (Cauchy’s integral theorem). Let C be a closed curve and let f be analytic
on C and in the region bounded by C. Then,∮

C
f(z) dz = 0.

Indeed, a direct consequence of the theorem is path independence of all line integrals inside a region
Ω, on which the function f is analytic. Let C1 and C2 be two curves with the same endpoints
completely contained in Ω.

•
A

•B
C1

C2

Ω

Then, C1 ∪−C2 is a closed curve inside Ω and f is therefore analytic inside the region bounded by
C1 ∪ −C2. Thus, Cauchy’s theorem gives

0 =

∮
C1∪−C2

f(z) dz =

∫
C1

f(z) dz −
∫
C2

f(z) dz
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and consequently ∫
C1

f(z) dz =

∫
C2

f(z) dz.

Another very useful result, e.g., in physics, is the so called Cauchy integral formula. It states,
that the value of an analytic function at z0 can be computed by a path integral of the function
f(z)
z−z0 .

Theorem 8.5 (Cauchy’s integral formula). Let C be a closed curve and let f be analytic
on C and in the region bounded by C. Let z0 be an arbitrary point inside the region bounded by
C. Then,

f(z0) =
1

2πi

∮
C

f(z)

z − z0
dz.

Remark. We note that, if the point z0 lies outside the region bounded by C, we have that the
function 1

z−z0 is analytic (compare the previous example) and consequently f(z)
z−z0 is analytic inside

C. Consequently, Cauchy’s integral theorem gives that the value of the integral on the left-hand
side in the equation above is zero. �

Cauchy’s integral formula can also be applied to the derivative of f or more general to the n-th
order derivative, which gives the formula

f (n)(z0) =
dn

dzn0

(
1

2πi

∮
C

f(z)

z − z0
dz

)
=

n!

2πi

∮
C

f(z)

(z − z0)n+1
dz.

An amazing consequence of this formula is that any analytical function is infinitely many times
complex differentiable!

8.1.3 Complex power series

In the following, we are concerned with expressing a complex function in a complex power series
around a point z0, i.e., we want to write

f(z) =

∞∑
n=0

an(z − z0)n

with some coefficients an ∈ C for all n ∈ N.

For real valued functions, we introduced Taylor series in the exercise part, where an infinitely times
differentiable function at a point x0 can be written as the sum

f(x) =
∞∑
n=0

f (n)(x0)

n!
(x− x0)n.

Using Cauchy’s integral formula, we can easily extend the theory of Taylor series to complex valued
functions. We start with expressing the function 1

ζ−z as a geometric series, i.e.,

1

ζ − z
=

1

ζ − z0

∞∑
n=0

(
z − z0

ζ − z0

)n
.
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Inserting this into the Cauchy integral formula gives

f(z) =
1

2πi

∮
C

f(ζ)

ζ − z
dζ =

1

2πi

∮
C

f(ζ)

ζ − z0

∞∑
n=0

(
z − z0

ζ − z0

)n
dζ

=
1

2πi

∞∑
n=0

(z − z0)n
∮

f(ζ)

(ζ − z0)n+1
=
∞∑
n=0

(z − z0)n
f (n)(z0)

n!
,

which is exactly the Taylor series.

As we used the Cauchy integral formula, we have to assume that f is analytic on and inside the
curve C. If that is not the case, we cannot express f by its Taylor series. However, it is oftentimes
possible to derive a power series representation

f(z) =

∞∑
n=−∞

an(z − z0)n,

which includes also negative powers. This is called a Laurent series.

Theorem 8.6. Let f : C → C be analytic inside and on a closed curve C except at a point z0,
which lies inside of C. Then, f can be written as

f(z) =
∞∑

n=−∞
an(z − z0)n an =

1

2πi

∮
C

f(ζ)

(ζ − z0)n+1
dζ n ∈ Z.

A Laurent series can be written as

f(z) =
∞∑
n=0

an(z − z0)n +
∞∑
n=1

a−n(z − z0)n,

where the first sum (containing the positive powers) is called the regular part and the second
sum (negative powers) is called the principal part.

Example.

1. The function f(z) = 1
1−z can for all z ∈ C with |z| < 1 be expressed as a Taylor series by use

of a geometric series, i.e.,

f(z) =
1

1− z
=
∑
n=0

zn.

This is actually the Taylor expansion around z0 = 0. However, the function is not analytic
at z = 1. For |z| > 1, we can write

f(z) =
1

1− z
=

1

z

1

1/z − 1
= −1

z

∑
n=0

z−n =
∑
n=0

z−n−1,

and we obtained a Laurent series expansion.
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2. We want to compute the Taylor/Laurent series of f(z) = 1
(z−1)2

around z0 = 0. Here, we use

a trick involving differentiation, since d
dz

1
1−z = 1

(z−1)2
. Now, for |z| < 1, we have computed

1
1−z =

∑
n=0 z

n, which leads to

1

(z − 1)2
=

d

dz

1

1− z
=

d

dz

∞∑
n=0

zn =
∞∑
n=0

(n+ 1)zn.

In the same way, we compute for |z| > 1 that

1

(z − 1)2
=

d

dz

1

1− z
=

d

dz

∞∑
n=0

z−n−1 = −
∞∑
n=0

(n+ 1)z−(n+2),

which is the Laurent series expansion. �

The previous example shows that a power series may not represent the function on the whole space
C, but only on a region (in the example this would be the unit circle |z| < 1). This is related to the
so called circle of convergence of a power series, which is the circle BR := {z ∈ C : |z| < R} of
maximal radius R around zero, such that the power series

∞∑
n=0

|an| zn

converges for all z ∈ BR. In fact, this is called absolute convergence. The radius of the circle
can be computed directly from the coefficients an by either

R = lim
n→∞

∣∣∣∣ anan+1

∣∣∣∣ or

R = lim
n→∞

1

limn→∞
n
√
|an|

if the limits exist. Hereby, the radius can be 0, finite or∞ (which means the power series converges
on C).

The previous example suggests that somewhere at the boundary of the circle of convergence, ana-
lyticity does not hold, which is precisely the statement of the following theorem.

Theorem 8.7. Let the power series
∑∞

n=0 anz
n converge on the circle BR. Then, there lies at

least on singularity on the line |z| = R.

As previously defined, a singularity of a complex function f is a point z0, where the function is
not analytic. In the following, we are only concerned with so called isolated singularities, which
means that there is a circle around z0 on which f is analytic everywhere except at z0.
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Isolated singularities at z0 can be classified as:

1. Removable singularities: Here, f is bounded in a (small) ball around z0 except possibly
at z0.

2. Poles of order n: Here, for n ∈ N, f has the form

f(z) =
g(z)

(z − z0)n
,

where g is analytic (in a region around z0).

3. Essential singularities: Here, the Laurent series of f around z0 has an infinite amount of
non-zero terms that involve negative powers of (z − z0).

In general, one could define the value at a removable singularity in a way that one obtains an analytic
function (which explains the name removable singularity). Moreover, removable singularities can
be characterized by having no principal part in the Laurent series expansion.

Poles can also be characterized by having a finite principal part in the Laurent series.

Example.

1. The function f(z) = sin(z)
z has an undefined value at z = 0. However, using the Taylor series

of sin(z) =
∑∞

n=0
(−1)n

(2n+1)!z
2n+1, one can compute

lim
z→0

sin(z)

z
= lim

z→0

∞∑
n=0

(−1)n

(2n+ 1)!
z2n = 1.

Therefore, f(z) is bounded around z = 0, and we have a removable singularity.

2. The function f(z) = 1
z has a pole of order 1 at z = 0 and is already given in its Laurent-

expansion around zero.

3. The function f(z) = 1
(1−z)2 −

1
1+z = z(3−z)

(1−z)(1+z) has two poles at z = 1 (order 2) and z = −1

(order 1).

4. The function f(z) = e1/z has the Laurent series

e1/z =
∞∑
n=0

1

n!
z−n,

which is valid for all |z| > 0. Hence, the principal part is infinite, and we have an essential
singularity at z = 0. �

The following theorem is very useful for determining types of singularities. Hereby, a rational
function is defined as a function f(z) = p(z)

q(z) , where p, q are complex polynomials, and n(q, z0)
denotes the order of the zero point z0 of a polynomial q.
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Theorem 8.8. For rational functions f(z) = p(z)/q(z) only the following singularities can
occur:

• If p, q do have no common zeros, then f has only poles at the zeros of q of order n(q, z0).

• For common zeros z0 of p, q with the orders n(q, z0) > n(p, z0), we have that f has a pole of
order n(q, z0)− n(p, z0) > 0.

• For common zeros z0 of p, q with the orders n(q, z0) ≤ n(p, z0), we have a removable singu-
larity.

Conversely, an analytic function that has only singularities that are poles has to be a rational
function.

8.1.4 Calculus of Residues

In the following, we are interested in the computation of complex line integrals. As the Cauchy
theorem states that for an analytic integrand we obtain the value zero for integration over a closed
curve, we are interested in the case of functions with singularities inside a closed curve C. In fact,
we will obtain a rather easy and very useful formula for the evaluation provided by the so called
residue theorem.

Definition 8.9. Let f be a complex function and z0 an isolated singularity of f . Then, the
residue Res(f, z0) of f at z0 is defined by

Res(f, z0) := a−1,

where a−1 is the coefficient corresponding to the power −1 in the Laurent expansion f(z) =∑∞
n=−∞ an(z − z0)n around z0.

The following theorem allows for a fairly simple computation of residues, if the singularity is a pole.

Theorem 8.10. Let f be a complex function and z0 be a pole of order m of f . Then,

Res(f, z0) =
1

(m− 1)!
lim
z→z0

dm−1

dzm−1
((z − z0)mf(z)) .

Example.

1. The function

f(z) =
sin(z)

z2
=

1

z

sin(z)

z

has a first order pole at z = 0 (since by the previous example the singularity of sin(z)
z is

removable). Therefore, the previous theorem gives

Res(f, 0) = lim
z→0

zf(z) = lim
z→0

sin(z)

z
= 1.
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2. The function

f(z) =
eiz

(z2 + 1)
=

eiz

(z + i)2(z − i)2

has two poles of second order at z = i and z = −i. Using the previous theorem, we compute
the residue at z = i as

d

dz

[
(z − i)2f(z)

]
=

d

dz

(
eiz

(z + i)2

)
=

(z + i)2ieiz − 2eiz(z + i)

(z + i)4
.

Now, taking the limit z → i gives the residue

Res(f, i) = lim
z→i

d

dz

[
(z − i)2f(z)

]
= − i

2e
.

3. The function f(z) = e1/z has an essential singularity at z = 0. Therefore, we cannot apply
the previous theorem. However, we have already determined the Laurent series expansion in
a previous example. This gives

Res(f, 0) = 1.

�

The following theorem, called the residue theorem is the most important result of this subsection,
and it states that the complex line integral of a function with singularities can be evaluated by only
computing the residues.

Theorem 8.11. Let f : C→ C be an analytic function except at a finite number of singularities
z0, z1, . . . , zN in a region bounded by a closed curve C. Then,∮

C
f(z) dz = 2πi

N∑
j=0

Res(f, zj).

Remark. At the beginning of this chapter we assumed that the curve C only circles once around
each point in the interior. This is important in the formulation of the residue theorem (and also
Cauchy’s integral formula). Otherwise, one would have to multiply the residues with the so called
winding number, which measures how often the curve C moves around a point. �

Example. Let C := {z ∈ C : |z| = 1} be the unit disc and

f(z) =
sin(z)

z2
.

We want to compute the integral
∮
C f dz. By the previous example, we have Res(f, 0) = 1 and the

function f is everywhere else analytic in the unit circle. Therefore, the residue theorem implies∮
C
f(z) dz = 2πiRes(f, 0) = 2πi.

�
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Evaluation of infinite integrals

The residue theorem is a powerful tool to also evaluate some difficult real valued integrals.
In the following, we consider integrals

I =

∫ ∞
−∞

f(x) dx,

where f = p
q is a rational function without poles on the real axis that also satisfies lim|x|→∞ xf(x) =

0 (which guarantees that the infinite integral exists).

Now, we take the curve CR = C1
R ∪ C2

R, where C1
R := {z ∈ C : |z| = R, Im(z) > 0} is the upper

half circle of radius R and C2
R := {z ∈ C : Im(z) = 0,Re(z) ∈ [−R,R]} (the real interval [−R,R]

as subset of C) orientated as drawn in the picture.

Re

Im

C1
R

R-R C2
R

Now, taking R big enough, we can ensure that all poles of f (which must be zeros of the polynomial
q) in the upper half plane Im(z) > 0 lie inside the half circle of radius R. Thus, the residue theorem
implies ∮

CR

f(z) dz =

∫
C1
R

f(z) dz +

∫ R

−R
f(x) dx.

Therefore, taking the limit R → ∞ would produce the sought integral on the right-hand side.
In order to do so, we need to analyze what happens with the integral

∫
C1
R
f(z) dz. Using polar

coordinates, we write∫
C1
R

f(z) dz =

∫ π

0
f(R,ϕ)Rdϕ ≤ π max

|z|=R
f(z)R→ 0 for R→∞,

due to the assumption lim|x|→∞ xf(x) = 0 together with the fact that f is rational. Consequently,
we have that

lim
R→∞

∮
CR

f(z) dz =

∫ ∞
−∞

f(x) dx.

The integral on the left-hand side can be computed using the residue theorem and we finally arrive
at ∫ ∞

−∞
f(x) dx = 2πi

N∑
j=0

Res(f, zj),
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where zj are the complex poles of f in the upper half plane (i.e. those with positive imaginary
part).

Example. We want to compute the integral∫ ∞
−∞

1

x2 + 1
dx.

We have a rational function 1
x2+1

that satisfies the additional assumption lim|x|→∞ xf(x) = 0 and
has two non-real poles of first order at z1 = i and z2 = −i, where only z1 lies in the upper half-plane
(therefore, z2 is irrelevant for the computations). We can easily compute the residue by

Res(f, i) = lim
z→i

(z − i) 1

z2 + 1
= lim

z→i

1

z + i
=

1

2i
.

Therefore, by the preceding discussion, we get the value of the integral as∫ ∞
−∞

1

x2 + 1
dx = 2πiRes(f, i) = π.

�

Obviously, the previous example could also easily be solved by knowing the principal integral of
the function (here the function atan(x)). However, the shown technique applies also to functions,
whose principal integrals are not that clear.

In fact, we can also compute integrals with singularities at the real axis, if the curve is chosen
differently.

Example. We want to compute the principal value (this was defined in the exercise part and is
needed here, since the integral does not exist in a classical sense) of

P.V.

∫ ∞
−∞

sin(x)

x− 1
dx.

Thus, the function f(z) = eiz

(z−1) has exactly one pole at z = 1 and we have that

Im

∫ ∞
−∞

eix

x− 1
dx =

∫ ∞
−∞

sin(x)

x− 1
dx.

We chose our curve as drawn below, where C1
R is a half circle of radius R centered at the origin

and Cε is a half circle (orientated the other way round) of radius ε centered at (1, 0).

Re

Im

C1
R

R-R C2
R

•
1

Cε

C3
R
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Therefore, the function f(z) is analytic inside the curve C = C1
R ∪C2

R ∪Cε ∪C3
R for R > 1 and by

the residue theorem (or Cauchy’s integral theorem), we obtain

0 =

∮
C
f(z) dz =

∫
C1
R

f(z) dz +

∫ 1−ε

−R
f(x) dx+

∫
Cε

f(z) dz +

∫ R

1+ε
f(x) dx

Now, it can be shown that
∣∣∣∫C1

R
f(z) dz

∣∣∣ → 0 for R → ∞ by parametrization of the half circle.

Finally, we compute with the parametrization z = εeiϕ + 1 with ϕ ∈ [0, π] of the circle half circle
−Cε that ∫

Cε

f(z)dz =

∫ 0

π

exp(iε(eiϕ + 1))

εeiϕ
iεeiϕdϕ = −i

∫ π

0
exp(iε(eiϕ + 1))dϕ.

Taking the limit ε → 0 this converges to −iπ (we note that this integral could have also been
computed using the residue theorem). Consequently, we obtain

P.V.

∫ ∞
−∞

eix

x− 1
dx = lim

ε→0
lim
R→0

(∮
C
f(z) dz −

∫
Cε

f(z) dz

)
= iπ.

Now, taking the imaginary part, we have shown

P.V.

∫ ∞
−∞

sin(x)

x− 1
dx = π.

�
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