
Stress States in Tramway Rails 
Predicted through a Principle of Virtual 
Power-Based Beam Theory Approach

Patricia Hasslinger, Aleš Kurfürst, 
Stefan Scheiner*, Christian Hellmich
Institute for Mechanics of Materials & Structures 
TU Wien — Vienna University of Technology
Karlsplatz 13/202, 1040 Vienna, Austria

* Presenting author. Contact via * stefan.scheiner@tuwien.
ac.at / ( +43 1 58801 20265

Motivation and Outline
Tramways are an important means of transport in many urban areas, 

and mechanical failures of tramway rails, which may have been in opera-
tion for a substantial amount of time (a service life of several decades is 
not uncommon) can adversely affect daily life. However, studies elucida-
ting the potentially crack- and failure-inducing stress states in tramway 
rails are surprisingly rare. On the one hand, realistic, full 3D Finite Element 
analyses of (tramway) rails are still expensive, both in terms of preparato-
ry work and required computational power. On the other hand, classical 
beam theory approaches (Euler-Bernoulli bending, Saint-Venant torsion) 
may not be able to realistically represent the quite complex structural 
mechanical behavior of tramway rails. Namely, typical cross sections, as 

Figure 1: Photograph of a rail typically used in the Viennese 
tramway network, being of profile Ri60R1.

the one depicted in Figure 1, appear as being very compliant when sub-
jected to torsional loading; and corresponding warping deformations are 
believed to induce stress states which are not considered in classical 
beam theories.

The overall objective of the presented work was developing a compu-
tationally efficient and theoretically sound modeling tool allowing for com-
puting stress states tramway rails must withstand when subjected to 
operation-representing loading conditions. For that purpose, we chose a 
non-standard approach going beyond the state of the art in beam mecha-
nics [1], involving rigorous utilization of the principle of virtual power [2,3], 
as briefly described below.

Theoretical Foundation based on Reformulating Beam Theory 

The principle of virtual power (PVP) expresses the balance between the virtual powers perfor-
med by external and internal forces. For a continuum, it reads as [2]

Fundamentals of the principle of virtual power:

with  and  as the virtual powers performed by external and internal forces,  and  as 
the volume and surface of the considered domain,  as position vector,  as volume force vector, 
 as virtual velocity field,  as traction force vector,  as stress tensor, and  as virtual Eulerian 

strain rate tensor.
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A beam is considered fulfilling the classical Bernoulli assumptions [4], and the well-known Eu-
ler-Bernoulli kinematics are extended by torsional deformation, in line with [1], yielding the follo-
wing virtual velocity components (in a Cartesian base system):

Virtual beam kinematics:

with  as virtual velocities,  as virtual velocities of the geometrical center,
as coordinates relating to the geometrical center,  as coordinates of the center 

of twist,  as primary warping function (representing St. Venant torsion) and secondary war-
ping function (considering the effect of restrained warping), and  as virtual angular velocity.

The virtual Eulerian strain rate tensor follows straightforwardly from the virtual velocity field, 
through the well-known linearized relations.
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Insertion of (i) linearized beam kinematics, 
(ii) volume and traction forces, and (iii) the 
stress tensor into the virtual power definiti-
ons yields stress resultants (normal force, 
bending and torsional moments, warping-in-
duced torsional, as well as second-, third-, and 
fourth-order warping-related moments) from 
the virtual power performed by internal for-
ces, and beam-specific external forces (distri-
buted forces or acting onto the cross-sectio-
nal ends of the beam, including shear forces) 
from the virtual power performed by external 
forces. Evaluating the PVP accordingly yields  
a set of novel equilibrium conditions, with all 
quantities being functions of coordinate , 

Force quantities, equilibrium and boundary conditions:
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Figure 2: Considered beam, including base system, geometric center 
GC and center of twist CT, as well as traction force vectors and volume 
force vector.

with , , and  being elastic support-related cross-sectional properties, and the corresponding 
natural boundary conditions,

where all force quantities depend on   , . Considering linear elasticity, and introducing the 
relevant rigidities allows for reformulating the PVP into a numerically evaluable format.

As further novelty, the (continuous) elastic support a tramway rail is resting on is considered 
through considering a further traction force acting onto the bottom contact face of the rail:

Consideration of elastic support:

with  being the displacement of the geometric center perpendicular to the contact face, and 
 the foundation modulus.

TES
z (x, y) = k

f
uGC
z (x) + !x (x) (y  yCT)

g
uGC
z

k

Two cross-sectional boundary problems (BVPs) give access to the shear center and the prima-
ry and secondary warping function, respectively. Together with the displacements obtained from 
numerical evaluation of the PVP-derived mathematical framework, the normal and shear stress 
distributions can be calculated [5,6].

Cross-sectional stress distributions:

Numerical Implementation and Concluding Remarks

In longitudinal direction of the beam, the PVP is di-
scretized considering 1D finite elements, using both li-
near and cubic shape functions. 

For the cross-sectional shear stress distributions, va-
nishing shear stress along 
the contour of the cross sec-
tions are considered. Their 
weak forms of the BVPs allow 
for employing standard Finite 
Element solution strategies, 
see Figure 3 for an exempla-
ry mesh, consisting of 2308 
isoparametric, quadrilateral 
elements [5,6], using biline-
ar shape functions.

Solution strategy:

Figure 3: Exemplary Finite Ele-
ment mesh, representing profile 
Ri60R1.
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Numerical example and summary of key features:

Efficient new beam theory approach
Successful computational validation
Novel way of considering elastic support
Discontinuities in elastic support turn out as 
potential sources for rail failure
Model extension: temperature, eigenstresses
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Figure 4: Tramway rails of profile Ri60R1 were studied in 
the form of double-clamped beams, considering different 
elastic support configurations.

The beam was subjected to a ver-
tical force of kN, and a 
load eccentricity-related torsio-
nal moment of kNmm. 
The foundation moduli were set to 

 and N/mm3.

Fz ⇡ 60

MF
T ⇡ 960

k1 = 0.04 k2 = 1

Figure 5: Computed deflections of the beam.

Figure 6: Com-
puted shear 
stress distri-
butions in the 
middle of the 
beam; s

xy
 (top) 

and s
xz 

(bot-
tom); cases 1 
to 3 (left, midd-
le, right); in 
MPa.
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